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Abstract The near-wall region of an unsteady turbulent pipe flow has been investigated
experimentally using hot-film anemometry and two-component particle image velocimetry.
The imposed unsteadiness has been pulsating, i.e., when a non-zero mean turbulent flow
is perturbed by sinusoidal oscillations, and near-uniformly accelerating in which the mean
flow ramped monotonically between two turbulent states. Previous studies of accelerating
flows have shown that the time evolution between the two turbulent states occurs in three
stages. The first stage is associated with a minimal response of the Reynolds shear stress
and the ensemble-averaged mean flow evolves essentially akin to a laminar flow undergo-
ing the same change in flow rate. During the second stage, the turbulence responds rapidly
to the new flow conditions set by the acceleration and the laminar-like behavior rapidly dis-
appears. During the final stage, the flow adapts to the conditions set by the final Reynolds
number. In here, it is shown that the time-development of the ensemble-averaged wall shear
stress and turbulence during the accelerating phase of a pulsating flow bears marked simi-
larity to the first two stages of time-development exhibited by a near-uniformly accelerating
flow. The stage-like time-development is observed even for a very low forcing frequency;
ω+ = ων/u2

τ = 0.00073 (or equivalently, l+s = √
2/ω+ = 52), at an amplitude of pulsation

of 0.5. Some previous studies have considered the flow to be quasi-steady at l+s = 52; how-
ever, the forcing amplitude has been smaller in those studies. The importance of the forcing
amplitude is reinforced by the time-development of the ensemble-averaged turbulence field.
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For, the near-wall response of the Reynolds stresses showed a dependence on the amplitude
of pulsation. Thus, it appears to exist a need to seek alternative similarity parameters, tak-
ing the amplitude of pulsation into account, if the response of different flow quantities in a
pulsating flow are to be classified correctly.

Keywords Pipe flow · Unsteadiness · Wall shear stress · Turbulence

1 Introduction

When a wall-bounded non-zero mean flow is perturbed by periodic, harmonically oscillat-
ing unsteadiness, it is termed a pulsating flow. Two motivations for studying pulsating flows
are i) many flows in engineering applications such as that in turbomachinery are pulsatile,
and thus, having a better understanding of such flows can lead to design improvements. ii)
From a fundamental perspective, because the unsteadiness impose non-equilibrium features
like phase shifts between turbulence production and dissipation that are not present in a
steady-state flow.

If the flow is laminar, analytical solutions exist for pulsatile boundary-layer, channel and
pipe flows (see [1, 2] and [3], respectively). For canonical turbulent wall-bounded flows,
on the other hand, no analytical solutions exist. The common approach to analyze pulsating
turbulent flows is to fit Fourier series to the ensemble-averaged mean and turbulent quanti-
ties, obtained from either measurements or simulations. To understand, or at least to classify,
how the amplitude and phase of these Fourier series depend on the time-averaged bulk flow
Reynolds number Re = UbD/ν and the angular forcing frequency ω = 2πf , similarity
parameters to correlate the results must be sought. Ub, D, ν and f denote the time-averaged
bulk velocity, pipe diameter, kinematic viscosity and forcing frequency, respectively. A nat-
ural candidate as a starting point for scaling is the laminar Stokes length ls = √

2ν/ω

which, in both Stokes’ second problem (the oscillating plate) and in laminar pulsating flows,
is a measure of how far the oscillating shear generated at the wall diffuses into the flow.
The viscous length scale δν = ν/uτ ; with uτ being the time-averaged friction velocity,
is commonly used for defining different spatial regions of steady wall-bounded turbulent
flows. Scaling the Stokes length by the viscous length scale defines a Stokes-Reynolds
number l+s = ls/δν = lsuτ /ν, which is a measure of the level of interaction between the
oscillating and mean flows. For small l+s (< 8, say), the interaction is negligible leading
to an effectively frozen response of the turbulence. As a consequence, the phase-averaged
mean velocity distribution resembles a laminar profile. For large l+s (> 18, say), significant
interactions take place with wall-normal profiles of the amplitude of many oscillating quan-
tities resembling their corresponding steady counterparts. Previous studies ([4–6], e.g.) have
shown that many quantities do scale with the Stokes-Reynolds number (or equivalently the
normalized circular frequency ω+ = ων/u2

τ = 2/l+2
s ).

By definition, the Stokes length is a purely laminar concept. Therefore, to account
for the increased momentum diffusivity in turbulent flows, Scotti and Piomelli [7] intro-
duced a turbulent Stokes’ length. Based on an eddy viscosity hypothesis, they defined
lt = √

2(ν + νt )/ω. νt = κuτ lt and κ denotes the eddy viscosity and von Kármán constant,
respectively. They showed that modulations of the ensemble-averaged mean velocity and
turbulent fluctuations were confined within a distance of 2l+t (= 2lt /δν) from the wall, thus
providing some justification for using l+t as a scaling parameter.
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Albeit quite successful correlations using either l+s or l+t have been obtained, it is reason-
able to infer that by considering only the time-averaged value of uτ much of the underlying
dynamics of a pulsating turbulent flow are lost. Specifically, the direct numerical simula-
tions (DNS) by He and Seddighi [8] of an accelerating channel flow undergoing a step
change in flow rate, which is not a pulsating flow but still relevant, have shown that the ratio
of initial to final Reynolds numbers characterizes the transient flow behavior. It is tempt-
ing to draw analogies between monotonically accelerating flows and the accelerating phase
of pulsating flows and to postulate that the ratio of the maximum and minimum Reynolds
numbers between which the flow oscillates (subscripted 1 and 0, respectively), should be
a parameter of importance. The amplitude of oscillation Ã = (Re1 − Re0)/(Re1 + Re0),
thereby defines another similarity parameter of potential importance. For Ã < 1, i.e., when
the bulk flow does not reverse direction, former studies have, however, generally ascribed
minor significance to the amplitude. Instead, as fore mentioned, the results have been scaled
using only uτ , ω and ν [5, 7, 9]. This approach may, under certain conditions such as for
small imposed amplitudes, be sufficient if the only interest is to find a correlation for the
response of the amplitude and phase of the fundamental mode of the aforementioned Fourier
series function of l+s (the fundamental mode have, in many studies, indeed contained a sig-
nificant portion of the power-spectral density, see [10], e.g.). This approach does, however,
neglect all details of the oscillating flow cycle.

