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Abstract
An outwardly propagating premixed flame in homogeneous isotropic turbulence at constant 
pressure is considered one of canonical configurations to study turbulent premixed flames. 
In this paper, a surface forcing method to prevent the undesirable influence of the bound-
ary-condition-induced backflow on the flame evolution, while maintaining the constant 
pressure, in the simulation of the outwardly propagating flame is presented. The method is 
validated for laminar and turbulent flames. The results show that the present method well 
preserves the characteristics of turbulence and of an outwardly propagating flame, without 
the undesirable influence of the boundary condition, by feeding the homogeneous turbu-
lence relative to the velocity field induced by the volume expansion due to heat release to 
the domain in which the flame develops.

Keywords Turbulent premixed flame · Constant pressure · Spherical flame

1 Introduction

An outwardly propagating flame in homogeneous isotropic turbulence at constant (ther-
modynamic) pressure is considered one of canonical configurations to study turbulent pre-
mixed flames. Using the constant pressure condition in the simulation of the outwardly 
propagating flame can be beneficial for a couple of aspects. It is, firstly, relevant to prac-
tical applications for which a flame kernel formed by a localized ignition of a premixed 
fuel-oxidizer mixture grows at constant pressure. From a theoretical point of view, for the 
low Mach number, the characteristic flame scales used for the analysis, i.e., the unstretched 
laminar flame speed and thickness, do not change with time. From a computational point of 
view, the smallest length scales to be resolved do not decrease with time. Of interest here 
is a method to maintain the constant pressure condition in the numerical simulation of a 
flame outwardly propagating in the presence of homogeneous turbulence.

An outwardly propagating flame in homogeneous isotropic turbulence has been inves-
tigated extensively through direct numerical simulation (DNS) or large eddy simulation 
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(LES) (Oijen et al. 2005; Ozel-Erol et al. 2021; Gashi et al. 2005; Falkenstein et al. 2020; 
Kulkarni and Bisetti 2021; Zhao et  al. 2019; Zhang et  al. 2021b; Shehab et  al. 2022; 
Mohan and Matalon 2022), as well as experimentally. To maintain the constant pressure 
in the simulation, a boundary condition used for the outlet or open boundary has been 
applied to all the boundaries. When the governing equations for fully compressible flows 
are solved, a non-reflecting Navier-Stokes characteristic boundary condition has been 
widely used (Poinsot and Lele 1992; Oijen et al. 2005; Ozel-Erol et al. 2021; Gashi et al. 
2005). The non-reflecting boundary condition is originally formulated for a subsonic out-
flow boundary for which the incoming acoustic mode is assumed to be the only character-
istic wave that enters into the computational domain at the boundary, and performs well 
for the outflow boundary in combustion problems. For the low Mach number formulation 
or weakly compressible flows, for which the pressure-based method is used to enforce the 
continuity, the Neumann-type or “outflow" condition has been used (Shehab et al. 2022; 
Mohan and Matalon 2022). As the information on the flow outside the computational 
domain is lacking, such boundary conditions typically assume that the convection, which 
carries the information along the direction of the fluid velocity, is predominantly in the 
outward direction. For homogeneous turbulence, however, unless the outward convective 
velocity induced by the volume expansion due to heat release exceeds turbulent velocity 
fluctuations, there exists substantial backflow or modification of flow characteristics at the 
boundaries of the computational domain. When a boundary condition assumes the convec-
tive motion is dominantly in the outflow direction, the characteristics of the backflow at the 
boundaries can be quite different from those of turbulence inside the domain. To avoid the 
influence of the backflow on the flame evolution, with the boundaries located sufficiently 
far away from the flame kernel, a computational domain is enlarged. On the other hand, 
the periodic condition, which is widely used to simulate homogeneous turbulence, has 
also been used for the simulation of the outwardly propagating flame kernel. With the fluid 
being confined in the computational domain, such simulation corresponds to the constant 
volume condition for which the pressure rises due to heat release. In Zhang et al. (2021b), 
the flame kernel growth in a fan-stirred combustion vessel, which generates homogene-
ous isotropic turbulence by symmetrically-arranged fans (Zhang et al. 2021a), is simulated 
using LES.

In this paper, we present a boundary forcing method to simulate the outwardly propa-
gating turbulent premixed flame at constant pressure, the purpose of which is to prevent 
the undesirable influence of the boundary backflow. It makes the flow at the boundary 
resemble the homogeneous turbulence being simulated inside the domain, while retain-
ing the constant pressure, thus eliminating the uncertainty regarding avoiding the undesir-
able influence of the boundary backflow and improving the computational efficiency and/
or accuracy. In the following section, the proposed method is described along with the gov-
erning equations. The method is tested for the laminar and turbulent flames.

