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Abstract
The preferential concentration of sedimenting particles in decaying homogeneous iso-
tropic turbulence is investigated using radial distribution functions (RDF). Direct numeri-
cal simulations of polydisperse distributions of non-sedimenting and sedimenting particles 
of radii 10–55 μm are performed. We see a power law behaviour for the RDF in decaying 
turbulence and the power-law relation derived by Chun et al. (J Fluid Mech 536:219–251, 
2005) for the RDF of non-sedimenting particles holds for sedimenting particles as well. 
Empirical formulas are generated for the power-law coefficients which are shown to be 
functions of the Stokes number and the Taylor Reynolds number for sedimenting particles. 
An in-depth analysis of the turbulent kinematic collision kernel for both non-sedimenting 
and sedimenting collision kernels confirms that gravity enhances the collision kernel for 
unequal sized particles and decreases for same-sized particles. Models are created for both 
monodisperse and bidisperse RDFs which are combined with existing models for the con-
ditional radial relative velocities of colliding particles to predict kinematic collision kernels 
for both non-sedimenting and sedimenting particles. The effect on the collision kernel due 
to turbulence is also explored and enhancement of factors of up to three is observed with 
respect to the gravitational collision kernel.
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1 Introduction

The clustering of intertial particles in incompressible turbulent flow has been established 
using experimental, numerical and theoretical investigations. Much of the early observation 
of the preferential concentration of inertial particles in turbulent flow was through observ-
ing the particle concentration field from direct numerical simulations (DNS) (Maxey 1987; 
Squires and Eaton 1991; Wang and Maxey 1993; Eaton and Fessler 1994). Particle cluster-
ing was also observed in a variety of experimental studies (Fessler et al. 1994; Wood et al. 
2005; Aliseda et  al. 2002; Salazar et  al. 2008). The DNS and experimental studies have 
been complemented by numerous theoretical studies that have focused on describing and 
predicting the mechanisms behind the clustering of particles at sub-Kolmogorov scales. 
(Chun et al. 2005; Balkovsky et al. 2001; Bec 2003; Zaichik and Alipchenkov 2003; Gus-
tavsson and Mehlig 2011). Understanding the dynamics of particles suspended in turbulent 
flows is valuable for a wide range of problems, with a majority of studies dedicated to 
understanding atmospheric cloud formation. In clouds, the implications of particle cluster-
ing may be significant; standard microphysics models are unable to explain the rapid cloud 
droplet growth in the intermediate size range of 15–40 μm where neither condensational 
growth or growth due to gravitational collision-coalescence are effective (Grabowski and 
Wang 2013). It has been shown that turbulence intermittencies and an interplay between 
turbulence and gravity increases the inertial effects leading to an accelerated formation of 
larger droplets (Falkovich et al. 2002). However many open questions still remain, making 
this an active field of research.

The physical mechanism behind particle clustering was first discussed by Maxey (1987) 
who showed that the velocity divergence of the particle flow field was positive in regions 
of high vorticity and negative in regions of high strain rate. Maxey (1987) predicted that 
(weakly) inertial particles would hence be ’centrifuged’ out of vortex cores and accumulate 
preferentially in regions of low vorticity or high strain rate. Studies have since suggested 
alternative mechanisms by which particle clustering occurs, which includes (among others) 
the ergodic-non-ergodic mechanism (Duncan et  al. 2005; Gustavsson and Mehlig 2011) 
and the ’sweep-stick’ mechanism (Chen et  al. 2006; Goto and Vassilicos 2006). More 
recently, in a series of papers (Bragg and Collins 2014a, b; Bragg et  al. 2015a, b), the 
physical mechanism behind the clustering of inertial particles have been studied in detail 
across the dissipative and inertial scales. It was shown that the centrifuging mechanism is 
dominant for St ≪ 1 where St = �p∕�� is the Stokes number based on the particle response 
time �p and the Kolmogorov time scale �� . A non-local, symmetry breaking path-history 
mechanism takes over for higher Stokes numbers. This was also confirmed by DNS studies 
of inertial particles in isotropic turbulence by Ireland et al. (2016b) who observed preferen-
tial sampling for St < 0.1 and non-local effects for St > 0.2.

Different methods have been used to quantify and characterize inertial particle cluster-
ing, with a few popular examples being bin counting (Wang and Maxey 1993; Eaton and 
Fessler 1994; Wood et al. 2005), radial distribution functions (RDF) (Sundaram and Col-
lins 1997; Reade and Collins 2000), Lyapunov exponents (Bec et al. 2006) and Voronoi 
analyses (Monchaux et al. 2010; Baker et al. 2017; Huck et al. 2018; Petersen et al. 2019; 
Momenifar and Bragg 2020). In this work, we will be working extensively with the RDF 
which is defined as the ratio of the probability of finding particle pairs at a certain separa-
tion distance to the probability of finding particle pairs at the same separation in a uni-
formly distributed particle field, and is one of the most widely used tools to study particle 
clustering. The RDF is an important tool as it provides a scale dependent quantification of 
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clustering and also appears as a correction to the kinematic collision kernel. Sundaram and 
Collins (1997) quantified the role of particle clustering on droplet collisions by multiplying 
the collision kernel calculated by Saffman and Turner (1956) with the RDF calculated at 
the point of collision for a monodisperse distribution of particles in homogeneous isotropic 
turbulence. DNS studies have shown that turbulence can enhance the collision kernel rela-
tive to stagnant flow through an increase in both the relative velocities of the colliding 
droplets as well as the increase in the RDF (Franklin et al. 2005, 2007; Ayala et al. 2008b). 
Reade and Collins (2000) showed that the RDF can have values up to a 100 at separa-
tion distances equal to the collision radius further highlighting the importance of clustering 
towards the collision process. They modelled the monodisperse RDF g11 using DNS data 
(at Taylor Reynolds number Re� = 54.5 ) of non-sedimenting particles in homogeneous iso-
tropic turbulence and suggested the following function:

Here r̂ = r∕𝜂 where r is the inter-particle separation distance and � is the Kolmogorov 
length scale. The coefficients c0 , c1 and c2 are all functions of St in principle. The study 
reveals an inverse power-law of the form r̂−c1 at small r̂ , and transitions into an exponen-
tially decaying tail at higher r̂ . Chun et al. (2005) derived an analytical expression for the 
RDF of a monodisperse collection of particles with St ≪ 1 as

which is equivalent to Eq. (1). They showed that in a monodisperse distribution, the power-
law dependence arises from a balance between an inward drift velocity caused by the par-
ticle inertia (inertial particles sample more strain than rotation giving rise to a net inward 
drift velocity) and a diffusion due to the random nature of the flow. For particles with dif-
ferent Stokes numbers, an additional diffusion arises due to the different particle response 
times to the local turbulent accelerations. This tends to homogenise the particle pair con-
centration leading to a reduction in the RDF. The additional acceleration diffusion term is 
independent of r̂ and the resulting behaviour of the RDF is a power law dependence ( ̂r−c1 ) 
at larger scales and a transition to a plateau (independent of r̂ ) at smaller scales. An expres-
sion is also derived for the cross-over length scale rc at which this transition occurs.

There are also numerous studies on particle clustering using tools from dynamical 
systems. These studies reveal that preferential concentration follows from the dissipative 
nature of particle dynamics (due to the Stokes drag) and in the position-velocity phase 
space, the particle trajectories converge to a dynamically evolving fractal attractor (Bec 
2003; Bec et al. 2006, 2007). In such studies, the correlation dimension ( D2 ) of the spatial 
distribution is often used to quantify particle clustering and is also related to the exponent 
c1 . This is an important quantity and has been investigated in detail in Gustavsson et al. 
(2015).