Unfortunately, time-resolved data from pulsating flows are sparse, where the large-eddy
simulation (LES) presented in [7], and the DNS by [11] are two exceptions. Comparing the
turbulence response predicted by the LES during the accelerating phase of the oscillating
cycle with the results from the DNS by [12] of a linearly accelerating flow, reveals striking
similarities between the two cases. The initial response of the turbulence is in the streamwise
fluctuating velocity in terms of streak amplification, and subsequently after an initial delay,
the wall-normal and spanwise components increase rapidly in response to the formation and
merging of turbulent spots. Qualitatively, this development of the turbulence in a pulsating
flow can be inferred from the fundamental mode of the Fourier series by calculating the
phase-difference between the ensemble-averaged turbulent fluctuations. Nonetheless, the
relevant mechanisms underlying the flow response are unavoidably bypassed utilizing such
approach.

By starting from the existing knowledge about how an accelerating flow develops in
time, the purpose of the present paper is to reinforce the similarity between a monotonically
accelerating turbulent flow, and the accelerating phase of a pulsating turbulent flow. To that
end, hot-film measurements of the wall shear stress as well as two-component particle image
velocimetry (PIV) measurements have been performed in a turbulent pipe flow subjected
to either pulsed or transient unsteadiness. The PIV experiments were designed such that
the flow rate histories were similar among the cases (i.e., the ramp time of the accelerating
flow was close to half of the pulsation period, and the ratio of initial to final Reynolds
numbers was approximately two times Ã). This setup enables direct comparison between the
flows, and as a direct consequence, the shortcoming of characterizing pulsating flows solely
on the time-averaged friction velocity and the forcing frequency. Note that the proposed
similarity between accelerating and pulsating flows is restricted to cases that do not involve
relaminarization or flow reversal, since such conditions might change the flow development
considerably.

The literature covering pulsating and transient flows is vast. In here, no attempt was
made to summarize the topics. Readers interested in an introduction to pulsating flows are
referred to either [6, 13] or [7]. More details on transient flows are found in [14] or [12], e.g.
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2 Measurement Methods and Data Reduction

2.1 Experimental facility

The experimental facility consisted of a 10.4 m straight pipe having an internal diameter
D = 2R = 100 mm. The working fluid was supplied to the test section through a piping
system using an Oberdorfer N1100 gear pump. The bulk velocity, Ub, was monitored using
a Krohne OPTIFLUX electromagnetic flow meter having an accuracy at steady operational
conditions of ± 0.7%.

The experimental program was subdivided into two separate measurement campaigns. In
one series of measurements, a hot-film sensor was used to measure the wall shear stress. In
the second series of measurements, PIV was used to measure the axial and radial velocities.
The experimental test section was mainly manufactured in Plexiglas. The Plexiglas pipe
does not pose problems when performing hot-film measurement using water as the working
fluid. Hence, water kept at 20 ◦C ± 0.1 ◦C was used as the working fluid for the hot-film
measurements.

Because of its large refractive index (n = 1.49), the Plexiglas pipe obstructs near-wall
PIV measurements if water, having a refractive index of 1.33, is used as the working fluid.
To enable near-wall measurements in a pipe, the refractive indices of the pipe wall and the
working fluid ought be matched. One possibility is to mix water with a salt of high refrac-
tive index, e.g. ammonium thiocyanate (Borrero-Echeverry and Morrison [15]), or sodium
iodide (Bai and Katz [16]). Such salt-water mixtures remedies the optical distortions, but
they do also pose problems. Ammonium thiocyanate is highly corrosive and hazardous,
whereas a solution of water and sodium iodide looses its transparency if it comes into
contact with UV-light and (or) oxygen (Scholz, Reuter and Heitmann [17]).

Therefore, to avoid using these types of salts, other means by which to match the refrac-
tive indices were sought. Previously, in the pipe flow laser Doppler velocimetry study by
den Toonder and Nieuwstadt [18], the optical measurement section of the pipe had been
replaced with a thin foil of fluorinated ethylene propylene (FEP), which has a refractive
index n ≈ 1.34. This setup enabled measurements down to a distance of 200 μm from
the wall, corresponding to approximately seven viscous units at Re = 24, 600. The suc-
cess with which those authors performed their measurements inspired the use of a similar
approach in this work. To that end, a section of the Plexiglas pipe was substituted for a one
meter long pipe made out of FEP. A relatively long section of FEP was used to not have
the connection between the Plexiglas and the FEP directly next to the measurement sec-
tion, although care had been taken in the manufacturing procedure to make the connection
between the materials flush. To eliminate the optical distortions at the curved pipe surface,
approximately 5% (by volume) of glycerine was added to water, and an index-matching box
filled with the same water-glycerine solution was placed around the FEP tube. The viscos-
ity of the resulting fluid (at 20 ◦C) was determined to ν = 1.14 × 10−6 m2s−1 using a glass
capillary viscometer (Ostwald viscometer). This value agreed within 2% of the empirical
formula presented in Cheng [20]. The tabulated value was, however, deemed more accu-
rate than the one determined experimentally. Therefore, the tabulated value was used for
calculations involving the kinematic viscosity.