2  Boundary Mass Sink Method

Of interest is simulating an outwardly propagating premixed flame in homogeneous isotropic 
turbulence. The computational domain is cubic and the periodic condition is applied to all 
the boundaries. With the flame kernel located at the center of the domain, the volumetric 
expansion due to heat release induces an outward motion of the unburned gas mixture. For 
the confined domain with the periodic condition for all boundaries, the gas mixture is then 



Flow, Turbulence and Combustion 

1 3

compressed and the pressure increases. When the unburned mixture moving outward leaves 
the domain at such a rate to prevent the compression, the thermodynamic pressure remains 
constant. In the proposed method, while retaining the periodic boundary condition and thus 
avoiding the undesirable influence of the backflow induced by the boundary condition, the 
mass sink and related forcing terms are added near the boundaries to emulate the gas mixture 
flowing out of the domain at constant pressure.

With the boundary mass sink terms being applied, the governing equations for the flow and 
scalar fields can be written as

where � is the density of the gas mixture, ui the velocity component in the xi direction, �ij 
viscous stress, and p pressure. The summation convention is used. The scalar �i can be the 
species mass fraction or a quantity solved for energy conservation. Γi,j is the molecular 
flux of �i . ��i

 is the source term for �i . sB is the boundary mass sink term. It is less than or 
equal to zero. The third term on the right hand side (r.h.s.) of the momentum and the scalar 
equation is related to sB and added to prevent the boundary mass sink term from directly 
affecting the evolution of ui and �i in the context of their material derivatives, as further 
discussed below. It is to be noted that sB is non-zero only near the boundaries and the gov-
erning equations do not contain the boundary mass sink terms inside the domain where the 
flame evolves. The last term on the r.h.s. of the momentum equation is related to the jump 
condition in the velocity normal to the boundary mass sink layer, as discussed below, and 
is called the normal velocity jump term here. eB,k is the unit vector normal to the boundary 
mass sink layer, pointing toward the positive xk direction. uB,k is the velocity of the bound-
ary mass sink layer. The normal velocity jump term becomes sB(ui − uB,i) on the boundary 
mass sink layer normal to the xi direction and 0 on the other layers.

When thermodynamic pressure remains constant for the low Mach number, we obtain

where ΩF denotes the cubic domain surrounding the flame kernel. �ΩF represents the sur-
face of ΩF . nj represents the unit vector normal to the surface �ΩF , pointing outward. �p is 
the density evaluated using the constant thermodynamic pressure, for given local mixture 
composition and temperature. In Eq. (4), the surface integral on the r.h.s. of the first equal 
sign represents the rate of mass flow at which the gas mixture leaves the domain ΩF when 
thermodynamic pressure is constant. SB thus corresponds to the rate of decrease in the total 
mass in a fixed-volume region encompassing a flame kernel at the constant pressure. In the 
domain ΩF , the total mass decreases as the volume occupied by the low density burned gas 
increases due to the flame kernel growth. Here, the mass sink is placed along the bounda-
ries �ΩF of the cubic domain such that the integration of the mass sink along �ΩF matches 
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SB . By placing the mass sink and related conditions at �ΩF using the regularized Dirac 
delta function (Peskin 2002), which is used to place a singular source term in numerical 
simulation, we obtain the volumetric source/sink terms in the above equations, concen-
trated at �ΩF.

The boundary mass sink term sB satisfies

This condition is equivalent to the condition under which the solution of the Poisson equa-
tion for pressure (correction) in the low Mach number formulation exists for the periodic 
boundary condition. The boundary mass sink term is placed using the regularized Dirac 
delta function:

where � is the regularized delta function, x the spatial location ( xi ), and xB the location of 
the boundary �ΩF . Considering that the periodic extension (images) of ΩF occupies an 
infinite medium, one half side of the regularized delta function appears near one bound-
ary in ΩF and the other half near the opposite one in ΩF . Also, ΩF may not coincide with 
the computational domain, while they are both cubic and have the same size. Here, the 
center of ΩF is chosen to be that of a flame kernel. This helps preserve the symmetry of the 
volume-expansion-induced velocity and related pressure fields. When a kernel grows in a 
chamber the boundaries of which are far from the kernel, the volume-expansion-induced 
radial velocity does not have a preferred direction in the far-field. Such symmetry is better 
satisfied when the kernel is located at the center of the domain ΩF along the boundaries 
of which the mass sink terms are placed. For a turbulent case, where a kernel may move 
slowly, the domain ΩF may be shifted from the computational domain, while they cover 
the same infinite medium through the periodic condition. The velocity of the domain ΩF is 
the same as the velocity of the kernel, which is evaluated using the volume integrals of the 
gas velocity weighted by the progress variable or normalized temperature. It is the velocity 
of the boundary mass sink layers, uB,k , in the normal velocity jump term. With the moving 
ΩF , the flame kernel is always at the center of ΩF and the time duration for which the simu-
lation can be performed accurately with the flame surfaces not being close to the bounda-
ries �ΩF is increased. Here, the term “boundary" is used to indicate not only the boundary 
of the computational domain but also that of the domain ΩF.

