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Abstract
We investigate the dynamics of turbulence and interfacial waves in an oil–water channel 
flow. We consider a stratified configuration, in which a thin layer of oil flows on top of a 
thick layer of water. The oil–water interface that separates the two layers mutually inter-
acts with the surrounding flow field, and is characterized by the formation and propagation 
of interfacial waves. We perform direct numerical simulation of the Navier-Stokes equa-
tions coupled with a phase field method to describe the interface dynamics. For a given 
shear Reynolds number, Re

�
= 300 , and Weber number, We = 0.5 , we consider three dif-

ferent types of oils, characterized by different viscosities, and thus different oil-to-water 
viscosity ratios �

r
= �

o
∕�

w
 (being �

o
 and �

w
 oil and water viscosities). Starting from a 

matched viscosity case, �
r
= 1 , we increase the oil-to-water viscosity ratio up to �

r
= 100 . 

By increasing �
r
 , we observe significant changes both in turbulence and in the dynamics 

of the oil–water interface. In particular, the large viscosity of oil controls the flow regime 
in the thin oil layer, as well as the turbulence activity in the thick water layer, with direct 
consequences on the overall channel flow rate, which decreases when the oil viscosity is 
increased. Correspondingly, we observe remarkable changes in the dynamics of waves that 
propagate at the oil–water interface. In particular, increasing the viscosity ratio from �

r
= 1 

to �
r
= 100 , waves change from a two-dimensional, nearly-isotropic pattern, to an almost 

monochromatic one.
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1  Introduction

Oil–water flows are observed in a number of energy applications and environmental 
phenomena, from the transport of oil and water over long distances in pipelines (Prezi-
osi et al. 1989; Joseph et al. 2003; Huang and Joseph 1995) to the prevention and mit-
igation of pollution in oil spill accidents (Kujawinski et  al.2011; Beyer et  al. 2016). 
An important feature of oil–water flows is the small density difference between the two 
fluids. If, on one side, this density difference does not significantly alter the exchange 
of momentum and energy in oil–water interactions, on the other side, it promotes the 
occurrence of stratified configurations in which the oil—which is slightly lighter—flows 
on top of water. This aspect has a huge impact on the resulting flow and on its control 
and manipulation (to design efficient oil/water separators, or to devise strategies to miti-
gate pollution from oil-spill risks). Indeed, the presence of a thin layer of oil, character-
ized by a density similar to water, but by a much larger viscosity, can largely modify the 
pressure drop required to drive the flow inside pipelines in industrial applications (Ban-
nwart 2001), or can lead to strong modifications of the waves and turbulence dynamics 
at the water surface in environmental/marine applications (Alpers and Hühnerfuss 1989; 
Al Wahaibi and Angeli 2011; Barral and Angeli 2013; Cheng et al. 2017).

For all these reasons, the oil–water stratified flow has gathered the attention of many 
researchers. Several investigations have been performed employing different analytical, 
experimental, and numerical techniques (Bannwart 2001; Deike et  al. 2014; Li et  al. 
2021; Kim and Choi 2018; Barmak et al. 2016; Bochio and Rodriguez 2022), as well as 
targeting different flow configurations, from pipe/channel flows to more environmental-
oriented setups. Experimental techniques often represent an important tool to investi-
gate the physics of turbulent flows, but also to validate analytical or simplified math-
ematical models. However, accurate experimental measurements, which usually rely on 
optical techniques, are difficult to realize in oil/water flows because of the fluid turbid-
ity. It is therefore not surprising that, to obtain precise space- and time-resolved data on 
the entire flow field and also on the dynamics of the oil/water interface, direct numerical 
simulations are being used in this field more and more frequently in the recent  years 
(Fulgosi et al. 2003; Zonta et al. 2015; Kim and Choi 2018; Giamagas et al. 2023). Also 
in this case, accurate and reliable numerical methodologies capable of describing the 
interface position and deformation in time are required (Scardovelli and Zaleski 1999; 
Elghobashi 2019; Soligo et al. 2021). An additional difficulty arises when large oil-to-
water viscosity ratios are considered, since the resulting flow structure might be charac-
terized by laminar-turbulent patches and by a high degree of intermittency, depending 
on the local flow characteristics and on the interface-flow interactions.