The presence of gravity adds complexity and breaks the spherical symmetry in parti-
cle pair concentration as well as relative velocities between two neighbouring particles. 
The effect of gravity on two-point particle statistics is extremely important for cloud 
microphysics and has been studied using DNS for monodisperse distributions recently 
by Bec et al. (2014); Gustavsson et al. (2014); Ireland et al. (2016a); Baker et al. (2017), 
and for bidisperse distributions by Ayala et  al. (2008a); Woittiez et  al. (2009); Dhari-
wal and Bragg (2018); Momenifar et  al. (2019). The effect of gravity is quantified by 
the Froude number Fr which is defined as the ratio between the turbulent acceleration 
and the acceleration due to gravity. Bec et al. (2014) studied the interactions between 

(1)g11(r̂, St) = 1 + c0r̂
−c1 exp[−c2r̂].

(2)g11(r) = c0r̂
−c1 ,
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turbulence, gravity and particle sizes by combining DNS with theoretical results based 
on their asymptotic analysis. They observed that gravity acted in a non-uniform man-
ner depending on the values of Fr and St. For Fr ≪ 1 , gravity suppresses clustering 
for St ≲ 1 and increases clustering for St ≳ 1 whereas for moderate values of Fr and St, 
clustering is enhanced. Gustavsson et al. (2014) analyzed the effect of gravity by using 
perturbation theory in the Kubo number (a dimensionless correlation time) and derived 
a theory to describe the clustering of particles falling through a turbulent flow. A model 
system was analyzed where particles are subject to gravity in a random two-dimensional 
velocity field. The inertial particle response to turbulence fluctuations and gravity are 
not found to the additive. They found a similar non-uniform effect of gravity behaviour 
and found that particles at small and intermediate values of St falling at finite Fr tend to 
cluster less due to the reduced correlation between particles and flow structures whereas 
for particles with higher values of St, clustering of settling particles is enhanced.

Ayala et al. (2008a) extended the relations from Chun et al. (2005) for monodisperse 
sedimenting particles in a turbulent flow. The power law coefficients were assumed to be 
functions of a non-dimensional parameter for gravity g∕(u�∕t�) (this can also be inter-
preted as the inverse Froude number—Fr−1 , where g is the acceleration due to gravity, 
u� and t� are the Kolmogorov velocity and time scales respectively) in addition to St and 
the Taylor Reynolds number Re� , and empirical expressions were generated by curve-
fitting to DNS data. A similar procedure was followed to obtain expressions for the 
bidisperse distribution and the cross over length scale rc . In addition to particle cluster-
ing, the effect of gravity on the relative velocities and preferential concentration of col-
liding particles was explored by Woittiez et al. (2009), Ireland et al. (2016a) and Dha-
riwal and Bragg (2018) using DNS. The rate of collisions of sedimenting particles was 
found to be lower than non-sedimenting particles for a monodisperse distribution. For 
a bidisperse distribution, the higher relative velocities due to gravity enhanced particle 
accelerations resulted in a higher rate of collisions.

In this study, particle clustering is analysed in decaying turbulence. In the unique 
setup adopted here, turbulent flow structures are evolving in both time and space and 
accordingly particles interact with evolving flow scales. Previous works mentioned in 
this section were carried out using deterministic forcing schemes which generated sta-
tistically stationary turbulence. The RDF which appears as a correction to the collision 
kernel is explored in significant detail in this work. This study marks the first time an 
attempt has been made to study the RDF across a range of scales in decaying turbulence 
to our knowledge. Additionally, we generate models for the kinematic collision kernel 
for both non-sedimenting and sedimenting particles. This is a significant contribution of 
this work. A complete analytical model is of course not created, however we have cre-
ated a framework with a robust set of carefully chosen functions which can help deter-
mine the particle statistics. For this, we have relied on previously existing analytical and 
also generated new empirical relations using a series of non-linear regression analyses 
utilizing the significant DNS data generated specially for this work.

The paper is structured as follows. In Sect. 2, the case setup is presented along with 
the characteristics of the turbulence and the relevant droplet parameters. In Sect. 3, the 
results for both monodisperse and bidisperse RDFs are presented with comparisons to 
theoretical predictions. In Sect. 4, the effect of gravity on the geometric collision kernel 
is presented and models are created for the collision kernels. Section 5 includes a dis-
cussion of the results along with concluding remarks.
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2  Simulations

2.1  Case Setup

A novel decaying turbulence case is presented that closely resembles the flow in wind tunnel 
experiments. In wind tunnel experiments, grid-generated turbulence decays as the fluid moves 
downstream. The numerical case setup in this study aims to simulate the decaying turbulence 
by capturing the temporal evolution of a fluid section exiting the grid. Hence the simulations 
are temporal flow experiments and are similar to observing and following a fluid section 
through a camera which is being translated along an axis x̃ at a velocity equal to the mean flow 
speed U.

The wind tunnel setup used by Bateson and Aliseda (2012) is taken as a reference for 
flow characteristics and grid dimensions. Simulating the motion of an active grid is diffi-
cult to achieve numerically. We circumvent this by simulating the turbulent flow just down-
stream of a passive grid with mesh spacing G = 0.1016m . The average fluid velocity ũ just 
downstream of the grid is Ug = Q∕(A − Aobs) between the grid, and zero at the grid. Here 
Q is the flow rate and Aobs , A are the obstructed and total area of the grid respectively. The 
frame of reference for the numerical simulation is obtained by applying a Galilean transfor-
mation x → x − Ut where U = Q∕A . In the moving frame of reference, the initial condition 
u is given by

The flow is then perturbed with random white noise and allowed to transition with time 
into isotropic, homogeneous turbulence.

The governing equations of the flow are given by the continuity equation and the incom-
pressible Navier–Stokes equations 

 where u = (u, v, w) is the velocity vector, P is the kinematic pressure and � is the kinematic 
viscosity. Particle motion is governed by the simplified Maxey-Riley equations (Maxey and 
Riley 1983)

where x(t) and v(t) are the particle position and velocity vector respectively, 
�p = 2�pR

2∕9�� is the particle inertial relaxation time with R the particle radius, �p the par-
ticle density and � the fluid density. Also, g = gex where g is the acceleration due to gravity 
and ex is the unit vector along x̂ . Here, x̂ was chosen instead of the more conventional ẑ , 
as choosing ẑ caused heavy droplets to rain out in our smaller domain (compared to the 
wind tunnel cross-section) due to the non-periodicity in ẑ (more on this in the following 

u =

{
−U at grid

Ug − U otherwise.

(3a)∇ ⋅ u = 0,

(3b)
�u

�t
+ u ⋅ ∇u = −∇P + �∇2

u,

(4)
dv(t)

dt
=

u(x(t), t) − v(t)

�p
+ g,

(5)
dx(t)

dt
= v(t),
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subsection). Since the turbulence is homogeneous and isotropic, gravity can be defined in 
any direction.

2.2  Numerical Simulation Details

The DNS code SPARKLE is used, which solves the incompressible Navier–Stokes equations 
under the Boussineq approximation, and transport equations for scalars to fourth-order accu-
racy. Details of the numerical method used in SPARKLE and other details can be found in 
Craske and van Reeuwijk (2015). A tricubic Hermite interpolation scheme is used to interpo-
late the Eulerian flow velocities to the particle locations. A third order Adams-Bashforth time-
stepping scheme is used to advance the particle locations and velocities at each time step. The 
particles on processor boundaries are communicated across processors after each time integra-
tion step following the flow field (Perrin and Jonker 2015; Nair et al. 2021). The collision algo-
rithm implemented in SPARKLE follows the general scheme in Allen and Tildesley (1987) 
where hard sphere molecular dynamics is solved. More details of the numerical implementa-
tion of the particle routine can be found in Nair (2021). Only particles that can collide within 
one time step are considered as prospective colliding pairs. Also, only binary collisions are 
considered and colliding particles are allowed to geometrically overlap post-collision (ghost 
collisions), i.e. no post-collision dynamics are calculated for the particles. Since we only look 
at geometric collisions, the effects of collision efficiencies are ignored. The code also calcu-
lates the kinematic collision kernel (using Eq. 16). The kinematic collision kernel has been 
validated against the dynamic collision kernel using DNS (Nair 2021, P. 67).