The regularized delta function with the half width of two grid sizes  (Peskin 2002) is 
used to place the boundary mass sink terms:

where h is the grid spacing. The uniform grid spacing is used. The regularized delta func-
tion is centered at and placed across the planar, boundary mass sink layer. The boundary 
mass sink term can then be written as
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where � = d∕h and d is the normal distance, from x , to the boundary mass sink layer �ΩF . 
The strength of the sink term, s0 , is proportional to the radial outward velocity induced by 
heat release. The induced radial velocity scales as r1−� , where r is the distance from the 
center of a kernel and � is the dimension of a problem. As the strength of the boundary 
mass sink is proportional to the mass flux, due to the volume-expansion-induced radial 
velocity, on the boundary, it can be written as

where n ⋅ er is the directional cosine. n is the unit vector normal to the boundary mass sink 
layer, pointing outward, i.e., nj in Eq.  (4). er is (xB − xc)∕|xB − xc| , where xc denotes the 
center of the flame kernel. The center of the kernel is evaluated using the volume integrals 
weighted by the progress variable or normalized temperature. The factor a is determined to 
satisfy SB = ∫

ΩF
sBdV .

The pressure in the low Mach number limit is described by the pressure Poisson equa-
tion (e.g., for the formulation used in numerical simulation, McMurtry et  al. (1986)). The 
volume-expansion-induced velocity components, which develop in accordance with the cor-
responding pressure field to satisfy the continuity, tend to approach the spherical symmetry, 
as the distance from the flame surfaces increases. At a location sufficiently far away, the r−2 
scaling in Eq. (9) is expected to be a good approximation for the induced radial velocity rela-
tive to �ΩF in a turbulent flame kernel, which is wrinkled and may move slowly. It is also 
expected to work well when the mean flame shape is close to be spherical. Due to the nature 
of the Laplace operator in the pressure Poisson equation, the effects of small-scale wrinkling 
on the volume-expansion-induced velocity decay fast as the distance from the flame surface 
increases. Besides, when turbulence is strong enough, the simulation does not seem sensitive 
to the distribution of the mass sink along the boundary mass sink layer, i.e., a particular form 
of scaling in Eq. (9). The purpose of the boundary mass sink and related terms is to preserve 
the characteristics of the homogeneous turbulence relative to the periodic extension of the 
volume-expansion-induced velocity field, while maintaining the constant pressure condition.

In Bhagatwala et al. (2015), the mass source term is introduced to mimic the pressure evo-
lution in a reciprocating engine. The uniform mass source is evaluated to reproduce the evolu-
tion of in-cylinder pressure due to the piston motion and is added for the entire domain. Such 
an approach is designed for the pressure evolution due to the piston motion. It is not compat-
ible with an expanding flame at constant pressure due to mass conservation in the burned mix-
ture and in the unburned mixture near the kernel.

As in Bhagatwala et al. (2015), the sB-related source terms, sBui and sB�i , are introduced 
in the momentum and scalar equations. Adding such terms is based on the physical picture 
that, when the gas mixture is taken out by the boundary mass sink, it leaves the computational 
domain with its own velocity and scalar values, ui and �i . From the continuity equation and 
the scalar equation, for example, we obtain

where the sB�i term is canceled out. The material derivative is not affected by the sB term. 
As a result, for example, when a completely premixed unburned mixture flows across 
the boundary mass sink layer, its composition does not change. On the other hand, as in 
Eqs. (4) and (5), the volume integral of the sB�i term is equal to the scalar flow rate across 
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the inner side of �ΩF , which is sufficient for the global conservation inside ΩF in the pre-
sent method.