2.2 Experimental conditions

Each measurement is characterized by the change in Reynolds number, ΔRe = Re1 −
Re0 and the ramp time ΔT = t1 − t0. The indices 1 and 0 refer to the maximum and
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Table 1 Experimental conditions

Case Re0 Re1 ΔT (s) ΔT + ω+ l+s δ Ã

AP1 7,900 17,100 6.1 170 – – 0.007 –

PP1 7,100 18,000 6.25 162 0.008 16 – 0.43

AP2 7,900 17,100 3 85 – – 0.013 –

PP2 10,500 14,300 6.25 162 0.008 16 – 0.15

AH1 11,400 35,700 7.25 355 – – 0.0057 –

PH1 7,200 22,200 12.5 380 0.0031 25 – 0.5

PH2 7,200 22,200 25 680 0.0015 36 – 0.5

PH3 7,200 22,200 50 1,350 0.00073 52 – 0.5

The first letter, A or P, stands for accelerating and pulsating, respectively. The second letter, P or H, stands for
the measurement method used, i.e., PIV or Hot-film. Indices 0 and 1 represent the minimum and maximum
values (note that the period time for a pulsating flow is 2ΔT ). The parameter δ = ν

u2
τ0

1
Ub0

dUb

dt
, was used by

[19] to correlate their data in near-uniformly accelerating flows

minimum values (for pulsating flows, the period time is twice ΔT ). Table 1 summarizes
the measurement cases to be discussed. Note that for the cases of accelerating flows, the
change in the bulk flow rate is close to, but not strictly, linear. For the two cases termed
AP1 and PP1, detailed comparisons of the evolution of the turbulence will be performed. It
is therefore instructive to show the Reynolds number histories for these cases, see Fig. 1.
Note that the data from PP1 (as well as PH1, PH2 and PH3) have been shifted such that the
accelerating phase of the bulk flow starts at t+0 = tu2

τ0/ν = 0. uτ0 denotes the minimum
friction velocity.
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Fig. 1 Reynolds number histories of test cases AP1 and PP1
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2.3 Instrumentation

2.3.1 Particle image velocitmetry measurements

The axial (U) and radial/wall-normal (V) velocity components as defined in a standard
cylindrical coordinate system were measured using a PIV system from Dantec Dynamics.

The laser sheet was formed by passing the beams of a double-pulsed Nd:YAG laser with
a power of 50 mJ per pulse at 532 nm through a cylindrical lens. The particle images were
captured using a 2048 by 2048 pixel camera at 10 Hz (the maximum frame rate of the
camera). The velocity vectors were calculated using the commercially available software
DynamicStudio from Dantec, using an adaptive cross correlation algorithm on pairs of sin-
gle exposed images. Each image was subdivided into rectangular interrogation areas (IAs)
of size 64 by 256 pixels in the vertical and horizontal directions, respectively. The IAs were
elongated in the horizontal direction to enable measurements of the large range of velocities
encountered during the experiments. To increase the wall-normal resolution, the IAs were
overlapped by 50% in the vertical direction, resulting in 64 by 8 IAs in the vertical and hor-
izontal directions, respectively. Because of inflow and outflow of particles between the two
images, the data in the first two and the last two columns of the IAs were of low quality.
These four columns were disregarded in the post-processing.

To detect spurious vectors, a 3 by 3 local median test was applied to the calculated veloc-
ity vectors (see Westerweel and Scarano [21]). The vectors not passing through this test
were disregarded.

To facilitate a high wall-normal resolution close to the wall, the near-wall and bulk flow
regions were measured separately. The near-wall field of view was 6.2 mm by 6.2 mm,
resulting in a spatial resolution of 97 μm by 390 μm. This corresponded to a wall-normal
resolution of 0.5 and 1 viscous units at the lowest and highest Reynolds numbers, respec-
tively. The bulk flow was measured at a field of view of 50 mm by 50 mm; thereby giving a
wall-normal resolution of 4 and 8 viscous units at the lowest and highest Reynolds numbers.
Although the near-wall spatial resolution ranges between 0.5–1 viscous units, measurements
of the wall-normal turbulent fluctuations below y+ = 3 (based on the larger viscous scale)
could not be achieved with satisfactory accuracy and will hence not be presented.

To minimize the disturbances resulting from the light scattered at the wall, a filter that
effectively removed the light at the laser wave length from the PIV images was placed on
the camera lens. Rhodamine B coated fluorescent Polymethyl methacrylate particles with
maximum excitation/emission at 532 nm and 585 nm, respectively, were used for seeding.
Calibration was performed by photographing a square plate equipped with a 125 μm equi-
spaced dot pattern. Owing to the index-matching, a one-dimensional calibration sufficed.

2.4 Hot-film measurements

The wall shear stress was measured using a flush-mounted 55R46 hot-film sensor from
Dantec. The sensor’s overheat ratio was set to 8%, using a Dantec Streamline Pro Constant
Temperature Anemometry system. The sensing element of the probe measures 0.20 mm by
0.75 mm in the streamwise and circumferential directions, respectively. The dimensions in
viscous units were below 15 δν at the highest Reynolds number (35,500) encountered in the
experiments.

Calibration of the sensor was performed in situ before and after each measurement series.
The hot-film voltage and the flow rate were recorded at five Reynolds numbers. The lower
Reynolds number was fixed at 5,000. The upper limit of the Reynolds number was 35,500
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for cases PH1, PH2 and PH3, whereas it was 70,000 for case AH1. The wall shear stress
at each point was estimated from τ = (ρU2

b f )/8. The friction factor was extracted from
the Colebrook formula, see [22]. The estimated values of the wall shear stresses were aptly
fitted to the measured hot-film voltages, E, by the ‘standard’ relation τ 1/3 = A+BE2. The
hot-film signal was digitized using a PXI system consisting of a 24-bit NI-4472 card at a
rate of 1 kHz.

2.5 Data reduction

For the PIV data, ensemble averages were calculated by averaging over N = 250 repeated
runs and L = 4 axial measurement points at the same phase of the flow rate excursions

〈φ〉(r, t) = 1

NL

L∑

l=1

N∑

n=1

φn(xl, r, t),

〈φ′φ′〉(r, t) = 1

NL

L∑

l=1

N∑

n=1

[φn(xl, r, t) − 〈φ〉]2 . (1)

Where φn(x, r, t) = 〈φ〉(r, t) + φ′
n(x, r, t) is the n:th measurement of a generic variable

with ensemble average mean 〈φ〉(r, t), and deviation φ′
n(x, r, t) from the ensemble-averaged

mean. The averaging procedure for the hot-film data was similar, except that only one axial
measurement position was available.