A cubic domain is discretized using 10243 grid cells. Time-steps are dynamically cal-
culated with a Courant–Friedrichs–Lewy (CFL) number of 0.4. The kinematic viscosity of 
air � = 1 × 10−5m2s−1 . Periodic boundary conditions are imposed along the x̂ and ŷ axes, 
and a free slip condition is imposed along the ẑ axis. The domain thus resembles a wind 
tunnel with frictionless side walls. The simulation was run for 1.1s. The computational 
domain is parallelized in the x̂ and ŷ directions using 4096 processors.

The number of particles required to reach a target droplet volume fraction of O(10−5) in 
a numerical domain whose sizes matches that of the wind-tunnel test section would be pro-
hibitive (in terms of computational cost). Hence we calculate the two-point spatial correla-
tion by determining the normalized spatial correlation tensor 
Rij(r) = u�

i
(x)u�

j
(x + r)∕(u�2

i
u�2
j
)1∕2 , where u′

i
 is the fluctuation from the mean for the instan-

taneous velocity field u. A length scale L11 indicative of the size of the largest eddies in the 

flow can then be calculated by L11 = ∫
L

0

R11 dr , hence allowing us to determine domain 

sizes accordingly. We find that the value of L11 = 0.06m at t = 1s in a simulation without 
particles and a numerical domain of size 1.2m × 1.2m × 1.2m . Accordingly, a numerical 
domain with a side length of 0.509m is chosen which is around ten times the length scale 
L11 and which is also almost half the size of the wind tunnel cross-section. This allows us 
to reach the target volume fraction with a computationally reasonable number of particles 
and also avoid any confinement effects due to the size of the domain.

2.3  Turbulence and Droplet Characterization

Table 1 shows characteristic values of the turbulent flow at x = Ut . The mean turbulent 
kinetic energy in the domain can be characterized as k = 1

2
u�
i
u�
i
 , where summation is 
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implied over repeated indices. The large-scale eddies of the flow are characterized by the 
integral velocity ( ue ) and length ( Le ) scales. The integral velocity scale is given by the root-
mean square value of the velocity fluctuations, ue = urms = 2∕3k

1∕2
 . The integral length 

scale is given by Le = k
3∕2

∕� where � is the mean kinetic energy dissipation rate, and the 
large-eddy turnover time �e = ue∕Le . The small-scale turbulence can be characterized by 
the Kolmogorov length � = (�3∕�)1∕4 , velocity u� = (��)1∕4 and time �� = (�∕�)1∕2 scales. 
The velocity profiles averaged over the ŷ − ẑ plane and over a time interval Δt = 0.1s 
evolves and the effects of the grid slowly fade with time. After t = 0.6s , the flow can be 
considered to be isotropic. Also shown in Table  1 is the Taylor Reynolds number 
Re� = urms�∕� , with the Taylor micro-scale 

� =
√

15�u2
rms

∕� and the Froude number 

Fr = u�∕t�g.
The evolution of the velocity variances u′2 , v′2 , and w′2 with time are plotted in Fig. 1a. 

For isotropic homogeneous turbulence, these variances are equal to each other. The fig-
ure shows that the values are very close to each other after t = 0.5s thus attesting to the 

Table 1  Turbulence parameters at x = Ut for a simulation with an isotropic grid spacing Δx

Here, � is the dissipation rate of turbulent kinetic energy, � , �� and u� are the Kolmogorov length,time and 
velocity scales respectively, � is the Taylor length scale, Re� is the Taylor Reynolds number and Fr is the 
Froude number

t = 0.5 s t = 0.6 s t = 0.7 s t = 0.8 s t = 0.9 s t = 1.0 s t = 1.1 s

x(m) 1.9375 2.325 2.7125 3.1 3.4875 3.875 4.2625
� (m2∕s3) 0.2503 0.1245 0.0712 0.0448 0.0302 0.0215 0.0159
�� (ms) 7.7 11.0 14.5 18.3 22.3 26.4 30.7
u�(m∕s) 0.044 0.037 0.032 0.029 0.026 0.024 0.022
�(mm) 5.5 6.3 7.0 7.7 8.4 9.0 9.5
Δx∕� 1.46 1.22 1.06 0.95 0.86 0.79 0.73
Re� 67.14 61.8 58.17 55.58 53.62 52.08 50.78
Fr 0.583 0.343 0.223 0.157 0.117 0.091 0.073

Fig. 1  a Volume averaged values for the velocity fluctuations, b normalized dissipation rates for the turbu-
lence in the numerical domain and c Froude number Fr, Taylor Reynolds number ( Re� ) and Stokes number 
(St) for a droplet of radius 15 μm as a function of time
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isotropy of the flow. The initial high values for u′ compared to v′ and w′ are due to the 
effects of the initial conditions. Figure 1b shows � normalized with the classical scaling 
u3
e
∕Le . This value has been shown to be constant for decaying grid-turbulence in experi-

ments (Sreenivasan 1984) and in forced as well as decaying DNS simulations of turbulence 
(Sreenivasan 1998). The magnitude of the constant CE = �Le∕u

3
e
≈ 1.8 shown in Fig. 1b is 

comparable with those from other DNS data where it falls in the range 1 − 3 (see Fig. 1 in 
the review by Vassilicos 2015). Figure 1c also shows the change of Re� , Fr and St (for a 
droplet of radius 15μm ) as a function of time.

A polydisperse distribution of droplets with 36 different discrete radii between 10 and 
55μm are randomly distributed across the whole computational domain at t = 0.4 s . This 
size range is selected since these are the most important sizes in the problem of the size-
gap bottleneck in warm rain initiation. The number of droplets in each size category is 
decided by a volume-weighted distribution (such that the total volume of droplets in each 
size category is the same). Using such a distribution, a target volume fraction of 5 ×10−5 
is achieved by introducing a total of 62.5 million droplets. We assume that the system is 
well within the dilute limit and any modulation of fluid turbulence due to two-way cou-
pling with the particles can be neglected. We also neglect particle-particle aerodynamic 
interactions.

The simplified form of the Maxey-Riley equations is valid only in the case where 
R∕𝜂 ≪ 1 . Table 2 shows the values of R∕� of six radius categories in the polydisperse sys-
tem at � = 215 cm2s−3 and t = 1 s . The values for all the categories are well within this 
limit. The added-mass, Basset history force and pressure forces are neglected under the 
assumption that 𝜌p∕𝜌 ≫ 1 . Since we are considering water droplets ( �p = 1000 kg m−3 ) 
dispersed in air ( � = 1.1436 kg m−3 ), �p∕� ∼ 1000 . Another important assumption is the 
Stokes-drag approximation for the viscous drag forces. This assumption is valid in the 
range where the particle Reynolds number Rep ≪ 1 . Ayala et al. (2008b) showed that for 
R > 30 μm , Rep is large enough to warrant the inclusion of a non-linear factor to model the 
departure from Stokes drag law. However, as was done in both Ayala et al. (2008b) and 
Woittiez et al. (2009), we employ the linear Stokes drag formulation to focus on the effects 
of gravity. Two simulations with the same flow characteristics and droplet parameters, but 
one with non-sedimenting particles and another with sedimenting particles, are performed.