When the gas flows across the boundary mass sink layer, it experiences the jump 
in the velocity normal to the layer due to the periodic extension – on both sides of the 
layer, the volume-expansion-induced radial velocity is in the direction toward the layer. 
When integrating the convective form of the momentum equation over the time interval 
for which the gas crosses the boundary mass sink layer, the normal velocity jump term 
becomes ± ∫ sBdxi , where the integration along the xi direction is performed across the 
layer that is normal to the xi direction, with the assumption of the very thin layer and 
the sign depending on the direction of the gas velocity in the xi direction. When divided 
by the density, the integrated term is equal to the jump condition in the velocity normal 
to the layer across the periodic, neighboring image domains. With the boundary mass 
sink layer being represented by the regularized delta function, in the simulation, the 
jump condition appears as the smoothed and weak discontinuity in the normal velocity 
component.

3  Test Cases and Results

The boundary mass sink method is tested for laminar and turbulent flame kernels. 
The governing equations for the low Mach number variable density flows are solved. 
With the constant thermodynamic pressure and the low Mach number, the density is 
evaluated as 1∕� = 1∕�u + (1∕�b − 1∕�u)c . The ratio of the unburned density, �u , to the 
burned density, �b , is in the range of 3–7. As the thermodynamic pressure is constant, �u 
and �b are fixed. � is also �p in Eqs. (4) and (5). The evolution of the flame is described 
by the progress variable c with single-step chemistry. The reaction progress variable c 
is solved with the Fick’s law for molecular diffusion, which is widely used for DNS of 
turbulent flames. The Schmidt number is 0.7, while the Lewis number is unity. The vis-
cosity is evaluated as � = �u(�u∕�b)

0.75 , where �u is the viscosity of the unburned gas. 
The form of viscous stress for the (isotropic) Newtonian fluid is used. The reaction rate 
in the progress variable equation is given as �c = A�(1 − c) exp(−�∕(1 + �c)) , where 
A is the pre-exponential factor, � = �u∕�b − 1 , and � is the non-dimensional activation 
temperature  (Kim 2017). The reaction rate expression is for a fuel-lean mixture with 
unity Lewis number assumption. While the method can be applied to a detailed chemi-
cal mechanism, a simple one-step mechanism is used here. As described in Sect. 2, the 
periodic condition is used for all the boundaries of the computational domain.

The governing equations in the low Mach number formulation are solved on uni-
form structured grid (Desjardins et al. 2008; Su and Kim 2018). The second-order semi-
implicit Crank-Nicolson scheme with time staggering between the velocity and scalar 
fields is used for time integration. The second-order central finite difference scheme 
is used for spatial discretization on the staggered grid, except for scalar advection for 
which the fifth-order weighted essentially non-oscillating (WENO) scheme  (Jiang and 
Shu 1996) is used. The constant coefficient Poisson’s equation for the pressure correc-
tion, the derivation of which uses the continuity equation that contains the boundary 
mass sink term, is solved. The present method can also be applied to the governing 
equations for fully compressible flows with no additional modification, while it assumes 
the low Mach number and the acoustic response needs to be investigated.
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3.1  Laminar Flame Kernel

The outwardly propagating circular and spherical flames are simulated. The density ratio 
�u∕�b is 5. The non-dimensional activation temperature � is set to be 20. For a circular 
flame, the square domain is discretized using 3842 uniformly-spaced grid points. For a 
spherical flame, the cubic domain is discretized using 2563 uniformly-spaced grid points. 
The laminar flame thickness defined as 1∕|∇c|max is 8h, where |∇c|max is the maximum 
magnitude of the gradient of the progress variable. The grid resolution is determined such 
that the planar laminar flame speed is well predicted and grid-independent. By increasing 
the number of grid points in one direction by 25%, the change in the laminar flame speed is 
about 0.1%. The radius of the initial flame kernel is 0.048L for a circular one and 0.08L for 
a spherical one, where L is the side length of the square or cubic domain.

Figure 1 shows the density and velocity fields in the circular flame at different times. 
The flame center is located at the center of the domain, (0, 0). With the constant pressure 
condition, the unburned and the burned density remain unchanged throughout the simula-
tion. Inside the computational domain, the velocity fields show the isotropy. At the bound-
aries, the velocity normal to the boundary is to vanish due to the symmetry, while that 
tangential to the boundary is continuous. As a result, the horizontal velocity component 
shows a jump across the regularized delta function at the vertical boundary through the 
periodic condition. The boundary mass sink term removes the gas arriving at each side of 
the boundary across the boundary mass sink layer.

