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Abstract
Adirect numerical simulation (DNS) of the incompressible flowaround a rectangular cylinder
with chord-to-thickness ratio 5:1 (also known as the BARC benchmark) is presented. The
work replicates the first DNS of this kind recently presented by Cimarelli et al. (J Wind Eng
Ind Aerodyn 174:39–495, 2018), and intends to contribute to a solid numerical benchmark,
albeit at a relatively low value of the Reynolds number. The study differentiates from previous
work by using an in-house finite-differences solver instead of the finite-volumes toolbox
OpenFOAM, and by employing finer spatial discretization and longer temporal average.
The main features of the flow are described, and quantitative differences with the existing
results are highlighted. The complete set of terms appearing in the budget equation for the
components of the Reynolds stress tensor is provided for the first time. The different regions
of the flow where production, redistribution and dissipation of each component take place
are identified, and the anisotropic and inhomogeneous nature of the flow is discussed. Such
information is valuable for the verification and fine-tuning of turbulence models in this
complex separating and reattaching flow.

Keywords Turbulence · BARC benchmark · DNS · Budgets of Reynolds stresses

1 Introduction

The flow around bluff bodies with sharp corners is interesting for both fundamental research
and industrial applications, particularly in thefield of vortex-induced oscillations (Williamson
andGovardhan 2008). In fact, several types of structures (buildings, bridges, pylons etc) often
present such cross-sectional shapes (Tamura et al. 1998).

The simplest prototype of such bodies is the rectangular cylinder. It sports a simple geom-
etry, yet the flow around it is rich with features that are found in flows around bodies of more
complex shape: a corner-induced separation, a shear layer which at a certain point becomes
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unstable, a detached boundary layer that may reattach, several recirculating regions and a
large wake. By varying the aspect ratio , the rectangular cylinder spans the entire set of
blunt bodies, from a zero-thickness flat plate normal to the flow for = 0, to a square
cylinder for = 1, and finally to a flat plate parallel to the flow for → ∞.

Already at low values of the Reynolds number Re, the main flow features depend on .
For small aspect ratios, say ≤ 2, the body is not long enough for the flow to reattach
after the leading-edge separation. For 2 ≤ ≤ 3 the flow does reattach along the top
and bottom sides, but reattachment is intermittent, and vortex shedding still occurs from the
leading-edge corners only. For even larger , reattachment becomes permanent, creating
a large recirculating region sometimes referred to as primary vortex, and vortex shedding
occurs from both the leading- and trailing-edge corners, while the main flow features keep
changing with the aspect ratio. For large enough Re, transition to turbulence complicates the
matter further: the large scales associated with the flow instabilities coexist and non-linearly
interact with the smaller scales associated to the turbulent motions.

This variability is accompanied by a significant scatter of experimental and numerical
data. This is the main reason why a benchmark on the aerodynamics of a rectangular cylinder
with = 5 (Benchmark on the Aerodynamics of a Rectangular 5:1 Cylinder, or BARC) has
been established (Bartoli et al. 2008). Goal of the BARC benchmark is to set the standards
for both numerical simulations and experiments, and to arrive at a quantitatively accurate
description of the main patterns of the flow, e.g. the size of the primary vortex, the shedding
frequency, the root-mean-square value of fluctuations of the vertical force. Unfortunately,
as discussed by Bruno et al. (2014), even with fixed, a large variability remains, which
still affects the prediction of the main features of the mean flow. Besides the effect of the
Reynolds number, this is due to the strong sensitivity of the BARC flow to several aspects
of the experimental as well as the numerical studies. For experiments, these range from
test conditions and body shape to measurement inaccuracies; for numerical simulations,
they include RANS and LES turbulence modelling, discretisation choices, the numerical
method itself and the computational procedure. The dispersion of BARC experimental data
was considered by Mariotti et al. (2016), where uncertainties on the angle of incidence,
the free-stream longitudinal turbulence intensity and the free-stream turbulence lengthscale
were studied via a probabilistic method and two-dimensional URANS simulations; such
uncertainties were found to not fully explain the scatter of results, with the turbulence model
playing a major role. Similarly Mariotti et al. (2017) presented a stochastic analysis of the
sensitivity of LES results to grid resolution and details of the model filter, finding that a
finer grid translates into a significantly smaller primary vortex. More recently, Rocchio et al.
(2020) performed a sensitivity analysis of LES simulations of the BARC flow to the rounding
of the leading-edge corners, to the aim of explaining the discrepancy between well-resolved
numerical simulations and experiments. They observed that introducing a very small radius
of curvature is sufficient to enhance the agreement between numerical and experimental data.

As an example, we summarise below the information available for some quantities of
interest, namely the frequency (expressed by the non-dimensional Strouhal number St) of
the vortex shedding and the length L1 (expressed in terms of the body height D) of the
main recirculating region created by the leading-edge shear layer. Further information can be
found in Bruno et al. (2014). Matsumoto et al. (2003) studied the BARC flow experimentally
at Re ≈ 105, with both smooth and turbulent incoming flows. The dominant shedding
frequency was St = 0.132 for the smooth inflow and St = 0.197 for the turbulent inflow,
with the primary vortex length varying from L1 = 1.875 to L1 = 4.375. Bruno et al.
(2010) performed a LES simulation at Re = 4 × 104 finding St ≈ 0.11 and L1 ≈ 4.68.
Mannini et al. (2010) performed URANS simulations at Re = 1 × 105 using a slightly
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modified Spalart–Allmaras turbulence model and a Linearised Explicit Algebraic model
coupled with the standard k−ω model. Using the first model they found St ≈ 0.098 with no
flow reattachment; with the second model, instead, they found St ≈ 0.105 and L1 ≈ 4.65.
Mannini et al. (2011) performed a DES study at Re = 26400 focusing on the effect of the
spanwise dimension of the domain on the main properties of the flow; they report St ≈ 0.1
and L1 ≈ 4.75. Bruno et al. (2012) studied the combined effect of spanwise discretisation and
spanwise domain size with LES. For an increasing spanwise resolution L1 decreases whereas
St remains practically constant; increasing the spanwise domain size, instead, affects neither
St nor L1. Patruno et al. (2016) studied with LES and URANS the effect of small angles of
incidence at Re ≈ 104. At zero incidence they found a non-symmetric mean flow with LES,
with L1 = 4.01 and L1 = 4.1 in the upper and lower cylinder sides and St = 0.132. Their
URANS simulation, instead, using the k − ω − SST turbulence model yielded a symmetric
mean flow with L1 = 4.26 and St = 0.121. Ricci et al. (2017) performed LES simulations
at Re ≈ 5.5 × 104 to study the turbulent inflow conditions. They found that a higher level
of incoming turbulence corresponds to a higher curvature of the shear layer and therefore
to a shorter primary vortex, with a related upstream shift of the secondary vortex. A similar
study was also carried out by Mannini et al. (2017) experimentally, by varying the inflow
conditions and the angle of incidence in the range 104 < Re < 105. For zero incidence they
found St ≈ 0.115 which weakly increases with Re and with the intensity of the free stream
turbulence. Moore et al. (2019) experimentally found for Re = 1.34 × 104 St ≈ 0.1114
and L1 ≈ 4.4; moreover, they found that St does not change with the Reynolds number in
the range 1.34 × 104 ≤ Re ≤ 1.18 × 105 unlike L1 which has a decreasing trend. Lastly,
Cimarelli et al. (2020) investigated via high-order implicit LES the influence of geometrical
characteristics of the body, as the sharp leading-edge corners, the presence of separation at
the trailing edge and the coupling between the two sides of the plate. At Re = 3000 they
report St = 0.14 and L1 ≈ 4.05.

