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Abstract The effect of flow separation and turbulence on the performance of a jet pump in
oscillatory flows is investigated. A jet pump is a static device whose shape induces asym-
metric hydrodynamic end effects when placed in an oscillatory flow. This will result in a
time-averaged pressure drop which can be used to suppress acoustic streaming in closed-
loop thermoacoustic devices. An experimental setup is used to measure the time-averaged
pressure drop as well as the acoustic power dissipation across two different jet pump geome-
tries in a pure oscillatory flow. The results are compared against published numerical results
where flow separation was found to have a negative effect on the jet pump performance in a
laminar flow. Using hot-wire anemometry the onset of flow separation is determined exper-
imentally and the applicability of a critical Reynolds number for oscillatory pipe flows is
confirmed for jet pump applications. It is found that turbulence can lead to a reduction of
flow separation and hence, to an improvement in jet pump performance compared to laminar
oscillatory flows.

Keywords Jet pumps - Thermoacoustics - Flow separation - Turbulence -

Oscillatory flows - Minor losses

1 Introduction

Thermoacoustic engines are an interesting alternative to conventional heat engines due to

the lack of moving parts in the hot region and the low temperature difference required
to operate. These engines provide a durable solution in, for example, waste heat recovery

P4 Joris P. Oosterhuis
j-p-oosterhuis @utwente.nl

Department of Thermal Engineering, University of Twente, Enschede, The Netherlands

2 Chart Inc., Troy, NY, USA

@ Springer


http://crossmark.crossref.org/dialog/?doi=10.1007/s10494-016-9731-8&domain=pdf
mailto:j.p.oosterhuis@utwente.nl

312 Flow Turbulence Combust (2017) 98:311-326

applications [1]. With traveling wave based thermoacoustic devices, which consist of a
closed-loop tube, high theoretical efficiencies can be achieved [2]. Backhaus & Swift
applied the traveling wave concept in their engine, reaching a thermal-to—acoustic effi-
ciency of 30 % [3].

Despite the higher efficiency, the traveling wave configuration has one major disadvan-
tage: due to the closed looped geometry a time-averaged mass flow, known as “Gedeon
streaming”, can occur [4]. This type of acoustic streaming leads to undesired convective heat
transport, which reduces the efficiency of closed-loop thermoacoustic devices. A commonly
used solution to avoid Gedeon streaming is the application of a jet pump [3, 5-7]. A jet
pump is a section with a tapered hole as depicted in Fig. 1. The combination of an oscillatory
flow and an asymmetry in the hydrodynamic end effects results in a time-averaged pressure
drop across the jet pump. By balancing this time-averaged pressure drop with the pressure
drop that exists across the regenerator of the thermoacoustic device, Gedeon streaming can
be suppressed [3].

The current design methodology for jet pumps is based on a quasi-steady approxima-
tion [3]. Using minor loss coefficients reported for the abrupt expansion and contraction in
steady pipe flow, the time-averaged pressure drop and related acoustic power dissipation in
an oscillatory flow can be estimated,

1 A\
Apy = gp0|M1,JP|2 |:(Kexp,s - Kcon,s) + <A7;) (Kcon,b - Kexp,b)i| , ()
2
: polur,splPA, A
AEQ = TY (Kexp,s + Kcon,s) + Aij, (Kcon,b + Kexp,b) B (2)

with K¢y, and K., representing minor loss coefficients for contraction and expansion,
respectively. The subscripts “s” and “b” indicate the small and big opening area of the jet
pump hole (see Fig. 1). u; yp is the cross-sectional averaged velocity amplitude in the jet
pump small opening, referred to as the jet pump “waist”. An optimal jet pump design should
generate the required Ap; to cancel Gedeon streaming in the thermoacoustic device while
minimizing the jet pump’s associated acoustic power dissipation.

