
Vol.:(0123456789)

Flow, Turbulence and Combustion (2022) 109:351–382
https://doi.org/10.1007/s10494-022-00332-y

1 3

A Priori Direct Numerical Simulation Analysis of the Closure 
of Cross‑Scalar Dissipation Rate of Reaction Progress Variable 
and Mixture Fraction in Turbulent Stratified Flames

Peter Brearley1 · Umair Ahmed1 · Nilanjan Chakraborty1 

Received: 4 January 2022 / Accepted: 16 May 2022 / Published online: 21 June 2022 
© The Author(s) 2022

Abstract
The cross-scalar dissipation rate of reaction progress variable and mixture fraction �̃

c� plays 
an important role in the modelling of stratified combustion. The evolution and statistical 
behaviour of �̃

c� have been analysed using a direct numerical simulation (DNS) database of 
statistically planar turbulent stratified flames with a globally stochiometric mixture. A para-
metric analysis has been conducted by considering a number of DNS cases with a varying 
initial root-mean-square velocity fluctuation u′ and initial scalar integral length scale �� . 
The explicitly Reynolds averaged DNS data suggests that the linear relaxation model for 
�̃
c� is inadequate for most cases, but its performance appears to improve with increasing 

initial �� and u′ values. An exact transport equation for �̃
c� has been derived from the first 

principle, and the budget of the unclosed terms of the �̃
c� transport equation has been ana-

lysed in detail. It has been found that the terms arising from the density variation, scalar-
turbulence interaction, chemical reaction rate and molecular dissipation rate play leading 
order roles in the �̃

c� transport. These observations have been justified by a scaling analysis, 
which has been utilised to identify the dominant components of the leading order terms to 
aid model development for the unclosed terms of the �̃

c� transport equation. The perfor-
mances of newly proposed models for the unclosed terms have been assessed with respect 
to the corresponding terms extracted from DNS data, and the newly proposed closures 
yield satisfactory predictions of the unclosed terms in the �̃

c� transport equation.

Keywords  Cross-scalar dissipation rate · Turbulent stratified flames · Direct Numerical 
Simulations · Reynolds Averaged Navier–Stokes simulations · Linear relaxation model · 
Transport equation closure

 *	 Nilanjan Chakraborty 
	 nilanjan.chakraborty@ncl.ac.uk

1	 School of Engineering, Newcastle University, Claremont Road, Newcastle‑Upon‑Tyne NE17RU, 
UK

http://orcid.org/0000-0003-1690-2036
http://crossmark.crossref.org/dialog/?doi=10.1007/s10494-022-00332-y&domain=pdf


352	 Flow, Turbulence and Combustion (2022) 109:351–382

1 3

1  Introduction

Stratified mixture combustion occurs when there is a limited mixing time between the 
unburned reactants such that some premixing takes place but not to the extent of homo-
geneity. This type of combustion is often encountered in industrial combustors since it 
offers benefits in terms of improved energy efficiency and reduced pollutant emissions 
(Lipatnikov, 2017). Stratified combustion may also occur unintentionally by not allowing 
a sufficient mixing time in premixed combustors. Therefore, it is necessary to have reliable 
models for numerical simulations which will be pivotal to the design of future generation 
combustors that exploit the advantages offered by turbulent stratified mixture combustion.

A complete thermo-chemical description of stratified combustion requires a passive sca-
lar (e.g. mixture fraction � ) to describe the local mixture composition and an active scalar 
(e.g. reaction progress variable c ) to determine the progress of the chemical reaction. The 
normalised mixture fraction assumes a value of zero in the pure air stream and unity in the 
pure fuel stream, and is defined as (Bilger, 1988):

where YF and YO are the fuel and oxidiser mass fractions respectively, s = (YO∕YF)st is the 
mass stoichiometric ratio, and a subscript F∞ ( O∞ ) indicates the mass fraction value of 
fuel (oxygen) in a pure fuel (air) stream. Likewise, the reaction progress variable c quanti-
fies the extent of completion of the chemical reaction by rising from zero in the unburned 
reactants to a value of unity in the fully burned products, and can be defined as (Hélie and 
Trouvé, 1998):

where �st = YO∞∕(sYF∞ + YO∞) is the stoichiometric mixture fraction.
Presumed probability density function (PPDF) (Libby and Williams, 2000; Ribert et al., 

2005; Robin et al., 2006), flamelet based tabulated chemistry (Darbyshire et al., 2010) and 
Flamelet Generated Manifold (Nguyen et al., 2010; Fiorina et al., 2015; Marincola et al., 
2013) based modelling approaches require solving the transport equations of the Favre 
averaged active and passive scalar variances, as well as their covariance, which in turn 
need closures of their respective dissipation rates. Several previous analyses (Mura et al., 
2007; Malkeson and Chakraborty, 2010a, 2011a; Chakraborty et  al., 2011) focussed on 
modelling the scalar dissipation rates of mixture fraction and reaction progress variable 
in turbulent stratified mixture combustion, but relatively limited effort has been directed 
to the closure of cross-scalar dissipation rate. Mura et al. (2007) and Nguyen et al. (2010) 
proposed algebraic closures of the cross-scalar dissipation rates of fuel mass fraction and 
mixture fraction fluctuations �̃Y� = �D∇Y ��

F
⋅ ∇���∕� (where D is the molecular diffusivity, 

and q , q̃ = 𝜌q∕𝜌 and q�� = q − q̃ are the Reynolds averaged, Favre-averaged and Favre fluc-
tuation of a general quantity q respectively, with � being the gas density) which plays a key 
role in the context of Libby-Williams (L-W) model (Libby and Williams, 2000). Following 
this, Malkeson and Chakraborty (2011b) derived the exact transport equation of �̃Y� and 
proposed closures for the unclosed terms based on a-priori DNS analysis. Flame Gener-
ated Manifold (Nguyen et al., 2010; Marincola et al., 2013; Fiorina et al., 2015) closures 
of stratified mixture combustion utilise reaction progress variable c rather than YF as the 

(1)� =

YF − YO∕s + YO∞∕s

YF∞ + YO∞∕s

(2)c =
�YF∞ − YF

�YF∞ −max
(
0,

�−�st

1−�st

)
YF∞
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active scalar, and therefore it is important to understand the behaviour of �̃c� in the flame 
brush of turbulent stratified flames. However, to date, the closure of the reaction progress 
variable and mixture fraction cross scalar dissipation rate �̃c� = �D∇c�� ⋅ ∇���∕� has not 
been addressed in detail in the existing literature (Malkeson and Chakraborty, 2010a, b) 
despite its importance in the closure of the transport equation of the Favre averaged reac-
tion progress variable c̃ , the covariance c̃′′�′′ and flame displacement speed Sd in turbulent 
stratified mixture combustion (Malkeson and Chakraborty, 2013). Although YF and c are 
both active scalars, their gradients and correlations with ∇� can vary significantly depend-
ing on the extent of mixture stratification. Thus, it is important to analyse �̃c� independently 
since closures of  �̃Y� do not automatically apply to �̃c� . Thus, the main objectives of this 
paper are to:

(1) analyse the statistical behaviour of �̃c� within the flame brush in turbulent stratified 
flames.
(2) evaluate the effectiveness of the linear relaxation algebraic model at predicting the 
variation of �̃c� within the flame brush.
(3) identify the leading order contributors in the transport equation of �̃c� for turbulent 
stratified mixture combustion for different turbulence intensities and mixture stratifica-
tion conditions.
(4) provide adequate model expressions for the unclosed terms of the �̃c� transport equa-
tion.

To meet the objectives, a three-dimensional Direct Numerical Simulation (DNS) data-
base of six statistically planar turbulent stratified flames has been considered (Brearley 
et al., 2020). This database consists of cases with a globally stochiometric mixture and an 
initially bimodal distribution of equivalence ratio in the unburned gas. The cases vary by 
initial values of root-mean-square velocity fluctuation normalised by the laminar burning 
velocity of the stoichiometric mixture u�∕Sb(�=1)  and the initial scalar integral length scale 
normalised by the velocity integral length scale ��∕�.

The rest of the paper will be organised in the following manner. The mathematical back-
ground and numerical frameworks pertaining to this analysis are presented in the next two 
sections. This will be followed by the discussion of the results before the summary of the 
main finding, and conclusions are drawn.