In such scenario of highly scattered experimental and numerical information, a remarkable
achievement was the recent first Direct Numerical Simulation (DNS) of the BARC flow in
the turbulent regime. It was presented by Cimarelli et al. (2018b), who employed the finite-
volumes OpenFOAM toolbox (Weller et al. 1998), and was then used in the derivative works
(Cimarelli et al. 2018a, 2019). Albeit at a relatively low value of Re, these data represent a key
step towards building a robust information set for the BARCflow, sinceDNS has the ability to
remove from the picture the uncertainties related to turbulencemodeling. It remains desirable,
however, to assess the robustness of their results with respect to discretization, numerical
method and computational procedures. This is one of the goals of the present work, which
replicates this DNS study but employs a different solver (an in-house finite-differences code),
and uses different discretization choices. As a second objective of the present contribution, we
also intend to advance the statistical characterization and understanding of the BARCflow, by
presenting for the first time a detailed discussion of the complete set of terms involved in the
budget equations for the components of the tensor of the Reynolds stresses. The availability
of the complete budget for the Reynolds stresses is essential for improving LES and RANS
closure models.

2 Numerical Method and Computational Procedures

The BARC test case is a two-dimensional rectangular cylinder with streamwise length L and
cross-stream dimension D, with aspect ratio = L/D set at = 5. Figure 1 sketches
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Fig. 1 Sketch of the BARC geometry, with the reference system and the computational domain employed in
the present work

the geometry and the reference frame employed in the present work. A Cartesian coordinate
system is placed at the center of the cylinder, with the x axis aligned with the flow direction,
the y axis denoting the cross-stream direction and the z axis the spanwise direction. The
incoming velocity is uniform upstream, aligned with the x axis and set atU∞. The Reynolds
number Re = U∞D/ν is based onU∞, D and the kinematic viscosity ν of the fluid. As in the
reference DNS work (Cimarelli et al. 2018b), the value of the Reynolds number considered
here is Re = 3000. The incompressible Navier–Stokes equations are:

⎧
⎨

⎩

∂u
∂t

+ u · ∇u = −∇p + 1

Re
∇2u

∇ · u = 0
(1)

where u, v and w denote the streamwise, cross-stream and spanwise components of the
velocity, whereas p is the pressure. The mean field is indicated with capital letters, i.e.
U = (U , V ,W ), and the fluctuations with an apex, i.e. u = (u′, v′, w′). The boundary
conditions of the problem are the no-slip and no-penetration conditions on the surface of the
cylinder together with an unperturbed velocity (U∞, 0, 0) enforced at the far field, periodic
conditions at the spanwise boundaries on account of spanwise homogeneity, and a convective
outlet condition for the velocity, i.e. ∂u/∂t = −U∞∂u/∂x .

The DNS code, introduced by Luchini (2016), solves the incompressible Navier–Stokes
equations on a staggered Cartesian grid. Second-order finite differences are used in every
direction. The momentum equations are advanced in time by a fractional time-stepping
method that employs a third-order Runge–Kutta scheme. The Poisson equation for the pres-
sure is solved by an iterative SOR algorithm. The presence of the cylinder is dealt with via
an implicit second-order accurate immersed-boundary method, implemented in staggered
variables to be continuous with respect to boundary crossing and numerically stable at all
distances from the boundary (Luchini 2013, 2016). Hereinafter, all variables are in dimen-
sionless form, with D as length scale, U∞ as velocity scale and D/U∞ as time scale.

The computational domain extends for −22.5 ≤ x ≤ 40 in the streamwise direction,
−21 ≤ y ≤ 21 in the vertical direction and −2.5 ≤ z ≤ 2.5 in the spanwise direction, with
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the cylinder placed at −2.5 ≤ x ≤ 2.5 and −0.5 ≤ y ≤ 0.5. The computational domain is
discretisedwith Nx = 1776, Ny = 942 and Nz = 150 points in the three directions, for a total
of more than 250 millions grid points. The distribution of points is uniform in the spanwise
direction, whereas geometrically varying grid spacing is employed in the streamwise and
vertical directions to yield a higher resolution near the leading- and trailing-edge corners.
There, the finest spacing occurs with �x = �y ≈ 0.0015. The ratio between neighboring
streamwise cells is 1.005 over the body from the corners towards x = 0, and 1.02 before
and after the body; the ratio between neighboring vertical cells is 1.01 for |y| ≤ 1.75 and
1.02 otherwise. This distributions leads to 892 points placed along the streamwise edge of
the cylinder and 217 along the cross-stream edge.

When compared to the computational domain used inCimarelli et al. (2018b), i.e.−37.5 ≤
x ≤ 74.5 and −25 ≤ y ≤ 25, the present domain is slightly smaller, but discretized with a
significantly finer mesh. Although known to be marginal for an accurate calculation of some
high-order statistics (Bruno et al. 2012), the spanwise dimension of the cylinder is identical
to that of the reference study. In comparison, almost 15 times more points are placed over the
body: about 8 times more points along the streamwise edge, and twice the number of points
along the cross-stream edge.

To accumulate well-converged statistics, we have exploited both temporal averaging and
ensemble averaging, by running several independent simulations. The first simulation is
started from the solution corresponding to a steady potential flow, with its symmetry broken
by injecting just after the leading-edge corners localized randomnoise of small amplitude, i.e.
< U∞/10, during the first 5 time units. The simulation is then advanced for a considerably
long time, approximately 400D/U∞, to allow for the flow to fully loosememory of the initial
transition and reach a truly statistically-stationary state. Indeed, this flow takes a long time to
develop as confirmed by Cimarelli et al. (2018b), where a comparably long initial transient of
250D/U∞ was discarded too. Once the flow reaches the desired statistically steady state, the
main simulation enters the production stage and accumulates statistics for further 341 time
units. At the same time, from the latest stages of the preliminary run, 10 independent flow
fields are saved and later used to produce independent initial conditions for 10 additional
simulations, that accumulate useful statistics for additional 2004 time units, leading to a total
averaging time of 2345D/U∞. The convergence of the statistics has been assessed by testing
different sample sizes.

The creation of independent initial conditions is based on the idea of removing the large-
scale coherent structures populating the flow, but without excessively distorting its spatial
structure, so that the required initial transient can be kept to a minimum. The process is
based on Fourier transforming the velocity values along each spanwise line, followed by a
random phase change, and a final inverse transform. This procedure preserves the structure of
the mean flow but effectively removes the large-scale structures, which are then regenerated
quickly but independently on each sample. Although by visual observation the fields become
fully independent after a very small simulation time, a conservative approach is adopted, and
20 further time units are discarded before starting the accumulation of statistics.