Droplet-turbulence interactions are characterised using a series of non-dimensional 
parameters: the Stokes number St = �p∕�� , the parameter �p∕�e (to characterize the 
interaction between particles and the larger turbulent flow scales), the settling param-
eter Sv = wt∕u� (to characterize the interaction between settling particles and the smaller 
scales of turbulence) where wt = �pg is the droplet terminal velocity, and the parameter 
VT = wt∕ue (to characterize the interaction between settling droplets and the larger scales 

Table 2  Parameters for particle turbulence interaction at � = 215 cm2s−3 ( t = 1s)

R (mm) R∕� �p (s) St = �p∕�� Sv = vt∕u� VT = wt∕ue �p∕�e

10 0.0159 0.0013 0.049 0.5336 0.1459 0.0020
19 0.0302 0.0047 0.1768 1.9263 0.5266 0.0072
28 0.0445 0.0102 0.3841 4.1834 1.1437 0.0156
37 0.0587 0.0177 0.6707 7.3049 1.9970 0.0273
46 0.0730 0.0274 1.0366 11.2908 3.0867 0.0422
55 0.0873 0.0392 1.4819 16.1411 4.4127 0.0603
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of turbulence). The values of these parameters for six different radius categories are shown 
in Table 2 at t = 1s.

3  Radial Distribution Function

The three-dimensional RDF is calculated during the simulations using

where �12 is the total number of droplet pairs with radii R1 and R2 with separation distance 
r detected in a spherical shell of inner radius equal to r − � , outer radius equal to r + � , 
and volume Vs . Also, N1 and N2 are the total number of droplets of size R1 and R2 respec-
tively. In this paper, � = 0.02r . For an RDF of same-sized droplets, g11 , N2 is replaced with 
(N1 − 1)∕2 . The RDF g12(r;t) is further averaged over time to obtain g12(r) . The calcula-
tion of the RDF and collision statistics is started at t = 0.5 s and averaged over every 0.1s 
thereafter. The very large number of particles ensures that converged particle statistics are 
obtained with this low averaging time. The maximum value of the inter-particle separation 
distance r over which the RDF is calculated is 4Δx . Considering particles at larger dis-
tances (beyond 4 cells in a direction) is restricted by the fact that the computational domain 
is parallelized in the ŷ and ẑ directions. Calculating particle separations at the processor 
boundaries requires exchange of data in the corresponding boundary cells of the neigh-
bouring processor(s) which is a memory- and time-intensive procedure.

3.1  Monodisperse RDFs

As mentioned in the introduction, the RDF for same-sized particles can be expressed in 
terms of a power law. Figure 2a shows three dimensional RDFs in log-log coordinates for 
selected same-sized ( g11 ), non-sedimenting (square markers) and sedimenting (plus mark-
ers) particles at t = 1 s ( � = 215 cm2 s−3, Fr = 0.09 ). The RDFs for both non-sedimenting 
and sedimenting particles reach a saturation at r∕𝜂 < 1 at St = 0.62 (yellow squares and 
plus markers) after which the values start decreasing for higher St. However the magnitude 
of the maximum is higher in the absence of gravity. We observe a clear power law scaling 
for both cases for values of r∕� upto 4. The RDF at r∕𝜂 < 1 remains the same up to Sv ≈ 2 
after which sedimenting particles show a lower RDF. At these intermediate St, gravity 
clearly suppresses particle clustering. At higher Stokes numbers, gravity increases the RDF 
for r ≪ 𝜂 as can be seen for St = 1.03 . To explore this in detail, the RDFs g11 for droplets 
of size 40.8 μ m are shown as a function of time Fig. 2b.

The figure shows how a droplet of a particular size interacts with the evolving flow 
scales of decaying turbulence. The power law is maintained throughout decaying turbu-
lence with the slopes of the straight line changing as a function of time. As the parti-
cle is suspended in decaying turbulence the Stokes numbers vary from 1.97 at t = 0.6 s 
( Fr = 0.34 ) to 0.81 at t = 1 s ( Fr = 0.09 ). The rate of change of the slopes is high cor-
responding to the change (of almost an order of magnitude) in � from 0.1245m2 s−3 (at 
t = 0.6 s ) to 0.0712 m2 s−3(t = 0.7 s ). From t = 0.8s to 1s , the change in � is very small 
which corresponds to a small change in the slope. An interesting feature from these 
plots is the role gravity plays on the clustering or RDF as a function of both Fr and St. 

(6)g12(r;t) =
�12∕Vs

N1N2∕V
,
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For small values of Fr, which indicates a larger effect of gravity accelerations, the clus-
tering is lesser (cyan and pink plus markers) as opposed to the non-sedimenting case 
( Fr = ∞ , cyan and pink squares). As Fr increases, indicating weaker gravity accelera-
tions compared to higher turbulent accelerations, particle clustering is higher for sedi-
menting particles (red, black and blue markers) for r∕𝜂 < 1 . Gravity reduces both pref-
erential concentration and the path-history effects (Ireland et  al. (2016a)). At low St, 
gravity weakens the preferential sampling drift effect leading to a reduction in the over-
all clustering. At higher Stokes numbers, gravity increases the RDF slightly by weaken-
ing the path-history effect whose effect is normally to decrease clustering.

The coefficients c0 and c1 of the power law from Eq.  (2) for the RDF values from 
t = 0.7s to t = 1.0s are shown in Fig. 3 for non-sedimenting (a, c) and sedimenting (b, 
d) particles. These are obtained by fitting Eq. (2) to the DNS data. The theory behind 
Eq.  (2) was developed for steady-state realised by driven turbulence. Figure  2 clearly 
shows that a power law behaviour exists for decaying turbulence as well and Fig.  3 
shows the coefficients c0 and c1 for the same. The dependency of the coefficients c0 and 
c1 on St is similar to that shown in Reade and Collins (2000). At low Stokes numbers, 
the coefficients are similar for both sedimenting and non-sedimenting particles. How-
ever it is interesting to note that for the coefficient c0 , the peaks decrease with time for 
sedimenting particles (Fig. 3b), i.e. particles with the same Stokes number cluster to a 
lesser degree. The corresponding Fr decreases with time, indicating an increase in the 
gravitational accelerations compared to turbulent accelerations leading to a reduction in 
clustering in the intermediate St range of 0.3–1.

An empirical fit for the coefficients c0 and c1 was performed by Reade and Collins 
(2000) by curve fitting the following functions to their DNS data

Fig. 2  Monodisperse RDF for a non-sedimenting (square markers) and sedimenting droplets (plus markers) 
at � = 215 cm2S−3 , Fr = 0.09 and t = 1 s , b droplets of radius 40.8 μ m
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with c2 = 0.25 assumed to be a constant. We use the same functions to curve fit c0 and c1 
(the data shown in Fig. 3a, c). A very good fit was obtained as shown by the blue line in 
these figures with the following coefficients: d0 = 6.8884, d1 = 0.7840, d2 = 0.8455, and 
d3 = 2.1755 for c0 and d4 = 0.5056, d5 = 1.0944, d6 = 0.1787 , and d7 = 2.5626 for c1.

The analytical solution developed by Chun et al. (2005) was extended to sedimenting 
particles by Ayala et al. (2008a) who developed an empirical model using DNS results 
to quantify the RDF. In order to account for the effects of gravity, they assumed the 
coefficients c0 and c1 to be a function of St, Re� and a dimensionless gravity parameter 
|g|∕(u�∕��) . An empirical expression for c1 for sedimenting particles was then obtained 
by curve-fitting to the DNS data with c0 = 1 . However, Fig. 3 clearly shows that c0 is a 
function of St. Even though the range of Re� is small in our simulations, there is a clear 
change in the maxima for c0 (Fig. 3b) as the simulation progresses. This behaviour can 
be well represented by the empirical relation

where

(7)c0 =
d0 St

d1

d2 + Std3
, c1 =

d4 St
d5

d6 + Std7
,

(8)c0 = f1(Re�)St
b2 exp(−b3St),

Fig. 3  Coefficients for monodisperse RDF: a, b pre-factor c0 , c, d clustering exponent c1 . The left and right 
columns represents non-sedimenting and sedimenting particles respectively. The circles show the coeffi-
cients obtained by fitting Eq. 2 to the DNS data from t = 0.7 s to t = 1 s . The blue lines are the predicted 
values at t = 1 s using the empirical formulas (Eq. (7) for a and c, Eq. (8) for b, and Eq. (9) for d)
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Curve-fitting this function with the data plotted in Fig. 3b gives the following parameters: 
b0 = 11.7825, b1 = −9.3844, b2 = 0.8338 and b3 = 0.9738 . The behaviour of coefficient c1 
is captured by (Ayala et al. 2008a)

where

This function is fitted to the data shown in Fig.  3d for c1 and results in the following 
parameters: b4 = −0.2817, b5 = 1.6703, b6 = −3.3334, b7 = 2.3639, b8 = −0.0632 and 
b9 = −9.9914 . These values vary from those obtained by Ayala et al. (2008a), however the 
parameters for c1 are of the same sign. The potential of using these empirical formulas for 
c0 and c1 to predict the RDF of colliding droplets will be explored in Sect. 4.