2 � Mathematical Background

The cross-scalar dissipation rate �̃c� can be modelled using an algebraic expression in 
the context of the linear relaxation (LR) methodology (Mura et al., 2007; Malkeson and 
Chakraborty, 2010a), where the cross-scalar dissipation rate is modelled as:

where C is a model constant of the order of unity, 𝜀̃ = 𝜌𝜈
(
𝜕u

��

j
∕𝜕xk

)(
𝜕u

��

j
∕𝜕xk

)
∕𝜌 is the 

Favre-averaged turbulent kinetic energy dissipation rate, k̃ = 𝜌u��
j
u��
j
∕2𝜌 is the Favre aver-

aged turbulent kinetic energy and � is the kinematic viscosity. Alternatively, an additional 
modelled transport equation for �̃c� can be solved. The transport equation for �̃c� can be 

(3)�𝜀c𝜉 ≈ C
(
𝜀̃∕k̃

)
�c��𝜉��
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derived by considering the individual transport equations for the reaction progress variable 
and the mixture fraction:

where 𝜔̇c is the reaction rate of reaction progress variable c , which takes the following form 
when c is defined using Eq. 2 (Bray et al., 2005; Malkeson and Chakraborty, 2010b):

with 𝜔̇F being the reaction rate of the fuel. The term A� is the cross-scalar dissipation contri-
bution, which is defined as (Bray et al., 2005; Malkeson and Chakraborty, 2010b):

It is worth noting that the statistical behaviour of Nc� = D(∇c ⋅ ∇�) determines the 
behaviour of A� . The cross-scalar dissipation rate values are often smaller than the val-
ues of scalar dissipation rate of the reaction progress variable (Malkeson and Chakraborty, 
2010a; Inanc et  al., 2022). However, the cross-scalar dissipation rate appears explicitly in 
the expression of displacement speed Sd = |∇c|−1(Dc∕Dt) in stratified flames (Bray et  al., 
2005; Malkeson and Chakraborty, 2010b) and this quantity accounts for the effects of rela-
tive orientations of ∇c and ∇� on flame propagation (i.e. back-supported or front-sup-
ported flame propagation) which may not be negligible for stratified flames (e.g. Marincola 
et  al., 2013; Inanc et  al., 2020). Moreover, scalar dissipation rates N� = D∇� ⋅ ∇� ,  
Nc = D∇c ⋅ ∇c and cross-scalar dissipation rate Nc� = D∇c ⋅ ∇� affect the value of 
𝜔̇c = [𝜔̇F + N𝜉𝜕

2YF∕𝜕𝜉
2
+ Nc𝜕

2YF∕𝜕c
2
+ 2Nc𝜉𝜕

2YF∕𝜕𝜉𝜕c] in stratified flames (Malkeson 
et al., 2013).

Differentiating Eqs. 4 and 5 with respect to xi one obtains transport equations for �c∕�xi and 
��∕�xi , respectively. Multiplying the �c∕�xi transport equation by ��∕�xi , and multiplying the 
��∕�xi transport equation by �c∕�xi , then summing the resulting equations leads to a transport 
equation for the instantaneous cross-scalar dissipation rate Nc� = D∇c ⋅ ∇� . The transport equa-
tion for the cross-scalar dissipation rate of the Favre averaged scalars can be derived in a simi-
lar fashion. The transport equation of the Favre-averaged reaction progress variable c̃ is used to 
obtain the transport equation of 𝜕c̃∕𝜕xi , and the transport equation of the Favre-averaged mixture 
fraction 𝜉 is used to obtain the transport equation of 𝜕𝜉∕𝜕xi . Multiplying the 𝜕c̃∕𝜕xi transport 
equation by 𝜕𝜉∕𝜕xi , and multiplying the 𝜕𝜉∕𝜕xi transport equation by 𝜕c̃∕𝜕xi , then summing the 
resulting transport equations together yields the transport equation for D̃∇c̃ ⋅ ∇𝜉 . The final step 
of the derivation is to subtract the two derived equations to yield �𝜀c𝜉 = �Nc𝜉 − D̃∇c̃ ⋅ ∇𝜉 . For 
further information, interested readers are referred to Malkeson and Chakraborty (2011b) where 
a full mathematical description of the derivation of the transport equation of �̃Y� is presented, 
which is identical to the derivation of the transport equation of �̃c� . The �̃c� transport equation is 
shown below after ignoring the terms arising due to diffusivity variations:

(4)𝜌(Dc∕Dt) = 𝜔̇c + ∇ ⋅ (𝜌D∇c) + A𝜉

(5)�(D�∕Dt) = ∇ ⋅ (�D∇�)

(6)𝜔̇c = −𝜔̇F∕

[
𝜉YF∞

]
for 𝜉 ≤ 𝜉st, 𝜔̇c = −𝜔̇F

(
1 − 𝜉st

)
∕

[
𝜉st(1 − 𝜉)YF∞

]
for 𝜉 > 𝜉st

(7)A𝜉 = 2𝜌D(∇c ⋅ ∇𝜉)∕𝜉 for 𝜉 ≤ 𝜉st and A𝜉 = −2𝜌D(∇c ⋅ ∇𝜉)∕(1 − 𝜉) for 𝜉 > 𝜉st

(8)

𝜕
(
𝜌�𝜀c𝜉

)
𝜕t

+

𝜕
(
𝜌�uj�𝜀c𝜉

)
𝜕xj

=
𝜕

𝜕xj

(
𝜌D̃

𝜕�𝜀c𝜉

𝜕xj

)

�����������������
D1

+T1 + T2 + T3 + T4 − D2
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The first term on the left-hand side represents the temporal change of �̃c� , while the second 
term represents the effects of mean advection. On the right-hand side, D1 is the contribution 
of molecular diffusion, −D2 is the contribution of molecular dissipation, T1 is the contribution 
of turbulent transport, T2 arises due to density variation, T3 is the contribution of scalar gradi-
ent alignment with fluid dynamic strain rates, and T4 is the combined contribution of chemical 
reaction rate and mixture inhomogeneity. The terms T1 , T2 , T3 , T4 and −D2 are unclosed and 
require modelling. The mathematical definitions of these terms are given as:

The statistical behaviours of T1, T2, T3, T4 and 
(
−D2

)
 will be extracted from the explicitly aver-

aged DNS data and will be discussed in Sect. 4 of this paper.

(9(i))
T1 = −

𝜕

𝜕xj

(
𝜌u��

j
𝜀c𝜉

)

�����������������
T11

+ D̃
𝜕𝜉

𝜕xi

𝜕2

𝜕xi𝜕xj

(
𝜌u��

j
c��
)

���������������������������
T12

+ D̃
𝜕c̃

𝜕xi

𝜕2

𝜕xi𝜕xj

(
𝜌u��

j
𝜉��

)

���������������������������
T13

(9(ii))

T
2
= −

D

𝜌

𝜕𝜌

𝜕x
i

��
𝜔̇
c
+ A𝜉

� 𝜕𝜉
𝜕x

i

+
𝜕𝜉

𝜕x
i

𝜕

𝜕x
j

�
𝜌D

𝜕c

𝜕x
j

�
+

𝜕c

𝜕x
i

𝜕

𝜕x
j

�
𝜌D

𝜕𝜉

𝜕x
j

��

���������������������������������������������������������������������������������������������������������
T
21

+
D̃

𝜌

𝜕𝜌

𝜕x
i

⎡⎢⎢⎣

�
𝜔̇
c
+ A𝜉

�
𝜕𝜉

𝜕x
i

−
𝜕

𝜕x
j

�
𝜌u��

j
c
��

�
𝜕𝜉

𝜕x
i

−
𝜕

𝜕x
j

�
𝜌u��

j
𝜉��

�
𝜕c̃

𝜕x
i

+
𝜕𝜉

𝜕x
i

𝜕

𝜕x
j

�
𝜌D̃

𝜕c̃

𝜕x
j

�
+

𝜕c̃

𝜕x
i

𝜕

𝜕x
j

�
𝜌D̃

𝜕𝜉

𝜕x
j

�
⎤⎥⎥⎦

���������������������������������������������������������������������������������������������
T
22

(9(iii))

T
3
= 𝜌D

𝜕c��

𝜕x
i

𝜕u��
j

𝜕x
i

𝜕𝜉

𝜕x
j

− 𝜌D
𝜕c��

𝜕x
j

𝜕u��
j

𝜕x
i

𝜕𝜉

𝜕x
i

�������������������������������������������������

T
(i)

31

−𝜌D
𝜕𝜉��

𝜕x
j

𝜕u��
j

𝜕x
i

𝜕c̃

𝜕x
i

− 𝜌D
𝜕𝜉��

𝜕x
i

𝜕u��
j

𝜕x
i

𝜕c̃

𝜕x
j

�����������������������������������������������������

T
(ii)

31

−𝜌D
𝜕c��

𝜕x
i

𝜕𝜉��

𝜕x
j

𝜕u��
j

𝜕x
i

− 𝜌D
𝜕c��

𝜕x
j

𝜕𝜉��

𝜕x
i

𝜕u��
j

𝜕x
i

�������������������������������������������������������
T
32

−𝜌D
𝜕c��

𝜕x
j

𝜕𝜉��

𝜕x
i

𝜕�u
j

𝜕x
i

− 𝜌D
𝜕c��

𝜕x
i

𝜕𝜉��

𝜕x
j

𝜕�u
j

𝜕x
i

�����������������������������������������������������
T
33

(9(iv))
T
4
= D

𝜕(𝜔̇c + A𝜉)

𝜕xi

𝜕𝜉

𝜕xi
�������������������

T
41

−D̃
𝜕(𝜔̇c + A𝜉)

𝜕xi

𝜕𝜉

𝜕xi
�����������������������

T
42

(9(v))
D2 = 2𝜌D2 𝜕2c

𝜕xi𝜕xj

𝜕2𝜉

𝜕xi𝜕xj
�����������������������

D21

−2𝜌D̃2 𝜕2c̃

𝜕xi𝜕xj

𝜕2𝜉

𝜕xi𝜕xj
�������������������������

D22
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3 � Numerical Implementation

The simulations of turbulent stratified flames were simulated using the DNS code 
SENGA + (Jenkins and Cant, 1999). The simulations deal with statistically planar turbu-
lent stratified flames propagating into an inhomogeneous methane-air mixture. A modi-
fied single-step chemistry proposed by Tarrazo et al. (2006) representative of methane-air 
combustion has been considered for the current analysis where the activation temperature 
and heat of combustion are taken to be functions of equivalence ratio. It has been shown 
elsewhere (Malkeson and Chakraborty, 2010a, b, 2011a) that the laminar burning veloc-
ity variation with equivalence ratio � is accurately captured using this thermo-chemistry. 
This simplification of chemical representation allows for a detailed parametric analysis in 
terms of  u�∕Sb(�=1)  and  ��∕�  (which was reported in detail by Brearley et al. (2020)) 
with a reasonable amount of computational cost. The relative costs between simple and 
detailed chemistry DNS were discussed in detail by Keil et al. (2021a). It has been demon-
strated recently by Keil et al. (2021a, b) that the flame propagation statistics obtained from 
simple chemistry DNS are found to be qualitatively similar to the results obtained from 
detailed chemistry DNS. Moreover, the quantitative differences between displacement 
speed statistics between the simple and detailed chemistry results are comparable to the 
uncertainty involved with the different possible definitions of reaction progress variable. 
As most of the heat release takes place in premixed mode in stratified mixture combustion, 
it is expected that the findings of Keil et al. (2021a, b) are likely to be also valid for strati-
fied mixture combustion. It was indeed demonstrated by Malkeson et  al. (2013) that the 
statistics of scalar gradients obtained from the thermochemistry used in this paper remain 
in good qualitative agreement with detailed chemistry DNS. Finally, several previous sim-
ple chemistry based analyses including DNS studies (Hélie and Trouvé, 1998; Ribert et al., 
2005; Robin et al., 2006; Mura et al., 2007; Malkeson and Chakraborty, 2010a, b, 2013) 
gave rise to significant advancements in the fundamental understanding and modelling of 
stratified mixture combustion and the same approach has been adopted in this paper.

