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Abstract
This work is dedicated to improved modelling of wetting phenomena and contact angles
by means of meshless Smoothed Particle Hydrodynamics (SPH) method. For this purpose
we modify the surface tension model in the neighbourhood of the triple line. For higher
accuracy we also alter the general method of computing the interface normals, by applying a
specific smoothing to the field of vectors, and not the phase indicator function. The necessity
of proper boundary conditions in SPH is concisely discussed with multiphase systems in
mind. The implemented model yields accurate results for a set of static cases, even for very
low values of the imposed contact angle, both in the absence and presence of gravity. The
results of the calculations of droplets moving along the wall show a great potential of the
proposed approach in future applications.

Keywords Wetting phenomena · Numerical modelling · Meshless methods ·
Boundary conditions

1 Introduction

Wetting phenomenon is one of the common features of multiphase flows observed in daily
life. For sure anyone has encountered it in the form of rain droplets lazily sliding down
the windowpanes or freshly waxed car. From industrial point of view, wetting is of impor-
tance when it comes to coating of surfaces to obtain desired hydrophilic or hydrophobic
properties. For example, icing of vehicles, especially airplanes, can be remedied by using
hydrophobic surfaces [1] and the hydrophilic ones can be used for the sake of anti-fogging
[2]. Possible area of applications is extremely vast [3, 4], hence the necessity of research-
ing and investigating the wetting phenomena. Despite its superficial simplicity the physics
of wetting is complex. The macroscopic effect observed by human eye is the result of
microscopic forces resulting from the triumvirate of solid, gas and liquid phases. The
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understanding and control of this phenomenon has been an object of research for years; a
comprehensive overview can be found in [5].

Experimental studies are an obvious source of information on the physics of this pecu-
liar multiphase flow. Data in the form of correlations are of importance in designing and
researching new materials and their properties [6–8]. On the other hand, numerical tech-
niques are available as a cheaper and more flexible alternative in terms of setting physical
parameters, etc. The grid based Eulerian approaches in computational fluid dynamics (CFD)
are considered to be the state of the art tools and are widely applied to the modelling of
interfacial flows [9]. The models of wetting were successfully applied in the most popular
approaches, i.e. Volume of Fluid (VOF) [10], Level-Set [11] and Phase Field Model [12].
In order to impose desired properties of the solid walls, often characterised by the contact
angle, the basic numerical schemes require proper alteration of the surface tension model
and/or modification of the vectors normal to the interface at the triple point. These methods
are quite mature and can be successfully applied to very challenging (from numerics point
of view) setups like wetting of the rough surface [13].

In the last 20 years the Lagrangian meshless methods appeared as an alternative to the
Eulerian ones, with Smoothed Particle Hydrodynamics (SPH) as the most popular and
relatively mature at the moment [14]. Why even consider “alternative” approaches when
well-known, established methods are at hand? No need of grid generation is very convenient
and helpful when dealing with problems involving significant deformations and topology
changes, with interfacial flows being a perfect example of such a case [15, 16]. Furthermore,
SPH deals easily with high density and viscosity ratios and handles interfaces in a fairly
natural and straightforward way. Since the continuum is discretised as a set of particles that
can be thought of as Lagrangian fluid elements, the separate phases are represented by sep-
arate sets of particles. The position of the interface is defined by particles’ positions and
no reconstruction or tracking algorithm is required. This makes SPH an attractive approach
when it comes to modelling of interfacial flows. What is more, SPH is a very flexible tool—
different physical models can be easily incorporated and coupled, e.g. heat transfer [17],
two-fluid formulation for dispersed flows [18, 19] or rheological model for granular flows
[20].

Of course SPH is not all roses—it has some drawbacks that make CFD community a
tad sceptical about the method as a general-purpose tool and its usefulness beyond specific
applications. Due to particular interpolation method, SPH has a considerable computational
cost when compared to the grid based methods. In SPH interpolation nodes are moving,
hence there is necessity for updating the list of particles interacting with each other every
time-step. The algorithms searching for neighbouring particles are a challenge in itself [21,
22], while in Eulerian approaches this problem does not exist at all. Furthermore, the SPH
interpolation requires calculation of many more interactions than grid-based methods. This
is particularly problematic due to rather poor convergence rate of the method, as shown in
[23]. To make things worse, SPH still lacks a decent and reliable method of adaptive reso-
lution refinement. Some works were done in this matter [24, 25], however, SPH has a long
way to go before reaching the level of grid-based methods, even in standard techniques like
simple remeshing of near-wall regions. To overcome these problems, promote and utilise its
full potential, the SPHERIC group—ERCOFTAC Special Interest Group no. 40 [26], was
formed. Wide area of possible applications and ability to go beyond limitations of grid-based
methods result in growing interest in SPH.