Petculescu & Wilen showed that the jet pump taper angle, whose effect is not included
in the quasi-steady approximation, has a significant effect on a jet pump’s performance [8].
In a recent numerical study we have determined four different flow regimes as a function
of the jet pump geometry and wave amplitude and we have shown that the applicability of

Fig. 1 Schematic of jet pump geometry with dimensions (not to scale). Bottom line indicates centerline,
top solid line indicates outer tube wall. Reproduced with permission from [9]. Copyright 2015, Acoustical
Society of America
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the quasi-steady approximation in laminar oscillatory flows is limited [9]. Due to the taper
of the jet pump’s through-hole, the flow in the leftward direction of Fig. 1 can separate
from the jet pump wall, resulting in a rightward time-averaged velocity close to the jet
pump wall and a leftward time-averaged velocity at the centerline. The latter is visible in
Fig. 2 where the simulated time-averaged velocity field is shown for a case where flow
separation was observed. The flow separation leads to a significant decrease in the time-
averaged pressure drop and to a large deviation from the quasi-steady approximation. The
onset of flow separation coincides with vortices propagating through the jet pump and is
found to be dependent on the Keulegan-Carpenter number, which is based on the diameter
of the jet pump waist (Dy = 2 - R, in Fig. 1) and the jet pump taper angle « (in radians),

&
= —«.

KC
o D,

3)
Here, & is the acoustic particle displacement amplitude at the jet pump waist determined
from the velocity amplitude and angular frequency, §; = |u; sp|/w. For a jet pump
geometry with a “smooth” waist (R./Ds; = 0.36), clear flow separation was observed at
KC, > 0.7 and the jet pump performance was significantly reduced [10]. This is in line
with the findings of King & Smith on oscillatory flow separation in a two-dimensional
diffuser [11]. They observed that the higher the displacement amplitude, the earlier in the
acoustic cycle the flow separates. This results in a larger time-averaged pressure drop in
the diverging direction. An increase in the diffuser angle also results in flow separation
occurring earlier in the acoustic cycle and larger minor losses. Furthermore, they found the
acoustic Reynolds number to have an impact on the flow separation. Both the time-averaged
pressure drop and acoustic power dissipation reduced with increasing Reynolds number
which is an important motivation for the current investigation.

In order to design effective and robust jet pumps, it is important to predict the occurrence
of flow separation due to its degrading effect on a jet pump’s performance. In the current
article the influence of turbulence and flow separation in conical jet pumps is investigated
experimentally in both laminar and turbulent oscillatory flows. After a description of the
experimental setup in Section 2, the jet pump performance in terms of the time-averaged
pressure drop and acoustic power dissipation is measured (Section 3). It will be shown
that there exists a difference in jet pump performance between the laminar and turbulent
regime. Subsequently, hot-wire anemometry is used to further characterize the turbulence
and occurrence of flow separation in two different jet pump geometries (Sections 4-5).

2 Experimental Setup
The experimental setup is shown schematically in Fig. 3 and is similar to the setup previ-

ously used by Aben [12]. On the left side, a loudspeaker (JBL W16GTi) is mounted with
a cylindrical back volume; both are structurally decoupled from the rest of the setup by a
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Fig.2 Simulated time-averaged axial velocity field using a 7° taper angle jet pump driven at 100 Hz, K C, =
0.72. Reproduced with permission from [9]. Copyright 2015, Acoustical Society of America
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Fig. 3 Schematic of the experimental setup with the pressure sensors (P1 — P4), hot-wire probe (HW) and
jet pump sample. Dimensions not to scale

membrane. A sinusoid signal generated by a computer sound card is amplified using a 2kW
audio amplifier (Behringer EP2000). The acoustic wave propagates through a horn to the
tube section which has an inner diameter of 60 mm and a total length of 1.2 m. The jet pump
is mounted in a 400 mm long transparent PMMA section of the tube. Vibration of the jet
pump samples with respect to the outer tube housing has been ruled out by using high-speed
camera visualization at 1000 fps to determine the mutual displacements of the two parts.
The setup is filled with air at ambient conditions. The effect of wave phasing (i.e., standing
wave or traveling wave) on the jet pump performance has been investigated previously and
no significant differences were observed [13]. To achieve the maximal acoustic amplitude
with the current setup, a closed termination is used in all presented experiments.