In this work, we use Direct Numerical Simulation (DNS) of the Navier-Stokes (NS) 
equations coupled with a Phase-Field Method (PFM) to investigate the channel flow of 
a thin layer of oil flowing on top of a thick layer of water. In contrast with our previous 
works (Ahmadi et  al. 2018a, 2018b; Roccon et  al. 2019, 2021), where the focus was 
mainly on elucidating the Drag-Reduction (DR) mechanisms observed in lubricating 
channels (i.e. when a thin layer of small viscosity fluid is used to lubricate the flow of 
a large viscosity fluid), here we move to the opposite situation in which a thin layer of 
a much more viscous fluid (50 or 100 times more viscous) flows on top of a thick layer 
of water. This configuration aims at mimicking oil–water flows in pipelines, as well as 
free-surface flows in which a thin oil film, being very viscous, behaves as a boundary 
for the liquid flow beneath it. The main goal of the paper is to characterize the flow 
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field as well as the structure and properties of the waves that propagate at the oil–water 
interface.

The paper is organized as follows: in Sect. 2 we present the numerical methodology and 
the setup employed to perform the simulations, while in Sect. 3 we present and discuss the 
results of the simulations in terms of turbulence behavior and wave dynamics. Finally, in 
Sect. 4 we draw the conclusions.

2 � Methodology

We consider a flow configuration consisting of two immiscible fluid layers driven by an 
imposed mean pressure gradient along the horizontal direction. Channel dimensions are 
Lx × Ly × Lz = 4�h × 2�h × 2h , with h the half-channel height and x, y, z the streamwise, 
spanwise and wall-normal directions, respectively. A thin oil layer, 0.15h thick, flows over 
a thick water layer, 1.85h thick. To mimic a realistic oil–water configuration, we consider 
that the two layers have the same density �o = �w = � , but different viscosity, �o and �w . 
The deformable interface separating the two fluid layers is characterized by a constant and 
uniform value of the surface tension, � . The dynamics of the system is described by cou-
pling the Navier–Stokes equations (used to describe the flow field), with a Cahn-Hilliard 
equation (used to describe the interface dynamics). The resulting set of governing equa-
tions in non-dimensional form reads as follows (Jacqmin 1999; Badalassi et al. 2003):

where u = (u, v,w) is the velocity vector, p is pressure, � is the phase-field, �(�) is the 
viscosity map and Tc is the Korteweg stress tensor. In the Navier–Stokes Eq. (2), the term 
�(�) defines the non-dimensional viscosity distribution inside the domain, here assumed 
to be a linear function of the phase-field (Ding et  al. 2007; Kim 2012; Roccon et  al. 
2019) while the last term represents the contribution of surface tension forces, where the 
Korteweg stress tensor (Korteweg 1901) is defined as:

The Cahn-Hilliard Eq. (3) describes the transport of the phase field � used to identify the 
two phases: � is constant in the bulk of the two phases ( � = ±1 inside the oil and water 
layer, respectively) and changes smoothly across the interface. The diffusive flux at the 
right-hand side of the CH Eq. (3) governs the behavior of the thin transition layer.

The following dimensionless numbers appear in Eqs. (1–3): the shear Reynolds number, 
the Weber number, the Péclet number, and the Cahn number. The shear Reynolds num-
ber, Re

�
= �u

�
h∕�w , represents the ratio between inertial and viscous forces; it is com-

puted using the friction velocity u
�
=
√
�w∕� , with �w the shear stress at the wall and the 

water viscosity �w as reference. The Weber number, We = �u2
�
h∕� , is the ratio between 

inertial and surface tension forces and controls the interface deformability (which is larger 

(1)∇ ⋅ u = 0 ,

(2)
�u

�t
+ u ⋅ ∇u = − ∇p +

1

Re
�

∇ ⋅

�
�(�)

�
∇u + ∇uT

��
+

3Ch√
8We

∇ ⋅ Tc ,

(3)
��

�t
+ u ⋅ ∇� =

1

Pe
∇2(�3 − � − Ch2∇2

�) ,

(4)Tc =∣ ∇𝜙 ∣2 I − ∇𝜙⊗ ∇𝜙 .
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for larger We). The Péclet number, Pe = u
�
h∕M� , is a parameter that controls the interface 

relaxation time and is defined in terms of M , the Onsager coefficient or mobility, and of � , 
a numerical factor used during the dimensionless procedure of the Cahn-Hilliard equation. 
Finally, the Cahn number, Ch = �∕h , represents the characteristic length scale of the transi-
tion layer.