The present study is dedicated to the application of SPH to computations accounting for
the wetting phenomena. For this purpose we use a modification of the Continuum Surface
Force (CSF) model of surface tension, with a specific ghost particles approach for solid
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walls. Although some works in SPH have been done in this matter, the present study is
believed to be a step forward. Our approach bears a similarity to the one of Breinlinger et al.
[27], however as proved by a later study, that model requires artificial scaling factors [28].
It is worth to mention the relevant work of Huber et al. [29] where CSF was supplemented
with a contact line force model. The proposed method, although based on a physically sound
modelling of the triple point dynamics, does not seem offer much room for improvement
concerning superhydrophilic and -hydrophobic cases.

In a recent work of Nair and Pöschel [30] the contact angle model was successfully
implemented within free-surface, incompressible SPH formulation. However, such a frame-
work can not be applied to the simulations of the droplet interacting with an external air
flow. Furthermore, that work uses a microscopic surface tension model, also applied in [31],
which is not straightforward to couple with other physical models. The microscopic formu-
lation has sound thermodynamical foundations and excels in problems where small (meso)
scales are of importance, like the pore scale modelling of flow in porous medium [32]. Also,
that approach can be applied to the computations of the droplet interacting with a rough
surface, whose geometry is explicitly modelled in its complex entirety [33]. On the other
hand, using the microscopic model for problems where macroscales are of interest, can be
problematic due to orders of magnitude differences in, e.g. lengths considered.

From the mechanical engineering point of view the macroscopic description of wetting
phenomena remains useful and is the most often applied for reasons of computational effi-
ciency. Our idea is to improve the existing formulation for the CSF, as a reliable tool for
modelling capillary effects. We also intend to do it for a sharp interface formulation, not a
diffused one like in the diffused interface approach [34]. The method proposed in the fol-
lowing can be summarised as: (i) simple and robust, (ii) free of scaling parameters, (iii)
based purely on CSF modification, (iv) maintaining the natural interface treatment of SPH.

The paper is organised as follows: Section 2 introduces fundamentals of the SPH method
for multiphase flows; in Section 3 the modified surface tension model and the wall boundary
conditions (b.c.) are discussed; results of the proposed model are presented in Section 4,
and finally conclusions are drawn in Section 5, together with the outlook for future work.

2 SPH for Multiphase Flows

2.1 Basics of the SPH

Interpolation theory is the very core of SPH. We now briefly recall the essentials required
for a better understanding of this specific method. Let us consider any field A. The integral
formula

A(r) =
∫

Ω

A(r′)δ(r − r′)dr′, (1)

where δ(r) is the Dirac delta function, can be used to express the field value at the point
r in space Ω . To obtain the SPH approximation, we first replace δ(r) with the weighting
kernel function W(r, h) which should be normalised, symmetrical and converge to δ(r)
with h → 0 [35]. Argument h is the so-called smoothing length and it determines the
interpolation range. In our work we use the quintic kernel proposed by [36]

W(r, h) = C

{ (
1 − q

2

)4
(2q + 1) , for q < 2

0, otherwise,
(2)
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where q = |r|/h and C is the normalisation constant (C = 7/4πh2 in 2D and C =
21/16πh3 in 3D), as guaranteeing good stability of computations [37, 38].

The second step consists in the discretisation of space into a set of particles of volume
Ωb = mb/�b, where mb is the mass and �b is the density of b-th particle. As a result, the
integral from Eq. 1 is approximated by a sum, i.e.

A(r) �
∑

b

A(rb)W(r − rb, h)Ωb. (3)

In the shorthand notation, the SPH approximation 〈A〉a of field A at any point a is defined
as

〈A〉a =
∑

b

AbWab(h)Ωb, (4)

where Ab = A(rb) and Wab(h) = W(ra − rb, h). Thanks to the properties of W(r, h),
namely compactness of the support and symmetry, differentiation can be shifted from the
field to the kernel function yielding

〈∇A〉a =
∑

b

Ab∇Wab(h)Ωb. (5)

Further derivatives can be obtained in a similar way, however, for an improved accuracy
(habitually impaired by irregular distribution of the particles) more sophisticated schemes
are used [39].

Using the above method various kinds of differential equations can be rewritten into the
SPH formalism and solved by calculating interactions between particles, hence its wide
application. The readers interested in the detailed information on the derivation of SPH and
basics of the method are referred to the monograph by Violeau [40], where the approach is
deeply discussed in the context of fluid mechanics.