In all cases, a grid size of 800 × 400 × 400 grid points uniformly distributed in a compu-
tational domain of size 70.2�st ×

(
30.1�st

)2 has been considered, where 
𝛿st =

(
Tad(𝜙=1) − T0

)
∕max

|||∇T̂
|||L is the thermal flame thickness of the stoichiometric mix-

ture with Tad(�=1) , T0 and T̂  being the adiabatic flame temperature of the stoichiometric 
mixture, unburned gas temperature, and the instantaneous dimensional temperature, 
respectively. The subscript L refers to the values in the 1D unstretched laminar premixed 
stoichiometric methane-air flame. The aforementioned grid spacing satisfies the require-
ment of having at least ten grid points within �st . The mean direction of flame propagation 
runs parallel to the x direction (long side) of the computational domain, with opposite-fac-
ing boundaries on the unburned and burned side of the computational domain being taken 
to be partially non-reflecting and specified in accordance with the Navier–Stokes Charac-
teristic Boundary Conditions technique (Poinsot and Lele, 1992). The transverse bounda-
ries are taken to be periodic. All the spatial differentiations for the internal grid points are 
carried out using a tenth-order central difference scheme for the internal grid points but the 
order of accuracy gradually reduces to a one-sided second-order scheme at the two non-
periodic boundaries. The time advancement has been conducted using an explicit low stor-
age third-order Runge–Kutta scheme (Wray, 1990). The initial velocity fluctuations were 
specified using a pseudo-spectral method (Rogallo, 1981) for a prescribed integral length 
scale � and rms of velocity fluctuations u′ that follows the Batchelor-Townsend spectrum 
(Batchelor and Townsend, 1948). The mixture inhomogeneity in the unburned gas is 
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initialised by a bi-modal distribution of equivalence ratio � =

[
�
(
1 − �st

)]
∕

[
�st(1 − �)

]
 fol-

lowing the methodology proposed by Eswaran and Pope (1988) for the prescribed values 
of mean equivalence ratio � , root-mean-square (rms) equivalence ratio fluctuation �′ , and 
integral length scale �� of equivalence ratio fluctuations. All species are assumed to be per-
fect gases with a Lewis number of unity. The heat release parameter � =

(
Tad(�=1) − T0

)
∕T0 

is taken to be 4.5 for all cases considered here, which represents unburned reactants pre-
heated to 415 K for stoichiometric methane-air mixtures. Standard values are considered 
for Prandtl number Pr = 0.7 and the ratio of specific heats � = 1.4 . The turbulence length 
scale to stoichiometric flame thickness ratio is taken to be �∕�st = 3.0 for all cases. The 
initial mean equivalence ratio is taken to be unity (i.e., � = 1.0 ) and the initial rms equiva-
lence ratio is taken to be ��

= 0.35. The stratified mixture combustion is expected to remain 
within the flammability limit and thus the range of equivalence ratio � encountered in this 
analysis remains within the flammability range (i.e. 0.6 < 𝜙 < 1.5 ) for methane-air com-
bustion for the choices of � = 1.0 and ��

= 0.35.
The reacting scalar and temperature fields within the flame are initialized by 1D unstretched 

laminar premixed flame solution corresponding to � = 1.0 and � = 4.5 . Table 1 shows the 
initial values of the simulation parameters u�∕Sb(�=1),�∕�st , ��∕� , along with Damköhler 

number Da = �Sb(�=1)∕u
��st and Karlovitz number Ka =

(
u�∕Sb(�=1)

)1.5(
�∕�st

)−0.5 . The 
Reynolds number Ret = �0

√
k�∕�0 (where �0 and �0 are the unburned gas density and vis-

cosity, respectively and k is the turbulent kinetic energy evaluated over the whole domain) 
is calculated based on the integral length scale and ranges from 42.0 to 84.0 for initial 
u�∕Sb(�=1.0) = 4.0 to 8.0 , respectively. All the cases considered here nominally belong to 
the thin reaction zones regime combustion (Peters, 2000). For these initial conditions, 2.41 
and 1.44 grid points reside within the Kolmogorov length scale � for initial u�∕SL = 4.0 
and 8.0 respectively, with this number increasing as the simulation progresses due to 
the decay of the turbulence. Under decaying turbulence, the simulations should be run for 
tsim ≥ max

(
Tturb, Tchem

)
 , where the eddy turnover time Tturb = �∕u� , and the chemical time 

scale tchem = �st∕Sb(�=1) . In all the cases, Tchem remains greater than Tturb , and all cases consid-
ered here have been run for tsim = 2.0Tchem , which is about 2.67Tturb and 5.33Tturb for initial 
u�∕SL = 4.0 and 8.0 respectively. This simulation duration remains either comparable to or 
greater than several previous analyses (Hélie and Trouvé, 1998; Haworth et al., 2000; Jimenez 
et al., 2002; Malkeson and Chakraborty, 2010a,b, 2011a,b). It is important to note that the 
cross-scalar dissipation statistics are extracted in this paper at the end of the simulation time 
when the quasi-stationary state has been obtained in terms of temporal evolutions of flame 
surface area and turbulent burning velocity, as previously shown by Brearley et al. (2020) for 
this database. The cross-scalar dissipation rate statistics and model performances reported in 
this paper remain qualitatively similar at different time instants since the quasi-stationary state 
is obtained (e.g. roughly halfway through the simulation).

Table 1   Initial values of the 
simulation parameters

Case ��∕� u
�
∕S

b(�=1) �∕�
st

Da Ka

A 1.0 4.0 3.0 0.75 4.62
B 1.0 8.0 3.0 0.75 4.62
C 2.0 4.0 3.0 0.375 13.1
D 2.0 8.0 3.0 0.375 13.1
E 3.0 4.0 3.0 0.375 13.1
F 3.0 8.0 3.0 0.375 13.1
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To obtain the Reynolds/Favre-averaged values of a general quantity (i.e. Q and Q̃ ), the 
quantities of interest are arithmetically averaged over the statistically homogeneous trans-
verse planes (i.e. y − z directions) normal to the direction of mean flame propagation (i.e. the 
x direction) following previous analyses (Hélie and Trouvé, 1998; Swaminathan and Bray, 
2005; Malkeson and Chakraborty, 2010a,b, 2011a,b; Chakraborty et al., 2011). For statisti-
cally planar flames, c̃ is a unique function of the coordinate in the direction of the mean flame 
propagation (i.e. the x direction in this case) and thus all the results in Sect. 4 will be repre-
sented as a function of c̃ . It has been assessed that halving the sample size in the transverse 
direction does not significantly alter the results.

Three additional simulation cases where initial u�∕S
b(�=1) = 10 from the database reported 

by Brearley et al. (2020) were used to assist in the statistical analysis of �̃c� and the model 
development. These results have been omitted for conciseness and because they do not 
enhance the discussion due to their similarity with the results for initial u�∕Sb(�=1) = 8.0.

4 � Results and Discussion

4.1 � Flame‑Turbulence Interaction

The distributions of normalised mixture fraction �∕�st and reaction progress variable c in the 
central x − y plane when the statistics are extracted are shown in Fig. 1 for the cases consid-
ered here. All the cases considered here are representative of combustion in the thin reac-
tion zones regime (Peters, 2000) and accordingly, local occurrences of flame thickening can 
be observed from the reaction progress variable contours due to penetration of energetic, tur-
bulent eddies within the preheat zone. However, the reaction zone thickness remains smaller 
than the Kolmogorov length scale and thus this zone remains unperturbed by the small-scale 
turbulence but gets wrinkled by the large-scale turbulent motion. It can further be seen from 
Fig. 1 that the mixture inhomogeneity is predominantly obtained on the unburned gas side of 
the flame and the effects of stratification decay towards the burned gas side of the flame due 
to the increase in mass diffusivity with temperature. This behaviour has implications on the 
distribution of co-variance c̃′′�′′ and cross-scalar dissipation rate �̃c� , which will be discussed 
in the following sub-section.