Pressure measurement system In order to quantify the jet pump performance, four
piezo-resistive differential pressure sensors (Honeywell 26PCAFA6D) are mounted flush
with the tube wall. On either side of the jet pump two pressure sensors are located with a
mutual distance of 300 mm (see Fig. 3). After amplification, the sensor signals are acquired
using a NI-6250 data acquisition device at a sampling frequency of f; = 20kHz and a sam-
pling time of Ty = 1s. The pressure sensors are dynamically calibrated to a pre-calibrated
Kulite XTE-190M pressure sensor in a frequency and pressure amplitude range of 20Hz to
150Hz and 100Pa to 2500Pa, respectively. The calibration setup consists of a closed tube
with a loudspeaker (Monacor SP-60/8) at one end, which is used to generate an acoustic
field. At the other side of the tube, the Kulite reference sensor and an uncalibrated Hon-
eywell sensor are mounted flush with the end flange. This dynamic calibration procedure
yields a typical averaged sensor sensitivity over the full calibration range of 1 mV/Pa The
standard deviation in the sensitivity is less than 1 WV/Pa across the calibration range. The
phase accuracy is determined in the same calibration procedure. A constant time delay is
observed yielding a mutual phase difference between the four sensors of less than 0.32°
at 100 Hz. This difference is taken into account as a measurement error. The linearity of
the Honeywell pressure sensors is measured using a static water column calibration up to
2500 Pa. The maximum error due to non-linearity is =1 % of reading for pressures up to
500Pa and £0.2 % of reading for p > 500 Pa.

Data analysis After digitally phase-locking the acquired pressure signals, the pressure
amplitude p; is calculated from the discrete Fourier transform at the corresponding driving
frequency. The time-averaged pressure p; at each sensor is calculated by averaging the
signal over an integer number of wave periods. This removes the contribution of the acoustic
wave from the signal. The time-averaged pressure drop over a jet pump sample, Ap», is
given by the difference in p, from sensors 2 and 3 (see Fig. 3).

In order to determine the velocity amplitude in the jet pump waist #;_; p in a non-invasive
way, a two-dimensional linear acoustic model of the setup is employed. By relating the
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calculated velocity amplitude in the jet pump waist to the pressure amplitude at one of the
sensor locations, a linear conversion factor between pressure and velocity is determined
from the acoustic model. This conversion factor is only dependent on the driving frequency
and the position of the jet pump in the setup. A comparison with non-linear, laminar CFD
results confirmed that this approach is accurate to within 5 % when the pressure field to the
right of the small jet pump opening is used as a reference (i.e., sensor 1 or 2 in Fig. 3).

Furthermore, the measured pressure amplitudes are used to calculate the acoustic power
E, on either side of the jet pump for which the method of Fusco et al. is used [14]. By taking
the difference between the acoustic power on either side of the jet pump and correcting
for dissipative effects in the tube segments, the contribution of the jet pump to the acoustic
power dissipation AE5 is found.

3 Jet Pump Performance

Two jet pump samples are investigated, each having a different taper angle. The dimensions
are identical to the geometries used in a previous numerical study [9] and are shown in
Table 1. The samples are manufactured from a Nylon polymer (PA 2200) using a 3D laser
sintering rapid prototyping process and polished. The surface roughness is measured and
ranges from R4 = 8.5 um to 12 um.

Following the quasi-steady approximation (1-2), the time-averaged pressure drop across
the jet pump is expected to scale with |1,t1,Jp|2 while AEz scales with |M]’jP|3. As such,
the measured time-averaged pressure drop Ap, and acoustic power dissipation AE, are
normalized according to [9, 15]

8Ap>
Apy = ————, 4
27 polur gpl?
) 3rAE
AE} = _ OTAbky (5)

port R2|uy yp|3’

with Ap} representing the difference in minor loss coefficients between the backward and
forward flow direction and AE; representing the summation of minor loss coefficients,
assuming the quasi-steady approximation to be valid (1-2). By examining these normalized
quantities, any effect flow separation and turbulence have on the jet pump performance
becomes more readily visible.