2.2 Governing equations

The set of governing equations for the Newtonian viscous incompressible flow consists of
the Navier-Stokes (momentum) equation

du
dt

= − 1

�
∇p + μ

�
�u + g + 1

�
fst (6)

and the continuity equation
d�

dt
= −�∇ · u, (7)

where u denotes the velocity vector, � is the fluid density, p is the pressure, μ is the dynamic
viscosity and g is the mass force. In Eq. 6, fst stands for the interfacial force, detailed in
Section 3.1. Due to the Lagrangian nature of SPH we also include the advection equation

dr
dt

= u. (8)

Depending on the purpose and assumptions, different SPH formalisms for the fluid flow
can be obtained by using Eqs. 4 and 5. In the present study we use a formulation proposed
in [41]. To the best of our knowledge, this approach is best suited for modelling multiphase
flows with large density ratios [42]. The pressure term in Eq. 6 will become

〈∇p

�

〉
a

= 1

ma

∑
b

(
pa

θ2
a

+ pb

θ2
b

)
∇aWab(h), (9)
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where θ is the inverse of particle volume. The viscous term of Eq. 6, obtained by combining
SPH formalism and Finite Difference Method, takes the form

〈
μ

�
�u

〉
a

= 1

ma

∑
b

2μaμb

μa + μb

(
1

θ2
a

+ 1

θ2
b

)
rab · ∇aWab(h)

r2
ab + 0.01h2

uab, (10)

where uab = ua − ub.
The key feature of the approach proposed in [41] is the treatment of the continuity

equation. Instead of rewriting Eq. 7 into the SPH language, density is found from

〈�〉a = ma

∑
b

Wab(h) = maθa . (11)

This allows the density field to be represented only by the spatial distribution of particles
and not by their masses. Thanks to this, densities of particles near the interface are not
affected by the other fluid, which is important in multiphase flow modelling.

In this work we use the Weakly Compressible SPH approach (WCSPH). The set of
equations is closed with the equation of state

p = s2�0

γ

[(
�

�0

)γ

− 1

]
, (12)

where s is the artificial speed of sound, �0 is the reference (initial) density and γ is a
numerical parameter. The values of c and γ are chosen to ensure density fluctuations at the
level of 1% or below. In multiphase flow modelling it is a common practice to treat liquid
as incompressible with γ = 7, and gas as compressible with γ = 1.4 [43]. We follow this
approach in this study.

3 Surface Tension, Walls, Contact Angles and All that Jazz

3.1 Surface tensionmodel

The surface tension force acting on the interface is given as

fs = σκn̂ (13)

where σ is the surface tension coefficient, κ is the local curvature of the interface and n̂ is
the unit vector normal to the interface.

The most popular model of the influence of surface tension is the classic Continuum
Surface Force method (CSF), originally proposed by [44], with SPH implementation due to
[45]. In this approach the surface tension forces (per unit area) are converted into a force
per volume

fst = fsδs, (14)

where δs is a suitably chosen surface delta function. Using the phase indicator or the so-
called colour function c (say, c = 0 for the first phase and c = 1 for the second one), n̂ can
be calculated using the formula

n̂ = n
|n| = ∇c

|∇c| . (15)

In SPH the vector n is obtained from

na = �a

∑
b

(c̃b − c̃a) ∇aWab(h)Ωb, (16)
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where c̃ stands for the smoothed colour function, i.e.

c̃a =
∑

b

cbWab(h)Ωb. (17)

The above operation is performed to diminish the so-called parasitic currents, i.e. spuri-
ous velocity field arising from the unavoidable inaccuracies due to discrete formulation.
Interestingly, the smoothing of phase indicator function with the SPH kernel was first used
in VOF computations, also as a remedy for parasitic currents [46]. The local curvature is
obtained from

κ = −∇ · n̂, (18)

which in SPH language takes the form

κa =
∑

b

(n̂a − n̂b) · ∇aWab(h)Ωb. (19)

Note that in Eqs. 16 and 19 an alternative form of SPH gradient is used to ensure zero value
of the derivatives for the constant field. Assuming that δs = |n|, the influence of surface
tension can be included in Eq. 6 as

fst = σκn. (20)

This pretty straightforward translation of well-acknowledged CSF model into the SPH lan-
guage yields accurate results in various cases [15, 16]. However, for the modelling of
wetting some modifications are in order. In such cases, as will be shown later, the accurate
calculation of ∇c is of the essence, as it is the main factor affecting the movement of the
interface near the wall. During initial tests of the model we noticed some problems with
estimation of ∇c field in hydrophilic cases where droplet may become extremely thin. Due
to this fact the tip of the elongated droplet is comprised of only a few particles of the phase.
This will always happen, independently of the resolution. Increasing it will only result in
smaller area being represented by insufficient number of particles. The tip containing the
contact line, however, will always be underresolved. Due to the nature of SPH interpolation,
this will result in underestimated length of the ∇c vectors. To counter this issue we decided
to employ the so-called Shepard’s kernel [47]. The purpose of this technique is to correct
under- and over-estimations arising from unavoidable irregular distribution of particles, or
from a deficient number of particles under the kernel hat as originally done in free-surface
flows. Shepard’s kernel for a-th particle is defined as

ψa(rab, h) = Wab(h)∑
b Wab(h)Ωb

. (21)

The approximation of any field A with Shepard’s kernel, i.e.