5 � Statistical Behaviours of Co‑Variance and Cross‑Scalar Dissipation 
Rate

The variations of the variances c̃′′2 , Ỹ ′′2
F

 and �̃′′2 and co-variances of c̃′′�′′ and Ỹ ′′

F
�′′ with 

c̃ across the flame brush are shown in Fig. 2 for all cases. It can be seen from Fig. 2 that 
the magnitudes of �̃′′2 , c̃′′�′′ and Ỹ ′′

F
�′′ increase with increasing initial ��∕� value. The 

mean scalar dissipation rate of mixture fraction in the volume of inhomogeneous mix-
ture can be taken to scale as ⟨N�⟩ ∼ D⟨��2⟩∕�2

�
 (Hélie and Trouvé, 1998; Malkeson and 

Chakraborty, 2011a; Brearley et al., 2020) with �� being the Taylor micro-scale of mix-
ture fraction distribution. For moderate values of turbulent Reynolds number, �� remains 
of the same order as �� , and thus ⟨N�⟩ assumes high values for small values of �� . This 
leads to a more rapid mixing rate for smaller values of �� and that is why the mixture 
fraction fluctuations and �̃′′2 remain small for the cases with small initial values of �� . 
This is reflected in the small magnitudes of �̃′′2 for small initial values of �� and 
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accordingly small magnitudes of  c̃′′�′′ and Ỹ ′′

F
�′′ are obtained for small values of �� . 

This behaviour is particularly strong for large values of u′ (e.g. initial u�∕Sb(�=1) = 8.0 

case) because of enhanced mixing, which leads to decreases in magnitudes of �̃′′2 , c̃′′�′′ 
and Ỹ ′′

F
�′′ with increasing u�∕Sb(�=1) . Figure 2 shows that the variations of c̃′′�′′ and Ỹ ′′

F
�′′ 

within the flame brush can be significantly different from each other. In the unburned 
gas Y ��

F
= YF∞�

�� and thus at the leading edge Ỹ ′′

F
�′′ and Ỹ ′′2

F
 take a value of �̃′′2 for 

YF∞ = 1.0 , whereas c̃′′�′′ vanishes on the unburned gas side of the flame because c�� = 0 
in the unburned gas. Similarly, c�� = 0 in the burned gas and therefore c̃′′�′′ vanishes on 
the burned gas side of the flame brush but Ỹ ′′

F
�′′ can assume non-zero values in the 

burned gas. The maximum value of Ỹ ′′2
F

 is obtained at the middle of the flame brush for 
all cases. However, it is evident from Fig.  2 that the distributions of c̃′′2 and Ỹ ′′2

F
 are 

markedly different. The reaction progress variable variance c̃′′2 attains the maximum 
value close to the middle of the flame brush (i.e., c̃ ≈ 0.5 ) for all cases but its maximum 
value remains smaller than 0.25 (i.e., max

{
0.02 × �c��2

}
< 5 × 10−3 ). In the limit of infi-

nitely fast chemistry (i.e., Da ≫ 1 ), the PDF of c can be considered to be bimodal with 

Fig. 1   Distributions of mixture fraction normalised by the stoichiometric mixture fraction �∕�st in the cen-
tral x − y mid-plane with the contours of c = 0.05 (dashed black line), 0.5 (solid black line) and 0.95 (dotted 
black line) superimposed when the statistics are extracted for different initial values of ��∕� and u�∕Sb(�=1)
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impulses at c = 0.0 and c = 1.0 (Bray et  al., 1985), which yields  �c��2 = c̃(1 − c̃)  and 
max

{
c̃��2

}
= 0.25 (i.e. max

{
0.02 × c̃��2

}
= 5 × 10−3 ). This further suggests that 

�c��2 = c̃(1 − c̃) cannot be used for the low Damköhler number (i.e., Da < 1 ) stratified 
mixture combustion considered here where  �c��2 < c̃(1 − c̃) and the PDF of c cannot be 
approximated by a bimodal distribution with impulses at c = 0.0 and c = 1.0 . Although 
the distributions of c̃′′�′′ and Ỹ ′′

F
�′′ are markedly different within the flame brush, it can 

be seen from Fig. 2 that both c̃′′�′′ and Ỹ ′′

F
�′′ can assume locally negative values (e.g. 

Ỹ ′′

F
�′′ assumes locally negative values for initial ��∕� = 1.0 cases and negative values of 

c̃′′�′′ are obtained for initial u�∕Sb(�=1) = 8.0 case with ��∕� = 1.0 and 3.0) and therefore 

the closures given by c̃����� =
√
c̃��2

�
�̃��2 and Ỹ ��

F
��� =

√
Ỹ ��2
F

√
�̃��2 (Ribert et al., 2005; 

Robin et al., 2006; Nguyen et al., 2010) cannot be used for these cases to model c̃′′�′′ 

and Ỹ ′′

F
�′′ , respectively. Moreover, the variations of 

√
c̃′′2

�
�̃′′2 and 

√
Ỹ ′′2
F

√
�̃′′2 across 

the flame brush are qualitatively different from c̃′′�′′ and Ỹ ′′

F
�′′ extracted from DNS data, 

respectively. Thus, it may be needed to solve a modelled transport equation in order to 

Fig. 2   Variations of c̃′′2 , Ỹ ′′2

F
 , �̃′′2 , c̃′′�′′ and Ỹ ′′

F
�′′ along with the predictions of c̃����� =

√
c̃��2

�
�̃��2 and 

Ỹ ��

F
��� =

√
Ỹ ��2

F

√
�̃��2 with c̃ across the flame brush for (a–f) cases A-F
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predict the covariances c̃′′�′′ and Ỹ ′′

F
�′′ . The exact transport equation of Ỹ ′′

F
�′′ for turbu-

lent stratified mixtures was presented elsewhere (Malkeson and Chakraborty, 2013) and 
the transport equation of c̃′′�′′ can be obtained by replacing YF with c in the transport 
equation of Ỹ ′′

F
�′′ (Malkeson and Chakraborty, 2013), which yields:

It can be seen from Eq. 10 that the closure of �̃c� is needed to solve this equation. The 
variations of �̃c� and �̃Y� with c̃ for all cases considered here are shown in Fig. 3. The 
predictions of the linear relaxation model �𝜀c𝜉 ≈ Cc𝜉

(
𝜀̃∕k̃

)
�c��𝜉�� and �𝜀Y𝜉 ≈ CY𝜉

(
𝜀̃∕k̃

)
�Y ��

F
𝜉�� 

are also shown for Cc� = 3.0 and CY� = 3.0 which provides a reasonable order of mag-
nitude agreement with DNS data for most cases. The results do not reveal any signifi-
cant relation between C and the parameters tested in this study ( u�∕Sb(�=1) , and ��∕� ). 
The model performs relatively better for cases with high initial u�∕Sb(�=1) . The linear 
relaxation model only considers the turbulent time scale and ignores the contribution of 
the chemical timescale. Thus, this model performs relatively better for low Damköhler 
number cases where the effects of chemistry have a reduced influence. The linear relax-
ation model also performs better for large values of ��∕� , indicating that the existence 
of considerable mixture inhomogeneity is a requirement for the model to perform well. 
Moreover, this model also fails to capture the qualitative behaviour and the correct sign 
of �̃c� for small and moderate values of �� (see cases A–D in Fig. 3). The findings from 
Fig.  3 suggest that the linear relaxation model cannot be a sufficiently general model 
for the closure of �̃c� in turbulent stratified mixture combustion. Figure  3 also shows 
the variation �̃Y� and its equivalent linear relaxation model for the sake of comparison. 
Due to the fact that YF and � are closely related (i.e. YF = YF∞� ) in the unburned gas, 
�̃Y� assumes non-zero value in the unburned gas and decays within the flame brush for 
all cases. Furthermore, ∇Y ��

F
 and ∇��� remain significantly correlated inside the flame 

which is evident from the mostly positive values of �̃Y� . The quantities ∇c�� and ∇��� also 
remain somewhat correlated inside the flame, which yields non-zero values of �̃c� within 
the flame brush. However, the variations of �̃c� and �̃Y� are qualitatively different which 
indicates that the correlation between ∇c�� and ∇��� is fundamentally different to that 
between ∇Y ��

F
 and ∇��� . The behaviour of �̃Y� is found to be consistent with previous find-

ings by Malkeson & Chakraborty (2010a, 2011b). The findings of Fig. 3 indicate that 
it might be necessary to solve a modelled transport equation for the closures of �̃c� and 
�̃Y� . The closures of the unclosed terms of the transport equation of �̃Y� have been dis-
cussed elsewhere (Malkeson and Chakraborty, 2011b) and this analysis will henceforth 
focus on the closures of the unclosed terms of the �̃c� transport equation.

(10)

𝜕
(
𝜌�c��𝜉��

)

𝜕t
+

𝜕
(
𝜌ũj�c

��𝜉��
)

𝜕xj
=

𝜕

𝜕xj

[
𝜌D

𝜕�c��𝜉��

𝜕xj

]
−

𝜕
(
𝜌u��

j
c��𝜉��

)

𝜕xj

− 𝜌�u
��

j
𝜉��

𝜕c̃

𝜕xj
− 𝜌�u��

j
c��

𝜕𝜉

𝜕xj
+

(
𝜔̇c𝜉 − 𝜔̇c𝜉

)
− 2𝜌�𝜀c𝜉

Statistical Behaviours of the Unclosed Terms of the �̃
c� Transport Equation.