Figure 3 also shows how the the coefficients change as the droplets interact with decay-
ing turbulence. Collins and Keswani (2004) reported that with increasing Re� (their study 
reached Re� values up to 152), the RDF saturates and approaches a plateau which was in 
contrast to the linear growth with Re� that was reported by Wang et al. (2000a). Falkovich 
and Pumir (2004) also reported an increase in the exponential coefficient c1 with increasing 
Re� and dissipation � . This was attributed to an increase in intermittency in the gradients 
of the turbulent velocities with increasing Re� . However, Saw et al. (2008, 2012b) showed 
using wind tunnel experiments that there is a strong saturation in c1 in the limit of large Re� 
and the good agreement between experimental ( Re� = 440 ) and DNS results ( Re� = 140 , 
Saw et al. 2012a) is also attributed to this saturation and the weaker dependence on Re� as 
compared to St. A Stokes number ’similarity’ was also observed in the RDFs measured in 
Saw et al. (2008, 2012b) where the plots of RDF for droplets with different sizes but same 
St (from measurements taken at different downstream locations of the wind tunnel) coin-
cided even though these were calculated from different flow conditions. We see a similar 
St similarity for the exponential coefficient c1 which is the slope of the RDF. It is possible 
that this reinforces the observation from Saw et al. (2012b) that particle clustering occurs 
at scales that are well separated from the inhomogeneity in the larger scales. But we are 
hesitant to present this as a conclusion as we do not attain the maximum or the range of 
Re� in our numerical simulations ( ∼ 50–67) as in the experiments. Most of the previously 
stated DNS studies used different simulations of forced turbulence (at different turbulence 
intensities and hence Re� ) to study the Re� dependence. Future studies where results from 
our novel setup will be compared to experimental data has been planned where we will aim 
for the range of Re� seen in wind tunnel flows. An attempt to provide a definitive answer 
for the Reynold’s number dependence to clustering will be made in the future.

To conclude the analysis of the monodisperse RDFs, we plot the correlation dimension 
which is used extensively in dynamical systems theory (Bec et  al. 2008; Gustavsson et  al. 
2015) in Fig. 4. The correlation dimension D2 can be related to the exponent c1 as D2 = d − c1 
where d = 3 is the number of spatial dimensions. At low St, there is a decrease in the value 

f1(Re�) = b0 exp

(
b1

Re�

)
,

(9)c1 =
f2(St)

(1∕Fr)f3(Re�)
,

f2(St) = b4St
4 + b5St

3 + b6St
2 + b7St,

f3(Re�) = b8 exp

(
b9

Re�

)
.
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of D2 with increasing St which points to an increasing spatial correlation, i.e. a higher degree 
of clustering. This decrease is followed by the value of D2 reaching a minimum between 
St = 0.4−0.6 indicating maximum particle clustering which is consistent with results from 
experiments (Monchaux et al. 2012). The effect of gravity is clearly seen at the intermediate 
St range where the value of D2 is higher for sedimenting droplets (plus markers) indicating 
a lower spatial correlation and hence a lower degree of clustering. At high St, we see lower 
values of D2 indicating a higher spatial correlation and hence a higher degree of clustering for 
non-sedimenting droplets (square markers) compared to sedimenting droplets.

3.2  Bidisperse RDFs

The analytical theory of Chun et al. (2005) predicts the RDF for inertial particles of different 
sizes using the following expression at r ≪ 𝜂

where c0 and c1 are interpreted similarly as in the monodipserse case (Eq. (2)) and rc is a 
cross-over length scale. They showed that shear-driven diffusion dominates for 𝜂 ≫ r ≫ rc 
with the resulting RDF exhibiting a power law behaviour, while an acceleration-driven dif-
fusion dominates for r ≪ rc resulting in an RDF which is independent of r. Hence rc can be 
considered to be a length scale below which the power-law behaviour of the RDF crosses 
over to a plateau. A semi-empirical relation for rc (for Re� = 47.1 ) is given by (Chun et al. 
2005)

and for c1 as

(10)g12(r) = c0

[
�2 + r2

c

r2 + r2
c

]c1∕2

,

(11)
rc

�
≈ 5.0|St2 − St1|

Fig. 4  The correlation dimension 
D2 = d − c1 for non-sedimenting 
droplets ( Fr = ∞ shown by 
square markers) and sedimenting 
droplets (shown by plus markers)
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For the monodisperse case, rc = 0 and Eq.  (10) reduces to Eq.  (2). Ayala et  al. (2008a) 
modified the expression for rc for sedimenting particles to

where

This is purely an empirical form which gave a reasonable fit to their DNS data. Figure 5 
shows RDFs of droplets of different sizes at t = 1 s with � = 215 cm2s−3 . These bidisperse 
RDFs are calculated by fixing the size of one droplet at St1 = 0.50 and varying the size of 
the second droplet from St2 = 0.42 to St2 = 0.81 . Figure 5a, c show RDFs for non-sedi-
menting droplets with St2 ≤ St1 and St2 ≥ St1 respectively, while Fig. 5b, d show the same 
for sedimenting droplets. Also shown in dashed lines are the values of rc obtained from 

(12)c1(St1, St2) = 6.6St1St2.

(13)
(
rc

�

)2

= |St2 − St1|F(a0g,Re�),

(14)

a0g = a0 +
�

8

(
1

Fr

)2

,

a0 =
11 + 7Re�

205 + Re�
,

F(a0g,Re�) = 20.115

(
a0g

Re�

)1∕2

.

Fig. 5  Bidisperse RDF with St1 = 0.50 (fixed) and (a, b) St2 < St1 (c, d) St2 > St1 at t = 1 s and 
� = 215 cm2 s−3 . The left column represents non-sedimenting particles and right column represents sedi-
menting particles
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Eqs. (11) and (13) for different ΔSt . The bidisperse RDFs exhibit a power law at relatively 
larger scales which taper off to a plateau at smaller scales. It is also clear that this transi-
tion to a plateau where the RDF is independent of r clearly happens at much larger scales 
for sedimenting droplets (for the same ΔSt ). We observe a similar asymmetry in g12 for 
non-sedimenting droplets when St2 is increased or decreased relative to the fixed St1 , as was 
shown by Saw et al. (2012a). Interestingly, a symmetry is observed in g12 for sedimenting 
droplets. Any small deviation from a monodisperse distribution results in a sharp change 
in the RDF slope due to the difference in settling velocities for droplets with different sizes 
(or for small ΔSt = St2 − St1 ) irrespective of St2 being greater or lesser than St1 . This is 
explored in detail for colliding droplets in Sect. 4.

Saw et al. (2012a) observed that for non-sedimenting droplets, the power-law coef-
ficient c1 can be recovered only at sufficiently small scales such that r ≪ 𝜂 , which makes 
the retrieval of c1 difficult when the value of rc approaches � for very small ΔSt . This 
happens in our study as well, as is evident by the dashed lines in Fig.  5. Saw et  al. 
(2012a) extended the bidisperse theory and proposed a new power-law coefficient c′

1
 

which corresponds to the slope of the RDF in the range of scales between rc and the 
large-scale flattening of the RDF ( r∕� ≈ 1 − 6 in their study) and approximated this as 
the lesser of the two corresponding monodisperse values, i.e.