The temporal discretization uses a varying time step, to ensure that the Courant–Frederic–
Levy CFL number remains at CFL ≤ 1; this condition produces an average value of the
time step of �t ≈ 0.0013. The simulations have been run on the GALILEO supercomputer
at CINECA. Each simulation uses 32 cores of a single computing node, and subdivides the
spatial domain in smaller subdomains along the streamwise and spanwise directions. Each
simulation needs approximately 14 hours to advance the flow by one time unit.
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3 Instantaneous andMean Flow Fields

3.1 Instantaneous Flow

We start by a qualitative characterization of a typical snapshot of the flow, which provides the
opportunity of describing its main structures. They are visualised with the λ2 criterion (Jeong
and Hussain 1995), based on the second largest eigenvalue λ2 of the tensor Sik Sk j +ΩikΩk j ,
where

Si j = 1

2

(
∂ui
∂x j

+ ∂u j

∂xi

)

, Ωi j = 1

2

(
∂ui
∂x j

− ∂u j

∂xi

)

(2)

are the symmetric and antisymmetric part of the velocity gradient tensor ∂ui/∂x j . The spatial
orientation of the structures is additionally described by means of isosurfaces of the vorticity
components ωx and ωz .

Figure 2 plots isosurfaces for λ2, ωx and ωz . The sharp leading-edge corner determines
the detachment point. In the initial part for−2.5 < x < −2 the separated shear layer remains
two-dimensional and laminar, as demonstrated by comparing the contours of λ2 with those of
ωz , and then transitions to turbulence. The separatrix originating from the corner defines the
spatial extent of a large recirculating region, a.k.a. the primary vortex; a secondary smaller
counter-rotating vortex is formed around x = − 1.5, where no significant three-dimensional
structures are observed. As already described in previous works (Cimarelli et al. 2018a;
Sasaki and Kiya 1991; Tenaud et al. 2016), first at x ≈ −2 a Kelvin–Helmoltz like instability
of the shear layer appears, leading to a breakdown into large-scale spanwise tubes. Further
downstream, the spanwise tubes stretched by the mean flow roll up and originate hairpin-like
vortices. A sudden transition to turbulence occurs at x ≈ − 1.3. Then, further downstream
(x ≥ 0), the hairpin-like vortices are stretched and break down to elongated streamwise
vortices, identified by the contours of ωx , confirming previous findings (Cimarelli et al.
2018a; Sasaki and Kiya 1991). At these streamwise positions the flow is now fully turbulent,
and the coexistence between small- and large-scales structures is clearly observed. The flow

Fig. 2 The instantaneous flow. Top left: three-dimensional view of the isosurface λ2 = − 5. Top right: side
view. Bottom left: top view. Bottom right: side view for isosurfaces of |ωz | = 15 (green) and |ωx | = 15 (red)
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Table 1 Comparison between the present results and those from Cimarelli et al. (2018b)

Present Cimarelli et al.
(2018b)

Other
experimental data
Bruno et al. (2014)

Other numerical
data Bruno et al.
(2014)

f1 0.1274 0.14 0.105–0.132 (0.1135) 0.073–0.16 (0.109)

〈C�〉 − 0.0155 – – −0.33–0.42 (−0.0141)

〈C�〉z,rms 0.2893 – 0.4 (0.4) 0.108–1.465 (0.65)

〈Cd 〉 0.9437 0.96 1–1.029 (1.0072) 0.96–1.39 (1.074)

Additional columns report the data range (with their mean value in parentheses) for the experimental and
numerical studies collected by Bruno et al. (2014)

then proceeds towards the trailing edge, where again the sharp trailing-edge corner fixes
separation in space, and a large turbulent wake ensues.

3.2 Temporal Evolution of Global and Local Quantities

A quantitative description of the flow begins with global quantities related to the mean flow
field. Here and in the following, mean quantities, indicated by the operator〈·〉, are computed
after time average and also by exploiting the homogeneity of the spanwise direction. The
operators 〈·〉z or 〈·〉t will be used to indicate quantities averaged only along z, or in time
respectively. For the BARC, the key quantities are the traditional dimensionless lift and drag
coefficients, C� and Cd , i.e. the vertical and horizontal components of the aerodynamic force
per unit width, normalised with 0.5ρU 2∞D. Obviously for symmetry reasons〈C�〉= 0 for an
infinitely long simulation. Cimarelli et al. (2018b) report〈Cd〉= 0.96 and do not mention the
value of〈C�〉; our simulation provides a drag coefficient which is in agreement with theirs, at
〈Cd〉= 0.9437, and a pretty small residual value of〈C�〉= − 0.0155 which keeps decreasing
with the integration time. Quantitative comparison of these and other quantities of interest
with those of Cimarelli et al. (2018b) are reported in Table 1, together with the range of
values from other (experimental and numerical) studies collected and analysed in Bruno
et al. (2014). These studies are typically carried out at higher Re.

Figure 3 shows the temporal evolution of the spanwise-averaged 〈C�〉z recorded in the
primary (longest) simulation. Its excursions appear to be somewhat larger than the reference
study, with the present signal reaching instantaneous values of up to +0.762 and −0.913,
whereas in Cimarelli et al. (2018b) they remain below 0.5 in absolute value. This is attributed
to the much finer vertical grid spacing used in the present work, that allows to better capture
the separation at the leading-edge corners; the same trend was observed also for the low-
Reynolds laminar flow around a square cylinder by Sohankar et al. (1998) (see table IV in
their paper), and by Anzai et al. (2017) (see their Fig. 18). The root-mean-square value of
the fluctuations for 〈C�〉z is 0.2893. Reported values for this quantity, which Bruno et al.
(2012) find to be significantly affected by LES spanwise discretization, are for example
0.7319 (Bruno et al. (2010), LES at Re = 4000), 0.26 (Mannini et al. (2010), URANS at
Re = 100, 000), 0.42–1.07 (Mannini et al. (2011), DES at Re = 26400). Patruno et al.
(2016) mention 0.19 for LES and 0.81 for URANS.

The dominant time scales present in the flow are often (Bruno et al. 2010; Mannini et al.
2011; Ricci et al. 2017; Mannini et al. 2017) extracted by looking at localised peaks in the
frequency spectrum S. The premultiplied periodogram of〈C�〉z , shown in the top right panel
and computed with data from the primary simulation only, shows a peak for the frequency
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Fig. 3 Temporal characterization of the spanwise-averaged lift coefficient〈C�〉z . Top left: time history of〈C�〉z
from the primary simulation. Top right: premultiplied frequency spectrum. Bottom: temporal autocovariance

f1 = 0.1274. It is known from previous work (Okajima 1982; Nakamura et al. 1991; Ozono
et al. 1992; Mills et al. 1995; Cimarelli et al. 2018b) that this peak is associated to the vortex
shedding in the wake. A more precise view of the dominant frequency can be obtained from
the temporal autocovariance RC�C�

(τ ) of the signal, shown in the bottom panel of Fig. 3.
The first peak after the maximum at zero time separation is located at a time separation of
τ = 1/ f1. Overall, the identified frequency is quite similar to the time scale identified by
Cimarelli et al. (2018b), whomeasured f1 ≈ 0.14. A frequency analysis of〈Cd〉z (not shown)
confirms the presence of a localised peak at a frequency of 2 f1 in the spectrum of the drag
coefficient, induced by the alternate vortex shedding. Other studies, with different numerical
approaches and at different Re, report for f1 values of 0.098 or 0.105 (Mannini et al. 2010),
0.1 (Mannini et al. 2011), 0.11 (Bruno et al. 2010), 0.132 (Patruno et al. 2016). Table 1 shows
that often experiments and simulations tend to underestimate the shedding frequency. This
is attributed to the sensitivity of the BARC flow to slight deviations from the ideal setting,
or to simulation inaccuracies; the finite Re should not affect the computed value, because
according to Nakamura et al. (1991), Schewe (2013) and Moore et al. (2019) at Re ≥ 3000
the Strouhal number has already reached its asymptotic value.