The variations of the terms appearing on the right-hand side of the �̃c� transport equa-
tion (see Eq. 8), across the flame brush for all cases are shown in Fig. 4. It is evident 
from Fig. 4 that the magnitude of molecular diffusion D1 remains negligible in all cases. 
The contribution of turbulent transport T1 plays a significant role only for the small 
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u�∕Sb(�=1) cases but its importance diminishes as the turbulence intensity increases. The 
remaining terms (i.e. T2 , T3 , T4 , −D2 ) play leading order roles in the evolution of �̃c� 
and have similar orders of magnitude for all cases considered here. The contribution of 
density variation T2 assumes mostly positive values for a major part of the flame brush. 
The term representing the scalar turbulence interaction T3 takes a predominantly nega-
tive value throughout the flame brush in these cases with a similar magnitude to that of 
T2 . The combined contribution of chemical reaction rate and mixture inhomogeneity 
T4 assumes predominantly positive values towards the unburned gas side of the flame 
brush before becoming weakly negative towards the burned gas side of the flame brush. 
The molecular dissipation term −D2 exhibits predominantly negative values but local 
positive values can be discerned on the burned gas side of the flame brush for case B 
and on the unburned gas side of the flame brush for case E. In cases (A–D) the terms 
T3, T4 − D2 play leading order roles but in these cases T4 predominantly assumes nega-
tive values for a major part of the flame brush.

Replacing c by YF ( 𝜔̇c by 𝜔̇F ) and setting A� = 0 in Eqs. 8 and 9 yields the transport equa-
tion of �̃Y� (see Malkeson and Chakraborty (2011b) for the full equation). The variations of 
the terms appearing on the right-hand side of the �̃Y� transport equation across the flame brush 
for all cases are shown in Fig. 5. A comparison between Figs. 4 and 5 reveals that the evolu-
tion of �̃Y� is fundamentally different to that of �̃c� . Most notably, T3 acts as a source term and 

Fig. 3   Variations of {�̃c� and �̃Y�} × �st∕Sb(�=1)�
2

st
 (solid lines) along with the predictions of the linear relax-

ation model for Cc� = 3.0 and CY� = 3.0  (dash-dot lines) with c̃ across the flame brush for (a–f) cases A-F



363Flow, Turbulence and Combustion (2022) 109:351–382	

1 3

−D2 acts as a sink term in the unburned gas for the �̃Y� transport with approximately similar 
magnitudes. However, the magnitude of the sink term exceeds that of the source term in all 
cases due to the nature of decaying turbulence. The behaviours of the terms of the �̃Y� trans-
port equation were discussed in detail in Malkeson and Chakraborty (2011b) and thus will 
be not be elaborated further in this analysis. The closures of the unclosed terms of the Ỹ ′′

F
�′′ 

transport equation were previously proposed by Malkeson and Chakraborty (2011b) but the 

Fig. 4   Variations of 
{
T
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,T
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transport equation in cases (a–f) A-F
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observations made from Figs. 4 and 5 indicate that those closures cannot be used for the clo-
sures of the unclosed terms of the c̃′′�′′ transport equation.

The observations made from Fig.  4 can further be substantiated using a scaling analy-
sis where the density is scaled by the unburned gas density �0 , the mean velocity is scaled 
using a reference mean velocity scale Uref  , the fluctuating velocity components are scaled by 
Sb , spatial derivatives of the mean quantities are scaled by � , whereas spatial derivatives of 

Fig. 5   Variations of 
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fluctuating quantities are scaled by �st following Swaminathan and Bray (2005). The assump-
tions yield the following scaling estimates for the terms shown in Fig. 4:

Alternatively, following Tennekes and Lumley (1972) and Mantel and Borghi (1994), if the 
turbulent velocity fluctuations are scaled using u′ , the mean gradients are scaled using the inte-
gral length scale � , the length scale associated with the gradient of fluctuating velocity and 
mass fractions are scaled using the Taylor micro-scale �T , and the fluctuations of density gra-
dient and reaction rate gradient are scaled with respect to �st , it is possible to obtain:

Malkeson and Chakraborty (2011b) argued that the second derivatives of the mass fraction 
and mixture fraction fluctuations are scaled with respect to the dissipation cut-off scale �D , 

T11 ∼ O

(
�0S

2
b

�2st
Re

−
1

2Da
−

1

2

)
T12 ∼ O

(
�0S

2
b

�2st
Re−1Da−1

)
; T13 ∼ O

(
�0S

2
b

�2st
Re−1Da−1

)

T21 ∼ O

(
�0S

2
b

�2st

)
, T22 ∼ O

(
�0S

2
b

�2st
Re−1Da−1

)

T
(i)

31
∼ O

(
�0S

2
b

�2st
Re

−
1

2Da
−

1

2

)
, T

(ii)

31
∼ O

(
�0S

2
b

�2st
Re

−
1

2Da
−

1

2

)
, T32 ∼ O

(
�0S

2
b

�2st

)

T33 ∼ O

(
�0S

2
b

�2st

Uref

Sb
Re

−
1

2Da
−

1

2

)
, T41 ∼ O

(
�0S

2
b

�2st

)
; T42 ∼ O

(
�0S

2
b

�2st
Re

−
1

2Da
−

1

2

)

(11(i))

D1 ∼ O

(
�0S

2
b

�2st
Re−1Da−1

)
,D21 ∼ O

(
�0S

2
b

�2st

)
; D22 ∼ O

(
�0S

2
b

�2st
Re−2Da−2

)

T11 ∼ O

(
�0u

�2

�2

)
T12 ∼ O

(
�0u

�2

�2
Re−1∕2

)
; T13 ∼ O

(
�0u

�2

�2
Re−1∕2

)

T21 ∼ O

(
�0S

2
b

�T�st

)
∼ O

(
�0u

�2

�2
Re3∕4Ka−3∕2

)
, T22 ∼ O

(
�0u

�2

�2
Re−1∕2Ka−1

)

T
(i)

31
∼ O

(
�0u

�2

�2

)
, T

(i)

31
∼ O

(
�0u

�2

�2

)
, T32 ∼ O

(
�0u

�2

�2
Re1∕2

)

T33 ∼ O

(
�0u

�2

�2

U
ref

u
�

)
, T41 ∼∼ O

(
�0S

2

b

�
T
�
st

)
∼ O

(
�0u

�2

�2
Re

3∕4
Ka

−3∕2

)
; T42 ∼ O

(
�0u

�2

�2
Re

−1∕2
Ka

−1

)

(11(ii))D1 ∼ O

(
�0u

�2

�2
Re−1

)



366	 Flow, Turbulence and Combustion (2022) 109:351–382

1 3

which can be taken to be equal to the Obukhov-Corrsin scale 
(
D3

∕𝜀̃
)3∕4 in the thin reaction 

zones regime (Peters, 2000). As the Schmidt number Sc remains of the order of unity (i.e. 
Sc = 0.7 ), it is possible to scale D21 and D22 as:

In order to demonstrate the applicability of the scaling relations given by Eqs. 11i-iii, the varia-
tions of different components of T1 , T2 , T3 , T4 , (−D2 ) with c̃ are exemplarily shown in Fig. 6 for 
cases E and F. The same qualitative behaviour has been observed for the other cases, so they are 
not explicitly shown here for the sake of conciseness. It can be seen from Fig. 6 that all three 
components T11, T12 and T13 contribute comparably to T1 for the moderate values of Ret simu-
lated here. Equation 11 indicates that the contributions of T12 and T13 diminish with increasing 
Ret , and T11 becomes the dominant contributor to T1 for high values of Ret because of 
T11∕T12 ∼ O

(
Re

1∕2
t

)
 and T11∕T13 ∼ O

(
Re

1∕2
t

)
 . Moreover, Eqs. 11i and ii reveal that the mag-

nitudes of D1 and T1 become increasingly insignificant in comparison to T2, T3, T4 and 
(
−D2

)
 

with increasing Ret , and the leading order contributions arise from the terms T2, T3, T4 and 
(−D2 ). This conclusion is consistent with the observations made from Fig. 4. Figure 6 further 
shows that T2 ≈ T21 , and this is supported by Eqs. 11i and 11ii indicating the weakening of T22 
with increasing Re and/or Da . Equation 11 indicates that T32 acts as a leading order term, and 
the contributions T31 and T33 weaken with increasing Re and/or Da . It can be seen from Fig. 6 
that that T32 is the dominant contributor to T3 but in this case T31 and T33 play non-negligible 
roles due to small values of Da (i.e. Da < 1 ). Equation 5 suggests that T41 is expected to domi-
nate over T42 , which is consistent with the results shown in Fig. 6. Finally, Eqs. 11i and 11iii 
show that D21 is the dominant term in D2 , with the contribution of D22 weakening with increas-
ing Re and/or Da , which is consistent with the variations shown in Fig. 6. The scaling estimates 
based on Eq. 11 and their validation based on simulation results will play a key role for the pur-
pose of model development for T1, T2, T3, T4 and (−D2 ) for the �̃c� transport equation.
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)

Modelling of the Turbulent Transport Term T
1
.