Ideally, several thousands of repetitions have to be performed in order to achieve fully
converged statistics. Performing this many repetitions is not feasible because of the large
memory storage requirements for the PIV data. The number of repetitions performed
(N = 250), was chosen as a compromise between the available data storage capacity and
the convergence of the turbulence statistics. Figure 2a illustrates the convergence of the data
by comparing the ensemble-averaged radial velocity fluctuations at a wall-normal distance
y+

0 = 9 for N = 50 and N = 250 repetitions. The overall trend is not affected by the num-
ber of repetitions, but, the fluctuations are reduced significantly for N = 250. However,
even for the larger number of repetitions, non-negligible fluctuations are ubiquitous in the
data. To dampen these fluctuations, the mean value of two consecutive time steps was cal-
culated and used as a single time-step. The temporal resolution was thus reduced to 0.2 s. A
similar approach has been used by [14, 19] in their studies of transient flows (they termed
the approach window averaging). The averaging procedure also reminisces dividing the
phase into equally spaced bins for calculating phase averages, as commonly done in stud-
ies of pulsating flows (see, e.g., [5]). Figure 2b shows that the window averaging approach
reduces, but does not eliminate, the fluctuations compared to the raw data. Hence, the data
to be presented in Section 3 will exhibit some fluctuations. The fluctuations are, however,
not large enough to inhibit the discussion.

Similarly, the hot-film data will exhibit fluctuations despite the significant number of rep-
etitions performed (at least 150). Owing to the higher sampling frequency, 100 consecutive
data points (from each repetition) were stored in each window.

When the results are discussed, the ensemble-averaged (commonly also termed phase-
averaged) mean velocity and wall shear stress will be termed ensemble-averaged mean,
phase-averaged mean and mean interchangeably. The mean wall shear stress is presented
with a lowercase τ , the ensemble-averaged mean velocity is presented with a capital U ,
and the ensemble-averaged Reynolds stresses are presented as 〈uu〉, 〈vv〉 and 〈uv〉. For all
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Fig. 2 Check on the convergence of the data: , 50 repetitions; , 250 repetitions; , 250 repetitions
with window averaging

measurements, the mean radial velocity was at least two orders of magnitude smaller than
U . Hence, only the fluctuating part of the radial velocity v, and its correlation with u, are
presented.

3 Results

The results section is divided into five parts. Initially, to verify the present experimental
setup, time-averaged data are discussed in relation to well-known results. Comparisons are
also made for the amplitude and the phase of the phase-averaged mean axial velocity. The
second sub-section covers the time-development of the wall shear stress. This section is
followed by a presentation of the Reynolds stresses and a section presenting further wall
shear stress measurements. Finally, the influence of varying the amplitude of the imposed
pulsation is elucidated by investigating the Reynolds stresses for Ã = 0.15 and Ã = 0.43.

The axial, radial and circumferential coordinates are denoted x, r and θ , respectively.
The wall-normal distance y = R − r , scaled in viscous units y+ = yuτ /ν, will be used
frequently throughout the discussion. The time from the commencement of the acceleration
scaled in viscous units, i.e., t+ = tu2

τ /ν, will also be used throughout the remainder of the
paper. In Fig. 4, the wall-normal coordinate is scaled using the laminar Stokes length, i.e.,
ys = y/ls .

3.1 Characteristics of the time-averaged and phase-averaged fields

The current section serves as a verification of the adequacy of the present setup. Com-
parisons are made for the time-averaged mean axial velocity and turbulent fluctuations.
Characteristics of the phase-averaged mean axial velocity are also discussed.

Figure 3a shows the time-averaged mean axial velocity before the commencement of
the acceleration for case AP1 (Re0 = 7, 900) and the time-averaged mean axial velocity
for case PP1 (Re = 12, 550). Close to the wall (y+ < 5), the velocity profiles closely
follow the law of the wall U

+ = y+. Away from the wall (y+ > 30), both cases display
a logarithmic behavior but the velocity distributions do not collapse on the same curve.
The profile corresponding to the lower Reynolds number (AP1) is slightly elevated in the
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Fig. 3 Time-averaged profiles of the axial velocity, the r.m.s. turbulent velocity fluctuations and the
Reynolds shear stress scaled in viscous units. , AP1 before the commencement of the acceleration; , PP1

‘logarithmic layer’, this being a typical feature of low-Reynolds number flows [23]. From
what Reynolds number, if any, there exists a universal logarithmic profile is debatable [24].
The Reynolds numbers investigated in here are for sure too low for a universal behavior of
the time-averaged profiles to exist outside the buffer layer.

In Fig. 3b the root mean square (r.m.s.) turbulent fluctuations and the time-averaged
Reynolds shear stress are plotted. The curves collapse quite closely for y+ < 40. The peak
of u+

rms is 2.85 and 2.7 for case AP1 and PP1, respectively. The location of the peak occurs
at the typical wall-normal position y+ ≈ 15. The difference (5%) in the peak values is
likely related to measurement errors, taking into consideration the uncertainties involved in
i) measuring the maximum value of urms , and ii) estimating the friction velocity.