The governing equations are solved using a pseudo-spectral method, which employs 
Fourier series along the periodic directions (streamwise and spanwise) and Chebyshev 
polynomials along the wall-normal direction. The Navier–Stokes and continuity equations 
are solved using the velocity-vorticity formulation: Eq. (2) is rewritten as a 4th order equa-
tion for the wall-normal component of the velocity uz and a 2nd order equation for the 
wall-normal component of the vorticity �z (Kim et al. 1987; Speziale 1987). The 4th order 
equation for the wall-normal velocity is then split into two equivalent 2nd order equations. 
Similarly, the Cahn-Hilliard equation is also split into two 2nd order equations (Badalassi 
et al. 2003). In this way, all the governing equations are recasted as a coupled system of 
Helmholtz equations, which can be readily solved. The governing equations are advanced 
in time using an IMplicit-EXplicit (IMEX) scheme. In particular, the linear terms of the 
governing equations are integrated using an implicit scheme, while the non-linear terms 
with an explicit scheme. The computation of all the non-linear terms is performed in two 
steps: First, the variables, which are defined in the wavenumber space, are back-trans-
formed to the physical space, where the products that represent the nonlinear terms are 
computed. These products are re-transformed to the wavenumber space, where the deriva-
tives can be evaluated. Standard dealiasing procedure (e.g., using the 2/3 rule, see Canuto 
et al. (2007) is then applied to avoid the generation of unphysical frequencies. Note that, 
for the Navier–Stokes equations, the non-linear viscous term is first rewritten as the sum of 
a linear and a non-linear contribution (Zonta et al. 2012). Then, the linear part is integrated 
using a Crank-Nicolson implicit scheme, while the non-linear part is integrated explic-
itly using an Adams-Bashforth explicit scheme. Likewise, for the Cahn-Hilliard equation, 
the linear term is integrated using an implicit Euler scheme, while the non-linear term is 
integrated in time using an Adams-Bashforth scheme. The adoption of the implicit Euler 
scheme helps damping unphysical high-frequency oscillations that could arise from the 
steep gradients of the phase field (Badalassi et al. 2003; Yue et al. 2004). Further details on 
the numerical method can be found in Soligo et al. (2019, 2021).

2.1 � Simulation Setup

We considered the benchmark case of a single-phase turbulent channel flow, and three 
different cases of oil–water two-phase flow, each characterized by a different value of the 
oil-to-water viscosity ratio �r = �o∕�w . In particular, we consider the following viscosity 
ratios: �r = 1 , �r = 50 and �r = 100 . All simulations are run at the given reference value 
of the shear Reynolds number Re

�
= 300 and Weber number We = 0.5 . For all cases, 

the domain is discretized using Nx × Ny × Nz = 512 × 256 × 513 grid points. The Cahn 
number is set to Ch = 0.02 , while the Péclet number is obtained according to the scaling 
Pe = 3∕Ch (Magaletti et al. 2013; Jacqmin 1999). An overview of the simulation parame-
ters, together with the resulting grid spacing is reported in Table 1. The initial condition for 
all simulations is taken from a preliminary direct numerical simulation of a single-phase 
turbulent channel flow at Re

�
= 300 , complemented by a proper definition of the initial dis-

tribution of the order parameter � so that the liquid-liquid interface is at the beginning flat 
and located at distance 0.15h from one wall.
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3 � Results

In the following, we discuss the results obtained from the numerical simulations. We focus 
first on the flow field, investigating the turbulence behavior from both a qualitative and 
quantitative viewpoint, and then we move to the characterization of the oil–water interface.

