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Abstract
A new reaction rate source term �m(c) for modelling of premixed combustion with a sin‑
gle progress variable c is proposed. �m(c) mimics closely the Arrhenius source term �A(c) 
for a large range of activation energies and density ratios while admitting analytic evalua‑
tion of many quantities of interest. The analytic flame profile cm(�) very closely approxi‑
mates the numerically integrated Arrhenius flame profiles cA(�) . An important feature 
of cm(�) is that it is analytically invertible into a �m(c) . Analytic estimates of the laminar 
flame Eigenvalue Λ and of the Le dependence of the laminar flame speed sL are derived, 
which are more accurate than classic results based on asymptotic analyses. The flamelet 
pdf p(c) = 1∕(Δ ∗ c ∗ (1 − cm)) for a flat laminar flame front in a LES cell of width Δ is 
derived. The exact mean of the reaction rate �(c) is compared to a beta pdf result, which is 
shown to be inaccurate for large ratios of filter width to flame thickness Δ∕�f  and particu‑
larly for high activation energy flames. For multidimensional flame wrinkling we derive 
the exact relationship p(c) = p1D(c)I(c)Ξ(c) between the 3D pdf p(c), the 1D flat flame pdf 
p1D(c) , a correction factor I(c) for change of inner flame structure and a geometrical wrin‑
kling factor Ξ(c) . We show that the c dependence of these quantities cannot be neglected 
for small Δ∕�f  . A simple model of a sinusoidally wrinkled flame front qualitatively dem‑
onstrates the effect of flame wrinkling on p(c). We show that for large Δ∕�f  , a wrinkling of 
the reaction zone almost constantly increases p(c) in the reaction zone by a wrinkling fac‑
tor Ξ∗ (defined for the surface of the isosurface of maximum heat release) while reducing it 
near c = 0, 1 as required for normalisation of p(c). The 1D p(c) evaluated using a reduced 
filter width Δ� = Δ∕Ξ∗ may be a good approximation of the wrinkled flame pdf for evalua‑
tion of �(c) for such cases.

Keywords Turbulent premixed combustion · Flamelet pdf · LES combustion subgrid 
model
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cp  Specific heat at constant pressure
f  Wrinkling function
s  Stretching factor
u   Velocity
x  Spatial coordinate
B1  Arrhenius prefactor
L1, L2   Abbreviation constants
g, h   Abbreviation constants
I   Correction factor
Le   Lewis number
sL  Laminar flame speed
m  New source term index
c  Reaction progress variable
p  pdf
t  Time
Y  Fuel mass fraction
A, B  BML parameters
D   Diffusion coefficient
K1, K2  Abbreviation constants
H   Heaviside function
l   Eddy size
N  pdf normalization factor
T  Temperature
z   Dummy variable

Greek
�  Arrhenius density jump coefficient
�  Delta function, flame thickness
�  Density
�  Heat conductivity
�,�   Normalized spatial coordinates
Γ  Gamma function
Σ  Flame surface density
�   Arrhenius activation temperature coefficient
�  BML function
�  Product mass fraction
�  Reaction source term
Δ  Filter size
Λ  Arrhenuis eigenvalue coefficient
Ξ  Wrinkling factor

Subscripts
b  Burnt
m  New functions
A  Arrhenius
0, 1  Arrhenius rate temperature exponents
1D  1D flat flame
f  Flame
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u  Unburnt
E  Echekki
e  Eddy
c∗  Isosurface

Superscripts
+  Upper edge of filter
∗  c value of maximum heat release
−  Lower edge of filter

1 Introduction

In the CFD simulation of turbulent premixed combustion using RANS and LES, the size of 
computational cells is usually too big to fully resolve the laminar flame structure embedded in 
the turbulent flow field. The ratio of flame thickness to cell size decreases further at elevated 
pressures due to the drop of diffusivities and heat conductivity with pressure. Thus combus‑
tion (subgrid) models are required for the simulation of premixed combustion processes in 
most technical applications.

For better understanding of basic phenomena and for model development, it is often 
useful in premixed combustion to study the case of a single reaction progress variable 
c = (T − Tu)∕(Tb − Tu) assuming single‑step irreversible chemistry and adiabatic combus‑
tion. Tu, Tb are the unburnt and fully burnt temperatures, respectively. The c transport equa‑
tion is given by

where � , u, c are density, velocity and progress variable, and � , cp are the heat conductivity 
and specific heat at constant pressure. For Arrhenius chemistry and Lewis number Le = 1 , 
the chemical source term can be written as Poinsot and Veynante (2005):

where � =
Tb−Tu

Tb
 represents the normalized temperature raise and � = �Ta1∕Tb is a measure 

of the activation temperature Ta1 . The temperature exponent �1 in Eq. (2) is usually taken as 
�1 = 0 or �1 = 1 . The continuity equation requires �u = const. = �usL at steady state and 
we have � ∼ 1∕T ∼ 1∕(1 − �(1 − c)) for constant pressure combustion. One can rescale the 
spatial coordinate (Poinsot and Veynante 2005) according to � = ∫ x

0
�usLcp∕�dx , yielding a 

simpler differential equation for c:

with

(1)𝜌
𝜕c

𝜕t
+ 𝜌u

𝜕c

𝜕x
=

𝜕

𝜕x

(
𝜆

cp

𝜕c

𝜕x

)
−

�̇�F

Y1
F

(2)
�̇�F

Y1
F

= B1T
𝛽1e

−
𝛽

𝛼 𝜌(1 − c)exp

(
−

𝛽(1 − c)

1 − 𝛼(1 − c)

)

(3)
�c

��
=

�2c

��2
+ �(c)

(4)�(c) = Λ(1 − �(1 − c))�1−1(1 − c)exp

(
−

�(1 − c)

1 − �(1 − c)

)
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The prefactor Λ in Eq. (4) represents the eigenvalue of the transport equation which needs 
to be chosen such that the boundary conditions c = 0 for � → −∞ and c = 1 for � → +∞ 
are fulfilled. Asymptotic analysis of Eqs. (3, 4) in the limit of large � by Zeldovic, Frank 
Kamenetski and von Karman yielded Λ ∼ �2∕2 . An improved result was derived by Wil‑
liams (2018) for �1 = 1:

The turbulent flow field will wrinkle and stretch the flame front, modifying the volume 
specific fuel consumption rate. For high activation energies, the reaction front will remain 
thin even for quite high Karlowitz numbers (Nilsson et  al. 2019). A variety of subgrid 
models have been developed to represent the effect of subgrid flame folding/stretching 
on the fuel consumption rate. The artificially thickened flame model (Colin et  al. 2000) 
makes the flame front resolvable on the LES grid by increasing the diffusion and heat 
conduction coefficients and reducing the strength of the reaction term, leaving the flame 
speed unchanged. The effect of non resolved subgrid flame wrinkling needs to be taken 
into account by an efficiency function. Other approaches are flame surface density (trans‑
port) models, where the RHS of Eq. (1) is replaced by �u⟨sc⟩Σf  with flame surface density 
Σf  and ⟨sc⟩ being a surface averaged flame speed. Σf  is either determined by a transport 
equation or approximated as Σf = Ξ ∣ ∇c ∣ and evoking algebraic models for the wrinkling 
factor Ξ (Poinsot and Veynante 2005; Ma et  al. 2013). Other researchers have proposed 
to pretabulate the filtered source term (Fiorina et  al. 2010) for given LES cell size Δ or 
extract more accurate expressions for �(c) by 1‑D approximate deconvolution (Domingo 
and Vervisch 2015).