Several authors found that this flow is also characterised by a large-scale low-frequency
unsteadiness associated to a shrinkage and enlargement of the main recirculating region.
Kiya and Sasaki (1983) and Kiya and Sasaki (1985) report for this frequency a value of
approximately 1/6 of the shedding frequency for a blunt flat plate at Re ≈ 104. Similar
results are also reported by Cherry et al. (1984) for the same flow and by Eaton and Johnston
(1982) for a backward facing step. Cimarelli et al. (2018b), instead, report f ≈ 0.042, that
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is approximately 1/3 of their shedding frequency. This low frequency is not detected clearly
in the present data. However, the low Reynolds number and the amount of integration time
preclude any firm statement. If such low frequency indeed exists at the present Re, it would
require an extremely long integration to be reliably detected, as shown in Lehmkuhl et al.
(2013) for the low-Re turbulent flow past a circular cylinder.

The complexBARCflowcontains different time scaleswhich vary across the flowdomain.
Mimicking a typical experiment, where a fixed-point sensorwould be placed in different posi-
tions, numerical probes are placed at six points in the midplane z = 0 to record the time
history of velocity and pressure. These points are drawn in Fig. 5, and have the following coor-
dinates: (xa, ya) = (− 2.05, 0.805), (xb, yb) = (− 1.716, 0.9), (xc, yc) = (− 1.437, 0.94),
(xd , yd) = (− 0.980.98), (xe, ye) = (1.5, 0.98) and (x f , y f ) = (3.3, 0.2). The first four
points lie on the main shear layer; point e is outside the boundary layer at a position where
the flow has already reattached; and point f is in the wake, near the trailing edge of the recir-
culating region. As an example, we discuss below and show in Fig. 4 the frequency spectrum
of the cross-stream velocity component v, although an equivalent picture is obtained when
the streamwise velocity component is examined (not shown).

The power spectrum at point a near the leading edge lacks a clearly dominating frequency,
since the flow is essentially laminar. However, a small local peak is observed at the frequency
f1 that also emerges in the spectrum of 〈C�〉z , associated with the vortex shedding at the
trailing edge. This suggests that at this Reynolds number the wake still influences the leading-
edge region, as it happens at much lower Re (Hourigan et al. 2001). The vortex-shedding
frequency has been detected at these upstream sections also by Moore et al. (2019) for
Re = 13,400, but not by Rocchio et al. (2020) at Re = 40,000; this suggests that the
influence of the vortex shedding from the trailing edge on the first part of the shear layer
gradually fades away as Re increases. Moving along the shear layer, a higher dominant
frequency f ≈ 1.3 emerges, associated to the amplification of the velocity fluctuations in the
shear layer (Cimarelli et al. 2018b) owing to the Kelvin–Helmotz instability (Moore et al.
2019). The peak in the spectrum moves towards lower frequencies along the shear layer
( f ≈ 1.44, 1.23, 1.21 for b, c, d respectively) and at the same time broadens. This frequency
range is not entirely in agreement with Cimarelli et al. (2018b), where the range is reportedly
f ≈ 0.9−1.8. Similar results have been found also at larger Reynolds numbers; Rocchio
et al. (2020) report frequencies in the range of f ≈ 0.75−1.52 for x < −0.5 and f ≈ 0.375
for x ≈ 0. Point e is downstream the reattachment point, and the flow there is fully turbulent.
The slow time scales associated to the unsteadiness of the flow coexist with faster turbulent
scales, resulting in broad spectra without evident dominant peaks. Point f is placed in the
wake, and experiences all the time scales; the local vortex shedding of large structures at
f = f1 becomes visible again.

3.3 TheMean Flow

Figure 5 shows the fields of the mean velocity (left) and pressure (right), obtained after span-
wise and temporal average of the entire dataset (2345 time units). The mean flow separates at
the sharp leading edge and reattaches downstream, before eventually separating again at the
trailing-edge corner. Three recirculating regions are identified. The first is the large region
identified by the shear layer separating at the leading edge. It starts from xs,1 = − 2.5
and extends down to the reattachment point located at xe,1 = 1.455, with a length of
L1 ≡ xs,1 − xe,1 = 3.955. The centre of rotation of the primary vortex, defined as the stag-
nation point with U = V = 0 is found at (xc,1, yc,1) = (− 0.143, 0.83). In Cimarelli et al.
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Fig. 4 Premultiplied frequency spectra of the vertical velocity component v evaluated in the six points high-
lighted in Fig. 2

(2018b) it is noted that this region is associated with large negative values of pressure. Indeed,
a pressureminimum is found close to the bubble centre, at (xp,1, yp,1) = (− 0.3, 0.99). Quan-
titative comparison of these and other quantities as measured here with those of the reference
study (Cimarelli et al. 2018b), where L1 = 3.65, are reported in Table 2. The larger size
of the primary vortex may descend from the finer grid used here (Mariotti et al. 2017). In
terms of L1, literature values are 4.68 (Bruno et al. 2010), 4.65 (Mannini et al. 2010), 4.75
(Mannini et al. 2011), 4.01 or 4.26 (Patruno et al. 2016), 0.81 (Mannini et al. 2011).

Within the large primary bubble, a second smaller counter-rotating recirculation bubble is
observed. This secondary vortex is associated with the detachment of the reverse boundary
layer caused by the adverse pressure gradient. Its characteristic length-scale is smaller: the

123



Flow, Turbulence and Combustion (2021) 107:875–899 885

Fig. 5 Left: mean velocity field, with mean streamlines drawn over a colormap of the magnitude of the
mean velocity. Right: colormap of the mean pressure field. Points labelled as a–f are positioned in interesting
positions along the flow which are discussed in the text

Table 2 Characterization of the three recirculation regions: comparison between the present simulations and
Cimarelli et al. (2018b)

Present Cimarelli et al. (2018b)

Primary vortex

xs −2.5 −2.5

xe 1.455 1.15

L 3.955 3.65

(xc, yc) (− 0.143, 0.83) (− 0.46, 0.85)

Secondary vortex

xs −1.87 −2.1

xe −0.91 −1.1

L 0.96 1

(xc, yc) (− 1.3, 0.541) –

Wake vortex

xs 2.5 2.5

xe 3.475 3.7

L 0.975 1.2

(xc, yc) (2.915, 0.25) (3, 0.23)

secondary bubble extends between xs,2 = − 1.87 and xe,2 = − 0.91, with a shorter length
of L2 ≈ 0.96, with the centre of rotation placed at (xc,2, yc,2) = (− 1.3, 0.541). In Cimarelli
et al. (2018b) the length L2 of this structure is L2 = 1. Other literature values are 1.88 (Bruno
et al. 2010), 0.31 (Mannini et al. 2010), 0.75 (Cimarelli et al. 2020).

The third recirculating region is observed in the wake region, just after the trailing edge.
This wake vortex extends from xs,3 = 2.5 up to xe,3 = 3.475, corresponding to a length of
L3 ≈ 0.975, and its centre of rotation is placed at (xc,3, yc,3) = (2.915, 0.25). In Cimarelli
et al. (2018b) the length L3 of this structure is L3 = 1.2. Other literature values are 0.76
(Bruno et al. 2010), 1.4 or 0.7 (Mannini et al. 2010), 0.94 (Mannini et al. 2011), 0.9 or 0.81
(Patruno et al. 2016), 1 (Cimarelli et al. 2020).