3.1 � Flow Field Characterization

3.1.1 � Qualitative Description of the Flow Field

Figure  2 shows the instantaneous distribution of turbulent kinetic energy, 
TKE =

(
u�2 + v�2 + w�2

)
∕2 , on a y − z plane located at x = 0 , for the different cases consid-

ered in this study: single-phase (panel a), �r = 1 (panel b), �r = 50 (panel c) and �r = 100 
(panel d). The instantaneous position of the interface (identified as the iso-level � = 0 ) 
is also shown by a white line. We notice that— compared to the reference single-phase 
case—the presence of the interface, no matter the value of �r , induces an asymmetry in 
the flow. In particular, by increasing �r , turbulence is progressively damped inside the thin 
oil layer (located near the top wall). In addition, we note that by increasing �r turbulence is 
damped also in the thick water layer, near the bottom wall. This behavior can be explained 
by looking at the value of the local Reynolds number. At the bottom wall, considering that 
the friction velocity is u

�,bot =
√
�w,bot∕� , the semi-local Reynolds number becomes (Pec-

nik and Patel 2017; Roccon et al. 2019):

from which we obtain: Re
�,bot = 364 ( �r = 1 ), Re

�,bot = 255 ( �r = 50 ) and Re
�,bot = 251 

( �r = 100 ). As a consequence, turbulence becomes progressively attenuated near the bot-
tom wall. It is also interesting to observe that the turbulent intensity just below the inter-
face, in the water layer, is higher for �r = 50 and �r = 100 compared to the case with 
�r = 1 . This effect suggests that the interface behaves for the water layer similarly to a solid 
boundary, whereas it behaves like a compliant surface for �r = 1.

3.1.2 � Mean Velocity Profiles and Flow Rates

The change of the flow structure described above clearly results into a corresponding 
change of the mean velocity profiles. Figure 3a shows the mean streamwise velocity pro-
file, ⟨u⟩ , as a function of the wall-normal coordinate, z, for all cases considered here. We 
observe that, compared to the single-phase case—for which the velocity profile is sym-
metric, the introduction of the thin oil layer breaks the symmetry of the velocity profile. 
While for �r = 1 the velocity profile is skewed towards the upper part of the channel, for 
�r = 50 and �r = 100 it is skewed towards the bottom part. The main reason for this dif-
ferent behavior is, as anticipated above, the different character of the liquid-liquid inter-
face depending on the value of �r : while for �r = 1 the interface is compliant, and actively 
adapts to vertical momentum, for �r = 50 and �r = 100 the interface acts essentially as a 
wall, hence giving a velocity profile with a maximum located roughly halfway between the 
interface and the bottom wall (i.e. shifted towards the bottom wall compared to the channel 

(5)Re
�,bot = Re

�

√
2 ∣ �w,bot ∣

∣ �w,bot ∣ + ∣ �w,top ∣
,
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centerline). Rescaling the velocity profile by the actual value of the friction velocity at the 
bottom wall, u

�,bot (as done to compute the semi-local Reynolds number in Eq.  5), it is 
possible to evaluate the behavior of the velocity field in wall units, and compare it with 
the law of the wall: u = z+ and u = (1∕k) log(z+) + 5 (where k = 0.41 is the von Kármán 
constant (Von Kármán 1931). The single-phase turbulent flow (black) shows a good agree-
ment with the law of the wall (represented by the dashed line). Even for the case �r = 1 the 
results of the simulation follow fairly well the behavior of the law of the wall. The situa-
tion is slightly different for �r = 50 and �r = 100 , for which we notice a reduction of the 
flow velocity, in particular in the viscous sub-layer. This indicates that the introduction of 
the thin oil layer in the top part of the channel induces a general attenuation of turbulence, 
which reflects into a corresponding modulation of the turbulence regeneration cycle even at 
the bottom wall. The flow rate of the oil and the water layer, Qo and Qw , as well as the total 
flow rate, Qt , are shown—normalized by the single-phase flow rate, QSP—in Table 2. As it 
can be observed, the introduction of a thin liquid layer with the same viscosity of the thick 
layer ( �r = 1 ) leads to a significant increase in the total flow rate, which amounts to about 
27% compared to the single-phase case. In contrast, when the thin layer has a much larger 
viscosity than the thick layer, i.e. �r = 50 and �r = 100 , the flow rate is reduced by about 
30 and 34% , respectively. Given that the mean pressure gradient is constant for all simula-
tions, the modification of the flow rate can be associated with a reduction of drag for the 
matched viscosity case (Roccon et al. 2019) and an increase of drag for the other two cases 
with a more viscous fluid in the thin layer.