Probability density functions p(c) with normalization condition ∫ 1

0
p(c)dc = 1 allow to 

evaluate cell averages of any quantity z(c) as z(c) = ∫ 1

0
z(c)p(c)dc . In classic BML theory the 

pdf is assumed to take the form

with 𝛾(c) ≪ 1 . For �(c) → 0 one obtains B ∼ c and A ∼ (1 − c) . Unfortunately, in the limit 
�(c) = 0 accurate mean values of quantities vanishing at both ends c = 0, 1 (like the chemi‑
cal source term �(c) ) cannot be evaluated by pBML(c) . Consequently, the calculation of the 
mean fuel consumption rate requires knowledge of �(c) . A 1‑D flamelet pdf can be defined 
through (Bray et al. 2006):

with normalization factor N = ∫ c+

c−
dc

�c∕��
 where c−, c+ represent the c values on the edges of 

the computational cell. All ingredients of pf (c) can be evaluated only numerically for 
Arrhenius chemistry. Bray et  al. (2006), Salehi and Bushe (2010) use ad hoc lower and 
upper bounds c− = 𝜖 > 0 , c+ = 1 − � to determine N, claiming that N depends only weakly 
on � . Another popular presumed pdf is the beta pdf

where the coefficients a, b > 0 can be chosen to reproduce given values of mean and vari‑
ance of c. In case of a beta pdf, c− = 0 and c+ = 1 . The beta pdf is mostly used to model 

(5)ΛWilliams =
�2

2
+ �(3� − 1.344)

(6)pBML(c) = A�(c) + B�(1 − c) + �(c)

(7)pf (c) =
1

N

1

�c∕��

(8)p�(c) =
ca−1(1 − c)b−1Γ(a + b)

Γ(a)Γ(b)
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diffusion processes and does a good job in representing typical pdf shapes occurring in this 
case. As a representation of the flamelet pdf, it has been shown (Bray et al. 2006) to deliver 
inaccurate results for the mean reaction term particularly for large c variance.

Knudsen et al. (2010) find a good correlation between the DNS source term filtered to a 
LES grid and the beta pdf value (with mean and variance in the beta pdf evaluated from the 
DNS) for small ratios of ΔLES∕ΔDNS < 5 , while large errors result for larger ratios ΔLES∕ΔDNS . 
Domingo et al. (2005) report that their flamelet pdf with ad hoc choice of the integration limits 
c−, c+ delivered unphysical parameters A, B for small values of c variance. They switched to 
a beta pdf in those cases. In the current contribution we hope to clarify some of these issues.

The paper is structured as follows: We first present the simplified reaction source term 
introduced by Ferziger and Echekki (1993), which yields analytical results for many quantities 
of interest. We then introduce a new source term �m(c) with similar analytic capability, which 
however approximates the Arrhenius source term and the flamelet profile much closer. As first 
applications, we derive expressions for the Λ eigenvalue of the Arrhenius source term and for 
the dependence of the laminar flame speed sL on Lewis number and Arrhenius parameters, 
which are more accurate than classic expressions from the literature. We compare flamelet 
and beta pdf’s for different filter widths Δ∕�f  . We discuss the relation between pdf, wrinkling 
factor and correction factor for multidimensionally wrinkled flames and we demonstrate the 
modification to the pdf by flame wrinkling using a simple model of a sinusoidally wrinkled 
flame. Finally, we give some conclusions and an outlook to further work.

2  Ferziger/Echekki Source Term

Ferziger and Echekki (1993) proposed to set the source term to zero in the pure diffusion 
region 0 ≤ c < 1 − 1∕𝛽 and to use a linear term �(c) = ΛE(1 − c) in the reaction region 
1 − 1∕� ≤ c ≤ 1 . Due to the simple form of the source term, the solution of the differential 
equation

where H(x) represents the Heaviside jump function, are pure exponentials in � . Choosing 
the location � = 0 for c = 1 − 1∕� puts the pure diffusion region at negative � and the react‑
ing region at positive � . Matching function values and derivatives of c(�) at � = 0 , the c(�) 
profile becomes

The eigenvalue of Eq. (9) is given by ΛE = �(� − 1) . Figure 1 shows a comparison of the 
Echekki cE(�) profile and its source term with the Arrhenius source term and the numeri‑
cally integrated cA(�) profile for �1 = 0 and a relatively low � = 6 , � = 9∕11 corresponding 
to a density jump Tb∕Tu = 4.5 . The c(�) profiles are in reasonable agreement.

(9)
�c

��
=

�2c

��2
+ ΛE(1 − c)H(c − (1 − 1∕�))

(10)cE(𝜉) =

{(
1 −

1

𝛽

)
exp(𝜉) ∶ 𝜉 < 0

1 −
1

𝛽
exp(−𝜉(𝛽 − 1)) ∶ 𝜉 > 0
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3  New Analytical Flamelet Profile c
m
(�) and Source Term !

m
(c)

Although the Echekki solution admits analytical evaluations of a number of quanti‑
ties, which are available only numerically with the Arrhenius source term, it has some 
disadvantages:

– cE(�) is only a reasonable approximation to cA(�) for small to medium �
– the pdf is not a good approximation to the Arrhenius pdf in the reactive c region
– the piecewise definitions of cE(�) and its inversion �E(c) makes calculations quite 

cumbersome

It is therefore our goal to find an improved approximation to the Arrhenius �A(c) , which 
guarantees the correct boundary conditions of c(�) and still admits analytical integration 
of Eq. (3). This can be achieved by postulating functional forms of c(�) with analytical 
inverse �(c) and calculating �(c) according to:

and �(c) = z(�(c)) . Obviously, the resulting �(c) should be positive over the whole interval 
0 < c < 1 . The Echekki cE(�) fulfills this requirement but has the above disadvantages. A 
more elegant and admissible c(�) is given by:

Similar to the Echekki cE(�) with parameter � , cm(�) has a free parameter m which can 
be used to mimic cA(�) for different Arrhenius parameters �, �, �1 . For large m, cm(�) 
approaches a step function H(�) centered at � = 0 , which is the correct thin flame limit. 
The profile cm(�) can be inverted easily:

The profile yields a thermal flame thickness of:

(11)z(�) =
�c

��
−

�2c

��2

(12)cm(�) = [1 + exp(−m ∗ �)]−1∕m

(13)�m(c) =
1

m
ln

(
cm

1 − cm

)

Fig. 1  Left: Arrhenius (full) and Echekki (dashed) source terms versus c. Right: Numerical Arrhenius solu‑
tion cA(�) and Echekki c(�) with difference (gray)
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and the reaction source term is given by:

Note that this source term is identical to that of the KPP‑Fisher equation for m = 1 , gener‑
alizations exist which correspond to the case m ≠ 1 . Equation (11) represents the travelling 
wave equation of these equations with suitably rescaled spatial coordinate � . Solutions of 
this equation and their behaviour have been studied in Kyrychko and Blyuss (2009), Fan 
(2002).