Figure 4a, b shows, respectively, the amplitude and the phase of the phase-averaged
mean axial velocity from case PP1 plotted versus ys = y/ls . The data is compared with
the channel flow DNS of Weng et al. [11] (l+s = 18). Both profiles do show fairly good
agreement with the reference data; complete similarity cannot be expected because of the
differences in l+s and in the geometry. The phase difference displays an interesting behavior
exhibiting a local minimum and a local maximum at ys ≈ 0.5 and ys ≈ 2, respectively.
The reference data show a similar pattern but the wall-normal locations of the extrema are
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Fig. 4 Amplitude and phase of the phase-averaged axial velocity. , PP1; ◦, data from Weng et al. [11]
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slightly different. The local maximum around ys = 2 have been reported in many previous
studies, [6, 25, 26], e.g. The minima, on the other hand, has not been reported as often.
The cause, and potential effect of the peaks has not been given much attention in previous
studies, though. It would be of interest to perform such study, however, that is outside the
scope of the present paper.

3.2 Ensemble-averaged mean and turbulent wall shear stress

3.2.1 Accelerating flow

The time-development of the mean wall shear stress for case AH1 is shown in Fig. 5a. On
the abscissa, time is scaled using the minimum friction velocity and the kinematic viscosity.
The ordinate is scaled by the minimum wall shear stress. As shown previously by [19] and
[12], and reconfirmed in here, the wall shear stress develops in three stages when the bulk
flow undergoes a linear acceleration. Stage one is identified between 0 < t+0 < 150, stage
two between 150 < t+0 < 300, and finally, stage three t+0 > 300. Initially, during the first
stage, inertia dominates the response and τ increases from the value prevailing before the
commencement of the acceleration akin to a laminar flow undergoing the same flow rate
excursion (the response for a purely laminar flow is plotted as the dotted line in Fig. 5a,
consult [27] for the derivation). Furthermore, the initial response of the wall shear stress
is more rapid than in the corresponding steady-state flow, τqs . The quasi-steady wall shear
stress was obtained by calculating the (steady) friction factor at the instantaneous Reynolds
number and subsequently using τqs = (ρf U2

b )/8. The close-to-laminar response of the
flow is a result of delays in the time-development of the Reynolds shear stress following
the commencement of the acceleration (the red lines in Fig. 6g, h, t+0 < 100, shows an
example of this delay although the response of 〈uv〉 in that figure is from case AP1). As the
first stage proceeds, however, the delayed response of the turbulence counteracts the effect
of inertia, thus causing the transient τ to become smaller than the steady value (t+0 > 75).
During stage one, although the Reynolds shear stress remains approximately constant, there
is a significant generation of streamwise turbulent velocity fluctuations. The generation of
〈uu〉 starts at the wall at t+0 = 0, and progressively propagates toward the pipe centreline
as time proceeds, see Fig. 6a, c, e; although as for 〈uv〉, this is from a different case. As
shown in the accelerating channel flow DNS by [12], the growth of 〈uu〉 during stage one is
mainly associated with the excess shear that is generated at the wall as the flow accelerates.
The excess shear elongates and amplifies the streamwise turbulence structures that pre-
existed before the commencement of the acceleration. The growth of 〈uu〉 is therefore not
associated with ‘normal’ turbulence activities that would exist in a statistically steady flow
at the same Reynolds number (the elongated and amplified structures are akin to the growth
of the streamwise disturbances in the buffeted laminar region in the laminar to turbulent
boundary layer bypass transition). This anomaly development of the turbulence is what
ultimately causes 〈uv〉 to remain approximately constant during stage one (and hence, the
reason why the wall shear stress responds as in a laminar flow).

At t+0 = 150 the transient τ starts departing from the laminar solution, thus indicating
that the turbulence is responding more rapidly to the imposed acceleration. The departure
from the laminar solution signifies that the flow-development has entered the second stage.
The generation of turbulence causes the wall shear stress to increase rapidly, and at t+0 =
250, τ has reached the same value as τqs . Following the rapid increase, τ settles toward
the value dictated by the final Reynolds number; i.e., the flow-development has progressed
to the third stage. In this section, the response of the wall shear stress for a single case of
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Fig. 5 Time-development of: ensemble-averaged mean wall shear stress, left column of figures; ensemble-
averaged r.m.s. turbulent wall shear stress, right column of figures. a–b AH1, δ = 0.0057; c–d PH1, l+s = 25;
e–f PH2, l+s = 36; g–h PH3 l+s = 52. , unsteady, , quasi-steady; , analytical laminar. The
vertical bars denote the end of the bulk flow accelerating phase
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Fig. 6 Time-developments of the ensemble-averaged Reynolds stresses. , PP1; , AP1. The vertical
bars denote the end of the bulk flow accelerating phase
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accelerating flow is discussed. For a more thorough discussion on the response of the wall
shear stress in accelerating pipe flows, including the influence of varying ΔT , ΔRe and
Re0, the reader is referred to [19].

The response of the turbulence can also be illustrated by plotting the ensemble-averaged
r.m.s. turbulent wall shear stress normalized by the mean wall shear stress. For steady-state
flows, this quantity falls in the range 0.35 < τ ′

rms/τ < 0.40 [28, 29]. Departure from these
values is a good indicator of the flow being in a state of non-equilibrium. Figure 5b shows
that τ ′

rms/τ decreases rapidly following the commencement of the acceleration, reaching a
value of 0.25 at t+0 = 30. Thereafter it remains approximately constant until t+0 = 100. The
approximate constancy of the normalized r.m.s. wall shear implies that the growth of τ ′

rms

is directly proportional to τ ; i.e., that the growth of the streamwise velocity fluctuations is
mainly associated with the excess shear generated at the wall, and not with a generation of
Reynolds shear stress. Following this phase of approximately constant τ ′

rms/τ , the normal-
ized r.m.s. wall shear stress increases steadily for 100 < t+0 < 150. This phase of slow
growth of τ ′

rms/τ implies that there is a generation of Reynolds shear stress during this
period of time, albeit at a low rate. Then, for t+0 > 150 as the second stage starts, the rapid
generation of turbulence causes the normalized r.m.s. value to increase rapidly, reaching a
value of 0.385 at t+0 = 200. The normalized r.m.s. wall shear subsequently settle around
0.38 as the near-wall flow asymptotically reaches equilibrium.