ASh
a =

∑
b

Abψa(rab, h)Ωb =
∑

b AbWab(h)Ωb∑
b Wab(h)Ωb

, (22)

results in renormalisation of the considered field, but also its additional smoothing. The first
outcome is always most welcomed, the second one—not necessarily. Our idea is to apply
Eq. 22 to the field of ∇c. This operation will allow to calculate ∇c more accurately for
fine structures, however, additional smoothing would make the numerical representation of
the interface two-times wider. This is very undesired since it would increase twofold the
distance of premature coalescence, a well known issue among CSF users. To avoid this
problem, but still use Shepard’s kernel, we propose the following scheme for the surface
tension computations:
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1) calculate ∇c from the sharp colour function, i.e.

na = �a

∑
b

(cb − ca)∇aWab(h)Ωb; (23)

2) then use Shepard’s kernel on the resulting field of na

nSh
a =

∑
b

nbψa(rab, h)Ωb =
∑

b nbWab(h)Ωb∑
b Wab(h)Ωb

, (24)

but without any boundary conditions, see Section 3.2; the superscript Sh is skipped in
the following. We note that Huber et al. [29] recently applied the Shepard kernel and
its gradient for all the governing equations. Unlike them, we deem it necessary only for
the field of normals, as other quantities are sufficiently well estimated.

3) finally proceed further as in the implementation of Morris.

This way lengths of n are better estimated, and their field is as smooth as in the basic
implementation of Morris, Eqs. 17 and 16.

To illustrate the problem we performed calculations of the ∇c field for a droplet placed
on a superhydrophobic surface (for the contact angle θD = 15◦). As an initial condition
we used steady-state solution of SPH simulation with model described in Section 3.3. Only
field of ∇c was computed, no flow equations were solved. The top panel of Fig. 1 shows
raw particles coloured by their respective phase indicator. The middle panel demonstrates
the field of |∇c| (projected onto a uniform grid of size �r , which denotes particles’ initial
spacing) obtained with Morris implementation [45]. As we can see, the biggest magnitude
is observed close to the interface, which is not surprising, however it is underestimated
close to the triple line. The improved scheme, as shown in the bottom panel, offers the same
accuracy in the part of the droplet away from contact line, but with increased maximum
value of |∇c| in its closest neighbourhood. In Fig. 2 we compared the |n| profile along the
wall computed with the Morris approach and the new scheme. The maximum value of |n|
can be interpreted as an indicator of the interface position, hence for the profile at ywall , it
marks the triple point. The profile at the wall distance y = 2h served as reference, since
it was exactly the same for both methods. The profile for y = 2h was shifted for easier

Fig. 1 Calculation of |∇c|. Top—particles position (black - liquid, turqoise - gas); middle—implementation
by Morris [45], bottom—new scheme proposed herein

Flow, Turbulence and Combustion (2020) 104:115–137 121



Fig. 2 Comparison of the |n|
profile across the interface at the
wall, computed with the Morris
[45] implementation and the new
scheme; also shown the reference
solution at the distance 2h from
wall

comparison. It is clear that using Eqs. 16 and 17 results in underestimation of ∼25%, while
Shepard’s kernel yields overestimation at the level below 10%.

Following [45] we also exclude from calculations of surface tension effects the particles
for which |n| is below the threshold of 0.01/h. This greatly improves accuracy in curvature
estimation on the fringes of the interfacial area. To mitigate errors caused by exclusion of
some particles from the summation formula in Eq. 19, the resulting curvature has to be
rescaled by a correction factor given as

�a =
∑

b

min{Na,Nb}Wab(h)Ωb, (25)

where N = 0 if |n| < 0.01/h and N = 1 otherwise, for a and b alike. The above equation
will also come in handy later on, see Eq. 29.

3.2 Solid walls model

The proper and accurate boundary conditions implementation in SPH, especially those for
the solid walls remains an open challenge [48]. Apart from enforcing proper b.c., like no-
slip for velocity or the Neumann condition for pressure, walls in SPH have to fulfill another
specific role related to the Lagrangian character of the method, namely compensate for the
missing particles outside the computational domain in the summation formulae. The missing
interpolation points in any of the governing equations would cause additional inaccuracy
in the computed physical values. Generally, the methods of accounting for the presence of
solid walls in governing equations can be divided into three groups:

i) the dummy particles [49, 50]—in this approach the solid walls are “built” from lay-
ers of particles. The thickness of such wall depends on the interpolation kernel range,
e.g. for Wendland kernel used in the present study it would be 2h. Those particles are
included in the summation formulae as the fluid ones, however, their positions and
velocities are not evolved in time. Velocities are in fact set to a certain value to obtain
the no-slip b.c., satisfied within the immediate vicinity of O(�r) of the dummies.
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The biggest advantage? Easiness in implementation, robustness and appealing sim-
plicity of the idea, but most importantly of all, the applicability in modelling complex
geometries.

ii) the ghost (mirror) particles [38, 51]—in this method a flat wall acts as a mirror—each
time step the particles close to the wall (at distance less or equal to the interpolation
range of the kernel function used) are mirrored onto its opposite side. The physical
properties of such ghosts can be adjusted so that the desired boundary conditions are
satisfied. The biggest disadvantage of this approach is limitation only to flat walls.

iii) unified semi-analytical walls (USAW) and others [52, 53]—a complex and sophisti-
cated method, in which the so-called wall renormalisation of the equations is used to
account for the particles missing from the kernel support. This method is typically
employed in turbulent single-phase flows, which are very challenging for SPH [54].