Fig. 1  Density and velocity fields for a laminar circular flame at two different times (top figures: t∗ ≈ 6.4 , 
bottom figures: t∗ ≈ 12.8 ). (left) Density (red: �

u
 , blue: �

b
 ). (center) Velocity magnitude (red: maximum 

( 0.73�
u
s
L,0∕�b at t∗ ≈ 12.8 and 0.68�

u
s
L,0∕�b at t∗ ≈ 6.4 ), blue: 0). (right) Horizontal velocity compo-

nent (red: 0.73�
u
s
L,0∕�b at t∗ ≈ 12.8 and 0.68�

u
s
L,0∕�b at t∗ ≈ 6.4 , blue: −0.73�

u
s
L,0∕�b at t∗ ≈ 12.8 and 

−0.68�
u
s
L,0∕�b at t∗ ≈ 6.4 ). (The color changes from red to yellow to green to cyan to blue, as the value of a 

physical quantity decreases, with the median being represented by the green color; t∗ = tsL,0|∇c|max)
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Such characteristics of the velocity field near the boundaries are better seen in Fig. 2, 
which shows the results for a shifted circular flame. The flame conditions are the same 
as those for Fig. 1. The center of the circular flame is located at (L/6, L/6). While the 
kernel center is located differently than in Fig. 1, due to the periodic boundary condi-
tion, the kernel is to grow in the same way as in Fig. 1. Translating the fields in Fig. 2 by 
(−L∕6,−L∕6) and using the periodicity leads to those in Fig. 1 at the same time instant. 
To preserve the translational invariance, the boundary mass sink term is placed around 
the domain ΩF the center of which is that of the flame kernel, as shown in Fig. 2b. The 
removal of the outwardly moving gas at the boundary mass sink layer in the laminar 
flame with no additional convection is clearly and better presented in Fig.  2c than in 

Fig. 2  Density, boundary mass sink, and velocity fields for a shifted laminar circular flame at t∗ ≈ 6.4 . 
a Density (red: �

u
 , blue: �

b
 ). b Boundary mass sink (red: 0, blue: minimum). c Velocity magnitude (red: 

0.68�
u
s
L,0∕�b , blue: 0). d Horizontal velocity component (red: 0.68�

u
s
L,0∕�b , blue: −0.68�

u
s
L,0∕�b ). (The 

color changes from red to yellow to green to cyan to blue, as the value of a physical quantity decreases, with 
the median being represented by the green color; t∗ = ts

L,0|∇c|max)
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Fig. 1, with the layers being located well inside the computational domain due to the 
shift of the kernel center, while the two fields are identical upon the translation. The 
smoothed discontinuity in the velocity normal to the mass sink layer is better seen in 
Fig. 2d along the vertical layer. The velocity tangent to the mass sink layer is continu-
ous and symmetric across the regularized delta function, as shown in Fig. 2d along the 
horizontal boundary mass sink layer. Similarly to the case for Fig. 1, the isotropy of the 
velocity field is vey well preserved.

Figure  3 shows the distribution of the pressure and the velocity magnitude on a 
2-D cross-section crossing the domain center for the spherical flame at t∗ ≈ 5.9 , where 
t∗ = tsL,0|∇c|max . The isotropy of the pressure and velocity fields is well preserved in 
Fig. 3. The radial velocity ur becomes the maximum on the unburned side of the flame 
front and, for a spherical flame, decreases as ur ∼ r−2 . The (hydrodynamic) pressure 
decreases from the unburned side of the flame front as p ∼ r−4 . While the local (hydro-
dynamic) pressure spatially varies to satisfy the continuity, the thermodynamic pressure, 
which is used to evaluate the density in the low Mach number formulation, remains con-
stant thanks to the boundary mass sink terms. The isotropy is well reproduced beyond 
the radius larger than the half domain size, r > L∕2.

Figure 4 shows the radial profiles of the velocity for the laminar spherical flame along 
three different directions. Three directions correspond to the x1 direction, (1,0,0), the 
direction (1∕

√
2, 1∕

√
2, 0) toward the edge, and (1∕

√
3, 1∕

√
3, 1∕

√
3) toward the corner. 

Also shown is the analytic scaling in the unburned region, ur = ur,u(rr,u∕r)
2 , where ur,u 

the radial velocity on the unburned side of the flame front and rr,u its radial location. 
In Fig.  4, the values at c = 0.001 are used. The radial velocity in the three directions 
closely follows the analytic scaling beyond the radius larger than the half domain size, 
as in Fig. 3. While the slight deviation occurs in close proximity to an edge in the profile 
for the direction toward the edge and to a corner in that toward the corner, the method 
closely reproduces the analytic solution.