3.2.2 Pulsating flow

Figure 5c, e, g shows, respectively, the mean wall shear stress for l+s = 25, 36, and 52 for
an amplitude of pulsation, Ã = 0.5. Although the accelerating phase of these flows start in
a state of statistical non-equilibrium (as opposed to case AH1), much of the characteristics
of the time-development of τ bears similarities to the stage-like development discussed
previously.

Consider case PH1 (l+s = 25, Fig. 5c). Following the onset of the accelerating phase,
the mean wall shear stress increases more rapidly than in the corresponding quasi-steady
flow and overshoots these values (although part of the overshoot can be attributed to the
fact that the minimum of the unsteady τ does not reach as low as the minimum quasi-steady
wall shear stress). As the accelerating phase proceeds, however, the quasi-steady wall shear
stress increases more rapidly than its unsteady counterpart and at t+0 = 190, τqs becomes
larger than τ . At t+0 = 270, τ starts to increase rapidly and reaches the steady value at
the end of the accelerating phase (t+0 = 375). Clearly, there are similarities in the time-
development of τ between cases PH1 and AH1. For case PH1 it can be thus inferred that
the initial overshoot of τ relative to τqs is related to inertia, the subsequent undershoot to
delays in the response of the turbulence, and finally, that the rapid increase of τ toward τqs

stems from a rapid generation of turbulence.
The normalized r.m.s. turbulent wall shear stress further illustrates the similarity between

accelerating and pulsating flows (see Fig. 5d). Following the commencement of the accel-
erating phase, τ ′

rms/τ decreases rapidly to 0.25, and subsequently remains approximately
constant for 170 time units. The duration of the phase of approximately constant τ ′

rms/τ is
longer for PH1 than for AH1. This is an effect of the smaller friction velocity at the com-
mencement of the acceleration for PH1 than for case AH1. As for an accelerating flow, the
constancy of τ ′

rms/τ shows that τ ′
rms is directly proportional to τ ; i.e., that the growth of

〈uu〉 is related to elongation and amplification of the streaks that exist at the commence-
ment of the accelerating phase, and not to a generation of new turbulence structures (this can
be seen in Fig. 6g, showing the time-development of Reynolds shear stress for case PP1).
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At t+0 = 260 the normalized r.m.s. wall shear stress increases rapidly in conjunction to the
generation of new turbulence structures.

A pulsating flow starts to decelerate directly following the accelerating phase. There-
fore, the third stage that is observed for an accelerating flow, i.e. when the flow approaches
equilibrium, is never reached for a pulsating flow. In passing, it is interesting to note that
τ overlaps with τqs , during a significant portion of the decelerating phase. Hence, from a
computational perspective, it should be easier to model the decelerating phase. It is, how-
ever, beyond the scope of this paper to investigate the decelerating phase, or any modeling
issues, in greater detail.

Similarly, for case PH2 (l+s = 36), τ is seen to develop in stages showing the importance
of, respectively, inertia, a delayed turbulence response and the subsequent rapid generation
of turbulence (see Fig. 5e). However, because of the longer period time of the pulsation, the
effects of the unsteadiness are considerably weaker than in case PH1. Even for case PH3, in
which l+s = 52, the effects of the flow unsteadiness can be traced in the time-developments
of τ and τ ′

rms/τ (Fig. 5g, h). The unsteadiness seen in the time-development for l+s = 52
could be inferred as somewhat controversial since, e.g., [11] classified l+s = 45 as quasi-
steady. The imposed amplitude in that study was only 0.1. To reconcile the apparent conflict,
it can be noted that [7] pointed out that the exact limit of quasi-steadiness is likely to be
dependent on the amplitude of pulsation.

3.3 Ensemble-averaged Reynolds stresses

Figure 6 shows the three measured components of the ensemble-averaged Reynolds stresses
at wall-normal locations 4 < y+

0 = yuτ0/ν < 145. The abscissa is scaled as in Fig. 5, and
the ordinate is scaled using the minimum friction velocity.

Figure 6a shows the response of the streamwise component from cases AP1 and PP1 at
y+

0 = 4. For case AP1, 〈uu〉 increases at a slow but definite rate for t+0 < 150. As shown in
the DNS by [12], and as discussed in Section 3.2.1, this initial increase is associated with an
amplification and elongation of the near-wall streaks in relation to the excess shear gener-
ated at the commencement of the acceleration. At this phase there is hardly any generation
of new turbulence structures, this being nicely illustrated in Fig. 6d (t+ < 150) by 〈vv〉,
which remains largely unchanged. For 150 < t+0 < 210, 〈uu〉 increases rapidly owing to
generation of Reynolds shear stress (see Fig. 6g, t+0 ≈ 150). A significant portion of this
increase occurs after t+0 = 170, i.e., when the bulk flow has stopped accelerating. Finally
for t+0 > 200, 〈uu〉 settles toward the equilibrium value dictated by the final Reynolds num-
ber. For case PP1, 〈uu〉 exhibits a slow increase between 0 < t+0 < 150. This increase
is readily associated with the excess shear that is generated at t+0 = 0. Subsequently, for
150 < t+0 < 200, 〈uu〉 increases rapidly. The rapid increase largely overlaps with a fast
response of the Reynolds shear stress (Fig. 6g, t+0 ≈ 150 ). As for case AP1, a significant
portion of the rapid increase of 〈uu〉 occurs when the bulk flow has stopped accelerating
(t+0 = 162). Directly after 〈uu〉 has reached its peak value, the decaying phase starts because
of the bulk flow deceleration. Clearly, as for the wall shear stress, the turbulent fluctuating
streamwise velocity in a pulsating flow exhibits two of the three stages of time-development
described in Section 3.2.

Further out in the near-wall region (Fig. 6c, y+
0 = 15), 〈uu〉 still develops similarly

between the two cases. Specifically, 〈uu〉 remains largely constant for t+0 < 25, increases
slowly during the subsequent 50 time units, and then increases much more rapidly for 75 <

t+0 < 175. For case AP1 it is interesting to note that 〈uu〉 decreases by more than 33% from
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its maximum value between 200 < t+0 < 250 and overlaps with 〈uu〉 from case PP1 until
t+0 ≈ 250.