3.1.3 � Stress Budget

To analyze in more detail the modifications produced by the introduction of a thin viscous 
layer in the flow, we look at the stress behavior as a function of the wall-normal coordinate 
z. The mean stress can be expressed as

indicating that the total stress �tot is the sum of three contributions: the viscous stress, �v , 
the Reynolds or turbulent stress, �t , and the capillary stress, �c . The wall-normal behavior 
of the stresses averaged along the two homogeneous directions x and y and in time is shown 
in Fig. 4. For all considered cases, the total stress—shown in Fig. 4a with a dashed line—is 
a linear function of z. The sum of the absolute values of the stress evaluated at the two 
walls is constant and equal to 2 for all cases, since the wall-shear stress balances the mean 
pressure gradient used to drive the flow, which is kept constant and equal to ∇p = −1 . In 
Fig.  4a, we also show the wall-normal behavior of the Reynolds stress, �t , for all cases 
(continuous line). Compared to the single-phase case, for which �t is anti-symmetric about 
the channel centerline, the introduction of thin layer near the top wall induces remarkable 
changes. For �r = 1 , there is a significant reduction of �t around the liquid-liquid interface 
and in the thin layer, due to the blockage effect induced by the presence of the compliant 
liquid-liquid interface (Roccon et al. 2019). By contrast, in the bottom part of the chan-
nel, we observe an opposite behavior, with �t much larger than the single-phase case, as a 
consequence of the increased turbulence activity. For �r = 50 and �r = 100 , �t is almost 
vanishing inside the thin viscous layer, due to the large fluid viscosity, while it becomes 

(6)
�tot =

⟨�(z)⟩
Re

�

�⟨u⟩
�z

⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟

�v

− ⟨u�w�⟩
⏟⏟⏟

�t

+
3√
8

Ch

We

�
��

�x

��

�z

�

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

�c

,
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larger below the liquid-liquid interface, which in this case is perceived as a solid bound-
ary by the flow, hence actively contributing to the turbulence production (larger �t ). On the 
other hand, �t decreases near the bottom wall, because of the already observed turbulence 
reduction there.

Considering now the capillary stress, shown in the inset of Fig. 4a, we observe that is 
larger for �r = 1 , and smaller for �r = 50 and �r = 100 . Given that the flow in the thin 
layer tends to be laminar, the liquid-liquid interface acts– via the capillary stress—as an 
active barrier against momentum transport between the thick and the thin layer.

The wall-normal behavior of the viscous stress �v is shown in Fig. 4b. For �r = 1 , the 
viscous stress at the top wall is lower than the reference single-phase flow and is character-
ized by a non-monotonic transition across the interface, while it decreases towards zero 
below the interface, similarly to the single-phase case at the same distance from the wall. 
At the bottom wall, the viscous stress is ∼ 50% higher, due to the increase of the mean 
velocity gradient in that region (see Fig. 3a). For �r = 50 and �r = 100 , the viscous stress 
is significantly higher at the top wall, because of the high viscosity, and remains high over 
a much larger distance from the wall–down to z∕h ≈ 0.5 . The large extent of the region in 
which the viscous stress is considerably higher, observed for �r = 50 and �r = 100 , seems 
to suggest that for these cases the thin viscous layer present near the top wall has a direct 
influence also on the turbulence behavior near the bottom wall, where the canonical single-
phase turbulence is not fully recovered (and the viscous stress is smaller than the single 
phase case).

In summary, the presence of the thin layer leads to a sharp gradient in the mean veloc-
ity profile below the interface, which is associated with an increased shear stress between 
the two fluid layers. This is true in particular for �r = 50 and �r = 100 , and is also the 
reason behind the increased production of turbulent kinetic energy in that region, where 
turbulence intensity can be even higher compared to the region near the bottom wall (see 
Fig. 2d). Therefore, when high viscosity ratios are considered, the thick layer perceives the 
liquid-liquid interface as an almost rigid boundary, which is a situation that is not observed 
for �r = 1 . However, strictly speaking, the behavior of the thin liquid layer differes from 
that of a rigid boundary: The liquid layer, which is slightly compliant, can absorb/release 
energy via surface tension forces, and can also dissipate additional energy because of the 
larger viscosity.