4  Determination of Parameter m

To determine values of m which “optimally” represent a given Arrhenius source term �A(c) 
with parameters �, �, �1 , we generated numerical solutions of Eq. (3) for �1 = 0, 1 for a range 
of parameters ( �, � ) and determined m by numerical minimization of 

[
cm(�) − cA(� − �0)

]2 . 
Note that the numerical shift �0 , which is necessary to align numerically generated cA(� ) with 
cm(�) , is irrelevant since the position of the flame front on the � axis is arbitrary. The fitted m 
are found to be well represented by the following expressions valid in the physically relevant 
ranges of 4 < 𝛽 < 30 and 1∕2 < 𝛼 < 1:

Figure  2 shows comparisons of �A(c) with �m(c) and of cA(�) with cm(c) for 
�1 = 0, � = 9∕11, � = 6, 18 using these m correlations. Results for �1 = 1 are too similar to 
be shown here. The new source term is always shifted slightly towards c = 1 compared to 
the Arrhenius one. Note however the excellent agreement between cA(�) and cm(�).

(14)�f ,m =
1(

dcm(�)∕d�
)
max

=
(m + 1)

m+1

m

m

(15)�m(c) = (m + 1)(1 − cm)cm+1

(16)�1 = 0 ∶ m0 =
1

5
(4� + 4� − 5)

(17)�1 = 1 ∶ m1 =
1

12

�
5
√
�(4� + �) + 10� + 5� − 18

�

Fig. 2  Left: Arrhenius (full) and new (dashed) source terms. Right: Numerical Arrhenius solution cA(�) and 
new c(�) with difference (gray)
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Table 1 shows typical m values for small and large activation energy flames as analysed in 
Poinsot and Veynante (2005).

5  Application: Derivation of Improved 3 Eigenvalue

As first applications of this model we present a new approach to derive improved approxi‑
mations for the laminar flame eigenvalues Λ0,1 . In contrast to results from classic asymptotic 
analyses (which are derived in the limit of large activation energy, i.e. large � values), the new 
expressions are also accurate for moderate values of �.

We use the fact that by construction �m already guarantees the correct limiting behaviour 
c(� → −∞) = 0 and c(� → +∞) = 1 . The optimal m values are found to be closely correlated 
to cmax , the location of the maximum of �A(c) , which is independent of prefactor Λ . There‑
fore a choice of the Arrhenius Λ which minimizes the difference between �A(c) and �m(c) for 
given m should provide a good approximation to the correct Arrhenius flame eigenvalue Λ . 
Normally one would look for a minimimum of the integral of the squared difference between 
�A(c) and �m(c) . Since this does not admit an analytic solution we solve the following equa‑
tion for Λ:

This equation is acceptable in this case due to the undulary difference of �A(c) and �m(c) . 
For �1 = 0 we get with

while �1 = 1 yields with

(18)∫
1

0

(
�A(c) − �m(c)

)
= 0

(19)

L1 = (� + �)e
�

�

(
Ei

(
−
�

�

)
− Ei

(
�

(� − 1)�

))

L2 = (� − 1)�e
�

�−1 + �

Λ0 =
−�3m0

2(m0 + 2)(L1 + L2)

(20)

K1 = �

(
(� − 1)

(
�2 + � + �

)
e

�

�−1 + � + �

)

K2 = �(2� + �)e
�

�

(
Ei

(
−
�

�

)
− Ei

(
�

(� − 1)�

))

Λ1 =
�4m1

(m1 + 2)(K1 + K2)

Table 1  Typical m values for 
small and large activation energy 
flames

� � m(�0 = 0) m(�0 = 1)

0.818 6 4.454 4.479
0.75 8 6.000 6.367
0.75 12 9.2 9.715
0.86 18.4 14.408 15.236
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Ei(z) represents the exponential integral function. To simplify the expressions in 
Eqs. (19, 20), we note that exp[�∕(� − 1)] → 0 for large � and 𝛼 < 1 and that the function 
f (z) = 1∕(ezEi(−z)(z + 2)z + z + 1) with z = �∕� can be approximated accurately by a sec‑
ond order polynomial in z in the interesting range 4 < z < 40 . The following expressions 
for Λ0,Λ1 approximate Eqs. (19, 20) very closely in this z range:

For comparison to classical results, we perform a Taylor series in 1∕� , yielding the follow‑
ing leading order terms:

and

Note the similarity of the first two terms in Eq. (24) to the Williams result Eq. (5), which 
was derived by asymptotic expansions in 1∕� and assuming �1 = 1 . The Williams factor 
(3� − 1.344) is replaced by (3� − 6∕5) with additional terms in � only. For �1 = 0 , the term 
multiplying � is replaced by 2� − 5∕4 with different � terms. While the Williams Λ works 
well for 𝛽 > 8 and �1 = 1 , the new expressions are also valid for smaller 𝛽 > 4 and pro‑
vide a much better approximation in the case of �1 = 0 . Figure 3 shows the numerically 
integrated cA(�)�s using the Arrhenius source term �A(c) for � = 9∕11, � = 6, �1 = 0 with 
Eigenvalues Λ0 and ΛWilliams . The violation of the boundary condition c(�) = 0 for c → −∞ 
when using ΛWilliams is apparent.

(21)Λ0 = −
(4� + 4� − 5)

(
�2 − 4�� − �2

)
8� + 8� + 10

(22)Λ1 = −

�
2�2 + 6�� + �2

��
9
√
�(4� + �) + 2�(5� − 9) − 9�

�

6
√
�(4� + �) − 4�(5� + 3) − 6�

(23)Λ0 ∼
�2

2
+
(
2� −

5

4

)
� +

1

16

(
−8�2 − 60� + 25

)

(24)Λ1 ∼
�2

2
+
(
3� −

6

5

)
� + �2 −

24�

5
+

18

25

Fig. 3  Numerical cA(�) solution 
using Λ0 [black, Eq. (19)] and 
Williams Λ [gray, Eq. (5)]
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6  Application: Lewis Number Dependence of Laminar Flame Speed

In the case of Le ≠ 1 , an additional transport equation for the normalized fuel concen‑
tration Y(x, t) needs to be solved:

Defining � = 1 − Y  and Le = �∕(�cpD) , Eq. (25) can be cast in the following form:

emphasising the similarity to Eq.  (1) except for the denominator 1/Le. In the chemi‑
cal source term �(c) the factor (1 − c) in front of the exponential in Eq.  (4) needs to be 
replaced by (1 − �) (Poinsot and Veynante 2005; Ferziger and Echekki 1993):

Again rescaling the spatial coordinate according to � = �usLcp∕� , we obtain:

and

where now the chemical source term depends not only on c but also on �:

The prefactor ΛLe = �∕(cp�
2
u
s2
L
) in the source term represents the Lewis‑dependent eigen‑

value of the transport equations, which needs to chosen such that the boundary conditions 
c,� = 0 for � → −∞ and c,� = 1 for � → +∞ are fulfilled simultaneously. For Le = 1 , it is 
obvious that �(�) ≡ c(�) solves both Eqs. (28, 29) with the given boundary conditions and 
Λ chosen as described above.

From numerical integration of Eqs. (28, 29), varying ΛLe to fulfill the boundary con‑
ditions we find (maybe not surprisingly) that c(�)�s for Le ≠ 1 are almost identical to c(�) 
for Le=1, while the �(�) are more diffuse for Le < 1 and less diffuse for Le > 1 . We find 
also, that (1 − �) is closely proportional to (1 − c) in the region where the source term 
�(c,�) is notably different from zero.