It can be seen from Eq. 9i that the modelling of T1 depends on the closure of T11 because T12 
and T13 are closed in the context of second-moment closure as the scalar fluxes  

(
�u′′

j
c′′
)

 and (
�u′′

j
�′′

)
 are needed for the purpose of solving the transport equations of c̃ and 𝜉 , respec-

tively. Furthermore, it can be seen from Eq. 11 that the magnitudes of T12 and T13 are expected 
to be smaller than that of T11 for high values of Ret . Thus, the modelling of T11 is the key to the 
closure of T1 and therefore, the modelling of T11 will be discussed in this sub-section. Equa-
tion 9i further indicates that T11 closure depends on the modelling of �u′′

j
�c� . The simplest 

closure that can be used for �u′′
j
�c�  is the usual gradient hypothesis which can be expressed 

as:

where 𝜇t = 𝜌C𝜇 k̃
2
∕𝜀̃ is the eddy viscosity and �c� is the appropriate turbulent Schmidt 

number. The predictions of Eq. 12 with �c� = 1.0  are compared to �u′′
1
�c�  (i.e. the only 

non-zero component of �u′′
j
�c�  ) extracted from DNS data in Fig. 7 for the cases considered 

(12)𝜌u
��

j
𝜀c𝜉 = −

𝜇t

𝜎c𝜉

𝜕𝜀̃c𝜉

𝜕xj
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Fig. 6   Variations of the different components of { T
1
 , T

2
 , T

3
 , T

4
 , −D

2
} with c̃ across the flame brush for cases 

E (1st column) and F (2nd column)
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here. It can be seen from Fig. 7 that Eq. 12 does not adequately capture both qualitative and 
quantitative behaviours for a major part of the flame brush especially for small values of 
u�∕Sb(�=1) towards the burned gas side of the flame brush. The different sign of the predic-
tion of Eq. 12 in comparison to �u′′

1
�c�  extracted from DNS data is indicative of the coun-

ter-gradient transport. The effects of counter-gradient transport become strong within the 

Fig. 7   Variations of �u��
1
�c� × D

0
∕�

0
S3
b(�=1)

 with c̃ along with the predictions of Eqs. 12 and 13 for cases 
A-F (a–f)
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flame brush at the locations where the effects of thermal expansion are strong (Veynante 
et al., 1997) and therefore the discrepancy between �u′′

j
�c�  obtained from DNS data and 

the prediction of Eq. 12 are particularly prominent from the middle to the burned gas side 
of the flame brush. Therefore, Eq. 12 cannot be considered as a general model for �u′′

j
�c�  , 

and an ideal model for �u′′
j
�c�  should be able to capture both gradient and counter-gradient 

transport. In order to meet this objective, a new for �u′′
1
�c�  has been proposed in the follow-

ing manner:

where

The mean burned gas density and the mean laminar burning velocity are evaluated as 
(Domingo et al., 2002):

Here, Sb(�) and �b(�) are the laminar burning velocity and burned gas density expressed as 
a function of mixture fraction � , respectively, P(�) is the probability density function (PDF) 
of � , and the lower and upper limits of mixture fraction are given by �l and �u , respectively. 
The PDF of � can be modelled using a �-function, which was discussed elsewhere (Poinsot 
and Veynante, 2001; Malkeson et al., 2013) and thus will not be repeated here. The term 
−(𝜌u��

1
c��)

�
𝜌u��

1
𝜉��

�
𝜀̃𝜉 𝜀̃c𝜉∕[𝜌

√
k̃
√�𝜀̃c𝜉�

√
�c��2

�
�𝜉��2]  is dimensionally consistent with �u′′

1
�c�  

and the inclusion of −(�u��
1
c��)

�
�u��

1
���

�
∕

�
�
√
c̃��2

�
�̃��2

�
 ensures that �u′′

1
�c�  assumes the 

sign depending on the nature of the transport (i.e. whether counter-gradient or gradient) 
behaviour of (�u��

1
c��) because 

(
�u′′

1
�′′

)
 predominantly exhibits gradient type transport (i.e. 

−

(
𝜌u��

1
𝜉��

)
= (𝜇t∕𝜎𝜉)𝜕𝜉∕𝜕x1 with �� being the turbulent Schmidt number), as � is a passive 

scalar. The term 
�
𝜌0∕𝜌b − 1

�
Sb∕

√
k̃ is representative of the Bray number (Veynante et al., 

1997) for turbulent stratified combustion. It was discussed elsewhere (Veynante et  al., 
1997; Chakraborty and Cant, 2009a, b) that counter-gradient (gradient) type transport is 
obtained when the Bray number (i.e. ∝

�
𝜌0∕𝜌b − 1

�
Sb∕

√
k̃ ) is greater (smaller) than unity 

(Veynante et al., 1997). A value of 
�
𝜌0∕𝜌b − 1

�
Sb∕

√
k̃ ≫ 1 suggests a situation where the 

flame normal acceleration due to thermal expansion overcomes the effects of turbulent 
fluctuations, which lead to counter-gradient transport (Veynante et al., 1997). By contrast, 
turbulent velocity fluctuations overwhelm the effects of thermal expansion effects for �
𝜌0∕𝜌b − 1

�
Sb∕

√
k̃ ≪ 1 (Veynante et al., 1997). The involvement of g in Eq. 13i ensures 

that the first term on the right-hand side of Eq. 13i signifying gradient type transport does 
not play a major role for 

�
𝜌0∕𝜌b − 1

�
Sb∕

√
k̃ ≫ 1 and the behaviour of �u′′

1
�c�  is governed 

(13(i))𝜌u��
1
𝜀c𝜉 = −g

𝜇t

𝜎c𝜉

𝜕�𝜀c𝜉

𝜕x
1

− (1 − g)

(𝜌u��
1
c��)

�
𝜌u��

1
𝜉��

�

𝜌
√
k̃

√
�c��2

�
�𝜉��2

�𝜀𝜉
�𝜀c𝜉�
��𝜀c𝜉�

(13(ii))g = exp

⎛⎜⎜⎝
−C

��
𝜌0

𝜌b
− 1

�
Sb√
k̃

�2⎞⎟⎟⎠
with C = 0.5

(13(iii))�b =
�u

∫
�l

�b(�)P(�)d� and Sb =
�u

∫
�l

Sb(�)P(�)d�
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by the second term on the right-hand side of Eq.  13i. By contrast, the first term on the 
right-hand side plays the dominant role for small values of 

�
𝜌0∕𝜌b − 1

�
Sb∕

√
k̃ and ensures 

gradient type transport of �u′′
1
�c�  . The predictions of Eq. 13 are also shown in Fig. 7, which 

shows that Eq.  13 mostly captures the correct sign of �u′′
1
�c�  extracted from DNS data 

more successfully than the gradient hypothesis model (i.e. Equation 12). This also suggests 
that Eq. 13 allows for the prediction of counter-gradient transport, which Eq. 12, by design, 
is not able to capture. Although there is a scope for improvement of the performance of 
Eq. 13 for cases with small initial values of ��∕� (e.g. ��∕� = 1.0 cases A and B) irre-
spective of turbulence intensities, this model performs reasonably well for high initial val-
ues of ��∕� (e.g. ��∕� = 2.0 and 3.0 cases). It is important to note that the mixing rate 
increases with decreasing ��∕� (Hélie and Trouvé, 1998; Brearley et al., 2020) and thus 
one obtains an almost homogeneous mixture as a result of mixing for small values of ��∕� 
(e.g. cases A and B). Therefore, the inaccurate predictions of Eq. 13 for cases A and B may 
not have a major implication on the modelling of turbulent stratified mixture combustion. 
Moreover, Eq. 11 suggests that T1 is not the leading order contributor in the 𝜀̃c𝜉 transport 
equation and this can be substantiated from Fig. 4. Thus, the local discrepancy between 
Eq. 13 predictions of �u′′

1
�c�  may not have a major implication on the transport equation-

basedclosure of 𝜀̃c𝜉 . It is important to note that the success of the model given by Eq. 13 
depends on the closure of (�u��

1
c��) . The modelling of (�u��

1
c��)  was discussed elsewhere 

(Veynante et al., 1997; Chakraborty and Cant, 2009a,b, 2015; Malkeson and Chakraborty, 
2012) in detail and thus is not discussed in this paper.

Modelling of the Density Variation Term T
2
.

The variations of T2 with c̃  for cases A-F are shown in Fig. 8a–f, respectively. The den-
sity variation term T2 predominantly shows positive values for all cases considered 
here. The order of magnitude of T2 can be estimated using  T2 ∼ 𝜌𝜀̃c𝜉 𝜀̃c

(
𝜌0∕𝜌b − 1

)
 

upon scaling 𝜔̇c as 𝜔̇c ∼ 𝜌𝜀c and −(D∕�)
(
�p∕�xi

)(
��∕�xi

)
 can be scaled as: 

−(D∕𝜌)
(
𝜕p∕𝜕xi

)(
𝜕𝜉∕𝜕xi

)
∼

(
𝜌0∕𝜌b − 1

)
D
(
𝜕c∕𝜕xi

)(
𝜕𝜉∕𝜕xi

)
∼

(
𝜌0∕𝜌b − 1

)
𝜀̃c𝜉 . It is impor-

tant to note that the qualitative behaviour of T2 was found to be captured by  𝜌𝜀̃c𝜉 𝜀̃c
(
𝜌0∕𝜌b − 1

)
 

as dictated by the scaling analysis and a proportionality parameter K is needed for the quantita-
tive prediction. This yields the following model for T2:

It has been found that the proportionality parameter K is not sensitive to the ��∕� value, 
but it is a function of the turbulence intensity (or local turbulent Reynolds number). This is 
empirically expressed as:

where ReL = 𝜌0k̃
2
∕𝜇0𝜀̃ is a measure of the turbulent local Reynolds number. The expres-

sion given by Eq. 14ii is one of the possibilities out of several possible ones but this func-
tional form (i.e., K = a1 + a2∕

[
1 + exp

(
−

[
a3ReL − a4

])]
 ) was chosen because it ensures 

that K increases from 0.1 to an asymptotic value (i.e., K = 0.25 ) for ReL → ∞ . The exact 
values of a1, a2, a3 and a4 are chosen based on a regression analysis based on T2 and 
𝜌𝜀̃c𝜉 𝜀̃c

(
𝜌0∕𝜌b − 1

)
 extracted from DNS data. The practical applicability of the model is 

(14(i))T2 = K𝜌𝜀̃c𝜉 𝜀̃c
(
𝜌0∕𝜌b − 1

)

(14(ii))K = 0.1 +
0.15

1 + exp
(
−0.5

[
ReL − 15

])
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not expected to be sensitive to a3 and a4 because ReL ≫ 15.0 is obtained for most practical 
applications. The predictions of Eq. 14 are compared with T2 extracted from DNS data in 
Fig. 8, which reveals that the density variation term T2 can be reasonably predicted by the 
expression given by Eq. 14.