This relation was shown to hold for ΔSt = |St2 − St1| of the order of 0.01–0.1 and arises 
as a result of a saturation effect (with c′

1
 increasing with St2 to a maximum and thereaf-

ter remaining constant) which suggests that the value of c′
1
 is always limited by the least 

clustered particles. We replace c1 with c′
1
 in Eq. (10) and calculate rc for non-sedimenting 

droplets by performing a nonlinear fit of Eq. (10) to the DNS data for bidisperse RDFs (for 
the entire range of r). The resulting values of rc are shown in Fig. 6 for different St1 at t = 1s 
and are compared with the theoretical values (Eq. (11)). There is a very good agreement 
between the two values suggesting that the extension proposed by Saw et al. (2012a) to the 
theory of Chun et al. (2005) works well even for r∕𝜂 < 1 . This is important as Eq. (15) can 
be used to determine the collision kernel as will be done in Sect. 4. Unfortunately, extend-
ing this theory to sedimenting droplets is not straightforward and an attempt to do so failed 

(15)c�
1,bi

(St1, St2) = min
[
c�
1,mono

(St1), c
�
1,mono

(St2)
]
.

Fig. 6  Cross-over scale r
c
 for 

non-sedimenting particles as a 
function of ΔSt = St2 − St1 where 
St1 = 0.5 is fixed. The black line 
in is the analytical solution given 
by Eq. (11)

-0.2 -0.1 0 0.1 0.2
0

0.5

1
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since rc∕� approaches 1 for really small ΔSt , and we do not see a power-law behaviour at 
larger scales (within 4 � ) as is clear in Fig. 5b, d.

We also highlight alternate results from Bec et  al. (2005); Meibohm et  al. (2017a, 
2017b); Bhatnagar et al. (2018) which points towards rc scaling as |St1 − St2|∕(St1 + St2) . 
We performed an alternate analysis to retrieve rc from the DNS data as before but with 
c1 = c1,mono(St) where St = 2St1St2∕(St1 + St2) is the harmonic mean of the two Stokes 
numbers (again motivated by results from Bec et al. 2005; Meibohm et al. 2017a, b; Bhat-
nagar et al. 2018). The resulting values for rc is similar to that obtained above at small ΔSt 
and the same issue with rc approaching � at small ΔSt prevented us from looking at the 
actual scaling of rc at larger range of ΔSt for non-sedimenting particles and for any ΔSt for 
sedimenting particles.

4  Geometric Collision Kernel

In this section, we analyse the effect of gravity on the collision kernel. The most common 
kinematic formulation for the geometric collision rate of a bidisperse distribution is given 
by (Sundaram and Collins 1997; Wang et al. 2000b, 1998),

where Rc = R1 + R2 is the collision radius for two colliding droplets of radius R1 and 
R2 . The radial relative velocity wr is defined in terms of the relative velocity w between 
two droplets with separation vector r as wr = w ⋅ r∕|r| . The mean radial relative velocity 
⟨�wr(r = Rc)�⟩ is then the conditional average, i.e. the mean of |wr| conditional on r = Rc.

Figure 7 shows contour plots for the collision kernel ΓK(a, d), RDF g(Rc) (b, e) and the 
magnitude of the mean radial relative velocities ⟨�wr(Rc)�⟩ (c, f) for all colliding droplets 
in the polydisperse distribution. For all the plots in this section, the statistics are shown for 
t = 1 s . It should be noted that for this figure, the DNS data for the RDF g(Rc) is calculated 
separately in the collision routine of SPARKLE and is not extracted from the RDF data 
used in Sect. 3 (details in Nair (2021)). All the figures show a striking symmetry which 
confirms the fact that the statistics for collisions between droplets of radii R1 and R2 are the 
same as those between R2 and R1.

Figure 7a, d show that sedimentation enhances the collision kernel except when colli-
sions are between droplets of the same size. For collisions between same-sized particles 
(along the leading diagonal), the kernel is higher for non-sedimenting droplets (Fig. 7a) 
compared to sedimenting droplets (Fig.  7d), noticeably so for R > 25μm . For collisions 
between unequal-sized droplets (either side of the leading diagonal), the enhancement 
observed in Fig. 7d is obvious for R1 > 25 μm,R2 > 25μm . The higher velocity decorrela-
tion due to the differential settling velocities for unequal-sized droplets becomes significant 
at sizes greater than 25μm as can be seen by comparing Fig. 7c, f in the same size range. 
The figures reveal a difference of at least an order of magnitude between ⟨�wr�⟩ for non-
sedimenting and sedimenting colliding droplets. For both cases, bands are observed within 
which the collision kernels have a similar order of magnitude. Detailed analysis of the ker-
nels are done later in the section using a cross-section from the contour plot.

A detailed analysis of the RDF at scales extending up to 4� was performed in Sect. 3. In 
Fig. 7b, e, we look at the effect of gravity on the RDF of colliding droplets, i.e. at r = Rc . 
Figure 7b suggests that the gradient from the monodisperse peak is much more gradual 

(16)ΓK
12

= 2�R2
c
⟨�wr(r = Rc)�⟩g12(r = Rc).
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for non-sedimenting colliding droplets when compared to sedimenting colliding droplets. 
In Fig. 7e, the RDF of sedimenting droplets falls rapidly from the monodisperse value for 
even a small ΔR = R2 − R1 . This is due to the rapid decorrelation of the droplet concentra-
tions for different droplet sizes (Zhou et al. 2001). The decorrelation arises from the fact 
that particles with different inertia tend to cluster in different (slightly-offset) regions with 
respect to the flow. Differential sedimentation enhances this decorrelation leading to a very 
sharp diagonal with high values of RDF and the values dropping to one even for a small 
ΔR . In Fig. 7c, f, the plots are symmetric indicating that ⟨�wr�⟩ depends on ΔR (or ΔSt ), 
the difference in inertia, rather than R1 or R2 . The value of ⟨�wr�⟩ reaches a minimum for 
same-sized droplets and increases with ΔR for both cases. The effect of gravity is an overall 
increase in ⟨�wr�⟩ of almost an order of magnitude for unequal-sized droplets.

The RDFs are now analysed separately in Fig. 8 by comparing the DNS data with val-
ues predicted from different analytical/empirical models for both non-sedimenting and 
sedimenting droplets. The DNS data in Fig. 8a for the monodisperse RDF g11(Rc) corre-
sponds to the leading diagonal of Fig. 7b and that for the bidisperse RDF g12(Rc) in Fig. 8b 
corresponds to a slice through the contour plots at R1 = 31.9μm(St = 0.5) . For g11(Rc) , the 
obvious model to predict the RDF would be using Eq. (2) where the coefficients c0 and c1 
are calculated using the equations and fitted parameters from Sect. 3, i.e. Eq. (7) for non-
sedimenting droplets and Eqs. (8) and (9) for sedimenting droplets. The fitted parameters 

Fig. 7  Comparisons between the polydisperse distribution of non-sedimenting droplets (top row) and sedi-
menting droplets (bottom row) for the (a, d) kinematic collision kernel ΓK , (b, e) RDF and (c, f) radial rela-
tive velocity ⟨�w

r
�⟩
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d0 − d7 and b0 − b9 for these equations remain the same as in Sect. 3. Similarly, the bidis-
perse RDF g12(Rc) can be predicted using Eq.  (10) where rc is calculated using Eq.  (11) 
for non-sedimenting droplets and (13) for sedimenting droplets. The coefficients c0 and 
c1 are selected from the corresponding monodisperse values as min(c0(St1), c0(St2)) and 
min(c1(St1), c1(St2)) for non-sedimenting droplets. For sedimenting droplets these are cal-
culated using Eqs. (8) and (9) with St = max[St1, St2] . This model is referred to as model 
M1. The corresponding values obtained using model M1 (dashed lines) are compared with 
the DNS data (circles) in Fig. 8.