Inspection of Eq. (30) shows that if ILe(1 − �) = (1 − c) with constant ILe , the source 
term in Eq. (28) would be identical to Eq. (4) and the solution for c(�) would indeed be 
the same as in the case Le = 1 provided that ΛLe∕ILe = ΛLe=1(�, �) . Equation (29) can be 
cast in a formally similar form to Eq. (28) by rescaling the spatial coordinate in Eq. (29) 
as � = Le�:

(25)𝜌
𝜕Y

𝜕t
+ 𝜌u

𝜕Y

𝜕x
=

𝜕

𝜕x

(
𝜌D

𝜕Y

𝜕x

)
+

�̇�F

Y1
F

(26)𝜌
𝜕𝜙

𝜕t
+ 𝜌u

𝜕𝜙

𝜕x
=

1

Le

𝜕

𝜕x

(
𝜆

cp

𝜕𝜙

𝜕x

)
−

�̇�F

Y1
F

(27)
�̇�F

Y1
F

= B1(1 − 𝛼(1 − c))𝛽1−1e−
𝛽

𝛼 𝜌(1 − 𝜙)exp

(
−

𝛽(1 − c)

1 − 𝛼(1 − c)

)

(28)
�c

��
=

�2c

��2
+ �(c,�)

(29)
��

��
=

1

Le

�2�

��2
+ �(c,�)

(30)�(c,�) = ΛLe(1 − �(1 − c))�1−1(1 − �)exp

(
−

�(1 − c)

1 − �(1 − c)

)
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Inserting the Ansatz (1 − c) = ILe(1 − �) into Eq. (30) yields

which is formally identical to Eq.  (28) if we replace � by c, � by �� = ILe� , and � by 
�� = ILe� . The Eigenvalue of the equation to fulfill the boundary condition must therefore 
be equal to ΛLe=1(�

�, ��) . This yields the following equations for ΛLe and ILe:

and

To derive an equation for the dependence of the laminar flame speed sL on Le, �, � , we now 
replace ΛLe=1 in Eqs. (33, 34) for �1 = 0 by Eq.  (21). This yields a quadratic equation for 
ILe,0:

Solving for ILe,0 and remembering that the Eigenvalue of the transport equation is related to 
the laminar flame speed through ΛLe = �∕(cp�

2
u
s2
L
) , we obtain a relationship for the varia‑

tion of sL with Le, �, � through sL(Le) = sL(Le = 1)∕
√
ILe:

A similar slightly more complex relation can be obtained for sL in the case of �1 = 1 . The 
dependence of sL(Le)∕sL(Le = 1) on Le is much stronger than on �, � . Figure  4 shows 
sL(Le)∕sL(Le = 1) versus Le for � = 0.818 , typical values of � and �1 = 0, 1 . We can see 
that the differences between sL for �1 = 0 and �1 = 1 in this range of Le numbers are mini‑
mal (of the order of 1% at Le = 2 , but increasing at higher Le). A Taylor series of s2

L
 in 

inverse powers � shows that to leading order sL(Le)∕sL(Le = 1) →
√
Le for large � in 

agreement with classical results, see Williams (2018), Ferziger and Echekki (1993).

(31)
��

��
=

�2�

��2
+

1

Le
�(c,�)

(32)
��

��
=

�2�

��2
+

ΛLe

Le

(
1

1 − �ILe(1 − �)

)�1−1

(1 − �)exp

(
−

�ILe(1 − �)

1 − �ILe(1 − �)

)

(33)
ΛLe(�, �)

ILe(�, �)
= ΛLe=1(�, �)

(34)
ΛLe(�, �)

Le
= ΛLe=1(�ILe, �ILe)

(35)ILe,0
(
�2 − 4�� − �2

)( 4� + 4� − 5

Le(8� + 8� + 10)
−

ILe,0(4�ILe,0 + 4�ILe,0 − 5)

8�ILe,0 + 8�ILe,0 + 10

)
= 0

(36)

g = 4(� + �) − 5

h =
4(� + �) + 5

4(� + �) − 5

sL(Le)

sL(Le = 1)
=

��
g2
�
g2(h + 1)2 + 60gh(h + 1)Le + 100h2Le2

�
− g2(h + 1) − 10ghLe

2
√
5g
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7  Analytic Flamelet pdf’s

In the following, we derive the subgrid flamelet pdf of a freely propagating flat premixed 
flame within a CFD cell of width Δ . Figure 5 shows the c(�) profile of a 1‑D‑flame front in a 
cell of width Δ ∼ 2 ∗ �f  . Note that for consistency all spatial quantities like the cell width Δ 
and the thermal flame thickness �f  have to be calculated in units of �.

Due to the monotonicity of c(�) , the cell average c is a unique function of Δ and of the 
position of the flame front within the cell. We denote the position of the left cell boundary 
as �− and the corresponding c value as c− = c(�−) . The position of the right cell boundary is 
�+ = �− + Δ with c+ = c(�+).

The flamelet pdf p(c) is given by

with normalisation factor N. The normalisation condition for p(c) yields

(37)p(c) =

⎧⎪⎨⎪⎩

0 ∶ c < c−

1

N

1

dc∕d𝜉
∶ c− < c < c+

0 ∶ c > c+

(38)1 = ∫
1

0

p(c)dc =
1

N ∫
c+

c−

1

dc∕d�
dc =

1

N ∫
�+

�−
d� =

�+ − �−

N
=

Δ

N

Fig. 4  sL(Le)∕(sL(Le = 1)) versus Le for � = 6 (black), � = 12 (dashed) and � = 20 (gray); left:�1 = 0 , 
right:�1 = 1

Fig. 5  LES cell width for 
integration of premixed reaction 
source term
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for any flamelet pdf, yielding N = Δ . This is also evident when calculating the mean of a 
variable z(c) from p(c):

The last term is identical to a simple spatial mean of z within the cell.
Many of the analytic results presented below are only possible if c− , c+ and 1∕(dc∕d�) 

are available as analytical functions of c. This requirement is fulfilled both by the 
Echekki cE(�) and by the new profile cm(�) . For the Echekki cE(�) , we get:

The new profile cm(�) yields:

and

The functional form of the new flamelet pdf pm(c) may look similar to a beta pdf p�(c) but 
there are notable differences. The first factor 1/c could be realized in p�(c) by setting a = 0 , 
which is however not admissible in this context since the pdf would not be integrable at 
c = 0 . Note that the factor 1/c arises as a consequence of the pure diffusion in the preheat 
region c → 0 and is independent of the Arrhenius parameters �, �, �1 . The second factor 
1∕(1 − cm) is responsible for the characteristic asymmetry of the flamelet pdf, its integral 
also diverges logarithmically c = 1 . In contrast to the beta pdf, the power m is on c, not on 
(1 − c).

8  Mean Value of Chemical Source Term

For the new c(�) flame profile and pdf, the mean of the reaction source term �m(c) eval‑
uates analytically as:

An analytical result can also be derived for the mean of the sum of laminar diffusion 
and reaction source terms, which is often modelled together e.g. in flame surface density 
models:

(39)z(c) = ∫
1

0

z(c)p(c)dc =
1

Δ ∫
c+

c−

z(c)

dc∕d�
dc =

1

Δ ∫
�+

�−
z(�)d�

(40)pE(c) =
1

Δ

(
1

dc∕d𝜉

)

E

=

{
1

Δ

1

c
∶ c < 1 −

1

𝛽
1

Δ

1

(𝛽−1)(1−c)
∶ c > 1 −

1

𝛽

(41)
dcm(�)

d�
= c(1 − cm)

(42)pm(c) =

⎧⎪⎨⎪⎩

0 ∶ c < c−

1

Δ

1

c(1−cm)
∶ c− ≤ c ≤ c+

0 ∶ c > c+

(43)�m(c) = ∫
1

0

�m(c)pm(c)dc =
1

Δ ∫
c+

c−

�m(c)

c(1 − cm)
dc =

(c+)m+1 − (c−)m+1

Δ
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This result again is true for all flamelet pdf’s. For small Δ , this expression obviously 
approaches the correct limit dc∕d� . In flame surface density models the mean of the sum of 
diffusion and source terms is modelled as �usL ∣ ∇c ∣ , which in our context is equivalent to 
dc∕d� because �u = 1 = sL due to the scaling of �.