In the case of multiphase systems the USAW method can be used, e.g. a recent work on the
SPH mixture model [55]. Since it was developed with a different purpose in mind, it does
not have any specific feature which would make it tempting for interfacial flows modelling.

The most popular solid walls model, in general SPH applications, is the dummy parti-
cles approach. By far, it is the easiest one in implementation and despite its simplicity can
produce accurate results. However, for multiphase systems a simple question immediately
arises—from which phase should the wall be built? The answer is by no means trivial. In
the work of Yeganehdoust et al. [56] this approach was used for modelling the droplet-wall
interaction. The colour function value for the dummies was derived from the instantaneous
position of droplet, to allow for accurate calculation of the interface normals in the vicinity
of the triple line. The proposed approach allowed for satisfactory results, but explicit track-
ing of the relative position of the droplet and the wall is problematic from the algorithmic
point of view and limits versatility of the method.

In our work we use the ghost particle approach. In the case of multiphase flows the mate-
rial properties of mirrored particles—density, viscosity and colour function—are exactly
the same as those of parent ones. The velocities are constructed to enforce no-slip b.c., and
pressure is simply the same as it ensures the homogeneous Neumann b.c. This method is in
fact very convenient for interfacial flows, since: (i) the boundary conditions are being con-
structed on the fly and there is no need for tracking the phase distribution in the flow, (ii) all
summation formulae are calculated accurately without risk of under/overestimation of den-
sity or similar error. The main drawback of the ghost particle approach is its applicability
only to cuboid domains, however, for the purpose of basic research and tests of new models
this is more than enough.

3.3 Modified CSF - contact angles

We are not trying to reinvent the wheel. We follow the idea proposed in the original CSF
paper by Brackbill et al. [44], namely modification of the unit normals n̂ in the vicinity of the
triple line. This approach was successfully applied within the VOF framework in a number
of papers [57, 58]. Since we are dealing with SPH, we had to make some adjustments in the
existing formulation. We are also obliged to mention that this work is not the first attempt
to do so in SPH, the approach of modifying n̂ was already applied by Breinlinger et al. [27],
however, they used dummy particles approach and a different formulation of CSF model.
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They also did not address the problem of ∇c calculation for very thin droplets in hydrophilic
cases.

Now, let us cut to the chase. As mentioned, we will modify the unit normals to the
interface in the neighbourhood of the triple line, which boils down to modifying n̂ for the
SPH particles in this region. For the reader’s convenience, please refer to Fig. 3 with a
schematic illustration of the objects used in the following. First of all, how do we define
particles “in the neighbourhood of the triple line”? The following straightforward conditions
have to be satisfied: (i) the particle is within the distance less or equal to 2h from the solid
boundary and (ii) it has a non-zero ∇c. The first requirement is dictated by the interpolation
range, while the second one ensures that considered particle is, in a numerical sense, part of
the interface. Conjunction of those two conditions holds true only for particles close to the
other phase and the solid surface. In this triple point region, to obtain the desired contact
angle θD we impose n̂ as

n̂(θD) = n⊥ cos θD + n‖ sin θD, (26)

where n⊥ and n‖ are the unit vectors perpendicular and parallel to the wall, respectively.
Initial tests showed that the sudden change from original to modified normals will result
in deformed interface. The same problem was encountered by Breinlinger et al. [27]. To
alleviate this issue they used a blending function working as a continuous seam between
modified and primal normals. The function used is a simple, linear relation of the wall
distance of the considered particle, given as α(y) = 1 − y/2h. The auxiliary normal naux
(note that it is not exactly a unit vector here) is defined as

naux = α
(
n⊥ cos θD + n‖ sin θD

) + (1 − α)
∇c

|∇c| , (27)

and the final form of modified n̂ is of course

n̂mod = naux

|naux| . (28)

The ghost particles are completely excluded from the curvature calculation, thus there is
no need to define their n̂mod. Correction by Eq. 25, originally employed due to omitting
particles with normals length below the defined threshold, is enough to alleviate errors that
could be caused by this move. The curvature is then calculated using new values of n̂, hence
Eq. 20 becomes

fst = σ

�

(∇ · n̂mod

�

)
n. (29)

Note that the actual force moving the particle acts according to the direction and magnitude
of unmodified ∇c, hence the modification in calculating its field, as described in Section 3.1.
We also need to stress that within the ghost particles approach framework, the solid wall
is not physically present in the calculations. Due to the formulation, the particles are not
penetrating it or getting exactly to its position: ya �= ywall will always hold true for any
particle a. Unlike a common practice in Eulerian approaches [57], in the present simulation

Fig. 3 The vicinity of the triple
point: illustration of the scheme
used in modification of n̂
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we did not see necessity to add a microscopically justified slip condition for the triple point
vicinity, see also [41].

