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Abstract
Turbulent length and time scales represent a fundamental quantity for analysing and mod-
elling turbulent flows. Although higher order statistical moments have been conveniently 
used for decades to describe the mean behaviour of turbulent fluid flow, the definition of 
the integral turbulent scales seems to be limited to the velocity or its fluctuation itself (i.e. 
the first moment). Higher order moments are characterized by smaller integral scales and 
a framework is proposed for estimating autocorrelation functions and integral turbulent 
length or time scales of higher order moments under the assumption that the probability 
distribution of the velocity field is Gaussian. The new relations are tested for synthetic tur-
bulence as well as for DNS data of a turbulent plane jet at Reynolds number 10000. The 
present results in particular suggest that the length or time scales of higher order moments 
can be markedly smaller than those of the turbulent variable itself, which has implications 
for statistical uncertainty estimates of higher order moments.

Keywords  Integral scales of higher order moments · Statistical uncertainty

1 Introduction

Turbulent length and time scales are very important for characterizing, analysing and mod-
elling turbulent fluid flow (Pope 2000): As an example (i) the turbulent viscosity in the 
well-known two equation models is typically considered to be proportional to the product 
of a length scale and a velocity scale; (ii) For the estimation of statistical errors the confi-
dence interval can be given as CI = [� − k

√
�2(�),� + k

√
�2(�)] , where k = 1 for a con-

fidence level of 68.3% and k = 2 for a confidence level of 95.4%. The variance �2(�) of the 
estimator of quantity � is a function of the number of independent samples  N . For exam-
ple assuming a Gaussian distribution we have �2

�
�mean

�
= ⟨��2⟩∕N for the mean value and  

�2
�
�var

�
= 2⟨��2⟩2∕N for the variance of � , where as usual ⟨⋅⟩ denotes a suitable averaging 

operation and � = ⟨�⟩ + �� (Benedict and Gould 1996). It is common practice to estimate 
the number of statistically independent samples N in a homogeneous direction (or in time) 

 * Markus Klein 
 markus.klein@unibw.de

1 Department of Aerospace Engineering, LRT1, University of the Bundeswehr Munich, 
Werner-Heisenberg-Weg 39, 85577 Neubiberg, Germany

http://crossmark.crossref.org/dialog/?doi=10.1007/s10494-023-00509-z&domain=pdf


398 Flow, Turbulence and Combustion (2024) 112:397–405

1 3

as being proportional to the length of the domain (the length of the time interval) divided 
by the integral length scale (integral time scale), the so called decorrelation length (time). 
Accurate estimation of the latter is therefore of paramount importance for assessing the 
statistical error in Direct Numerical (DNS) or Large Eddy Simulations (LES) where the 
domain size and simulation time are limited or alternatively for determining the required 
run time to reach a given error threshold. However, strictly speaking statistical errors of 
each variable (or moments of the variable) should be analysed by using its individual inte-
gral scale. In fact one motivation for the present work was driven by the author’s subjec-
tive observation that estimates for statistical errors of the variance in DNS appeared to be 
too conservative; (iii) The ratio of the largest to the smallest turbulent scales, the so called 
Kolmogorov scale �K , I is proportional to the Reynolds number to the power 3∕4 which 
is a fundamental equation for describing the “degrees of freedom” of turbulence and for 
estimation the computational requirements of Direct Numerical Simulations (DNS) of tur-
bulent flows. While �K scales with viscosity (as the Taylor scale), the large energy carrying 
scales of the flow, considered in this work, depend on the dimension of the flow geometry; 
(iv) Finally, the energy carrying length scales are also frequently needed for dimensioning 
the computational domain in numerical experiments.

For the sake of brevity the following discussion is limited to integral length scales but 
it applies equally well to integral time scales. While there is a large amount of literature 
regarding the characterization and calculation of turbulent length scales of velocity (or a 
scalar quantity), the length scales of higher order moments have not been studied according 
to the best knowledge of the author. As a motivation consider a harmonic function sin(x). 
From the trigonometric theorems we know sin(x)2 = 0.5(1 − cos(2x)) which illustrates that 
the frequency is doubled and suggests a shorter length scale for higher order moments.

The rest of the paper is structured as follows: the methodology for testing the equa-
tions suggested in this work is presented first. This is followed by the mathematical deriva-
tions for expressing the covariance of higher order moments in terms of the covariance of 
the variables themselves. Next, the methodology is illustrated for two different synthetic 
pseudo-turbulent signals as well as for a DNS database. Finally, some conclusions close 
the paper.