9  Evaluation of Means and Variances of c

For evaluation of mean and variance of c from pm(c) the following integrals are defined:

Specifically, we have

where 2F1(a, b, c;z) is the hypergeometric function, which can be evaluated numerically 
from its power series definition for z < 1 . Note that its last argument cm ∈ [0, 1] . The last 
equality in Eq. (48) results from addition theorems of 2F1(a, b, c;z) . For integer m, I1(c,m) 
reduces to expressions containing only powers of c, logarithms and trigonometric func‑
tions, e.g.:

The means of c and c2 in a cell of width Δ evaluate as:

and

from which the variance c2
m
,Δ −(cm,Δ )2 can be calculated.

(44)�2c

��2
+ �(c) =

�c

��
=

1

Δ ∫
c+

c−

�c

��

dc∕d�
dc =

1

Δ ∫
c+

c−
dc =

c+ − c−

Δ

(45)In(c,m) = ∫ cn
(

1

dc∕d�

)

m

dc = ∫
cn

c(1 − cm)
dc

(46)I0(c,m) = log(c) − log (1 − cm)∕m

(47)I1(c,m) = c 2F1

(
1,

1

m
, 1 +

1

m
;cm

)

(48)I2(c,m) =
c2

2 2F1

(
1,

2

m
, 1 +

2

m
;cm

)
=

1

2
I1

(
c2,

m

2

)

(49)I1(c, 4) =
tan−1(c) + tanh−1(c)

2

(50)cm,Δ = ∫
1

0

cpm(c)dc =
1

Δ ∫
c+

c−

1

(1 − cm)
dc =

I1(c
+,m) − I1(c

−,m)

Δ

(51)c2
m
,Δ =

I2(c
+,m) − I2(c

−,m)

Δ
=

1

2Δ

(
I1

(
c+

2
,
m

2

)
− I1

(
c−2,

m

2

))
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10  Numerical Evaluation of c

The numerical evaluation of In(c,m) becomes numerically ill‑defined for c values approach‑
ing 1. The reason is that the series expansion of the hypergeometric function 2F1(a, b, c;z) 
does not converge well for z → 1 . c can be evaluated in c or � space:

where �+ = �− + Δ , c− = cm(�
−), c+ = cm(�

+) and �− = �m(c
−) , �+ = �m(c

+) . The indefi‑
nite integral of cm(�) is given by:

We now choose a small � such that 1 − cm(𝜉𝜖) < 𝜖 . By replacing cm(�) in the integrand of 
Eq. (53) by 1 for 𝜉 > 𝜉𝜖 , we can assure that the hypergeometric function is only evaluated 
for values of its last argument far enough from 1 so that the series still converges. In the 
results presented here, we have used � = 10−6 . Explicitly, �� = log (1 − (1 − �)−m)∕m.

11  Evaluation of Favre Averages

At constant pressure, the ratio of density � to the unburnt density �u is proportional to 1/T, 
yielding

and for the Favre average of c

Those two quantities cannot be evaluated analytically for arbitrary values of m, but integer 
(and some half‑integer) values of m yield analytic results in terms of powers of c, logarith‑
mic and trigonimetric functions. Results are too unwieldy to be shown here. Figure 6 shows 
c̃ as function of c for various values of Δ together with the BML limit c̃ = 𝛼c∕(1 − 𝛼c) for 
m = 4, � = 3∕4 . We can see that the BML limit is approached only for Δ ≫ 𝛿f  ( �f = 1.87 
for m = 4).

12  Analytic Results for ˇ‑pdf

The mean of the new chemical source term �m(c) can also be analytically evaluated if the 
beta pdf p�(c) is used instead of the flamelet pdf pm(c):

(52)cm,Δ = ∫
1

0

cpm(c)dc =
1

Δ ∫
c+

c−

c

dc∕d�
dc =

1

Δ ∫
�+

�−
c(�)d�

(53)∫ cm(�)d� = ex(1 + emx)

(
1−

1

m

)
2F1

(
1, 1;1 +

1

m
; − emx

)

(54)
(

�

�u

)
= ∫

1

0

1 − �

1 − c(1 − �)
p(c)dc

(55)c̃ =
c𝜌

𝜌
=

∫ 1

0

c(1−𝛼)

1−c(1−𝛼)
p(c)dc

∫ 1

0

1−𝛼

1−c(1−𝛼)
p(c)dc
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and

where the beta pdf parameters a,  b can be evaluated as usual from c = a∕(a + b) and 
c2 − c

2
= ab∕[(a + b)2(1 + a + b)].

13  Approximation for Lower and Upper Bounds c− , c+ and �− , �+

The evaluation of quantities from pm(c) requires knowledge of the lower and upper 
bounds c−,c+ as function of the quantities provided by the CFD solver. In a CFD simula‑
tion, a transport equation provides c̃ and Δ is calculated from the computational grid. c 
can be estimated from c̃ through Eq. (55). Thus it is desirable to obtain c−, c+ as func‑
tions of c and Δ.

Because c− = cm(�
−) , �+ = �− + Δ and c+ = cm(�

+) = cm(�m(c
−) + Δ) , it suffices to 

derive a relation c−(c,Δ) . For m = 1 , the function c−(c,Δ) is given analytically by:

For larger m, an analytic inversion of c(c−,Δ) is not possible.
Since an explicit expression is desirable for fast evaluation in the CFD code and for 

the study of the behaviour of c−(c,Δ) , we provide the following approximation. With

(56)(
�m

)
�
= ∫

1

0

p�(c)�m(c)dc =
(m + 1)Γ(a + b)

(
Γ(a+m+1)

Γ(a+b+m+1)
−

Γ(a+2m+1)

Γ(a+b+2m+1)

)

Γ(a)

(57)

(
�2cm

��2
+ �m(cm)

)

�

=

(
�cm

��

)

�

= ∫
1

0

p�(c)
�c

��
dc

=
a

a + b
−

Γ(a + b)Γ(a + m + 1)

Γ(a)Γ(a + b + m + 1)

(58)c−
1
(c,Δ) =

ecΔ − 1

eΔ − 1

Fig. 6  ̃c versus c for 
m = 4, � = 3∕4 and Δ = 0 (gray), 
Δ = 3 (thin), Δ = 10 (thick) and 
Δ ⟶ ∞ (dashed), i.e. the BML 
limit
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and

we define a first approximation of c−
m,a

(c,Δ):

This approximation has the correct limiting behaviour c− → c for Δ → 0 and is also accu‑
rate for Δ ≫ 𝛿f  . It is only accurate to 5% in the region Δ∕�f ≈ 20 . Figure 7 shows c−

m,a
 and 

c+
m,a

= cm(�m(c
−
m,a

) + Δ) as functions of c for m = 6 (for which �f = 1.61 ) and different val‑
ues of Δ . We can see that as expected c− and c+ are near c for small Δ∕�f  , while for large 
Δ∕�f  , c+ raises fast towards 1, while c− stays near 0 and raises to 1 only near c → 1.

c calculated with c−
m,a

(c,Δ) through Eq. (50) deviates slightly from the originally specified 
c . An even better approximation c−

m,b
(c,Δ) results by applying a second fix‑point iteration:

This approximation has an error below 1% and represents c−, c+ considerably better at large 
Δ∕�f  . Obviously, since c is available analytically as function of c− and Δ through Eq. (50), 
the relation betweem c and c− can also be inverted numerically e.g. by 1‑D‑re‑interpolation. 
Since c is a strictly monotonic function of c− and Δ , this procedure is always well defined.