Fig. 3  Velocity and pressure fields on on the x1-x2 plane passing the center of a laminar spherical flame at 
t∗ ≈ 5.9 . a Velocity magnitude (red: 0.57�

u
s
L,0∕�b , blue: 0). b Pressure (red: 14.5�

u
s
2

L,0
 , blue: 0). (The black 

lines denote the iso-c surfaces with c =0.1, 0.5, and 0.9; The color changes from red to yellow to green to cyan 
to blue, as the value of a physical quantity decreases, with the median being represented by the green color; 
t∗ = ts

L,0|∇c|max)
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3.2  Turbulent Flame Kernel

The outwardly propagating premixed flame kernel in decaying isotropic turbulence is sim-
ulated. The initial turbulence field is generated using the linear forcing method (Lundgren 
2003; Carroll and Blanquart 2013). Initially, a spherical kernel with the radius of 0.6lt is 
placed at the center of the domain, where lt is the longitudinal integral length scale of ini-
tial turbulence. Five cases with varying u�

0
∕sL,0 , �u∕�b , and Re� are considered, where u′

0
 

is the initial turbulence root mean square (r.m.s.) velocity fluctuation and Re� the Taylor 
scale turbulence Reynolds number. The Taylor length scale of the initial turbulence field, 
�0 , is used for scaling the vorticity in the figures. All the flames are in the thin reaction 
zones regime. The simulation parameters are summarized in Table 1. The simulations are 
performed on uniform grid with 3843 grid points. The grid resolution satisfies a criterion, 
lK∕h > 0.5 , which has often been used in DNS of turbulent flames, and is sufficient for the 
purpose of the present work.

Figure 5 shows the distributions of the boundary mass sink term, velocity magnitude, 
and vorticity magnitude on a 2-D cross-section at different times, t∗ ≈ 0.2 , 0.6, 1, and 1.2, 
for the case A, where t∗ is the time normalized by the initial eddy turn over time. Also 

Fig. 4  Radial profile of the 
velocity for a laminar spheri-
cal flame at t∗ ≈ 5.9 (solid line: 
along the direction (1, 0, 0)), 
dashed line: along the direc-
tion (1∕

√
2, 1∕

√
2, 0) , dashed-

dotted line: along the direc-
tion (1∕

√
3, 1∕

√
3, 1∕

√
3) , 

circles: analytic scaling). 
( t∗ = ts

L,0|∇c|max)

Table 1  Flame and turbulence conditions for DNS ( Ka = Du∕(s2L,0�K ) , where D
u
 is the diffusivity of the pro-

gress variable in the unburned mixture and �
K

 the initial Kolmogorov time scale; l
K

 : initial Kolmogorov 
length scale; |∇c|

max,0 : the maximum magnitude of the progress variable gradient in the planar laminar 
flame; h: grid size; all the simulations are performed on the 3843 grid)

case u
�
0
∕s

L,0 �
u
∕�

b
Re� Ka l

K
∕h 1∕(|∇c|

max,0h)

A 6.4 5 88 2.58 0.76 8.0
B 9.1 3 88 5.15 0.76 7.9
C 6.4 7 88 2.58 0.76 9.1
D 9.1 5 88 5.15 0.76 11.2
E 6.3 4 66 3.31 0.97 9.8
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shown are the flame surfaces represented as the iso-c surfaces. At initial times, the mag-
nitude of the boundary mass sink term is very small. As the flame kernel grows and heat 
release rates increase, the magnitude increases. The magnitude of SB is proportional to tur-
bulent flame speed, kernel size, and the density difference �u − �b . In Fig. 5, the boundary 
mass sink term is normalized by the maximum of |sB| in order to present the boundary 
mass sink layers at different times more clearly. As the kernel center is slowly moving, 
the locations of the boundary mass sink layers change over time slightly. Overall, as the 
periodic boundary condition is used for all the boundaries of the computational domain, 
the characteristics of the homogeneous turbulence field in the unburned region are well 
preserved without any undesirable influence of the backflow for the whole time duration.