Figure 6 plots the two components of the mean velocity vector at four streamwise stations,
i.e. at x = − 1.238 (corresponding to the small recirculation region), x = − 0.1 (correspond-

123



886 Flow, Turbulence and Combustion (2021) 107:875–899

Fig. 6 Profiles of the longitudinal (top) and cross-stream (bottom) mean velocity componentsU and V at four
x coordinates along the body and in the near wake

Fig. 7 The mean velocity in the wake. Left: velocity defect 1−U (x̃, 0) for the mean velocity at the centerline,
with x̃ = x − 2.5. The self-similar power law A√

x̃−x̃0
is also plotted with A = 0.6 and x̃ = − 0.5. Right:

cross-stream profiles of the normalized velocity defect U∞−U (x,y)
U∞−U (x,0) as a function of the rescaled cross-stream

coordinate y/y0.5

ing to the main recirculating region), x = 2 (after the reattachment of the primary bubble)
and x = 2.85 (in correspondence of the recirculation region in the wake). These velocity
profiles are presented to provide a reference for experimental measurements, where hot-wire
traverses could be employed, as for example in Mannini et al. (2017) and Ricci et al. (2017).

The evolution of the turbulent wake is described in Fig. 7, which assesses to what degree it
obeys self-similarity. The left panel plots 1−U (x̃, 0)where the abscissa x̃ = x−2.5measures
the distance from the trailing edge. The centerline velocity defect follows a self-similar decay
for x̃ > 10, decaying proportionally to x−1/2, and follows the curve
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Fig. 8 Evolution of the friction (left) and pressure (right) coefficients along the body. Black line: present
simulation; blue circles are data taken from Fig.6 of Cimarelli et al. (2018b)

1 −U (x̃, 0) = A√
x̃ − x̃0

, (3)

where the two free parameters are fitted to A = 0.6 and x̃0 = − 0.5 (in Cimarelli et al.
(2018a) the same fit yielded A = 0.66 and x̃0 = 4). The right panel shows profiles of the
normalised defect, with the cross-stream coordinate y0.5 scaled with the characteristic wake
thickness. The latter is defined such that U (x, y0.5) = 0.5(1 +U (x, 0)). The profile

U∞ −U (x, y)

U∞ −U (x, 0)
(4)

is plotted at different streamwise stations downstream of x = 10. The profiles collapse
reasonably well in the core of the wake, lending further support to the self-similarity of the
wake after some distance from the body. The implied power-law spreading of y0.5 ∼ x1/2

is that of the plane turbulent wake. It should be noted, however, that the collapse is only
marginal for |y/y0.5| > 1, indicating that at this distance from the body the self-similarity
may not be complete. Moreover, the finite downstream domain length and the grid resolution
in the far region might also be not enough to precisely capture the evolution of the turbulent
wake.

The mean flow field exerts its influence on the body, and determines the streamwise
distribution of the coefficients

〈
c f

〉
(x) and

〈
cp

〉
(x), which express the longitudinal wall shear

and the wall pressure made dimensionless with 0.5ρU 2∞. These quantities are plotted in
Fig. 8. The friction coefficient (left panel) has its largest negative value of −0.0166 at the
leading edge, which is less than the value reported by Cimarelli et al. (2018b), suggesting a
different resolution of the interaction between the near-wall portion of the main shear layer
and the secondary vortex. Friction then increases quickly to reach a plateau where it remains
slightly positive for−1.87 < x < −0.91: this region is the trace at the wall of the small-scale
recirculating bubble. Further downstream,

〈
c f

〉
becomes negative again, with a local minimum

of value−0.0118 placed at x = 0.32, associated with the strong reverse flow observed in the
large-scale recirculating region. When the trailing edge is approached,

〈
c f

〉
increases again

to become positive for x ≥ xe,1, i.e. downstream of the primary vortex. When compared to
Cimarelli et al. (2018b), the differences can be traced to the differences in the mean flow. The
shift of the secondary vortex, for example, leads to a downstream shift of the first

〈
c f

〉
> 0

region, whereas the larger extension of the primary vortex results in a downstream shift of
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Fig. 9 Color map of the turbulent kinetic energy

both the local minimum, which in Cimarelli et al. (2018b) occurs at x ≈ −0.045 with a value
of −0.013, and of the crossover point where

〈
c f

〉
is zero.

The pressure coefficient
〈
cp

〉
(x) (right panel) is negative everywhere, in agreement with

available information. Aminimum of−1.205 is found in the region of the leading edge. After
a sharp and localised increase, a mild decline starts at x ≥ −2.21 towards a local minimum
of −0.855 at x = − 0.470. This minimum is the footprint at the wall of the large negative
pressure observed within the large-scale recirculating region. The pressure coefficient then
increases again, and reaches its maximum of−0.124 at x ≈ 2.12, not long before the trailing
edge separation. The computed

〈
cp

〉
(x) is in good general agreement with that reported by

Cimarelli et al. (2018b), although some differences are evident from Fig. 8. For example,
for x < 0 our values are smaller (in absolute value), and the local minimum occurs later
downstream. For x > 0, instead, the opposite is observed before the maximum, which takes
place closer to the trailing edge and is less negative.

4 Single-Point Budget of the Reynolds Stresses

The turbulent fluctuations in the flow are now described by studying the budget equation
for the six independent components of the tensor for the Reynolds stresses. Terms for these
budgets have been discussed e.g. in Mansour et al. (1988) for the channel flow, and have an
obvious importance in turbulence modelling, but have not been fully documented yet for the
BARC flow. As in the channel flow, two components, namely〈uw〉and〈vw〉, are zero because
of statistical symmetry. Note that, in this Section, primes to indicate the fluctuating velocity
components will be omitted for conciseness.

Very recently, Cimarelli et al. (2019), Moore et al. (2019) and Rocchio et al. (2020)
presented and discussed the production term in the equation for the turbulent kinetic energy,
with the latter two studies focusing on the region close to the upstream corners. Hence,
before presenting the Reynolds stresses, we start with Fig. 9, which shows the spatial map
of the turbulent kinetic energy k = 〈uiui 〉/2 (a repeated index imply summation), which
is proportional to the tensor trace. The map is perfectly symmetrical on the two sides of
the body, again supporting the adequacy of the statistical sample. Before x < −1.3, k is
essentially zero, confirming the laminar state of the flow at the leading-edge separation and
within the secondary vortex. For x > −1.3, however, k rapidly increases, signifying a quick
transition to the turbulent state: the maximum is observed at (x, y) ≈ (0.2, 0.96). A further
local maximum is observed in the wake at (x, y) ≈ (3.65, 0.36). However, this is only
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half the value of the maximum in the primary vortex. Overall, the map of k resembles the
one reported by Cimarelli et al. (2018a): for example their global and local maxima are at
(0.2, 0.9) and (3.7, 0.35). However, the intensity of k in Cimarelli et al. (2018a) is larger than
here: for example their maximum in the primary vortex is k ≈ 0.40 instead of the present
maximum k ≈ 0.135.