4 Results

We present and discuss here some results obtained with the model described in previous
sections. All computations were performed with our in-house SPH code. Particles were
initially uniformly distributed on a cartesian grid pattern. The interface was taken as the
isoline c = 0.5 of the colour function interpolated with Eq. 4 onto an auxiliary uniform grid
of size �r [59]. The benchmarks and their analytical solutions reported in Sections 4.1 and
4.2 are taken from [57].

4.1 Static case

The first validation case we considered was the two-dimensional liquid droplet on a solid
surface, with prescribed desired contact angle θD . The droplet was initially semicircular,
with radius R0, placed on a bottom wall of a rectangular channel (filled with gas) with the
height of 4R0 and length 8R0 (or 16R0 for θD < 30◦). The density and viscosity ratios
were respectively �L/�G = 1000 and μL/μG = 100. The Laplace number is defined

Fig. 4 Shapes of the interface after droplet reaches statistically steady state for a number of contact angles θD
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Fig. 5 Comparison of the SPH results (symbols) with analytical solution (lines)

as La = σ�LR0/μ
2
L and is set as La = 104. The resolution used was h = R0/16 and

h/�r = 2, yielding 32 SPH particles per droplet’s radius. Due to the imposed θD the
droplet-wall contact area will either spread out (θD < 90◦) or contract (θD > 90◦). In
steady state (without gravity), the droplet should assume the shape of a spherical cap, cut
from a circle of radius R at a chord (namely wall), so that the angle between the tangent at a
common point of circle and chord is equal to θD . The droplet can be more easily described
by its height H and area of contact with wall w (wetting area or width in 2D). This problem
can be analytically described by the following relationships of R0, θD,R,H and w:

Ran = R0

√
π

2(θD − sin θD cos θD)
, (30)

Han = Ran(1 − cos θD), (31)

wan = 2Ran sin θD . (32)

We decided to use values of Han and wan as the reference data, since they are both dependent
on R, which corresponds to some pressure jump according to the Young-Laplace equation.

In Fig. 4, the interfaces for θD ranging from 30◦ to 150◦ are plotted. The qualitative
results are satisfying in general—for hydrophilic surface we observe expected spreading,

Fig. 6 Accuracy of the results from Fig. 5
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Fig. 7 Comparison of the interface shape for θD = 15◦ (top) and 30◦ (bottom) obtained with different
blending functions

and the opposite effect for hydrophobic ones. A quantitative comparison with analytical
solution is shown in Fig. 5, and it turns out less pleasing. While the results for θD from 45◦ to
120◦ are very accurate, those for more extreme values are way off the mark. The inaccuracy
becomes even more evident when we look at Fig. 6. The problem of poor results for superhy-
drophobic and -philic surfaces can not be explained just by the resolution applied. Increasing
the resolution twofold, i.e. by using two times smaller h, while keeping h/�r = 2, availed
us nothing, except increased computational time. This also bares a drawback of SPH—the
lack of well-established adaptive mesh refinement and poor convergence rate.

To alleviate this issue we decided to change the blending function a bit. As mentioned
earlier, the particles will never get directly to the position of the wall, hence using function
α(y) = 1 − y/2h implies that no particle will ever have exactly the normals imposed by
Eq. 26. Also, from Figs. 5 and 6 we see that the value of w is underestimated for hydrophilic
cases and overestimated for hydrophobic ones. This points towards conclusion that the

a) compariso n with analytica l solut ion b) accuracy of the result s from Fig. 8(a)

Fig. 8 Comparison of the results obtained with α(y) (× symbols) and α+(y) (square symbols)

Flow, Turbulence and Combustion (2020) 104:115–137 127



Fig. 9 Comparison of the results obtained by using α(y) (× symbols) and α+(y) (square symbols) with
analytical solution (lines)

acceleration resulting from Eq. 29 is too small next to the wall. To increase it, we changed
α(y) in following manner:

α+(y) =
⎧⎨
⎩

1 for y ≤ �r,

1 + (�r − y)/2h for �r < y ≤ 2h + �r,

0 for y > 2h + �r .
(33)

In Fig. 7 we plotted the comparison of the interface shape for cases of θD = 15◦ and 30◦
obtained with α(y) and α+(y). As can be seen, for α+(y) the droplets are spread wider. The
analysis of the w and H values, shown in Fig. 8a, proves higher accuracy of the modified
blending function, also fortified by Fig. 8b. Alas, this method works slightly worse for
moderate and high values of θD , see Fig. 9, hence it can not be treated as the universal
approach. We need to mention that prior to applying Shepard’s kernel, Eq. 24, we used
Eq. 16 for the normals calculation, however, the results were far less accurate (hence we do
not present them herein). Additionally, we took the relative errors in contact angle reported
in [29] (see Fig. 11(a) there) and recomputed them to assess (at comparable resolution) the
resulting inaccuracies in droplet’s width w. Specifically, for the contact angle of 30◦, the
error level was about 9% there and 4% in the present work. Then, for the angle of 120◦,
the errors were of 8% and again 4%, respectively. This indicates that the contact line force
model, notwithstanding its elegance, may be more problematic in SPH computations for
extreme values of θD .