14  Comparison of Different pdf’s

A comparison of pA(c) (evaluated numerically from cA(�) ) with the Echekki pE(c) and the 
new pdf pm(c) is shown in Fig. 8 together with the respective source terms �A(c) , �E(c) 
and �m(c) . It is evident that pE(c) , featuring a slope discontinuity at c = 1∕� is not a par‑
ticularly good approximation to the real pA(c) in contrast to the new pm(c).

(59)�0(c) =
1 − cm

1 − c

(60)s(c,Δ,m) = e−Δ∕7
[(
eΔ∕7 − 1

)
e2(c−1)m + c

]

(61)c−
m,a

(c,Δ) = c−
1
(c,Δ ∗ �0

[
s(c,Δ,m)

]
)

(62)
ccorr. = 2c − ∫

c+
m,a

(c,Δ)

c−
m,a

(c,Δ)

cpm(c)dc

c−
m,b

(c,Δ) = c−
m,a

(ccorr.,Δ)

Fig. 7  c+ and c− as function of 
c for m = 6 and Δ = 0.1, 1, 5, 10 
(black full, black dashed, gray 
full, gray dashed). Curves below 
the diagonal line correspond to 
c− , curves above are c+
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Figure 9 compares the new pdf pm(c) and the beta pdf p�(c) for two values of Δ . The 
exact mean and variance of the c distribution within the cell was used to calculate the 
parameters a, b in p�(c) . Similar to Bray et al. (2006), we find that p�(c) does not fit the 
flamelet pdf well in the region where 𝜔(c) > 0 , causing an over prediction of �(c) for large 
c variance, i.e. large Δ∕�f  . Note that in contrast to p�(c) , the shape of the flamelet pdf pm(c) 
is actually independent of c and Δ ; those parameters only influence the limits c− and c+ and 
the normalisation factor N = Δ.

Both pdf’s approach the correct limit of p(c) → �(c − c) in the DNS limit ( Δ << 𝛿f  ). For 
small ratios Δ∕�f  , only a small part of pm(c) is cut out near c while for larger Δ∕�f  , c− and 
c+ move nearer towards c = 0, 1 and reveal a larger portion of the complete 1∕(dcm(�)∕d�) 
shape. In contrast, the beta pdf resembles a Gaussian near c for small variance (i.e. small 
Δ∕�f  ) and switches to a double‑delta type behaviour for larger Δ∕�f .

Figure 10 (left) shows a comparison of ��(c) evaluated using the beta pdf (with exact 
mean and variance of c to evaluate a, b) with the exact �(c) (evaluated using pm(c) ) vs. Δ 
for two different values of m. On the right we plot the ratio ��(c)∕�(c) . ��(c) over predicts 
the exact value of �(c) for Δ > 0.75 . In general ��(c)∕�(c) increases with Δ and saturates 
for Δ → ∞ to a value of m∕3 + 0.4 . The error introduced when using the beta pdf thus 
increases with increasing activation energy (i.e. � , i.e. m).

Fig. 8  Comparison of pm(c) 
(full), pE(c) (dashed) and pA(c) 
(dotted) (black); source term �(c) 
in gray for comparison

Fig. 9  Flamelet (black) and beta (dashed) pdf’s with source term (gray); left: Δ = 2 ∗ �f  , right: Δ = 0.5 ∗ �f
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15  Effect of 3D Flame Wrinkling

In the thin reaction zone regime, large turbulent eddies of size le ≫ 𝛿f  will wrinkle the 
reaction zone (Fig. 11) while leaving its internal structure largely intact. This will increase 
the mean reaction rate in the cell approximately by the wrinkling factor Ξ = Σ∕Δ2 , where 
Σ is the area of the wrinkled reaction zone within the LES cell and Δ2 is the area of the flat 
flame propagating in � direction.

For a given c(�) field within an LES cell volume Ω of size Δ3 , the area of an isosurface Σ 
of a certain (c∗) value is defined by (Osher and Fedkiw 2005):

Note that (Boger et al. 1998)

We can define a generalized wrinkling factor Ξ(c∗) through:

Note that Ξ(c∗) can be smaller than 1 for c∗ isosurfaces which are not or only partially 
contained within the LES cell. The fine grained pdf of a given c(�) field is given by Poinsot 
and Veynante (2005), Gao and OBrien (1993)

(63)Σ(c∗) = ∫Ω

�(c(�) − c∗) ∣ ∇c(�) ∣ d�

(64)∣ ∇c ∣ =
1

Δ3 ∫
1

0

Σ(c)dc

(65)Ξ(c∗) =
Σ(c∗)

Δ2

Fig. 10  Exact �m (full) compared to mean evaluated with beta function (dashed) as function of Δ ; black: 
m=4, gray: m=12; left:� versus ��  , right: ��∕�

Fig. 11  Wrinkled flame front
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16  Evaluation of !(c) in the Thin Reaction Zone Regime

Using the definition of the fine‑grained pdf, we can evaluate �(c) as

We can multiply the delta function by 1 =
∣∇c∣

∣∇c∣
:

In the thin reaction zone limit, c isosurfaces within the reaction zone are largely parallel 
and ∣ ∇c(�) ∣c∗≈∣ dc∕d� ∣1D,c∗ . Replacing the c gradient in the denominator by the 1D gradi‑
ent and moving it outside the Ω integral (note that ∣ dc∕d� ∣1D,c∗ is constant during the Ω 
integration since it depends on c∗ only) yields:

The second integral is just Σ(c∗) , see Eq. (63) and the first term is equal to the flat flame 
pdf:

We obtain the following approximation in the thin reaction zone limit:

using Eq. (65).
For large LES cells ( Δ > 𝛿f  ), Σ(c∗) and Ξ(c∗) might be approximately constant in the 

c region where 𝜔(c) > 0 as we show later using a simple flame wrinkling model. Equa‑
tion (70) can then be further simplified as proposed in Boger et al. (1998):

The assumption of a constant wrinkling factor (independent of c) is the basis of many alge‑
braic flame surface density models.

Obviously, Ξ∗ in Eq. (71) should represent the wrinkling of the c∗ isosurface repre‑
senting the maximum heat release. Note that the wrinkling of c isosurfaces outside the 
reaction region ( 𝜔(c) > 0 ), e.g. within the preheat zone, will not affect �(c).