For a flame kernel, a radial component of the velocity is induced due to its growth and 
the density difference between the burned and unburned gases. The boundary mass sink 
and velocity jump terms compensate the component of the volume-expansion-induced 
radial velocity such that the periodic condition can be consistently used. The mass sink 
term removes the unburned gas pushed away due to the volume expansion. For the gas 
that flows across the layers, the velocity jump due to the periodic extension of the volume-
expansion-induced velocity field is enforced through the normal velocity jump term. With 

Fig. 5  Distributions of the boundary mass sink, velocity, and vorticity on the x1-x2 plane passing the 
domain center from the case A at different times (from left to right, t∗ ≈ 0.2 , 0.6, 1, and 1.2). (top) Bound-
ary mass sink (red: 0, blue: minimum at the given time instant); also shown are the flame surfaces repre-
sented by the iso-c surfaces with c = 0.5 ; 2-D distribution is opaque and the pink iso-c surfaces are in the 
backside of the cross-section). (center) Velocity magnitude (red: 3u′

0
 , blue: 0; black line: iso-c surface with 

c = 0.5 ). (bottom) Vorticity magnitude (red: 10u�
0
∕�0 , blue: 0; black line: iso-c surface with c = 0.5 ). (The 

color changes from red to yellow to green to cyan to blue, as the value of a physical quantity decreases, with 
the median being represented by the green color.)
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such volume-expansion-induced components being compensated, the background turbu-
lence is fed back to the periodic image domain across the boundary mass sink layer. The 
periodic boundary condition and the boundary mass sink and velocity jump terms act to 
feed homogeneous turbulence relative to the periodic extension of the volume-expansion-
induced velocity field in ΩF to the domain. To illustrate such effects, the boundary mass 
sink layers and the velocity component u1 on an x1 − x2 plane are shown in Fig. 6. The hor-
izontal and vertical directions in the figure correspond to the x1 and x2 directions, respec-
tively. When the unburned mixture flows across the vertical layer from the left to the right 
(from the right to the left), the velocity component u1 decreases (increases) at the layer 
according to the jump condition. The velocity jump is relatively weak as compared with 
turbulent velocity fluctuations. The fields in Fig. 6 are from the case A at t∗ ≈ 1.2 , and cor-
respond to those in Fig. 5 at the same time instant.

To further assess the accuracy of the method, the statistics of vorticity fluctuations, 
which are little affected by the outward flow induced by the flame expansion but deter-
mined predominantly by the ambient turbulence, are investigated. Two simulations for the 
case A are performed. In one simulation, all the formulations presented in Sect.  2 are used. 
In the other simulation, the normal velocity jump term is not included. Figure 7a shows 
the time evolution of the r.m.s. vorticity fluctuations in the unburned mixture from the two 
simulations. The r.m.s. vorticity fluctuations, for which the averaging is performed over 
the unburned region, with the progress variable c less than 0.01, except for the boundary 
mass sink layers, are compared with those from a separate simulation for constant density, 
decaying isotropic turbulence with the same initial field. The results from the two simula-
tions, with and without the normal velocity jump term, closely follow that from the decay-
ing isotropic turbulence simulation when t∗ < 1 . When the normal velocity jump term is 
not included, the r.m.s. vorticity fluctuations are slightly larger than those from the constant 
density simulation at later stages. When the normal velocity jump term is included, the 
r.m.s. vorticity fluctuations closely follow those from the decaying turbulence simulation 

Fig. 6  Distributions of the boundary mass sink and the velocity component u1 on the x1-x2 plane passing the 
domain center from the case A at t∗ ≈ 1.2 . (left) Boundary mass sink (red: 0, blue: minimum at the given 
time instant); black line: iso-c surface with c = 0.5 ). (right) Velocity component in the x1 direction (red: u′

0
 , 

blue: −u�
0
 ; black line: iso-c surface with c = 0.5 ). (The color changes from red to yellow to green to cyan to 

blue, as the value of a physical quantity decreases, with the median being represented by the green color.)
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for the whole duration in Fig. 7a. With the normal velocity jump term, the velocity field 
becomes consistent with the physical picture of feeding the background homogeneous 
turbulence relative to the volume-expansion-induced velocity field to the domain. As a 
result, the accuracy of the simulation improves and the simulation can be performed nearly 
without the undesirable influence of the boundary condition. On the other hand, the total 
reaction rates with and without the normal velocity jump term are almost identical for the 
whole duration in Fig. 7b, which seem to imply the importance of feeding the homogene-
ous turbulence to the domain through the periodic condition.

When the negative dilatation is present, the vorticity-dilatation term, −�i�uk∕�xk , in the 
vorticity equation tends to strengthen the vorticity locally, where �i is the vorticity com-
ponent in the xi direction. Without the normal velocity jump term, the convective form 
of the momentum equation is unaffected by the boundary mass sink term. As a result, the 
negative dilation due to the boundary mass sink term tends to generate the vorticity in the 
boundary mass sink layer, while the net production may not be significant. The normal 
velocity jump term suppresses the vorticity generation by enforcing the continuity in the 
background turbulence relative to the volume-expansion-induced velocity field across the 
layer.