Despite inaccuracies for some cases, the proposed model works very well for a wide
range of contact angles. Results obtained with α+(y) allow us to think that this model, after
some further modifications, can also be used for cases with extreme values of θD .

Fig. 10 Interface shape for chosen values of Eö and θD = 50◦
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Fig. 11 Comparison of the SPH
results with analytical solutions
for surface tension and gravity
dominated regimes for θD = 50◦

4.2 Spreading effects in the presence of gravity

The second validation case was investigation of a droplet spreading due to the effects of
gravity. The resolution and initial setup are the same as in Section 4.1, however this time
gravity g is introduced into the system, to test whether the model works well when taking
into account the balance between surface tension forces and external forcing. Calculations
were performed using α(y). To describe this case we introduce the Eötvös number, Eö =
�LgR2

0/σ , which describes the ratio of gravitational and capillary forces. We have tested the
model for θD = 50◦ and 130◦, and Eö ranging from 10−3 (capillarity dominated regime)
to 50 (gravity dominated regime). In the case of Eö � 1 the height of the droplet can be
calculated as analytical solution when no gravity is present, i.e. by using Eqs. 30 and 31.
When Eö � 1, the droplet height (or thickness) is equal to capillary length defined as [57]

H∞ = 2
√

σ

�Lg
sin

(
θD

2

)
(34)

In Fig. 10a selection of results for the case of θD = 50◦ is shown. As expected, we
observe increasing flattening of the droplet with growing Eö. Quantitative results in Fig. 11
show that the model correctly predicts transition from surface tension to gravity dominated
regime. Up to Eö ∼ 10−2 the droplet has shape as in the case without gravity, then at Eö ∼

Fig. 12 Interface shape for
chosen values of Eö and
θD = 130◦
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Fig. 13 Comparison of the SPH
results with analytical solutions
for surface tension and gravity
dominated regimes for
θD = 130◦

10−1 the transition begins which is evident at Eö ∼ 1. After that the height of the droplet
converges towards analytical solution for gravity dominated regime. Analogous conclusions
can be drawn for hydrophobic surface, i.e. θD = 130◦, shown in Figs. 12 and 13. This

Fig. 14 Sessile droplet on a hydrophilic wall (θD = 30◦): result of SPH simulation in 3D. Unprocessed data,
gas particles omitted for clarity
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proves that used model works accurately when external forces, besides surface tension, are
present.

4.3 3D simulations and 2D droplet in air flow

As the first of the final tests we have applied the model to 3D computations of sessile
droplet. We do not present a proper validation for those simulations, as they should be
considered an eye candy showing upper limit of the model capabilities. For the 3D imple-
mentation, the problem of modelling and coding poses no additional difficulty. Since SPH is
inherently multidimensional, only vector n‖ in Eq. 26 requires a bit more of simple algebra
than in 2D setup to be derived. The actual problem is extensive computational cost of SPH.
Yet, this should not be thought of as a dealbreaker when considering SPH as a numerical
tool. Thanks to the local character of the particle interactions, the approach is suitable for
massive parallelisation and execution on Graphic Processing Units (GPUs). Nonetheless, we
were using the code which is optimised for a single GPU only. For this reason we performed
calculations only in a very coarse resolution to check the correctness of the implementa-
tion. We choose the static case from Section 4.1, with resolution defined by h = R0/16
and h/�r = 1.5625. Such a low value of h/�r is dictated by computational time only.
Figures 14 and 15 present outcomes of computations for θD = 30◦ and 150◦, respectively.
As can be seen, the model works just fine in 3D, which is no surprise to be honest.

Fig. 15 Sessile droplet on a hydrophobic wall (θD = 150◦): result of SPH simulation in 3D. Unprocessed
data, gas particles omitted for clarity
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Fig. 16 Initial setup for the
moving droplet case. Royal blue
and green—liquid, revolutionary
red and light blue—gas, mass
force g acts from left to right

More interesting is the case of the droplet movement on a solid surface, driven by air
flow—the cherry on top of the present study, even if it is only in humble 2D configura-
tion. The problem of moving contact lines introduced by the droplet motion is a challenge
for grid based methods. When no-slip condition is imposed at the wall, the so-called stress
singularity caused by the movement of contact line appears [60, 61]. To remedy this dif-
ficulty, the Navier slip condition is usually applied in the computational cells containing
triple point. This is also often accompanied by further modifications in the wetting model,
for a brief overview see [61]. This seems to be not the case in the SPH modelling. To the
best of our knowledge no SPH study dedicated to the wetting phenomena reported any sin-
gularity issues [27, 29–31, 34, 56], except for [62]. In our work we also did not observe
problems related to the stress singularity. Increasing spatial resolution also did not uncover
or strengthened any numerical artifacts—in the grid based methods the stress at the contact
line is diverging when refining the mesh size. Why SPH seems to be free of this problem?
A possible explanation coming to our minds is that this is the Lagrangian method. Surface
tension works as a force, similar to, e.g. gravity or pressure gradient, that compels particles
to move in a given direction. Moreover, in SPH computations, especially when the ghost
particles approach is used for the solid boundaries like in the present study, the walls are not
physically present. This means that we never model the situation exactly at the wall position,
we only advect the particles according to the acceleration computed from the momentum
balance equation above it. For those reasons, and due to satisfactory results, we did not
attempt to implement any model for dynamic contact angles.