(66)p(c∗) =
1

Δ3 ∫Ω

�(c(�) − c∗)d�

(67)�(c) = ∫
1

0

�(c∗)p(c∗)dc∗ = ∫
1

0

�(c∗)
1

Δ3 ∫Ω

�(c(�) − c∗)d�dc∗

�(c) = ∫
1

0

�(c∗)
1

Δ3 ∫Ω

1

∣ ∇c(�) ∣
�(c(�) − c∗) ∣ ∇c(�) ∣ d�dc∗

(68)�(c) = ∫
1

0

�(c∗)
1

Δ

1

∣ dc∕d� ∣1D,c∗

1

Δ2 ∫Ω

�(c(�) − c∗) ∣ ∇c(�) ∣ d�dc∗

(69)p1D(c
∗) =

1

Δ

1

∣ dc∕d� ∣1D,c∗

(70)�(c) = ∫
1

0

�(c∗)p1D(c
∗)
Σ(c∗)

Δ2
dc∗ = ∫

1

0

�(c∗)p1D(c
∗)Ξ(c∗)dc∗

(71)�(c) = Ξ∗ ∫
1

0

�(c∗)p1D(c
∗)dc∗ = Ξ∗ ∗ �(c)1D
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17  Relation Between pdf, Wrinkling Factor and Correction Factor

We can also multiply the delta function in Eq. (67) by 1 =
∣dc∕d�∣1D,c∗

∣dc∕d�∣1D,c∗

Defining a surface‑like quantity Σ̂(c∗)

and Ξ̂(c∗) = Σ̂(c∗)∕Δ2 we obtain the following exact relationship:

Combination with Eq. (70) yields

with the definition of a correction factor (Driscoll 2008)

I(c) thus represents the effect of a change of the inner structure of the reaction zone from 
that of the corresponding 1‑D flat flame. Combination of these equation yields

This decomposition nicely separates the contributions of the freely propagating flat flame 
pdf p1D(c∗) , correction factor I(c∗) (providing the modification of the flame inner structure 
due to e.g. strain) and wrinkling factor Ξ(c∗) (contributing the geometrical effect of 3D 
wrinkling of c∗ isosurfaces). This exact equation is valid independent of the number of 
spatial dimensions and of the form and size of the LES cells. Such relationships make pdf 
formulations attractive and conceptually more general than e.g. 1‑D flamelet filtered tabu‑
lations or 1‑D approximate deconvolution methods. The general applicability also makes 
pdf methods suitable candidates for LES simulations of high pressure premixed flames, 
where a large amount of subgrid flame wrinkling is to be expected.

18  Illustration of Wrinkled Flame pdf

In the appendix, we present a simple model for the 3‑D c(�) field of a sinusoidally wrinkled 
flame, which allows analytical calculations of isocontours. Implict is the assumption that 
the c gradient on all c∗ isosurfaces is equal to that of the flat flame at c = c∗.

A wrinkling of the reaction zone c∗ isosurface can push other isosurfaces partly or 
totally out of the LES cell as illustrated in Fig. 12. This reduces the corresponding Σ(c) ’s 
and translates into a reduction of p(c) as shown in Fig. 13. Parameters used to produce 

(72)�(c) = ∫
1

0

�(c∗)
1

Δ

1

∣ dc∕d� ∣1D,c∗

1

Δ2 ∫Ω

�(c(�) − c∗) ∣ dc∕d� ∣1D,c∗ d�

(73)Σ̂(c∗) = ∫Ω

𝛿(c(�) − c∗) ∣ dc∕dx ∣1D,c∗ d�

(74)𝜔(c) = ∫
1

0

𝜔(c∗)p1D(c
∗)Ξ̂(c∗)dc∗

(75)�(c) = ∫
1

0

�(c∗)p1D(c
∗)I(c∗)Ξ(c∗)dc∗

(76)I(c∗) = Σ̂(c∗)∕Σ(c∗) = Ξ̂(c∗)∕Ξ(c∗)

(77)p(c∗) = p1D(c
∗)Ξ̂(c∗) = p1D(c

∗)I(c∗)Ξ(c∗)
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these plots are given in the “Appendix”. We see that for small enough wrinkling ampli‑
tude A∕Δ , p(c) is enhanced almost uniformly by the wrinkling factor Ξ∗ in the reactive 
c region, where 𝜔(c) > 0 , while p(c) is decreased below p1D(c) already for c > c− and 
c < c+ . Also shown in Fig. 13 are 1D pdf’s where we replaced Δ by a smaller filter size 
Δ∕Ξ∗ (which automatically moves cut‑off values c−, c+ closer towards c ). These surro‑
gate pdf’s appear to be a good approximation of the model pdf in the reactive c region 
for not too large wrinkling amplitudes and large Δ∕�f .

Shapes of premixed flame pdf’s derived from DNS data (Salehi and Bushe 2010; 
Salehi et al. 2013; Jin et al. 2008) and from application of the (stochastic) linear eddy 
model to numerically derived 1D flamelet pdf’s (Tsui and Bushe 2014) look similar to 
the pdf’s derived from this simple analytical model. It appears that the latter can repro‑
duce the effects of turbulent flame wrinkling on p(c) at least qualitatively.

Fig. 12  Isocontours at distances d = 0.25, 0.5, 0.75, 1, 1.25, 1.5, 1.75, 2 (gray) from single cosine wave of 
amplitude A (black); left: A = 0.5 , right: A = 1 ; dashed curves are not fully contained in cell

Fig. 13  Subgrid pdf for for Δ = 4,A = 1 (left) and Δ = 8,A = 2 (right), black: wrinkled flame pdf; gray: flat 
flame pdf, black dashed: flat flame pdf for filter Δ∕Ξ ; reaction rate (gray dashed) for comparison
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19  Effect of Flame Stretch and Curvature on p(c)

In a locally stretched flame, the reaction layer will become thinner, increasing ∣ ∇c ∣ over 
(dc∕d�)1D and thus decreasing I(c) and p(c). In contrast, a locally thickened reaction zone 
(e.g through turbulent mixing by very small vortices or through differential diffusion) 
should lead to an increase of I(c) and p(c). Such an increase of I(c) with increasing Karlow‑
itz number has been observed in highly turbulent flame DNS’s (Luca et al. 2019).

Stronger modifications of local p(c)’s are expected in large LES cells containing regions 
of large flame curvature (e.g. cusps, tips of flame fingers) and regions of subgrid flame‑
flame interaction. Here the filtered flame front might not be represented well by the 1‑D flat 
flame structure.

20  Summary and Conclusions

In this paper we present a chemical source term �m(c) to be used in the transport equa‑
tion of a single reaction progress variable c, which closely mimics the Arrhenius �A(c) but 
yields an analytical solution cm(�) with a simple analytical inverse �m(c) . The parameter m 
can be adapted so that cm(�) closely mimics the Arrhenius cA(�) for the relevant range of its 
parameters �, �, �1.

We derive the flat flame premixed flamelet pdf pm(c) =
1

Δ

1

c(1−cm)
 and provide an analytic 

correlation to evaluate the limits of the c integration c−, c+ as function of c and Δ for effi‑
cient implementation of pm(c) into CFD codes. The integral of pm(c) diverges logarithmi‑
cally at c = 0, 1 , but these limits are never accessed. Due to the closed form of the expres‑
sions no piecewise definition of the pdf as in Salehi and Bushe (2010), Domingo et  al. 
(2005) or � functions at c = 0, 1 like in BML theory are required. The explicit form of the 
flamelet p(c)’s show that the 1/c‑behaviour near c = 0 is universal, independent of Arrhe‑
nius parameters, since it is caused by the pure heat diffusion within the preheat zone.

Many quantities of interest can be evaluated analytically with this approach. We derive 
estimates of the laminar flame Eigenvalue Λ and of the Le dependence of the laminar flame 
speed sL which are more accurate than classical results from the literature based on asymp‑
totic analysis.

The cell averages of source term �m(c) and of the sum of source and diffusion terms 
(equivalent to dc∕d� ) are evaluated analytically with the new flamelet pdf and compared to 
beta pdf results, which are also available in closed form when using �m(c) as source term. 
We show that for Δ∕𝛿f < 1 (i.e. small c variance) the beta pdf results are reasonable, while 
for large Δ∕�f  the beta pdf strongly over predicts �(c) , particularly for flames of large acti‑
vation energy. Due to the simplicity of the new pdf, we can expect that pm(c) could replace 
the beta pdf in presumed pdf modelling of the progress variable in premixed combustion.