We now proceed to describing the budget of the full Reynolds stress tensor. In tenso-
rial notation, a compact form of the budget equation, stemming from the manipulation
of the incompressible Navier–Stokes equations, and specialised to the present spanwise-
homogeneous problem, can be written as:

∂

∂x
ψx,i j + ∂

∂ y
ψy,i j = Pi j + Πi j − εi j . (5)

In Eq. (5), ψx,i j and ψy,i j are the fluxes in the x and y directions, defined as follows:

ψk,i j = 〈
uiu j uk

〉

︸ ︷︷ ︸
turbulent transport

+〈puk〉(δi,k + δ j,k)
︸ ︷︷ ︸

pressure transport

+ Uk
〈
uiu j

〉

︸ ︷︷ ︸
mean transport

+ ν
∂

∂xk

〈
uiu j

〉

︸ ︷︷ ︸
viscous diffusion

with k = x, y

(6)

whereas Pi j ,Πi j and εi j denote the production, the pressure-strain and the pseudo-dissipation
tensors, defined as:

Pi j = −〈uiuk〉∂Uj

∂xk
−〈

u juk
〉∂Ui

∂xk
, (7)

Πi j =
〈

p
∂ui
∂x j

〉

+
〈

p
∂u j

∂xi

〉

, (8)

εi j = ν

〈
∂ui
∂xk

∂u j

∂xk

〉

. (9)

Figure 10 plots the four non-zero components of the Reynolds stress tensor in the x − y
plane. Their general features have been already described by Cimarelli et al. (2018b). Once
the flow becomes turbulent for x ≥ −2, the largest fluctuations are those of the streamwise
component, in both the shear layer and the primary vortex, but the maxima of the three
diagonal components are of comparablemagnitude as also observed at larger Re (Moore et al.
2019). The peak of〈uu〉is at (x, y) = (0.21, 0.97), i.e. above the centre of the primary vortex,
and shows small values close to the cylinder’s wall, confirming its dynamical association to
the shear layer. The maximum of 〈vv〉 occurs slightly upstream than that of 〈uu〉, i.e. at
(x, y) = (0.05, 1.01), but it remains almost negligible near the wall, and is associated to the
core of the primary vortex. Lastly, the position of the maximum of〈ww〉 is almost identical
to that of 〈uu〉, at (x, y) = (0.24, 0.95). Interestingly, near the wall 〈ww〉 is the dominant
component. This strikingly differs from e.g. plane Poiseuille flow, and is in agreement with
the pattern seen in Fig. 2. In fact, large streamwise fluctuations are associated to the spanwise
structures originated by the instability of the shear layer, whereas large spanwise and cross-
stream fluctuations are linked to the streamwise-aligned structures populating the inner part
of the large recirculating region. In the wake,〈uu〉is large in the shear layer separating from
the trailing edge, with a peak at (x, y) = (3.46, 0.48), whereas smaller values are observed
along the symmetry line y = 0. The other components, on the other hand, are large in
core of the wake, with 〈vv〉peaking at (x, y) = (3.59, 0). The 〈ww〉component has quite a
broad distribution, without a distinct peak. The general appearance is consistent with known
results (Cimarelli et al. 2018b), but significant qualitative and quantitative differences emerge.
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Fig. 10 Contours of the Reynolds stresses in the x − y plane. Top left:〈uu〉; top right:〈vv〉; bottom left:〈ww〉;
bottom right:〈uv〉

Since themean velocity field and in particular the extent of the primary vortex differ, different
positions of the maxima are to be expected. Specifically, in Cimarelli et al. (2018b) maxima
at (0.07, 0.94), (0.46, 0.81) and (0.46, 0.78) are found for 〈uu〉, 〈vv〉and 〈ww〉 respectively.
Hence the largest streamwise fluctuations occur before the other components, and the largest
spanwise fluctuations occur closer to the cylinder side.

The off-diagonal component 〈uv〉 is also plotted in Fig. 10. The colour map is antisym-
metric: here and in the following, in the text we refer to the top side of the cylinder. The
most negative values are observed within the primary vortex, where the streamwise fluc-
tuations correlate significantly to the vertical ones resulting in a minimum of 〈uv〉 located
at (x, y) ≈ (0.19, 0.97). On the contrary, in the upstream portion for x < −1.5 below
the separated shear layer, slightly positive 〈uv〉are observed. Downstream the trailing edge
〈uv〉 is positive within the wake vortex, and negative elsewhere with a local minimum at
(x, y) ≈ (3.5, 0.37). The shear stress〈uv〉plays a fundamental role in the production of the
turbulent kinetic energy, which has been suggested (Cimarelli et al. 2019) to become negative
in a localised region in the BARC flow. This point will be discussed later.

Figure 11 shows P11, P22 and P12, i.e. the production terms for 〈uu〉, 〈vv〉 and 〈uv〉. We
recall that P33 = 0 because ∂W/∂x = ∂W/∂ y = 0, and that the sum of the diagonal
terms is half the production of turbulent kinetic energy. In the shear layer for x ≥ −2
P11 is positive and P22 is negative (albeit smaller). This implies that, once the shear layer
instability takes place, energy is drained from the mean flow to feed streamwise fluctuations,
whereas the opposite occurs for the cross-stream component v. Further downstream, in the
core of the primary vortex P11 and P22 are both positive, and the mean flow feeds both
〈uu〉and 〈vv〉. Furthermore, close to the wall in the downstream portion of the body, i.e. for
x ≥ 0, P11 becomes mildly negative, hence a sink for〈uu〉. In this region flow reversal takes
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Fig. 11 Contours of the production terms P11, P22, and P12

place, where ∂U/∂ y < 0, and the streamwise fluctuations are weaker. Similar considerations
can be put forward for the wake. Indeed, P11 is mildly positive in the recirculating region
behind the trailing edge, but becomes negative more downstream along the centerline y = 0,
where indeed low values of 〈uu〉 take place. On the contrary, along the centerline line and
outside the recirculation, P22 is positive with relatively large values, denoting production
of v fluctuations as shown also in Fig. 10. P12 is shown in the bottom panel of Fig. 11. It
is worth noting (Gatti et al. 2020) that, since 〈uv〉 is not positive-definite, interpreting P12,
Π12 and ε12 in terms of production or dissipation requires to account for the sign of 〈uv〉.
Negative values of P12 are observed everywhere—except in a flat region very close to the
cylinder side where it is slightly positive—with a global minimum within the primary vortex
at (− 0.59, 1.03) and a local minimum in correspondence of the shear layer separating from
the trailing edge at (2.65, 0.5). Overall, since in the region with large negative P12 〈uv〉 is
negative too, a production of〈−uv〉 takes place. With analogous reasoning, the negative P12
in the first part of the shear layer separating from the leading edge corners indicates a sink
for the positive〈uv〉.