3.2 � Interface Statistics

In this section, we present a space-time characterization of the interface that separates the 
two liquid layers, for the different cases considered in this study.

3.2.1 � Spatial Characterization of the Interface Deformation

In Fig. 5 we show the instantaneous shape of the liquid-liquid interface for the three dif-
ferent two-phase flow cases considered here: Fig.  5a refers to �r = 1 , Fig.  5b refers to 
�r = 50 and Fig.  5c refers to �r = 100 . Together with a three dimensional rendering of 
the liquid-liquid interface (left column), we also show—for each case—a close-up view 
of the interface elevation �∕h (as defined in Fig.  1) along the streamwise direction x/h, 
and measured at spanwise location y = 0 . At a first glance, the interface shape, regardless 
of the value of �r , seems characterized by the presence of waves. In our setting, in which 
the two fluid layers have the same density and the role of gravity is ruled out, these waves 
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are pure capillary waves in which the restoring force is the surface tension. We notice also 
that the interface deformation shows remarkable differences for the high viscosity ratio 
cases, �r = 50 and �r = 100 , compared to the matched viscosity case, �r = 1 . In particular, 
instead of multiple different wavelengths of moderate wave amplitudes observed for the 
matched viscosity case, the interface deformation for the two cases at large viscosity ratio 
is characterized by a regular wave pattern. This pattern is very pronounced at �r = 100 , 
and is characterized by a steep windward side (up to the crest), followed by a much less 
steep lee side (down to the trough). The values of the root mean square elevation for each 
case are: 

√
⟨�2⟩ = 2.7 × 10−2 ( �r = 1 ), 

√
⟨�2⟩ = 3.6 × 10−2 ( �r = 50 ), 

√
⟨�2⟩ = 4.0 × 10−2 

( �r = 100 ), and indicates that waves grow in amplitude as the viscosity ratio increases. It 
is interesting to note that the shape of the interface elevation at large viscosity ratio looks 
similar to the so-called bamboo wave structure observed in oil–water core annular flows in 
pipes (Kouris and Tsamopoulos 2001; Joseph et al. 2003).

To quantify the influence of the viscosity ratio on the deformation of the liquid-liquid 
interface, we look at the Probability Density Function (PDF) of the interface elevation nor-
malized by its root mean square value, for each case. Results are shown in Fig. 6. We can 
observe that, for �r = 1 , the probability density is maximum near the mean interface loca-
tion ⟨�⟩ = 0 , and it is negatively skewed due to the effect of wall confinement (waves are 
larger towards the center of the channel than towards the wall). Note indeed that the wall 
is located at a distance of 0.15h from the nominal interface position, and therefore there is 
a vanishing probability of extreme events with positive interface elevations compared to 

Fig. 1   Sketch of the computational domain employed for the simulations. The channel has dimensions 
Lx × Ly × Lz = 4�h × 2�h × 2h . The nominal thickness of the oil layer (located at the top) is 0.15h while 
the nominal thickness of the water layer (located at the bottom) is 1.85h . The close-up view shows the defi-
nition of the interface elevation � , i.e. the vertical distance from the nominal position of the interface

Table 1   Overview of the main simulation parameters for the reference single-phase (SP) flow and for the 
oil–water flows characterized by different values of the viscosity ratio. The resulting grid spacing in wall 
units is also reported

Simulation Re
�

�r We Nx Ny Nz Δx+ Δy+ Δz+
c

SP 300 – – 512 256 513 7.37 7.37 1.84
MP1 300 1 0.5 512 256 513 7.37 7.37 1.84
MP2 300 50 0.5 512 256 513 7.37 7.37 1.84
MP3 300 100 0.5 512 256 513 7.37 7.37 1.84
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Fig. 2   Instantaneous distribution of turbulent kinetic energy, TKE =
(
u�2 + v�2 + w�2