For each jet pump sample, a sweep is executed over the wave amplitude by increasing
the audio volume in 50 consecutive steps. At each setpoint, the pressure is recorded for 60
time traces of 1 s each, and the outcome variables (see Section 2) are subsequently averaged.
Fig. 4 shows the dimensionless time-averaged pressure drop as a function of the Keulegan-
Carpenter number K C,, defined in Eq. 3. The lines represent experimental results obtained
at 80 Hz using the 7° taper angle jet pump (upper black line) and using the 15° taper angle jet

Table 1 Dimensions of jet pump samples

Sample o Lyp Ry Ry R,
7° 70.5 mm 15.0mm 7.0 mm 5.0mm
2 15° 35.5mm 15.0mm 7.0 mm 5.0mm

Nomenclature according to Fig. 1
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Fig. 4 Dimensionless pressure drop measured experimentally at 80 Hz for two jet pump samples: 7° taper
angle jet pump (black line) and 15° jet pump (gray line). Dots represent numerical results from jet pump
geometries with taper angles ranging from 3° to 20° and driven at frequencies ranging from 10 Hz to 200 Hz
reproduced from [10]. Experimental results where Re > Re. are shown by a dashed line. The horizontal
dashed line indicates the expected performance from the quasi-steady approximation [3]

pump (lower gray line). The dots represent published numerical results using a large variety
of jet pump geometries with a taper angle ranging from 3° to 20° and simulated at frequen-
cies ranging from 10 Hz to 200 Hz [10]. All the numerical results show an increase in Ap3
at low values of K C,. This is a result of minor losses caused by the vortex shedding from
the small jet pump opening. As soon as the flow starts to separate from the inside jet pump
wall, the dimensionless time-averaged pressure drop stagnates, then drops rapidly when full
flow separation without reattachment is observed for K C, > 0.7. The experimental results
(lines in Fig. 4) show a similar increase and maximum in Ap}. However, the pressure drop
tends to stabilize for higher values of K C,, and higher Reynolds numbers. This suggests a
reduction of flow separation at high Reynolds numbers, especially in the case of the 7° jet
pump sample. A major phenomenon that can explain the hypothesized reduction of flow
separation is the occurrence of turbulence. Hence, we define an acoustic Reynolds number
based on the viscous penetration depth §,, = /2v/w with v being the kinematic viscosity,

_lurgpldy
—

Re (6)

Its critical value for oscillatory pipe flows is defined as [16],

D\ 7
Re. = 305 <§> , )

v

In Fig. 4, the dashed parts of the curves represent results where Re > Re, and a transition
to turbulence can be expected. It is remarkable that in the turbulent regime, little additional
decay in Apj is observed. This suggests a reduction of flow separation and corresponds to
the findings of King & Smith on the oscillatory flow in a diffuser [11].

The effect of flow separation on the jet pump performance is further emphasized by
studying the dimensionless acoustic power dissipation (5). By using two different taper
angles and varying the driving frequency, the ratio between K C, and Re is influenced.
Hence, the relation between the tendency to flow separation (K C,) and the momentum of
the fluid (Re) can be studied. Figure 5 shows the dimensionless acoustic power dissipation
as a function of the Reynolds number for various values of K Cy in the regime where flow
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Fig. 5 Dimensionless acoustic 257
power dissipation measured from
two jet pump samples as a
function of the acoustic Reynolds
number. Each curve represents ol
results at a fixed Keulegan-
Carpenter number: KCy = 1.0
(@), 1.25(v), 1.5 (W), 1.75 (A)
and 2.0 (#). The different
measurement points are obtained
by varying the jet pump geometry
(closed symbols for « = 7°, open
symbols for &« = 15°) and driving ‘ ‘ ‘
frequency from 40 Hz to 100 Hz 0 500 1000 1500
Re

AE2

separation can occur. For a given value of K C,, the dimensionless acoustic power dissipa-
tion decreases with the Reynolds number. Hence, an increase in Reynolds number leads to
a reduction of the energy dissipated in the jet pump, which can only be understood if less
energy dissipating flow features, such as flow separation, are present. A higher Reynolds
number results in more boundary layer energy to withstand the adverse pressure gradient
that ultimately causes the flow to separate [11]. The described observations will be further
discussed in the next section, supported by velocity measurements close to the jet pump.

