CORRECTION

Check for updates

Correction to: Direct Numerical Simulation of head-on quenching of statistically planar turbulent premixed methane-air flames using a detailed chemical mechanism

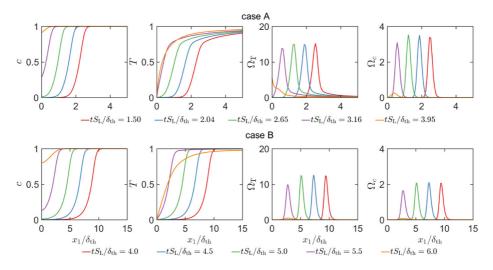
Jiawei Lai¹ · Markus Klein² · Nilanjan Chakraborty¹

Published online: 28 March 2019 © Springer Nature B.V. 2019

Correction to: Flow Turbulence Combust https://doi.org/10.1007/s10494-018-9907-5

In Lai et al. [1] the distributions of reaction progress variable *c*, non-dimensional temperature $T = (\hat{T} - T_0)/(T_{ad} - T_0)$ (where \hat{T} is the instantaneous dimensional temperature, T_0 is the unburned gas temperature and T_{ad} is the adiabatic flame temperature), normalised heat release rate $\Omega_T = \dot{\omega}_T \times \delta_{th}/(\rho_0 S_L C_{p0} T_0)$ (where $\dot{\omega}_T$ is the dimensional heat release rate) and normalised reaction rate of reaction progress variable $\Omega_c = \dot{\omega} \times \delta_{th}/\rho_0 S_L$ (where $\dot{\omega}$ is the reaction rate of reaction progress variable) in the wall normal direction are shown in Fig. 3 at different time instants for laminar flames using detailed (16 species, 25 reaction steps) [2] and single-step chemical mechanisms (i.e. cases A and B respectively) with ρ_0 , $C_{p0}S_L$ and δ_{th} being the unburned gas density, mixture specific heat at constant pressure in the unburned gas, unstrained laminar burning velocity and the thermal flame thickness, respectively. Unfortunately, in Fig. 3 of [1] the distributions of reaction progress variable *c* and non-dimensional temperature *T* got interchanged for the simple chemistry case B. It was an error in plotting, and this error did not affect any of the results and conclusions in the paper [1]. The revised figure is shown below as Fig. 1 where distributions of *c*, *T*, Ω_T and Ω_c in the wall normal direction are shown for cases A (detailed chemistry) and

The online version of the original article can be found at https://doi.org/10.1007/s10494-018-9907-5.


 Nilanjan Chakraborty nilanjan.chakraborty@newcastle.ac.uk

Jiawei Lai j.lai@newcastle.ac.uk

Markus Klein markus.klein@unibw.de

¹ School of Engineering, Newcastle University, Newcastle Upon Tyne, NE1 7RU, UK

² Department of Aerospace Engineering, Universität der Bundeswehr München, 85577 Neubiberg, Germany

Fig. 1 Variations of c, T, Ω_T and Ω_c with x_1/δ_{th} at different time instants for laminar head-on quenching for both detailed (**a**) and simple (**b**) chemistry cases

B (single-step chemistry). The non-dimensional temperature *T* remains 0 at the wall (i.e. $x_1/\delta_{th} = 0$) due to Dirichlet boundary condition (i.e. temperature at the wall corresponds to the unburned gas temperature) for both cases A and B. However, the value of *c* increases with time at the wall with the progress of head-on quenching for both cases A and B due to zero gradient boundary condition in the wall normal direction.

Compliance with Ethical Standards This study was funded by EPSRC (EP/K025163/1 and EP/P022286/1).

Conflict of interest The authors declare that they have no conflict of interest.

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

References

- Lai, J., Klein, M., Chakraborty, N.: Direct Numerical Simulation of head-on quenching of statistically planar turbulent premixed methane-air flames using a detailed chemical mechanism. Flow Turb. Combust. https://doi.org/10.1007/s10494-018-9907-5
- Smooke, M.D., Giovangigli, V.: Premixed and nonpremixed test flame results. In: Reduced Kinetic Mechanisms and Asymptotic Approximations for Methane-Air Flames, pp. 29–47. Springer, Berlin (1991)