For the monodisperse case, there is very good agreement between the DNS data and 
model M1 for colliding non-sedimenting (red) and sedimenting droplets (black) as shown 
in Fig. 8a. For sedimenting droplets (black dashed lines), a good agreement is observed for 
smaller St even though the peak seems to be shifted with the model slightly over predict-
ing for St > 1 . For the bidisperse case, there is a good agreement for the non-sedimenting 
case for all sizes except for when R2 > 35 which corresponds to ΔSt > 0.3 . Note that this is 
much better behaviour than expected since the relation given by Eq. (15) was shown to be 
valid for ΔSt up to 0.1 only. However, for sedimenting droplets, there is a marked disagree-
ment for even small ΔSt . This is due to the values of rc∕� rapidly approaching 1 even for 
small ΔSt which renders the retrieval of the power-law coefficient (and ultimately the RDF) 
using the model impossible.

We proceed to model the RDF using the procedure described in Ayala et  al. (2008a) 
to investigate if this gives a better agreement with DNS results. This model will be 
named M2. We first curve-fit Eq.  (2) to our DNS data for the monodisperse RDF 
g11(Rc) setting c0 = 1 and c1 following Eq.  (7) for non-sedimenting droplets, and Eq.  (9) 
for sedimenting droplets. This fit results in a new set of parameters for c1 which are: 
d
�
4
= 1.2993, d�

5
= 1.1487, d�

6
= 0.2264, d�

7
= 2.0458, b�

4
= −0.9125, b�

5
= 4.4471, b�

6
= −7.6730,

b
�
7
= 5.1852, b�

8
= 0.0095, b�

9
= 30 . For bidisperse RDF g12(Rc) , this process is extended 

by assuming that rc follows Eq.  (13) for both cases but with F(a0g,Re�) replaced by 
F(Re�) = 11.5283

(
a0∕Re�

)1∕2 and a0 = (9.5686 + 0.1303Re�)∕(205.29 + Re�) for non-
sedimenting droplets. For sedimenting droplets, F(a0g,Re�) has the same form and parame-
ters as Eq. (14). The coefficient c0 = 1 , and c1 is calculated similar to model M1. Very good 

Fig. 8  Monodisperse (a) and bidisperse (b) RDF from DNS and models. Redlines represent non-sediment-
ing and black lines sedimenting colliding particles
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agreement is observed for the monodisperse case for non-sedimenting droplets (red dotted 
lines) and sedimenting droplets (black dotted lines). An excellent agreement is observed 
for the bidisperse case for both non-sedimenting and sedimenting droplets. Details of both 
models and the respective equations and parameters are summarized in Table 3.

To obtain a clearer picture of the droplet collision process, the kinematic collision 
kernel ΓK

11
 , the RDF g11 , and the radial relative velocities ⟨�wr�⟩ for colliding droplets of 

the same size are plotted in Fig. 9a–c. These plots correspond to the leading diagonals of 
Fig. 7a–c respectively. Figure 9d–f show the collision statistics ΓK

12
 , the RDF g12 and ⟨�wr�⟩ 

for unequal-sized droplets where St1 = 0.5 and St2 is varied. This corresponds to a slice 
through the contour plots at R1 = 31.9�m in Fig. 7. Also plotted are the theoretical/model 
values for comparison. Model M2 is used for comparison with the RDF values obtained 
from DNS in Fig. 9b, e. The values of ⟨�wr�⟩ obtained from DNS are compared with mod-
els from Wang et  al. (2000a) for non-sedimenting droplets and Ayala et  al. (2008a) for 
sedimenting droplets. For non-sedimenting droplets, this is given by

(17)⟨�wr�⟩ =
�
2

�

�1∕2�
w2
shear

+ w2
accel

,

Fig. 9  Monodisperse (top row) and bidisperse (bottom row) values of the (a, d) kinematic collision kernel 
ΓK , (b, e) RDF and (c, f) radial relative velocity ⟨�w

r
�⟩ . Red represents non-sedimenting and black sedi-

menting colliding particles. The circles in figure (b) are the RDF predicted from the empirical formulas, 
while lines indicate RDF from DNS
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where

where � = max[�2∕�1, �1∕�2] , � = 2.5�p∕Te and wshear , waccel are the radial relative veloci-
ties due to the shear and acceleration mechanism respectively. For sedimenting droplets, 
the following expression for the formula from Ayala et al. (2008a) for ⟨�wr�⟩ is used

where �2 = ⟨(v�(2))2⟩ + ⟨(v�(1))2⟩ − 2⟨(v�(1)v�(2))⟩ and ⟨(v�(i))2⟩1∕2 is the rms fluctuation 
velocity of the ith particle. The kinematic collision kernels ΓK

11
 and ΓK

12
 can then be pre-

dicted using model M2 to calculate the RDF, and Eqs.  (17) and (18) for ⟨�wr�⟩ for non-
sedimenting and sedimenting droplets respectively.

Figure 9b shows that for same-sized colliding droplets, the RDF reaches a maximum 
at around St = 0.5 after which it reduces steadily. In the range St = 0.28 to St = 0.86 , 
gravity clearly suppresses particle clustering due to reasons discussed in Sect. 3.1. Fig-
ure 9e shows the RDFs for the bidisperse case for St1 . The sharp fall of the RDF values 
from a maximum to one is clearly visible for sedimenting droplets (black circles) when 
compared to the more gradual fall for non-sedimenting droplets (red circles). Again, 
model M2 shows very good agreement with the DNS values.

Sedimenting droplets of the same size have a lower ⟨�wr�⟩ than their non-sedimenting 
counterparts as shown in Fig. 9c. Gravity effects the relative velocities of colliding par-
ticles through preferential sampling of the fluid velocity field and the temporally non-
local path-history of the particle pair (Ireland et al. 2016a; Dhariwal and Bragg 2018). 
Due to particles preferentially sampling the fluid velocity field, they experience high 
differences in fluid velocities. When ΔSt = 0 , and for small values of St, gravity reduces 
the preferential sampling effect which leads to particles having dynamics closer to that 
of the fluid and a resulting reduction in the relative velocities. At higher St, non-sedi-
menting droplets experience a higher influence of the path-history effects. The parti-
cles remember the interactions with the different turbulent scales which are significantly 
different from that at the current separation. The contribution to the relative velocities 
for a particle pair will be dominated by the fluid velocities at larger separations along 
their path histories. This results in relative velocities that are higher than the local fluid 
velocity difference at the point of collision. At higher St, gravity reduces the path-his-
tory effect causing a lower relative velocity value for sedimenting particles compared to 
non-sedimenting particles. This can be seen by the higher difference between the two 
cases for St > 1 . When ΔSt > 0 , gravity can enhance inertial particle accelerations lead-
ing to values of relative velocities higher than in the non-sedimenting case (Dhariwal 
and Bragg 2018). This is clear from the order of magnitude difference between the val-
ues in Fig. 9f. The enhancements have been shown to be due to large settling velocities 
of particles with finite St and low Fr, which causes a rapid change in the fluid veloci-
ties experienced by the particles. Studies by Ireland et al. (2016a), Dhariwal and Bragg 
(2018), Momenifar and Bragg (2020) have explored these in detail.

A very good agreement between the model and DNS data is observed for same-sized 
droplets in Fig.  9c for both the non-sedimenting and sedimenting cases. An excellent 
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agreement is observed for sedimenting droplets for unequal-sized droplets, whereas for 
the non-sedimenting case, the semi-empirical formula from Wang et al. (2000a) seems 
to over-predict the values of ⟨�wr�⟩ for small sizes.