Figure 8 shows the time evolution of the vorticity r.m.s. fluctuations in the unburned 
mixture for different cases. The cases A–D have the identical initial turbulence field, with 
Re� ≈ 88 , and the results are shown in Fig.  8a. The vorticity r.m.s. fluctuations in the 
unburned mixture should evolve identically for the cases A–D. The Taylor-scale turbulence 
Reynolds number, Re� , is 66 for the case E and the results are shown in Fig. 8b. All the 
simulations are performed with the normal velocity jump term being included. The vorti-
city r.m.s. fluctuations for all the cases closely follow those from the corresponding sepa-
rate constant density simulation in Fig. 8.

The effects of the functional form for the distribution of the boundary mass sink term 
along the layers �ΩF are shown in Fig.  9. The results obtained using the r−2 scaling in 
Eq. (9) are compared with those obtained using the uniform distribution, i.e., s0 = a , for the 

Fig. 7  Effects of the normal velocity jump term. a Time evolution of the vorticity r.m.s. fluctuations in the 
unburned mixture (solid line: with the normal velocity jump term, dashed line: without the normal velocity 
jump term, circles: separate constant density simulation; normalized by u�

0
∕�0 ). b Time evolution of total 

reaction rates (solid line: with the normal velocity jump term, dashed line: without the normal velocity 
jump term; the total reaction rates are obtained from the volume integration of the reaction rate for the pro-
gress variable over the computational domain and normalized by 4�(3V

K,0∕(4�))
2∕3�

u
s
L,0 , where V

K,0 is the 
initial volume of the flame kernel)
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case A. The vorticity r.m.s. fluctuations in the unburned mixture from the two are almost 
identical in Fig. 9a. For the total reaction rates, they are almost identical up to t∗ ≈ 1.2 . 
The slight deviation after t∗ ≈ 1.3 is due to the size of the kernel. As shown in Fig. 5, at 
t∗ ≈ 1.2 , the size of the kernel is large enough for a part of the flame surface to cross the 
boundary mass sink layer. When the kernel is within the domain ΩF with flame surfaces 
not crossing �ΩF , the results obtained using the different forms of sB are almost identical in 
Fig. 9. The results suggest that the method is not sensitive to the form of sB.

While the present method requires a periodic boundary condition, its application may 
not be restricted to an outwardly propagating spherical flame in homogeneous turbulence. 

Fig. 8  Time evolution of the vorticity r.m.s. fluctuations in the unburned mixture for different cases (nor-
malized by u�

0
∕�0 ). a Cases A-D (solid line: case A, dashed line: case B, dashed-dotted line: case C, dashed-

dotted-dotted line: case D, circles: separate constant density simulation). b Case E (solid line: case E, cir-
cles: separate constant density simulation)

Fig. 9  Effects of the functional form for the distribution of the boundary mass sink along the layers. a 
Time evolution of the vorticity r.m.s. fluctuations in the unburned mixture (solid line: r−2 scaling in Eq. (9), 
dashed line: uniform s0 = a , circles: separate constant density simulation; normalized by u�

0
∕�0 ). b Time 

evolution of total reaction rates (solid line: r−2 scaling in Eq. (9), dashed line: uniform s0 = a ; the total reac-
tion rates are obtained from the volume integration of the reaction rate for the progress variable over the 
computational domain and normalized by 4�(3V

K,0∕(4�))
2∕3�

u
s
L,0)
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The development of a kernel formed by forced ignition can be simulated using the method, 
while the kernel may not be spherical initially. Similarly, an outwardly propagating cylin-
drical flame can be simulated, for which the form of s0 can be modified accordingly. The 
method can also be combined with wall boundaries.

4  Conclusions

A method to simulate an outwardly propagating premixed flame in homogeneous isotropic 
turbulence at constant pressure is presented. The method utilizes the periodic boundary 
condition used for homogeneous isotropic turbulence, avoiding the unphysical influence 
of the boundary-condition-induced backflow, and uses the mass sink terms concentrated 
at the boundaries of a cubic domain moving with the flame kernel to maintain the constant 
pressure. Along with the mass sink terms, the normal velocity jump term is introduced to 
feed homogeneous turbulence relative to the periodic extension of the volume-expansion-
induced velocity field into the cubic domain in which the kernel evolves. The method is 
tested for laminar and turbulent flame kernels. The results show that the present method 
well preserves the characteristics of the turbulence field, as well as those of the outwardly 
propagating flame, thus enhancing the accuracy and/or computational efficiency of the 
simulation.
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