Let us now focus on the energy production, by examining the contributions to P11 and P22.
Each production term can be split in two, to isolate contributions related to the streamwise
variation of the mean flow from those related to its cross-stream variation:

P11 = −2〈uu〉∂U
∂x︸ ︷︷ ︸

P11,a

−2〈uv〉∂U
∂ y

︸ ︷︷ ︸
P11,b

and P22 = −2〈uv〉∂V
∂x︸ ︷︷ ︸

P22,a

−2〈vv〉∂V
∂ y

︸ ︷︷ ︸
P22,b

. (10)

Figure 12 separately plots each of these four terms. P11,a and P22,b have opposite sign
and similar appearance in the domain, owing to the incompressibility constraint ∂U/∂x =
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Fig. 12 Production of〈uu〉(top) and〈vv〉(bottom), with separated contributions related to streamwise variation
(left) and cross-stream variation of the mean flow. The contributions are defined in Eq. (10)

−∂V ∂ y. The figure shows that the main contribution to P11 changes depending on the region
considered. On the shear layer, for x ≤ −1.5 positive production comes from P11,a and is due
to the negative values of ∂U/∂x associated with the shear layer. Here P11,b is negative, since
〈uv〉> 0 and ∂U/∂ y is positive everywhere at this station. Further downstream, both P11,a
and P11,b become positive, since〈uv〉< 0 (see Fig. 10). Production of〈uu〉in the core of the
main recirculating region is instead given by P11,b, and is determined by the positive values
of ∂U/∂ y: here ∂U/∂x < 0, leading to negative P11,a . Near the body P11 is dominated by
P11,a , as P11,b → 0 faster for y → 0.

Unlike P11, the main contribution to P22 comes from P22,b, as the companion component
P22,a is significantly smaller similarly to what found experimentally by Moore et al. (2019)
in the first part of the shear layer at Re = 13400. Therefore, the main driver here is ∂V /∂ y.
The negative production in the shear layer and in the reverse boundary layer for x ≤ 0 is
due to ∂V /∂ y > 0, whereas the positive values of P22 in the core of the main recirculating
region to ∂V /∂ y < 0.

Cimarelli et al. (2019) discuss the presence of a thin region with significant negative
production rate of turbulent kinetic energy, localised in the shear layer close to the leading-
edge corners (see Fig. 2 of their paper). Such a negative production region is not observed here.
In fact, as shown in the left panel of Fig. 13 where the total production Pk = (P11 + P22)/2
is plotted, mildly negative values are indeed found, but they are close to the leading-edge
corners below the shear layer, close to the cylinder wall for x > 0 and behind the trailing
edge in the wake region. Overall, P11 contributes to Pk more than P22 almost everywhere in
the domain, as seen in Fig. 11; this is true also for x = − 2.5, unlike what found at larger Re
in Rocchio et al. (2020), where a larger contribution from P22,b is reported. In Cimarelli et al.
(2019) negative production is linked to the interaction between〈uv〉and the mean streamwise

123



Flow, Turbulence and Combustion (2021) 107:875–899 893

Fig. 13 Left: contour of the production term for the turbulent kinetic energy Pk = (P11 + P22)/2; the black
line denotes the 0 value. Right: contribution of to the production term for the turbulent kinetic energy from
the interaction of〈uv〉and the mean shear ∂U/∂ y + ∂V /∂x , i.e. (P11,b + P22,a)/2

and vertical shears ∂U/∂ y and ∂V /∂x . This is confirmed in the right panel of Fig. 13 where
the sum (P11,b + P22,a)/2 is plotted: a region with negative (P11,b + P22,a)/2 < 0 is indeed
observed in the first portion of the shear layer (more precisely, this region is due to P11,b
alone, since P22,a is negligible). However, in this region of the domain P11,a is dominant,
eventually resulting in a positive production term.

Figure 14 shows the pressure-strain term, to elucidate how the pressure-mediated redis-
tribution of energy affects the various components of the tensor of turbulent stresses. Π11 is
negative almost everywhere, implying that〈uu〉is redistributed to the other components. This
takes place mainly in the shear layer and in the core of the primary vortex, where both Π22

andΠ33 are positive, signaling that energy is received from〈uu〉by both〈vv〉and〈ww〉. Along
the shear layer Π22 > Π33, so that 〈uu〉preferentially provides energy to 〈vv〉; the opposite
occurs in the core of the recirculating region, where 〈ww〉 is the largest receiver. Following
Gatti et al. (2020), the bottom left panel visualises this concept, by plotting in red (or blue)
the areas where energy is preferentially transferred from 〈uu〉 to 〈ww〉 (or 〈vv〉). In fact, the
incompressibility constraint mandates that:

Π22

Π11
+ Π33

Π11
= −1.

Hence, this panel plots the quantityΠ33/|Π11| under the condition thatΠ11 < 0,Π22 > 0
and Π33 > 0, and the colour scale is chosen to draw in red where the transfer from 〈uu〉
towards〈ww〉prevails over that towards〈vv〉, and in blue the opposite case. Near the cylinder
wall, predominantly in the downstream part, Π22 is negative, whereas both Π11 and Π33 are
positive. This essentially visualises the same splatting phenomenon observed for example
by Mansour et al. (1988) in the plane turbulent channel flow: owing to the non-penetration
boundary condition v is redistributed among u and w. Interestingly, near the BARC wall
Π33 > Π11, so that here the redistribution mainly occurs towards the spanwise velocity
component. This is visualised in the bottom right panel of Fig. 14 which plots the quantity
Π33/|Π22| under the condition that Π22 < 0, Π11 > 0 and Π33 > 0; the colour scale is
chosen to highlight in red (blue) the transfer of〈vv〉towards〈ww〉(〈uu〉). This is in agreement
with the observed prevalence of turbulent structures aligned with the x direction and with
larger intensity of 〈ww〉 compared to 〈uu〉 and 〈vv〉 in the near-wall region (recall also that
P11 < 0 is a sink for〈uu〉in this region of the flow).

The middle right panel of Fig. 14 shows Π12, the pressure-strain term for 〈uv〉. Π12 is
positive almost everywhere—except for the first portion of the shear layer separating from
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Fig. 14 Colour map of the pressure-strain tensor Πi j . In the bottom left panel, blue indicates where
Π33/|Π11| < 0.5 when Π11 < 0, Π33 > 0 and Π22 > 0, i.e Π22 > Π33; red indicates where
Π33/|Π11| > 0.5 when Π11 < 0, Π33 > 0 and Π22 > 0, i.e. Π33 > Π22. In the bottom right panel,
blue indicates where Π33/|Π22| < 0.5 when Π22 < 0, Π11 > 0 and Π33 > 0, i.e Π11 > Π33; red indicates
where Π33/|Π22| > 0.5 when Π22 < 0, Π33 > 0 and Π11 > 0, i.e. Π33 > Π11

the leading edge—with the largest values at the cylinder wall for x > 0 and local maxima
at (x, y) ≈ (− 0.5, 1.03) within the primary vortex and at (x, y) ≈ (2.7, 0.53) in the shear
layer separating from the trailing edge. Therefore, Π12 is a sink for〈uv〉everywhere. Indeed,
it dissipates positive 〈uv〉 in the shear layer for x < −1 and negative 〈uv〉elsewhere with a
peak of activity at the cylinder side.

The last term at the r.h.s. of Eq. (5) is the dissipation tensor. The relevant components
are drawn in Fig. 15. For the diagonal components, large values of the dissipation occur in
the shear layer for x ≥ −1.5 and in the core of the primary vortex. Interestingly, the largest
values are observed for 〈uu〉 and 〈ww〉. Moreover, for both the streamwise and spanwise
components, unlike for〈vv〉, large dissipation is also seen close to the cylinder, where viscous
effects are dominant. This qualitatively resembles the observations (see e.g. Mansour et al.
1988) put forward for the channel flow, and confirms the larger degree of universality for
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Fig. 15 Colour map of the dissipation tensor εi j

the dissipative phenomena near a wall. The dissipation term of 〈uv〉, ε12, is shown in the
bottom right panel of Fig. 15. ε12 is negative almost everywhere, except in the first portion
of the shear layer separating form the leading edge where it is slightly positive. The global
minimum occurs at the trailing-edge corner where the viscous phenomena are dominant,
whereas a local minimum, of almost a lower order of magnitude, is seen in the primary
vortex at (x, y) ≈ (− 0.1, 1); similarly to ε22, ε12 close to the cylinder side ε12 is low.
Overall, like for channel flow ε12 is of a lower order of magnitude compared to P12 and
Π12 almost everywhere, and therefore its contribution to the production/dissipation of 〈uv〉
is negligible.