In the bulk flow (y+
0 = 145), there is a delay in the response of 〈uu〉 of approximately

200 time units for AP1, see Fig. 6e. Similarly, for PP1, 〈uu〉 passes through its minimum
around t+0 ≈ 200, and subsequently starts increasing. Thus, the disturbance growth that is
induced in the streamwise component at t+0 = 0 propagates away from the wall at nearly the
same speed for the two cases. At this wall-normal position, the radial component develops
similarly as the streamwise component, see Fig. 6f. The similarity in the time-development
between 〈uu〉 and 〈vv〉 at this wall-normal position, as opposed to the near-wall behavior,
shows that turbulence diffusion is the main energy providing mechanism in the outer regions
of the flow (see [14], for a further discussion).

Figure 6d shows the time-development of 〈vv〉 at y+
0 = 15. For case AP1, 〈vv〉 remains

largely unchanged from the value prevailing before the commencement of the acceleration
when t+0 < 100. Since 〈vv〉 does not extract energy directly from the mean flow, the low
activity in 〈vv〉 during this period in time is a result of delays in the energy redistribution
from 〈uu〉 by pressure-strain (the low activity of the pressure-strain is equivalent to the lack
of generation of new turbulence structures, as discussed previously). During the subsequent
75 time units 〈vv〉 grows slowly, showing that the pressure-strain has started to respond
to the new flow conditions, although at a low rate. For 175 < t+0 < 250, 〈vv〉 increases
very rapidly, thus showing that the pressure-strain has become fully active and that new tur-
bulence structures are generated. Subsequently, the wall-normal velocity fluctuations settle
toward the final value. For PP1, 〈vv〉 decreases slightly between 0 < t+0 < 90, remain
approximately constant for the next 60 time units and increases rapidly for 150 < t+0 < 225.
Thus, due to the similarities to case AP1, the time-development of 〈vv〉 in a pulsating flow
is also largely controlled by the response of the pressure-strain.

The time-development of 〈vv〉 next to the wall (y+
0 = 4, Fig. 6b) shows a peculiar

behavior. For 40 < t+0 < 90 in the accelerating flow, and for 55 < t+0 < 90 in the
pulsating flow, there is an increase, followed by a decrease of 〈vv〉. Note that the peculiarity
disappears for y+

0 > 10. Such peculiar behavior has not been found in DNS; neither in a
linearly accelerating flow [12], nor in an impulsively accelerating flow [30]. However, large
intermittency was reported during the first stage, see [12]. Hence, the peculiar behavior
seen in the measurements might be a local asymmetry, thus showing up as intermittency
in a DNS (in the evaluation of DNS data, homogeneity is assumed in the streamwise and
circumferential/spanwise directions such that any local behavior will be smeared out in the
averaging procedure). PIV measurements were performed in a single plane only. Hence, the
peculiar behavior of 〈vv〉 could not be further investigated. However, asymmetries in the
time-development of the wall shear stress have been found and these are discussed in the
next section.

3.4 Further wall shear stress observations

Wall shear stress measurements using near-wall data from PIV and a hot-film sensor were
performed with a 90◦ circumferential separation. Note that this set of hot-film measure-
ments were performed in the water-glycerine solution, and not in pure water as described
in Section 2. Except for the difference in the fluids, the measurement approach for the hot-
film was equivalent to that described in Section 2. Figure 7a shows the time-development
of the ensemble-averaged mean wall shear stress from case AP1 alongside the aforemen-
tioned analytical laminar solution (the derivation is presented in [27] and [31]). Although
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Fig. 7 Time-developments of the ensemble-averaged mean wall shear stresses for a case AP1; b case AP2,
computed from: , PIV; , Hot-film; analytical laminar solution [27]. The vertical bars denote
the end of the bulk flow accelerating phase

some differences between the PIV and hot-film results are seen, it is difficult to discern if
this is related to measurement errors or a circumferential effect.

The ensemble-averaged mean wall shear stress from case AP2 is plotted in Fig. 7b. As
long as the acceleration is effective, there is good agreement between the measured wall
shear stresses. Furthermore, the analytical (laminar) solution provides a fairly good repre-
sentation of the data. Following the completion of the acceleration at t+0 = 85, the hot-film
and analytical data start departing from the PIV data. Specifically, at the PIV station, the
flow enters the second stage at t+0 = 100, whereas it remains in the first stage at the hot-
film station until t+0 = 130. Thus, case AP2 exhibit significant circumferential dependence
which, furthermore, is repeatable since the ensemble-averaged values differ depending on
θ . Circumferential (and axial) dependence was also found by [19] in their hot-film measure-
ments of τ in an accelerating pipe flow. The asymmetries were only pronounced in one out
of eight cases; nonetheless, they showed that the time-development of the turbulence in a
near-uniformly accelerating pipe flow may have a circumferential (and axial) dependence.
How, or if, this circumferential dependence of τ is related to the peculiar time-development
of 〈vv〉 seen in Fig. 6b for 40 < t+0 < 90 is unclear, and need further studies and data to be
elucidated.

Before concluding this section, the following is worth noting. The production of 〈uv〉
is P〈uv〉 = −〈vv〉∂U/∂r . The ensemble-averaged velocity is governed by the unsteady
Reynolds-averaged Navier-Stokes equation which, for a fully developed axisymmetric flow,
differ from a laminar equation only through the appearance of the Reynolds shear stress
〈uv〉. For case AP2 the laminar formulation of the wall shear stress is valid for different
durations of time, this being a function of the circumferential coordinate. Thus, 〈uv〉 and
ultimately 〈vv〉 as realized through the production P〈uv〉, is a function of the circumferential
coordinate for case AP2.