Modelling of the Scalar-Turbulence Interaction Term T
3
.

In order to model the scalar-turbulence interaction term T3 , all the components of this 
term (i.e. T31 , T32 and T33 ) need to be closed. Therefore, modelling of each of the 

Fig. 8   Variations of T
2
× D2

0
∕�

0
S4
b(�=1)

�2
st
 with c̃ along with the predictions of Eq. 14 for cases A-F (a–f)
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components of T3 for the 𝜀̃c𝜉 transport equation will be addressed in turn. The term T31 is 
made up of two sub-terms T (i)

31
  and T (ii)

31
 as shown in Eq. 9iii. The statistical behaviours of 

T
(i)

31
  and T (ii)

31
 are governed by the alignment of local strain rate eigendirections with reac-

tion progress variable gradient and mixture fraction gradient respectively. It has been 
observed that the mixture fraction gradient aligns preferentially with the most compres-
sive principal strain rate eigendirection. By contrast, reaction progress variable align-
ment with local strain rate eigendirection is dependent on the relative strengths of turbu-
lent straining and the strain rate induced by heat release (Chakraborty and Swaminathan, 
2007a; Chakraborty et al., 2009; Malkeson and Chakraborty, 2011c). The reaction pro-
gress variable gradient is shown to align with the most extensive principal strain rate 
when the strain rate induced by heat release overwhelms the effects of turbulent strain-
ing and vice versa (Chakraborty and Swaminathan, 2007a; Chakraborty et  al., 2009; 
Malkeson and Chakraborty, 2011c). The terms �D

(
����∕�xi

)(
�u��

i
∕�xj

)
 and 

�D
(
�c��∕�xi

)(
�u��

i
∕�xj

)
 can be taken to scale with 

(
𝜌u��

j
𝜉��

)(
𝜀̃∕k̃

)
 and 

(
𝜌u��

j
c��
)(

𝜀̃∕k̃
)
  

based on previous modelling strategies adopted by Mantel and Borghi (1994) and 
Chakraborty et al. (2008), which yield the following model expression for T31:

where C1 and C2 are the model parameters. According to Swaminathan and Bray (2005) the 
order of magnitudes of T (i)

31
  and T (ii)

31
 are given by:

It is evident from Eqs. 16i and ii that the order of magnitudes of the model expressions 
are consistent with the order of magnitude estimates of T (i)

31
  and T (ii)

31
 presented in Eq. 11i. 

Moreover, the model expression given in Eq. 15 is also consistent with the order of magni-
tude estimates presented in Eq. 11ii when the scaling arguments of Tennekes and Lumley 
(1972) and Mantel and Borghi (1994) are adopted:

The predictions of the model given by Eq. 15 are compared to T31 obtained from DNS 
data in Figs. 9a–f for cases A-F, respectively, and it can be seen that Eq. 15 satisfacto-
rily models T31 when C1 = 1.0 and C2 = 0.15 are considered.

The term T32  is the dominant component of the scalar-turbulence interaction term 
T3 (see Fig. 6 and scaling estimates given by Eq. 11ii) and thus its modelling is crucial 
to the modelling of the 𝜀̃c𝜉 transport equation. The variations of T32 with c̃ across the 

(15)T31 = T
(i)

31
+ T

(ii)

31
= −C1
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−
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)
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flame brush for cases A-F are shown in Figs. 10a-f, respectively, which shows that T32 
assumes both positive and negative values within the flame brush. The relative align-
ments of ∇c and ∇� with local principal strain rates effectively determine the behaviour 
and sign of T32 . It is well-known (Batchelor, 1959; Gibson, 1968; Kerr, 1985; Ashurst 
et al., 1987; Ruetsch and Maxey, 1991; Leonard and Hill, 1991; Nomura and Elgobashi, 
1992) that the passive scalar gradient (e.g. ∇� ) preferentially aligns with the most com-
pressive principal strain rate eigendirection. However, the reactive scalar gradient (e.g. 

Fig. 9   Variations of T
31
× D2

0
∕�

0
S4
b(�=1)

�2
st
 with c̃ along with the predictions of Eq.  15 with C

1
= 1.0 and 

C
2
= 0.15 for cases A-F (a–f)
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∇c ) exhibits preferential collinear alignment with the most compressive principal strain 
rate eigendirection when turbulent straining dominates over the strain rate arising from 
the flame normal acceleration, whereas a preferential alignment between the reactive 
scalar gradient and the most extensive principal strain rate eigendirection is obtained 
when the strain rate originating from flame normal acceleration overcomes turbulent 
straining (Chakraborty and Swaminathan, 2007a; Chakraborty et  al., 2009; Malkeson 
and Chakraborty, 2011c). It was demonstrated earlier by Malkeson and Chakraborty 

Fig. 10   Variations of T
32
× D2

0
∕�

0
S4
b(�=1)

�2
st
 with c̃ along with the predictions of Eq. 17 with C

3
= 0.028  and 

C
4
= 0.01∕

(
1 + KaL

)0.5 for cases A-F (a–f)
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(2011c) that ∇� continues to align with the most compressive principal strain rate eigen-
direction even when ∇c aligns with the most extensive principal strain rate eigendirec-
tion. Thus, the values and signs of T32 are determined by the relative competition of 
the strain rates due to turbulence and flame normal acceleration. This also needs to be 
reflected in the model expression of T32 and accordingly the following model expression 
is proposed here:

where C3 and C4 are the model parameters and DaL = k̃Sb∕𝜀̃𝛿b is the local Damköhler num-
ber with �b = 2D0∕Sb being a measure of the thermal flame thickness. The first term on the 
right-hand side (i.e. 𝜌C3

�
𝜀̃∕k̃

�
𝜀̃c𝜉

√
𝜀̃c∕

√�𝜀̃c𝜉� ) accounts for the alignment of scalar gra-
dients with the most compressive principal strain rate eigendirection under the action of 
turbulent straining (~ 𝜀̃∕k̃ ∼ u�∕� ). The second term on the right-hand side of Eq. 17 (i.e. 
−𝜌C4

�
𝜌0∕𝜌b − 1

�
DaL(𝜀̃∕k̃)𝜀̃c𝜉

√
𝜀̃c∕

√�𝜀̃c𝜉� = −𝜌C4

�
𝜌0∕𝜌b − 1

�
(Sb∕𝛿b)𝜀̃c𝜉

√
𝜀̃c∕

√�𝜀̃c𝜉�   ) 
represents the effects of preferential collinear alignment of ∇c with the most extensive 
principal strain rate eigendirection under the action of strain rate induced by flame nor-
mal acceleration, which scales with 

(
�0∕�b − 1

)
(Sb∕�b) (Chakraborty and Swaminathan, 

2007a; Chakraborty et  al., 2009). The term −𝜌C4

�
𝜌0∕𝜌b − 1

�
DaL

�
𝜀̃∕k̃

�
𝜀̃c𝜉

√
𝜀̃c∕

√�𝜀̃c𝜉� 
scales as 

(
�0S

2
b
∕�2

b

)
 according to Swaminathan and Bray (2005). The effects of the strain 

rate are expected to decrease with increasing Karlovitz number (Chakraborty and Swami-
nathan, 2007b; Chakraborty et al., 2008, 2011), and thus the model parameter C4 may have 
some dependence on the local Karlovitz number KaL =

(
𝜀̃𝛿b

)1∕2
S
−3∕2

b
 . The predictions of 

Eq. 17 are shown in Figs. 10a–f where C3 = 0.028 and C4 = 0.01∕
(
1 + KaL

)0.5 are used. 
For these choices of C3 and C4 , the model given by Eq. 17 reasonably captures the behav-
iour of T32 extracted from DNS data for most cases considered here, but there are local 
discrepancies between the model predictions and DNS data. However, it is worthwhile to 
recognise that Eq. 17 is the first attempt to model the term T32 in the 𝜀̃c𝜉 transport equation 
and there is a scope for further improvement of the modelling of T32 . It is also important to 
note that C4 decreases with increasing KaL and thus the second term on the right-hand side 
of Eq. 17 tends to weaken as the combustion regime approaches the broken reaction zone 
with the increase in the value of Karlovitz number.