The production, pressure-strain and dissipation tensors can be put together as a single
source term at the r.h.s. of Eq. (5). Figure 16 plots contour of the source term ξi j = Pi j +
Πi j − εi j , together with the field lines of the flux vector with components (ψx,i j , ψy,i j ).
These lines show how the excess of

〈
uiu j

〉
gets redistributed in the flow. For〈uu〉, a positive ξ11

shows an excess of production of〈uu〉which is redistributed along the field lines originating
from a singularity point placed in the shear layer at (x, y) ≈ (− 1.7, 0.82), close to the
maximum of ξ11 (corresponding to the maximum of P11). Following the field lines, some
of them are observed to carry 〈uu〉downstream towards the wake, whereas others enter the
large recirculating region of the primary vortex. Much like the mean flow, these lines show a
spiraling motion and vanish because of dissipation close to the rotation centre of the vortex,
at (x, y) ≈ (− 0.4, 0.8). Here, Fig. 15 confirms the importance of viscous effects. The field
lines of〈vv〉are different. They originate in the shear layer at (x, y) ≈ (− 2.12, 0.82), close
to the maximum of ξ22 (where, as seen in Figs. 11 and 14, Π22 > |P22|). Some of them carry
part of the excess of〈vv〉downstream towards the wake region, whereas others are attracted
by the solid wall. In fact, near the wall ξ22 < 0 because of the splatting effect, so that the
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Fig. 16 Field lines of the fluxes superimposed to a colormap of the complete source term ξi j = Pi j +Πi j −εi j

wall acts as a sink. The field lines of〈ww〉qualitatively resemble those for〈uu〉. Indeed, ξ33
is maximum in the shear layer, where the pressure strain produces spanwise fluctuations.
As for 〈uu〉, some lines advect part of the excess of 〈ww〉 downstream towards the wake,
whereas others enter and remain in the recirculating bubble, spiralling inwards towards the
centre of rotation of the primary vortex, and ending at (x, y) ≈ (− 0.44, 0.83) due to viscous
dissipation, i.e. slightly upstream the vanishing point of the lines of〈uu〉. Interestingly, these
lines reach the most upstream part of the primary vortex, and highlight the zone where the
reverse flow separates because of the adverse pressure gradient. The field lines of〈uv〉have
a distinct shape. Some originate at the solid wall where ξ12 is maximum, whereas others
originate in the wake and carry〈uv〉upstream. The line set is attracted by the large sink region
with ξ12 < 0 placed in the shear layer, and approach the leading edge corner. Again, when
discussing these field lines, fluxes of〈uv〉should not be interpreted in terms of energy transfer,
as〈uv〉 is not a positive-definite quantity (Gatti et al. 2020).

5 Conclusions

We have studied with a Direct Numerical Simulation the BARC benchmark, i.e. a 5:1 rect-
angular cylinder immersed in a uniform flow, in the turbulent regime. Despite the simple
and somewhat idealised shape of the cylinder, the BARC flow contains complex and fas-
cinating features typical of separating and reattaching flows over complex geometries. The
large scales associated with the flow instabilities coexist and interact with the smaller scales
associated with turbulent motions to create a rich and intricate scenario. A fully reliable
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statistical characterisation of the BARC flow is still lacking: large scatter of data is observed
already for first-order statistics (Bruno et al. 2014), as the flow is very sensitive to geometry
details and various types of external disturbances which are unavoidable in experiments,
and to various modelling and discretisation choices in numerical simulations. Similarly, the
agreement between experimental and numerical information is not entirely satisfying yet.

This study has replicated the first DNS of the BARCflow, recently carried out by Cimarelli
et al. (2018b) at a value of the Reynolds number (based on the body thickness and the uniform
incoming velocity) of Re = 3000. The numerical toolbox employed here is quite different
though, as we have used a in-house finite-differences solver instead of the finite-volumes
OpenFOAMpackage.Moreover, we have used a finer spatial discretisation—the total number
of point is more than one order of magnitude larger—and a longer averaging time. The goal
of the study is to contribute to a solid and reliable DNS-based benchmark, that could be used
as reference for RANS- or LES-based simulations of the BARC flow.

We have described and discussed the main features of the flow in terms of first- and
second-order statistics, and the main differences with the available DNS results (Cimarelli
et al. 2018b) have been reported. Our results present a near-perfect symmetry along the y = 0
centerline, which demonstrates the adequacy of the statistical sample. The longitudinal extent
of the largest primary vortex has been found to be 10% larger, and the secondary vortex 10%
smaller than the reference study. The position of the recirculating regions are different too.
Also, we do not confirm the presence of a spot in the leading-edge shear layer where the
production rate of turbulent kinetic energy becomes negative (Cimarelli et al. 2019).

Moreover, the statistical understanding of the BARC flow has been furthered, and for
the first time the whole set of terms involved in the budget equation for the tensor of the
Reynolds stresses has been presented and discussed in detail. The analysis highlights the
strongly anisotropic and inhomogeneous nature of the flow. The shear layer separating from
the leading-edge corner is initially laminar, but its instability soon leads to the fluctuating
field draining energy from the mean flow and feeding

〈
u′u′〉, which is the dominant contributor

to the turbulent kinetic energy. The other components,
〈
v′v′〉and

〈
w′w′〉, are instead produced

by a redistribution of
〈
u′u′〉driven by the pressure-strain term, and have a lower intensity. The

cross-stream component of the mean flow in the shear layer is fed from the fluctuating field.
The excess of turbulent kinetic energy is partially advected towards the wake, and partially
transported within the large primary vortex. Here,

〈
u′u′〉and

〈
v′v′〉are fed by energy drained

from themean flow, and redistributionmoves energy away from
〈
u′u′〉towards

〈
v′v′〉and

〈
w′w′〉.

In that portion of the primary vortex where reverse flow takes place (close to the cylinder
wall), a splatting effect is observed, with

〈
v′v′〉being redistributed to

〈
u′u′〉and (mainly)

〈
w′w′〉.

In this region the production term for
〈
u′u′〉is negative, indicating that energy is drained from〈

u′u′〉to feed the mean flow. Hence, in the reverse boundary layer the turbulent kinetic energy
is mainly organised in spanwise fluctuations. Energy dissipation takes place mainly in the
core of the primary vortex, where it is comparable for all the normal stresses, and in the
vicinity of the cylinder wall, where the largest dissipation is observed for the wall-parallel
components.

While the present state of affairs calls for further reduction of the uncertainty in the sta-
tistical description of this flow, the present dataset—which is made available to the research
community at the following DOI: https://doi.org/10.5281/zenodo.4472682—provides an
useful addition to the existing knowledge on the BARC benchmark, an interesting flow
for turbulence modelling.
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