The kinematic collision kernel calculated using (16) is shown in Fig. 9a. Gravity clearly 
decreases the monodisperse collision kernel for St > 0.3 by influencing the accumulation 
effect(particle clustering) and the turbulence transport effect (particle relative velocities). 
The model for the monodisperse kinematic collisions kernel ΓK

11
 works very well for both 

cases. For the bidisperse case, there is a slight over-prediction of ΓK
11

 for St2 < 0.5 as a 
result of the model for ⟨�wr�⟩ not exactly matching the DNS values. However, for the sedi-
menting case, there is an excellent agreement between the model and DNS.

It is important to highlight that even though the formulation of the kinematic collision 
kernel according to Eq. (16) suggests that particle clustering explicitly enhances the col-
lision rates, an analysis by Gustavsson and Mehlig (2014) suggests this may not be the 
case. Gustavsson and Mehlig (2014) show that the collision rate is equal to m1(Rc)∕2 
where mp is the p-th moment of wr . They argue that since ⟨�wr�⟩ is defined as a condi-
tional average (conditional to r = Rc ), ⟨�wr�⟩ can be expressed as m1(Rc)∕m0(Rc) and with 
g(Rc) ≈ m0(Rc)∕R

d−1 (where d is the number of spatial dimensions), by definition (Eq. 16), 
any direct enhancement to the collision kernel from clustering through g(Rc) will be can-
celled by the probability that is present in the formulation of ⟨�wr(r + Rc)�⟩ and the actual 
collision rate will be given by m1(Rc) . Also, any contribution from spatial clustering g(R) 
will be indirect; as the fractal evolves in phase space, the velocity moment m1 may be 
influenced by the same degree of fractal clustering in velocity. This could explain why 
in Fig.  9d, the collision kernel appears to be smoother compared to g12 and ⟨�wr�⟩ , i.e. 
the non-smooth parts are cancelled out. For sedimenting particles, we speculate that the 
contributions of differential settling likely makes m1(Rc) and hence the collision rates non-
smooth as seen in Fig. 9d. An analysis to confirm this is reserved for future work.

The enhancement of the geometric collision kernel due to air turbulence relative to the 
gravitational kernel is shown in Fig. 10a. The figure shows the ratio ΓK∕Γg where Γg is the 
gravitational collision kernel. Also shown is the RDF (Fig. 10b) and the enhancement of 
the average radial relative velocity with respect to the purely gravitational case (Fig. 10c). 
Turbulence-induced enhancements of up to a factor of 3 are observed, especially for 

Fig. 10  a Turbulence enhancement of the geometric collision kernel ΓK , b RDF and c Turbulence enhance-
ment of the radial relative velocity ⟨�w

r
�⟩
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collisions between droplets with a small size difference. Devenish et  al. (2012) showed 
enhancements between 1.5 and 4 at similar � and size range. The value of ΓK∕Γg is not 
defined for particles of the same size (since Γg = 0 ), however Fig.  10b shows that par-
ticle clustering can lead to enhancement in collisions up to 12 times that in the purely 
gravitational case. For larger droplets, as particle inertia increases, the effect of radial rela-
tive velocity is the significant contributor to the turbulence enhancement of the collision 
process. A difference in radial relative velocities between colliding particles can lead to 
enhancements of up to a factor of 2 for droplets of unequal size as shown in Fig. 10c.

5  Concluding Remarks

In this paper, we investigated the effect of gravity on the preferential concentration and 
geometric collisions of a polydisperse distribution of water droplets in decaying homoge-
neous isotropic turbulence. A polydisperse distribution of water droplets with radii ranging 
from R = 10 to R = 55μ m was randomly distributed in isotropic turbulent flow. The radial 
distribution function (RDF) was used to quantify particle clustering and simulations were 
performed with both non-sedimenting and sedimenting droplets.

Analyses of the RDFs for same-sized droplets reveal a power law behaviour for both 
non-sedimenting and sedimenting droplets in decaying turbulence. As the flow decays, 
droplets encounter and interact with flow scales that are evolving with time. As a result, 
the flow Froude number Fr and droplet Stokes numbers St change, and gravity plays a dif-
ferent role depending on the magnitudes of Fr and St. We see that the power law is main-
tained throughout the decay. For small values of Fr, clustering is less compared to the non-
sedimenting case. At higher Fr, gravity enhances clustering. Empirical models have been 
generated for the exponential coefficients for the power law for both non-sedimenting and 
sedimenting droplets. We refrain from making conclusions on the dependence of particle 
clustering on the Reynolds number due to the small range of values of Re� the flow attains 
during the time the particle statistics are calculated. Future studies will focus on attain-
ing a higher maximum value as well as a wider range of Re� when particle statistics are 
calculated.

For clustering in droplets of unequal sizes, the cross-over scale at which the power-law 
behaviour of the RDF tapers to a plateau is calculated from theoretical predictions for both 
non-sedimenting and sedimenting droplets. Excellent agreement is observed between the 
rc recovered from the DNS data and the theoretical formula of Chun et al. (2005) for non-
sedimenting droplets. However, due to the difficulty in recovering the power-law coeffi-
cient c1 when the value of rc approaches � , comparison of rc with the empirical formula of 
Sundaram and Collins (1997) was not possible. Contrary to non-sedimenting droplets, we 
show that sedimenting droplets of unequal sizes exhibit a symmetric behaviour in RDF 
with droplets smaller and larger in size. The asymmetry in non-sedimenting droplets is due 
to the differential sedimenting velocities for particles of unequal sizes.

The effect of gravity on geometric collisions is analysed by looking at the kinematic col-
lision kernel, the RDF and radial relative velocity at the point of collision ( r = Rc ) of drop-
lets. For same-sized droplets, gravity reduces the collision kernel for bigger droplets. This 
is mainly due to a reduction in relative velocity once the effects of droplet settling veloci-
ties dominate the particle inertial effects resulting in the droplet velocities being increas-
ingly correlated. In the case of collisions between droplets of unequal sizes, gravity results 
in a significant increase in the kernel magnitude. A model to predict the kinematic collision 
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kernel is developed by combining the models for the RDF and the already existing models 
for the conditional radial relative velocities in literature. Very good agreement is observed 
when compared with the DNS data. However, a smooth distribution of the kinematic colli-
sion kernel compared to the RDF and the conditional radial relative velocities suggest that 
any contribution due to particle clustering via the RDF is cancelled due to the definition 
of the conditional radial relative velocities (which includes a probability of the separation 
distance being at Rc ) as was shown in Gustavsson and Mehlig (2014). This causes the non-
smooth contribution to cancel out leading to the collisional kernel being determined by the 
first moment of the relative velocities. However confirmation of this has been reserved for 
future studies. We also explore the turbulence enhancement of the geometric collision ker-
nel. Enhancement of up to factors of 3 is observed especially for monodisperse collisions.

Numerical studies involving a polydisperse distribution of droplets in decaying homo-
geneous isotropic turbulence are quite rare. The contour plots for the geometric collision 
kernel show how gravity plays an important role in enhancing collision between unequal 
sized droplets with radii greater than 30μ m. The results of this study can help in develop-
ing models of the collision kernel based on actual cloud conditions where gravity plays an 
important role. The value of typical mean turbulence dissipation rates in clouds is around 
400 cm2s−3 . The simulations in this study consider a droplet size distribution which is com-
parable to cloud droplet size distributions. However, the simulations are at a much lower 
Reynolds number than in actual clouds. Establishing a saturation of the RDF with respect 
to growing Reynolds numbers would have allowed us to comment on the suitability for 
using these models for actual cloud conditions. However, past studies such as those by 
Collins and Keswani (2004), Rosa et  al. (2013) have found that the RDF and the radial 
relative velocities reach a plateau with increasing Re� . This suggests that these models can 
be applied to study the evolution of droplet size distribution in clouds. We also plan to 
compare the DNS data with data from wind tunnel experiments for similar turbulence and 
droplet parameters.
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