2  Methodology

The analysis in the results section relies on synthetic turbulence generated with two differ-
ent methods and a DNS database for a turbulent plane jet which are described briefly in the 
following. The well-known ARMA process (Trenberth 1984) u�+1 = Φu� +

√
uvar(1 − Φ2)r� 

establishes a series with exponentially decaying autocorrelation function exp(−x∕L) . Here r� 
is a series of random numbers with zero mean and unit variance, uvar is the desired variance 
of the synthetic signal and Φ = 1 − Δx∕L is a parameter related to the ratio of grid spacing 
and integral length scale. In the digital filter approach (Klein et  al. 2003a) a series of ran-
dom number r� with zero mean and unit variance is filtered with suitable filter coefficients b� , 
u� =

∑N

�=−N
b�r�+� to obtain a pseudo turbulent velocity signal, where the obtained autocor-

relation function obeys a Gaussian shape of the form exp(−�∕4 ⋅ x2∕L2) . The ARMA process 
has often been used as a substitute for pseudo turbulent fluctuations (Trenberth 1984), while 
the Gaussian autocorrelation corresponds to homogeneous turbulence in a late stage (Batch-
elor 1953). Synthetic turbulence has the advantage that it allows for an arbitrary number of 



399Flow, Turbulence and Combustion (2024) 112:397–405 

1 3

statistical samples and in particular to check the equations presented later under exactly the 
conditions they were derived.

In addition DNS data for a plane turbulent jet has been used (Vocke et  al. 2023) in 
analogy to the work in Klein et  al. (2003b) but featuring a higher Reynolds number of 
Re = U0D∕� = 10000 with the bulk inlet velocity U0, the nozzle width D and the kinematic 
viscosity � . The incompressible Navier–Stokes equations have been solved on a Cartesian 
staggered grid with second-order central differences for spatial discretization and a low-stor-
age Runge–Kutta method for temporal advancement. After reaching a statistically steady state 
the simulations have been run for 22 more flow through times to collect statistics. For more 
details the reader is referred to Vocke et al. (2023); Klein et al. (2003b).

2.1  Statistical Considerations

The following derivation assumes a Gaussian probability distribution of turbulent variables. 
More precisely it will make use of the central moments of a Gaussian distribution. In principal 
it might be possible to generalize the derivation for different moments and non-symmetric dis-
tributions (i.e. non zero skewness), but this is beyond the scope of the present work. Accord-
ing to She et al. (1988) it has been well verified that the probability distribution of the full 
velocity field of turbulent flows is often Gaussian and deviation from a Gaussian distribution 
become significant only at small scales. Since we are here interested in the large scales of a 
turbulent flow it is assumed that the non-Gaussian behaviour of turbulence has only a small 
effect on their estimation. It will be shown later that the assumption seems to be reasonable for 
a turbulent jet flow.

Consider now two jointly normally distributed random variables X, Y with zero mean, covar-
iance c and variance �2 . As usual the covariance and variance can be defined using the expecta-
tion value E as follows: c = Cov(X, Y) = E(XY) − E(X)E(Y), �2 = Var(X) = E

(
X2

)
− E(X)2 . 

This gives rise to the definition of the correlation for higher order moments as

where n is a natural number and the standard correlation between two variables is obtained 
for n = 1 . In order to find relations between  Cov(X, Y) and Cov(Xn, Yn) one can write 
(X, Y) as a linear combination of independent and identically distributed random variables 
(X, Z) (Wolfies 2019) such that Cov(X, Y) = Cov(X, Z) = c . It can be easily shown that 
Y = c∕�2X + aZ with a2 = 1 − c2∕�4 gives E

(
c∕�2X + aZ

)
= 0 , as well as

where the facts have been used that for independent random variables 
E(XZ) = E(X)E(Z) = 0 , E(X + Z) = E(X) + E(Z) = 0 , and that the central moments 
of a Gaussian distribution are given by E((X − �)p) = �p(p − 1)!! if p is even and zero 
otherwise. Here the double factorial provides the values �2, 3�4, 15�6

, 105�8 for the 
2nd, 4th, 6th, 8th central moment of the Gaussian. In a similar manner one confirms:

For the second moment similar arguments lead to

(1)Corr(Xn, Yn) =
Cov(Xn, Yn)

√
Var(Xn)Var(Yn)

(2)Var
(
c

�2
X + aZ

)
= E

((
c

�2
X + aZ

)2
)

=
c2

�4
E
(
X2

)
+ a2E

(
Z2

)
= �2

(3)Cov
(
X,

c

�2
X + aZ

)
= E

(
X
(
c

�2
X + aZ

))
=

c

�2
E(X2) = c
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For the third and fourth order moments the above calculation method provides

In summary, the following formulas are obtained to approximate the higher order covari-
ances in terms of Cov(X, Y):