)
∕2 on an y − z plane 

located at x = 0 for the different cases considered in this study: single-phase (panel a), �r = 1 (panel b), 
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Table 2   Flow rate measurement for the different simulations: Q
o
 , Q

w
 and Q

t
 correspond to the flow rates of 

the thin layer (oil), of the thick layer (water), and of the entire flow oil–water flow, respectively, while Q
SP

 is 
the flow rate of the reference single-phase case. The quantity ΔQ represents the increase (in percentage) of 
the total flow rate between the two-phase and the single-phase flow simulations

Simulation �r Qo∕QSP Qw∕QSP Qt∕QSP ΔQ %

Single-phase – – – 1.0000 –
M1 1 0.0436 1.2261 1.2698 + 26.98
M2 50 0.0034 0.6872 0.6906 − 30.94
M3 100 0.0016 0.6601 0.6617 − 33.83
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extreme events with negative interface elevations. For the high viscosity ratio cases, the 
probability density function is bimodal, and the major mode is positive. This suggest a 
larger presence of wave crests than troughs. The bimodal distribution also indicates the 
persistence of wave crests and troughs with specific amplitudes, corresponding to the two 
modes of the distribution.

Naturally, the interface deformation is two-dimensional, and waves propagate at the 
interface along x and y. This is visualized in Fig. 7 for the three different cases: Fig. 7a 
refers to �r = 1 , Fig. 7b refers to �r = 50 and Fig. 7c refers to �r = 100 . Beside the three 
dimensional rendering of the liquid-liquid interface (left column) we now show the contour 
maps of the entire interface elevation, �(x, y) (right column), for the three different values 
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of the viscosity ratio. Compared to the case �r = 1 , for which the interface deformation 
does not show a regular pattern, for the cases �r = 50 and �r = 100 the interface deforma-
tion looks much more regular and quasi-1D (along x), with only little perturbations along 
y. This is properly quantified in Fig. 8, by looking at the two-dimensional time-averaged 
wavenumber power spectra of wave elevation S

�

(
kx, ky

)
 . This quantity represents the dis-

tribution of energy at the different wavenumbers kx–ky . For �r = 1 , the power spectrum 
appears isotropic, with almost no sign of preferential distribution. On the other hand, for 
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�r = 50 the energy distribution is more focused along the streamwise direction, kx . This 
effect is even more pronounced for �r = 100 , where we can also observe the presence of 
spectral peaks at certain discrete wavenumbers.

To compare more closely the structure of the interface deformation for the three differ-
ent �r , we average the two-dimensional power spectra of wave elevation, S�

(

kx, ky
) , along the 

y direction, so to obtain the streamwise spectra of the interface elevation, 
⟨S�

(

kx
)

⟩

 . Results 
are shown in Fig. 9. We observe that, unlike the smooth distribution of energy as a func-
tion of the streamwise wavenumber kx at �r = 1 , the wave energy for the cases �r = 50 
and �r = 100 is concentrated at specific discrete wavenumbers. This suggests that the wave 
field is dominated by the presence of a "parent" wave, on top of which other less energetic 
waves (having wavenumber that is a multiple of that of the parent wave) can propagate. 
The peak wavenumber is kx,peak = 1.5 for �r = 50 and �r = 100 (or, in terms of wavelength, 
�peak = 4�∕3 ) and corresponds to the presence of N ≈ 3 waves inside a domain of length 
Lx = 4� . This is in agreement with the patterns shown in Fig. 5b, c and 7b, c. This suggests 
a highly anisotropic situation and agrees with the qualitative observation of waves develop-
ing only across the streamwise direction and being self-similar across the channel span.

3.2.2 � Temporal Characterization of Interface Deformation

So far, we examined the spatial behavior of interface waves. We now move to the time 
characterization of waves.
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Note that, since the interface is advected at a mean velocity (see Fig. 3a) wave frequen-
cies are Doppler shifted to higher frequencies. The mean advection velocities for the three 
cases are: ⟨ui⟩ ≈ 16.5 ( �r = 1 ), ⟨ui⟩ ≈ 1.9 ( �r = 50 ) and ⟨ui⟩ ≈ 0.9 ( �r = 100 ). There-
fore, in order to isolate the wave frequencies, a shift of the interface elevation signal is 
applied as ��(x, t) = �(x + dxshift, t) , where dxshift = ⟨ui⟩∕dfsamp and dfsamp is the frequency 
at which the interface elevation is sampled (Giamagas et al. 2023). Space-averaged fre-
quency power spectra of wave elevation ⟨S