The effect of flame wrinkling on the pdf is investigated using the fine‑grained pdf for‑
mulation. We derive the exact relationship p(c) = p1D(c) ∗ I(c) ∗ Ξ(c) , separating the 
effects of the 1‑D flamelet pdf from those of flame thickening and geometrical flame wrin‑
kling. The c dependence of I(c) and Ξ(c) needs to be taken into account for large wrinkling 
factors and if isosurfaces for different values of c are wrinkled differently, e.g. in the case 
of large Karlowitz number flames.

For illustration of the effect of flame wrinkling on the 3D pdf we derive a simple model 
of sinusoidally wrinkled thin reaction fronts where for a given c∗ value ∣ ∇c ∣ is identical the 
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flat flame gradient. We show that for large Δ∕�f  and moderate flame wrinkling the main 
effect on the pdf is an increase of p(c) in the reactive region by a wrinkling factor Ξ∗ , 
representing the wrinkling of the isosurface at maximum heat release. p(c) decreases near 
c = 0, 1 as required by its normalisation condition. In this limit the wrinkled flame pdf’s 
resemble flat flame pdf’s evaluated at a smaller filter Δ� = Δ∕Ξ∗ in the reaction region 
c ≈ c∗.

As the wrinkling factor Ξ(c) is mostly determined by the turbulent flow field, it may be 
simpler to model Ξ than other quantities like the c variance or the c scalar dissipation rate 
which depend on the turbulent field and the inner flame structure. Many models for (con‑
stant) Ξ∗ are available in the framework of flame surface density theory (for an overview, 
see e.g. Ma et al. 2013). Ultimately, the choice of modelling style may however be a matter 
of taste or experience.

In the future we plan to compare the derived pdf’s with data extracted from DNS’s of 
premixed flames at ambient and elevated pressures (e.g. Klein et al. 2018). We will inves‑
tigate modelling strategies for Ξ(c) and I(c) and we will attempt to extend the theory to the 
case of stratified / partially premixed flames.
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Appendix: Model for pdf of Sinusoidally Wrinkled Reaction Zone

In the following, we derive a simple analytic model of the flamelet pdf of a sinusoidally 
wrinkled flame. It is based on ideas presented in Mercier et al. (2019). We assume that the 
c∗ isosurface (representing the location of maximum heat release) is wrinkled 2‑D sinusoi‑
dally with amplitude A. (n = 1, 2, 3…) full cosine wavelengths are fitted into the LES cell. 
Other c isosurfaces are assumed to be located on surfaces at constant distances d from the 
c∗ isosurface.

These assumptions reduce the calculations to elementary geometry and evaluation of 
integrals. Except for one numerical zero search, the model is fully analytical. Completely 
analytical calculations are possible if the cosine function is replaced by periodically 
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repeated parabola sections. Since the results are lengthy and the model is only approximate 
we omit the details here.

Figure 14 shows the wrinkling of a c∗ front for (n = 1) together with isolines at dif‑
ferent distances d. The cell size is chosen as Δ = 4 and located between −2 < 𝜉 < 2 and 
−2 < 𝜂 < 2 as shown by the dashed frame. The unwrinkled c∗ contour would be located 
at � ≡ 0 . It is evident that curves at larger distances d are folding back unto themselves 
(plotted here as thin lines). They need to be cut at the edges of the cell (here � = ±2 ) to 
guarantee a unique c field. Isosurfaces sufficiently near to the c∗ isosurface (plotted in 
full gray) will not fold onto themselves and will not have to be cut in this way. Isosur‑
faces at larger distances d will be also cut at the top/bottom boundaries (here � = ±2 ) of 
the cell, see dashed curves in Fig. 12.

Due to the assumption of ∣ ∇c ∣=∣ dc∕d� ∣1D,c∗ on all c∗ isosurfaces, the correction 
factor I(c) = 1 and the ratio of the wrinkled flame pdf to the flat flame one becomes 
p(c)∕p1D(c) = Ξ(c) = Σ(c)∕Δ2 . In the present model, Σ(c) is equal to the length of the 
sinusoidal isoline contained within the cell times the width of the cell Δ . Therefore 
p(c)∕p1D(c) is equal to the length of the wrinkled isolines within the 2D cell divided by 
Δ . Note that this is a purely geometrical quantity dependent only on A∕Δ and n in the 
present simple model. The c value corresponding to an isoline at distance d can be cal‑
culated as c(d) = cm(� = d).

For illustration of the behaviour of the generalized wrinkling factor Ξ(c) , we place 
a low activation energy flame (m = 4.45) in an LES cell of width Δ = 4 as shown in 
Fig.  15. This arrangement yields c = 0.7, c− = 0.135, c+ = 0.99997 . The generalized 
wrinkling factor Ξ(c) for wrinkling with n = 1, 2 cosine waves inside the cell at ampli‑
tudes A = 1 and A = 2 is shown in Fig. 16. Also shown are results of the same flame but 
in a cell of double size Δ = 8.

Figure 17 shows a comparison of the resulting pdf’s. We see that for Δ = 4 and the 
smaller wrinkling amplitude A = 1 , p(c) is increased by a nearly constant factor (equal 
to the ratio of the length of the sine function to a flat isoline) in the reaction region 
𝜔(c > 0) . The pdf is reduced towards c → c− and c → c+ (compared to the flat flame pdf) 
as required by p(c) normalisation. For larger wrinkling amplitude A = 2 , the maximally 
possible enhancement of p(c) due to isocontour wrinkling is not realized over the full c 
range between c− and c+ since some isocontours within the reaction front are cut by the 
upper/lower cell boundaries. For A = 2 in a larger cell with Δ = 8 , a smaller portion of 

Fig. 14  Sinusoidal flame 
contour with lines at distances 
of d = 0.25, 0.5, 1, 1.5, 2; 
black:original curve, full gray: 
non folded curves, thin gray: 
folded curves
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the isocontours in the reactive c region is intercepted by cell boundaries, permitting an 
increase of p(c) over a wider c range.

Numerical evaluation of the mean source term using the pdf’s shown in Fig.  17 
with Δ = 4 yields �m(c) = 0.25, 0.36, 0.49 for A = 0, 1, 2 , while a beta pdf yields 
��(c) = 0.40, 0.41, 0.52 , where the constants a, b of the beta pdf are calculated using 
c, c2 evaluated numerically from the wrinkled flame p(c)’s shown in Fig. 17. The over 
prediction of �(c) by the beta pdf reduces with larger flame wrinkling, provided that the 

Fig. 15  Flamelet profile c(�) 
(gray) fitted inside a filter 
with width Δ = 4 located at 
(−2 < 𝜉 < 2)

Fig. 16  Effective wrinkling factor Ξ(c) for Δ = 4 (left) and Δ = 8 (right); amplitudes A = 1 (black),A = 2 
(black dashed); gray corresponds to the flat flamefront

Fig. 17  Subgrid pdf for for Δ = 4 (left) and Δ = 8 (right); amplitudes A = 1 (black), A = 2 (black dashed); 
gray: flat flamefront; gray dashed: reaction rate for comparison
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exact mean and variance of c are used. This can be understood through the observation 
that the 1D pdf resembles one at a reduced cell size Δ� = Δ∕Ξ∗ . Note that the over pre‑
diction of �(c) by the beta pdf is less pronounced at small Δ∕�f .
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