By putting X = u(x), Y = u(x + r) the above relations can be applied to the autocorrelation 
of a random, Gaussian distributed signal u . For the (normalised) autocorrelation function of 
order n we define (see also Eq. (1)):

where homogeneity has been assumed, i.e. Run,un (x, r) = Run ,un (r) . This equation gives rise 
to the definition of an integral length scale of higher order moments as follows:

In the following relations (6) will be applied to two different generic autocorrelation func-
tions. We start with a decaying exponential shape:

As a result of this we have c(r) ∶= Cov(u(x), u(x + r)) = �2exp
(
−r∕Lu,u

)
 and it follows

Hence one obtains after normalization with Cov
(
u2(x), u2(x)

)
= 2�4exp

(
−0∕Luu

)2

(4)

Cov

(
X2,

(
c

�2
X + aZ

)2
)

= E

(
X2

(
c

�2
X + aZ

)2
)
− E

(
X2

)
E

((
c

�2
X + aZ

)2
)

=

E

(
X2

(
c2

�4
X2 + 2

ca

�2
XZ + a2Z2

)2
)

− �4 =
c2

�4
X4 +

(
1 −

c2

�4

)
X2Z2 − �4 =

3c2 + �4 − c2 − �4 = 2c2

(5)
Cov

(
X3,

(
c

�2
X + aZ

)3
)

= 15c3 + 9a2�4c = 6c3 + 9�4c

Cov

(
X4,

(
c

�2
X + aZ

)4
)

= 105c4 + 90a2�4c2 + 9a4�8 − 9�8 = 24c4 + 72�4c2

(6)

Cov
(
X2, Y2

)
= 2Cov(X, Y)2

Cov
(
X3, Y3

)
= 6Cov(X, Y)3 + 9�4Cov(X, Y)

Cov
(
X4, Y4

)
= 24Cov(X, Y)4 + 72�4Cov(X, Y)2

(7)Run,un (r) =
Cov(un(x), un(x + r))

Cov(un(x), un(x))

(8)Lun,un = ∫
∞

0

Run ,un (r)dr

(9)Ru,u(r) = exp

(
−

r

Lu,u

)
L u,u = ∫

∞

0

exp

(
−

r

Lu,u

)
dr

(10)

∞∫
0

Cov
(
u2(x), u2(x + r)

)
dr =

∞∫
0

2Cov(u(x), u(x + r))2dr = �4
∞∫
0

2exp

(
−

2r

Luu

)
dr = 2�4

Luu

2

(11)Lu2,u2 = 2�4
Luu

2
∕
(
2�4

)
=

Luu

2
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Following the same procedure gives the length scales for the third

and fourth order moments

Now let us consider an autocorrelation function given by a Gaussian:

We find for n = 2

and for n = 3, 4

Table 1  summarizes the results for the ratios of integral scales:

3  Results

Figure 1a–c shows the autocorrelation function Runun for n = 2, 3, 4 obtained from the 1D 
synthetic signal (which could reflect a space or time dependence) of the ARMA process 
(Eq. 9), while Ru2u2 obtained by the digital filter method (Eq. 14) is discussed in Fig. 1d.

It is evident that there is a perfect agreement with the formulas in Eq.  (6). It is also 
worth mentioning that the length scale ratios in Table 1 have been confirmed numerically. 

(12)

∫
∞

0

Cov
(
u3(x), u3(x + r)

)
dr = ∫

∞

0

6c(r)3 + 9c(r)�4dr =

�6 ∫
∞

0

6exp

(
−

3r

Lu,u

)
+ 9exp

(
−

r

Lu,u

)
dr = �6

(
6
Lu,u

3
+ 9Lu,u

)
= 11�6Lu,u

⇒ Lu3,u3 =
11�6

(6 + 9)�6
Lu,u =

11

15
Luu

(13)

∞∫
0

Cov
(
u4(x), u4(x + r)

)
dr =

∞∫
0

24c(r)4 + 72c(r)2�4dr =

�8
∞∫
0

24exp

(
−

4r

Lu,u

)
+ 72exp

(
−

2r

Lu,u

)
dr = �8

(
24

Lu,u

4
+ 72

Lu,u

2

)
= 42�8Lu,u

⇒ Lu4,u4 =
42�8

(24 + 72)�8
Lu,u =

7

16
Luu

(14)Ru,u(r) = exp

(
−
�

4

r2

L2
u,u

)
L u,u = ∫

∞

0

exp

(
−
�

4

r2

L2
u,u

)
dr

(15)

∞∫
0

Cov
�
u2(x), u2(x + r)

�
dr =

∞∫
0

2Cov(u(x), u(x + r))2dr =

�4
∞∫
0

2exp

�
−
�

4

r2

L2
u,u

�2

dr = 2�4
Luu√
2

⇒ Lu2,u2 = 2�4
Luu√
2

∕
�
2�4

�
=

Luu√
2

(16)
⇒ Lu3,u3 =

�
6∕

√
3 + 9

�
�6

(6 + 9)�6
Lu,u =

2
√
3 + 9

15
Luu

⇒ Lu4,u4 =

�
12 + 36

√
2

�
�8

96�8
Lu,u =

1 + 3
√
2

8
Luu
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Figure 2 shows similar findings for the second order moments on the centreline of a plane 
turbulent jet at two axial positions.