�
(�)⟩ of the shifted wave signals for each case 

are reported in Fig.  10. The minimum angular frequency on the x-axis ( �min = 0.628 ) 

Fig. 8   Two-dimensional time-
averaged wavenumber power 
spectra of the interface elevation, 
S
�

(
kx, ky

)
 . Each panel refers to 

a different case: �r = 1 (panel 
a), �r = 50 (panel b), �r = 100 
(panel c)
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corresponds to the overall duration of the recorded wave signal. We note even here a 
remarkable difference between the case �r = 1 and the other two cases at higher viscos-
ity ratio. In particular, while for �r = 1 energy is evenly distributed over a broad range of 
frequencies – before it starts diminishing at higher frequencies – for �r = 50 and �r = 100 
the energy is concentrated over a narrow range in the low-frequency region of the spec-
trum, and it vanishes rapidly as the frequency increases. This suggests that at large vis-
cosity ratio the waves oscillate so slowly that their oscillation is not even perceived, and 
waves seem rigidly advected by the flow. This can also be appreciated by looking at the 
animations of the time-resolved rendering of the interface dynamics included in the sup-
plementary material.

4 � Conclusions

We have performed direct numerical simulations of a pressure-driven oil–water turbulent 
channel flow. We have considered a stratified flow configuration, in which a thin layer 
of oil flows on top of a thick layer of water. Three different values of the oil-to-water 

Fig. 9   Streamwise wavenumber 
power spectra of the interface 
elevation, ⟨S

�

�
kx
�
⟩ , averaged in 

space (over the spanwise direc-
tion) and in time. Results are 
shown for �r = 1 (blue), �r = 50 
(violet) and �r = 100 (green)

10−12

10−10

10−8

10−6

10−4

10−2

100 101
〈S

η
( k

x
) 〉

kx

µr = 1
µr = 50
µr = 100

Fig. 10   Space-averaged fre-
quency power spectra of wave 
elevation, ⟨S

�
(�)⟩ computed 

using the shifted wave signal. 
The different cases are reported 
with different colors: �r = 1 
(blue), �r = 50 (violet) and 
�r = 100 (green)

10−10

10−9

10−8

10−7

10−6

10−5

10−4

10−3

100 101 102

〈S
η
(ω

) 〉

ω

µr = 1
µr = 50
µr = 100



29Flow, Turbulence and Combustion (2024) 112:15–31	

1 3

viscosity ratio, �r = 1 , �r = 50 and �r = 100 are used, and their influence on the turbu-
lence modulation and on the dynamics of the liquid-liquid interface is considered. Results 
show that, compared to the reference single-phase turbulent flow, the introduction of a 
thin fluid layer, characterized by a viscosity equal or larger than that of the thick layer, 
modifies the overall velocity profiles and the turbulence behavior. In particular, the mean 
flow rate increases significantly for �r = 1 and decreases significantly for �r = 50 and 
�r = 100 . This is associated to a corresponding change of the drag coefficient. When 
the viscosity contrast between the two fluids is large, the liquid-liquid interface is per-
ceived as a solid boundary by the thick water layer, leading to high shear stress and a local 
increase in turbulent kinetic energy production around it. In addition, we also observe 
that the near-wall turbulent cycle at the bottom wall (at the bottom of the thick layer) is 
influenced as well by the thin layer viscosity. In addition, the structure and the dynam-
ics of the liquid-liquid interface show remarkable changes by changing the viscosity ratio 
between the two fluids. Specifically, we observe a transition from a regime characterized 
by the presence of an almost isotropic wave field for the matched viscosity case �r = 1 , 
to a regime characterized by regular long waves with short crests and longer troughs for 
high viscosity ratios. The wave structure in these latter cases seems to resemble the so-
called bamboo waves observed in oil–water pipe flows. Finally, the temporal analysis of 
the wave signals reveals that while for the matched viscosity case �r = 1 waves oscillate 
at different frequencies over a rather broad range of values, for high viscosity ratios waves 
oscillate at a specific very low frequency, thus generating an interface deformation that 
seems purely advected by the mean flow velocity.
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