The variations of T33 with c̃ across the flame brush for cases A-F are shown in 
Fig.  11a–f respectively. Figure  11 indicates that T33 assumes predominantly negative 
values for a major part of the flame brush, except for a small region on the burned and 
unburned gas sides of the flame brush in cases B and C, respectively (see Fig. 11b and 
c). For the statistically planar flames, T33 takes the following form:

Thus, the behaviour of T33 is expected to be affected by 𝜌𝜀̃c𝜉 ∼ 𝜌D(𝜕c��∕𝜕x1)(𝜕𝜉
��∕𝜕x1) 

and �ũ1∕�x1 , and therefore T33 is modelled as:
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where CT3
 is a model parameter. The order of magnitude of Eq. 19 takes the following form 

according to Swaminathan and Bray (2005):

(20)−CT3
𝜌𝜀̃c𝜉

𝜕 �u1

𝜕x1
∼ O

(
𝜌0S

2
b
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−
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2Da
−

1

2

)

Fig. 11   Variations of T
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× D2
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A comparison between Eqs. 11i and 20 reveals that the model expression given by 
Eq. 19 is consistent with the order of magnitude of T33 . Moreover, the modelled expres-
sion given by Eq. 19 is also consistent with the order of magnitude estimate predicted 
by Eq. 11ii, as shown below:

The predictions of Eq. 19 are compared to T33 extracted from DNS data in Figs. 11a–f 
for cases A-F, respectively when CT3

= 0.03 . It can be seen from Fig.  11a–f that 
CT3

= 0.03 yields satisfactory agreement with DNS data for all the cases considered here 
although Eq.  19 locally overpredicts the magnitude of the negative value at the mid-
dle of the flame brush in case A. It is worthwhile to note that Eq. 19 provides a simple 
expression as a first attempt towards the modelling of the 𝜀̃c𝜉 transport equation, and 
therefore there will be further scope for improvement in the future.

(21)−CT3
𝜌𝜀̃c𝜉

𝜕 �u1

𝜕x1
∼ O

(
𝜌0u

�2

�2

Uref

u�

)

Modelling of the Combined Reaction and Dissipation Contribution 
(

T
4
− D

2

)

.
The reaction rate and the molecular dissipation contributions of the 𝜀̃c transport are 

often modelled by their combined contribution (Mantel and Borghi, 1994; Chakraborty 
et al., 2008, 2011). A similar approach has been adopted here following Malkeson and 
Chakraborty (2011b) for the 𝜀̃Y𝜉 transport equation because T4 and 

(
−D2

)
 may have 

larger magnitudes than that of 
(
T4 − D2

)
 . This is particularly important because an 

imbalance created by the modelling inaccuracies of individual models for T4 and 
(
−D2

)
 

may not capture the qualitative behaviours of 
(
T4 − D2

)
 . The variation of 

(
T4 − D2

)
 with 

c̃ has been found to be best qualitatively captured by the variation of the quantity 𝜌𝜀̃c𝜉  
throughout the flame brush in all cases. Moreover, 

(
T4 − D2

)
 is dimensionally inconsist-

ent with 𝜌𝜀̃c𝜉 and a relevant time scale must be considered, which is estimated to be 
𝜀̃𝜉∕

�𝜉��2 , which yields the following model of 
(
T4 − D2

)
:

Here, CD1 and CD2 are the model parameters. The parameter [
1 +

(
c̃∕{1 + �c}

)2
][
CD1(0.2m − c̃) − CD2m

]
 allows for the correct prediction of the qualita-

tive trend of 
(
T4 − D2

)
 across the flame brush. The parameter Sb

√
�𝜉��2∕D0𝜀̃𝜉  accounts for the 

length scale of mixture inhomogeneity normalised by a characteristic flame thickness 
(∼ D0∕Sb).

The order of magnitude of the model expression given by Eq. 22 can be estimated in the 
following manner according to the scaling arguments proposed by Swaminathan and Bray 
(2005):

It can be seen from Eqs. 22 and 11i the order of magnitude of the modelled expression is 
consistent with the order of magnitudes of T4 and 

(
−D2

)
 . On scaling 𝜀̃𝜉 as: 𝜀̃𝜉 ∼ 1∕tD , where 

(22)

T4 − D2 = 𝜌
𝜀̃c𝜉 𝜀̃𝜉

�𝜉��2

[
1 +

(
c̃

1 + c̃

)2
][
CD1(0.2m − c̃) − CD2m

]
with m =

Sb

√
�𝜉��2∕D0𝜀̃𝜉

1 + Sb

√
�𝜉��2∕D0𝜀̃𝜉

(23)(T4 − D2) = 𝜌
𝜀̃c𝜉 𝜀̃𝜉

�𝜉��2

[
1 +

(
c̃

1 + c̃

)2
][
CD1(0.2m − c̃) − CD2m

]
∼ O

(
𝜌0S

2
b

𝛿2st

)
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tD can be expressed as: tD ∼ �2
D
∕D , the right-hand side of Eq. 23 yields an order of magnitude 

estimate of 
(
u
�2
∕l2

)
Re

1∕2
t  , which is consistent with the leading order scaling estimate of the 

combined contribution of (T4 − D2) as predicted by Eqs. 11ii.
The performance of the model given by Eq. 22 for all cases considered here is shown in 

Fig. 12a–f for cases A-F, respectively. It demonstrates that the model satisfactorily captures 
the behaviour and order of magnitude of (T4 − D2) for all cases when CD1 = 0.35 and 
CD2 = 0.4 are taken although this model (i.e. Equation  22) does not adequately capture 

Fig. 12   Variations of 
(
T
4
− D

2

)
× D2

0
∕�

0
S4
b(�=1)

�2
st
 with c̃ along with the predictions of Eq.  22 with 

CD1 = 0.35 and CD2 = 0.4 for cases A-F (a–f)
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positive values of 
(
T4 − D2

)
 . Moreover,  0.35𝜌

(
𝜀̃
c𝜉 𝜀̃𝜉∕

�𝜉��2
)[
1 + (c̃∕{1 + c̃})

2
]

(0.2m − c̃) and − 0.40𝜌
(
𝜀̃
c𝜉 𝜀̃𝜉∕

�𝜉��2
)[
1 + (c̃∕{1 + c̃})

2
]
m can be considered to be the mod-

elled expressions of T4 and 
(
−D2

)
 , respectively, which is not explicitly shown here for the sake 

of brevity.

6 � Conclusions

A Direct Numerical Simulations (DNS) database of freely propagating statistically pla-
nar turbulent flames propagating into stratified mixture has been utilised in order to ana-
lyse the statistical behaviour of the cross-scalar dissipation rate 𝜀̃c𝜉 transport. The statis-
tical behaviours of the different terms of the 𝜀̃c𝜉 transport equation have been explained 
based on physical arguments and the relative contributions of these terms to the overall 𝜀̃c𝜉 
transport have been explained based on detailed scaling arguments. The modelling of the 
unclosed terms of the 𝜀̃c𝜉 transport equation has been considered in the context of Reynolds 
Averaged Navier–Stokes (RANS) simulations. It has been found that the density variation 
term T2 , scalar-turbulence interaction term T3 , reaction rate contribution T4 and the molecu-
lar dissipation term 

(
−D2

)
 remain the leading order contributors for all cases considered 

here. It has been observed in all cases that the magnitude of the turbulent transport term T1 
remains small in comparison to the leading order contributors. Suitable model expressions 
have been identified for the contributions of the unclosed terms (i.e. T1, T2, T3, T4 and −D2 ) 
of the 𝜀̃c𝜉 transport equation based on a priori analysis of DNS data. These model expres-
sions are proposed in such a manner that the underlying physics and the order of magnitude 
of the unclosed term in question are adequately addressed. The predictions of the proposed 
models have been assessed with respect to the corresponding quantities extracted from 
DNS data. The new models are found to predict the unclosed terms of the 𝜀̃c𝜉 transport 
equation satisfactorily for all the cases considered here.

It is worthwhile to consider that this analysis is one of the first attempts to model the 
unclosed terms of the 𝜀̃c𝜉 transport equation and thus there is some scope for improvement 
in the future for some of the model expressions. Admittedly, the closure of the unclosed 
terms of the 𝜀̃c𝜉 transport equation involves a number of model parameters but the number 
of parameters used for the closures of the unclosed terms of the 𝜀̃c𝜉 transport equation is 
comparable to those used for the closure of the 𝜀̃c (Mantel and Borghi, 1994; Chakraborty 
et al., 2008, 2011) and 𝜀̃Y𝜉 (Malkeson and Chakraborty, 2013) transport equations. Moreo-
ver, the effects of the differential diffusion rate of heat and mass and detailed chemical 
kinetics are not addressed in the current analysis. In order to attain a more comprehensive 
understanding of the cross-scalar dissipation rate transport, the effects of detailed chemis-
try and differential diffusion will need to be studied in detail in the future for higher val-
ues of turbulent Reynolds numbers. Undoubtedly, the models proposed here need to be 
implemented in RANS simulations. However, the performance of the 𝜀̃c𝜉 modelling cannot 
be assessed in isolation because the modelling inaccuracies involved with k̃, 𝜀̃, 𝜀̃c and 𝜀̃𝜉 
could potentially affect the predictions of RANS simulations in a complex manner and it 
is possible that some modelling inaccuracies will either augment each other or cancel with 
other. In a-priori analysis, such as the one carried out in this study, the true capability of 
the models is demonstrated but the interaction between the modelling error and numeri-
cal error (one of which originates due to discretisation error using a coarser RANS grid) 
warrants a-posteriori assessment of the models. It is important to note that only the model 
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expressions for T1, T31 and T33 (i.e. Equations 12, 13, 15, 16) involve gradients of Favre-
mean quantities which need to be evaluated on RANS grids. It is not possible to estimate 
the numerical error aspect due to discretisation error involving a coarser RANS grid in this 
type of a-priori analysis because the flame brush thickness scales with the integral length 
scale of turbulence and therefore the RANS grid size becomes comparable to the size of 
the simulation domain. Furthermore, the modelling and numerical errors interact not in a 
straightforward manner in RANS simulations. All of these aspects need to be accounted for 
a posteriori assessment of the cross-scalar dissipation rate closure based on RANS simula-
tions for configurations in which experimental data is available for comparison with simu-
lation results. This will also form the basis of future analyses on turbulent stratified mixture 
combustion.
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