The jet breakup point is close to x∕D = 5 which explains the oscillation observed for, 
Ru,u caused by the large coherent structures in the near field. Notwithstanding this com-
plication we find good agreement with the theory outlined in the previous chapter, i.e. 
Ru2,u2 can be reasonably accurate predicted by the square of the first order covariance. The 
position x∕D = 12.5 is located in the fully developed (approximately self-similar) region 
of the jet. In agreement with the observations by Birch et  al. (1978), one confirms that 
the autocorrelation function is closely approximated by a decaying exponential. Figure 2c 
exemplarily also shows one autocorrelation with spanwise separation. Despite the number 
of samples being more limited for the DNS data, compared to the synthetic turbulence, 
the agreement with the theory assuming a Gaussian distribution (not to be confused with 
the Gaussian shape of Ru,u ) is very accurate. It is important to understand that Eq. (6) is 
correct only under the assumptions of a Gaussian velocity PDF and it does not hold true 

Fig. 1  Autocorrelation functions R
u,u and R

un ,un obtained from the 1D synthetic signal obtained by the 
ARMA process (see Eq. 9) for a n = 2 , b n = 3 , c n = 4. Subfigure d depicts R

u,u and R
u2,u2 obtained by the 

digital filter method (see Eq. 14). The blue line illustrates the result when R
un ,un is expressed in terms of the 

first order covariance. The term c
norm

 denotes the appropriate normalisation

Table 1  Ratio of L
u,u∕Lun ,un for 

n = 2, 3, 4 assuming a decaying 
exponential or Gaussian shape of 
the autocorrelation function

Exponential Gaussian

L
u,u∕Lu2,u2 2

√
2 ≈ 1.41

L
u,u∕Lu3,u3 15∕11 ≈ 1.36 15/(2

√
3 + 9) ≈ 1.20

L
u,u∕Lu4,u4 16∕7 ≈ 2.29 8/(1 + 3

√
2) ≈ 1.53
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for statistical estimators of these quantities in the case of finite sample size, which likely 
explains the small deviations between the green and the blue curves. Further, as a note of 
caution, there can be considerable deviations from a Gaussian PDF e.g. close to walls or 
for bounded scalars.

4  Conclusions

Assuming a Gaussian distribution of the velocity PDF, relations have been derived to 
express the covariance of higher order velocity moments by algebraic expressions of the 
covariance of velocity itself. While this assumption is not always met in reality the present 
work provides a mathematical theory for the behaviour of integral scales for higher order 
moments. This has been used to derive the ratio of the integral length scale to correspond-
ing higher order integral length scales for different assumed shapes (exponential and 
Gaussian) of the autocorrelation function. The result has implications for estimating the 
statistical error in computational studies which scales with the inverse of the square root of 
the number of independent samples (in DNS being inherently limited), in particular when 
averaging is performed in more than one homogeneous direction. As an example the 

Fig. 2  Autocorrelation functions R
u,u and R

u2,u2 of the axial velocity component with spatil separation 
at the centre line of a plane jet (Vocke et al. 2023; Klein et al. 2003b) at two different axial positions: a 
x∕D = 5.0 , b x∕D = 12.5 . c Autocorrelation with spanwise separation at x∕D = 12.5 . The blue line illus-
trates the result when R

un ,un is expressed in terms of the first order covariance. The term c
norm

 denotes the 
appropriate normalisation
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exponentially decaying autocorrelation function, characteristic for e.g. fully developed tur-
bulence in shear layers, yields a length scale for the variance which is half the length scale 
of velocity. This implies a statistical error smaller by a factor of 

�
1∕

√
2

�k

 for averaging in 
k appropriate space or time coordinates. Finally, it is believed that these relations might be 
also useful in terms of RANS based turbulence modelling involving higher order moments. 
While the present work suggests shorter length scales for higher order velocity statistics 
and provides quantitative relations for Gaussian velocity statistics, this has to be assessed 
in future for different flow configurations and for turbulent signals violating the assump-
tions used in this work.
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