3.5 Influence of forcing amplitude

In [19] it was shown that the delay time before the near-wall turbulence responded to a close-
to-uniform acceleration was dependent on the initial Reynolds number, which defines a time
scale tν0 = ν/u2

τ0, that characterizes the turbulence. In here tν0 is 36 ms, 38 ms and 20 ms for
AP1, PP1 and PP2, respectively. The similarity with which the turbulence evolves between
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Fig. 8 Time-lag relative to the centreline velocity oscillation for , 〈uu〉; , 〈vv〉; and �, 〈uv〉. Closed
symbols, PP1; open symbols, PP2

cases AP1 and PP1 presented in Section 3.3 suggest that it is the minimum value of uτ that
defines the turbulent time scale (of the accelerating phase) in a pulsating flow. To reinforce
the importance of uτ0, additional measurements were undertaken in a pulsating flow with
the same time-averaged uτ , but with a larger uτ0 (case PP2 in Table 1). Figure 8 shows the
time-lag in viscous units between the Reynolds stresses and the centreline velocity for PP1
and PP2. The time-lags have been calculated from the fundamental mode of the Fourier
series of the respective flow quantity. The figure shows that for case PP2, which exhibits a
larger uτ0, there are shorter time-lags of the turbulence relative to the centreline for y+ <

60 (y+ is derived based on the time-averaged friction velocity, not uτ0). Furthermore, the
wall-normal distance at which the time-lag of 〈vv〉 starts to deviate from an approximately
constant value (y+ = 45 for PP2 and y+ = 60 for PP1) is smaller for PP2; in conclusion,
the time-lags do not scale with the same friction velocity.

The present results show that the forcing amplitude is an important parameter for the
response of a pulsating flow. We do, however, refrain from claiming that similarity parame-
ters such as l+s and ω+ (which are independent of the amplitude) lack meaning. For example,
classifying the flow into different regimes, such as quasi-laminar, intermediate or quasi-
steady, can be quite satisfactorily addressed by l+s and ω+. However, it cannot be expected
that the response of different flow quantities will scale universally upon a similarity param-
eter that does not take the forcing amplitude into account. In here, no attempt was made
to find new similarity parameters. Finding a new similarity parameter requires data from
more cases covering different amplitudes, forcing frequencies and time-averaged Reynolds
numbers.

4 Conclusions

Two-component particle image velocimetry measurements and hot-film measurements of
the wall shear stress in both pulsating and near-uniformly accelerating turbulent pipe flows
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have been presented. Statistics have been obtained by performing many repetitions of
nominally similar flow rate excursions, thus allowing both ensemble-averaged mean and
turbulent fluctuations to be calculated.

The main finding of this work is that the responses of both the wall shear stress and
the turbulence are similar between a near-uniformly accelerating flow, and the accelerat-
ing phase of a pulsating flow. Previous studies, [19] and [12] e.g., have shown that a flow
undergoing a near-uniform change in the bulk flow rate evolves in three distinct stages. The
first stage is characterized by a dominance of inertia and minimal response of the turbulence
(through the Reynolds shear stress, the streamwise fluctuating velocity does increase). The
onset of the second stage is identified by a rapid generation of new turbulence, whereas in
the last stage, the flow attains distributions of the mean and turbulence quantities as dictated
by the final Reynolds number.

The response of the wall shear stress for one case of accelerating flow and three cases of
pulsating flows was presented first. The three-stage development was reconfirmed for the
accelerating flow. Two of the three stages were observed for pulsating flows over a large
range of non-dimensional frequencies 0.00073 < ω+ = ων/u2

τ < 0.0031, or equivalently,
25 < l+s < 52. The stage-like development was more distinct for the larger forcing fre-
quency, but nonetheless, even for the lowest investigated frequency, non-negligible effects of
the flow unsteadiness were observed. The pulsation amplitude was 0.5, which is moderately
large. The stage-like time-development for l+s = 52 is interesting because it illuminates
the importance of taking the forcing amplitude into account for classifying a pulsating flow
correctly. For example, [11] considered l+s = 45 as quasi-steady; however, their forcing
amplitude was only 0.1.

Subsequently, the response of the Reynolds stresses was presented. Specifically, as
shown in previous studies, the initial response of the turbulence is through an increase of the
near-wall streamwise fluctuating velocity in conjunction to the excess shear that is generated
when the flow starts to accelerate. The Reynolds shear stress, and the wall-normal fluctuat-
ing velocity, on the other hand, remain largely unchanged or decreases slightly during the
first stage. In the second stage there is a rapid generation of both 〈uv〉 and 〈vv〉.

During the first stage, there is a peculiar behavior in the wall-normal fluctuating veloc-
ity next to the wall (y+

0 < 10). For a brief period of time, 〈vv〉 increases, but subsequently
decreases back to the same value. The phenomenon is observed for both types of flows,
but a similar phenomenon has not been reported in previous studies. It is therefore con-
jectured that that the phenomenon is local in space, and furthermore repeatable, since it is
observed for an ensemble-averaged quantity. The existence of an asymmetric response of
the turbulence is supported by further wall shear stress measurements that were performed
with a 90◦ circumferential separation. For, these measurements displayed a circumferential
dependence. Such behavior of the wall shear stress, on the other hand, has been reported
previously by [19].

Finally, it was shown that the time-delay of the ensemble-averaged Reynolds normal and
shear stresses relative to the centreline velocity, is dependent on the forcing amplitude. This
finding further highlights the importance of the amplitude of pulsation for understanding
the physical processes underlying a pulsating flow. Previous studies ([4, 5, 7], e.g.) have
ascribed only minor importance to the amplitude though. These studies have, generally,
sought to correlate the response of turbulent and mean flow quantities based on similarity
parameters that do not take the amplitude into account; i.e., ω+ and l+s . Although the present
results do stress the importance of the amplitude of pulsation, we refrained from seeking
new similarity parameters because sufficient data was not captured to accomplish such task.
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