Fig. 17 Evolution of the water droplet in an air flow, in the channel with hydrophilic wall (θD = 30◦). Order
of pictures—from top left clockwise
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Fig. 18 Evolution of the water droplet in an air flow, in the channel with hydrophobic wall (θD = 150◦).
Order of pictures—from top left clockwise

Now, let us serve the promised cherry. The initial setup is the same as for the static case,
except that the mass force g acts parallel to the walls. We have set periodicity at the left and
right boundaries of the domain, while the top and bottom ones are modelled as solid walls
with no-slip b.c. Due to the presence of g, a Poiseuille-like flow will form in the channel.
We also used higher resolution, i.e. h = R0/32 with h/�r = 2. The initial setup with
colours used for marking purposes is shown in Fig. 16. The magnitude of g was chosen
so that the Reynolds number estimated with channel’s width would be Re � 1 (creeping
flow regime). The qualitative results are, well, spectacular. In Fig. 17 the movement of the
droplet on hydrophilic wall (θD = 30◦) is shown. As expected, we can observe stretching of
the droplet in the flow direction and its motion in such elongated form. For the hydrophobic
wall (θD = 150◦), the results are in agreement with physical intuition as well, the droplet
simply starts to roll to the right, see Fig. 18. The results for moderate contact angles are
slightly less visually enjoyable, the droplets are assuming the final shape and just steadily
moving according to the flow, for example see Fig. 19. The quantitative analysis can be
performed with e.g. the Cox-Voinov law, however, for now we restrained ourselves from
such investigation. Before doing so, a more thorough study should be conducted on the
dynamic contact angle models and their implementation within SPH framework, which also
should address the problems with spatial accuracy and convergence of the method. The very
first try looks promising and encourages us to further tread the chosen path.

Fig. 19 Droplet advancing in an air flow, in the channel with imposed θD = 45◦ (left) and θD = 105◦ (right);
quasi-steady state solution

Flow, Turbulence and Combustion (2020) 104:115–137 133



5 Conclusions and Outlook

In the present study we have presented a simple and robust, yet effective implementation of
the contact angle model for SPH. The model consists in modification of the interface nor-
mals enforcing the desired contact angle. The approach was implemented within the ghost
particles b.c. formulation. The model was tested against a wide range of static cases, and
yielded accurate results for the contact angles θD ∈ [45◦, 135◦] when compared to analy-
tical solution for droplet’s height and width. For superhydrophilic surfaces, i.e. θD < 45◦,
a different blending function can be used with significant increase in accuracy. The results
for superhydrophobic walls were less accurate, but still satisfactory. The model was also
tested for the effects of gravity, yielding satisfactory estimation of the droplet’s height and
accurate prediction of the transition between capillarity- and gravity-dominated regimes.
We also need to stress a small, but important, modification in the SPH handling of the CSF
model. Instead of smoothing the colour function, like it is usually done, we proposed to
smooth the field of its gradient with the Shepard interpolation. This operation allowed for
better estimation of the normals to the interface near the triple point. The model presented
in this work can be easily extended to the 3D setup, as proved in Section 4.3.

Finally the approach was tested in computations of droplet exposed to the creeping air
flow in a channel. The obtained results are in agreement with physical intuition [63–65]:
rolling and tumbling of droplet was observed for hydrophobic walls, while smearing was the
effect of simulating the hydrophilic surfaces. For moderate values of θD we observed steady
movement of droplet whose shape was dictated by prescribed contact angle. The next step
to take should be focused on a thorough validation of the model in the dynamic cases. The
problem of stress singularity, which is observed in grid-based methods, does not seem to be
present in SPH. Such a study should answer the question whether Lagrangian methods are
free of this drawback. For that purpose detailed investigation of dynamical models and their
implementation in SPH should be put into the test. Wall-bounded laminar flows, dominated
by surface tension effects, like formation of droplets in microchannels [66] (the so-called
lab-on-chip devices) can be considered as possible field of application in which SPH may
excel despite its extensive computational cost.

Development of reliable, robust model for contact angles is a prerequisite for SPH to
become a general purpose tool for multiphase flows computations, possibly even considered
as a respectable rival for the well-established Eulerian methods. Presented results, their
accuracy and promising outlook allow us to state that this moment already looms on the
horizon.
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