4 Flow Separation and Vortex Propagation

The onset of flow separation coincides with vortices propagating leftward from the jet pump
waist through the jet pump during one half of the acoustic period [9]. As such, the occur-
rence of flow separation can be identified by capturing the leftward vortex propagation. The
latter is performed by using hot-wire anemometry to measure the local velocity just outside
the jet pump’s big opening. A single hot-wire probe is mounted at the centerline, an axial
distance of 5 mm from the jet pump (indicated by “HW” in Fig. 3 and shown in detail in
Fig. 6). The probe is oriented such that the plane spanned by the wire and the wire-prong
is perpendicular to the wave propagation direction to minimize the intrusiveness of the hot-
wire probe on the flow. A calibration is performed under the same hot-wire orientation using
a calibration nozzle in steady flow [17]. Velocities between 1.8 m/s to 40 m/s have been
calibrated against the pressure drop over the calibration nozzle, which is measured using
a water column with a resolution of 1 Pa. This yields an uncertainty in the velocity of less
than 5 % for velocities higher than 4 m/s. The accuracy of the hot-wire measurements is
verified by comparing the velocity amplitude with the calculated jet pump waist velocity
amplitude (see Section 2). Assuming incompressible expansion through the jet pump, the
velocity amplitude at the hot-wire location is estimated. For operating conditions where no
flow separation is expected (KC, < 0.7), the difference is less than 0.5 m/s. It must be
noted that the static calibration method is suitable for velocity amplitude measurements,
while errors might occur in measuring velocities around flow reversal [18, 19]. This is con-
sidered acceptable for the current purpose of hot-wire measurements. The platinum coated
tungsten hot-wire has a diameter of 5 um, a length of 0.73 mm and is used in combination
with a Dantec 90C10 Constant Temperature Anemometer (CTA) module [17]. The band-
width is 75 kHz as was determined using the internal square wave test of the CTA module.
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Fig. 6 Orientation of the Dantec
hot-wire probe mounted just
outside the big opening of the jet
pump (isometric view). The
actual hot-wire is situated
between the two prongs. The
dashed line indicates the jet
pump centerline

The hot-wire signal is captured on a separate system using a NI-9215A BNC data acquisi-
tion system at a sampling frequency of f; = 20 kHz and a sampling time of 7y = 60 s for
each setpoint. Note that with this single hot-wire configuration no distinction can be made
between flow in the left and right directions. This means that a pure, harmonic velocity oscil-
lation will lead to a signal shape corresponding to a rectified sine wave and, consequently,
to a peak in the frequency spectrum at twice the driving frequency. Any streaming occurring
might lead to a shift in the velocity signal, resulting in an altered signal shape. The method
used to identify the flow separation regardless of the velocity signal shape is described in
Section 4.2.

Measurements are carried out with the two jet pump samples described in Section 3
at three different driving frequencies, f = 40Hz, 80 Hz, and 100 Hz, over the full range
of wave amplitudes achievable with the experimental setup. The driving frequency and jet
pump geometry have an influence on the velocity amplitude where either flow separation
(KCy > 0.7) or turbulence (Re > Re,.) can be expected. Figure 7 shows the theoretical
boundary between laminar and turbulent flow (thick solid line). The onset of flow separa-
tion is shown by the dashed lines. For the 15° jet pump (lower gray line) the onset of flow
separation is expected at lower amplitudes than the transition to turbulence for the inves-
tigated frequency range. The two lines cross for the 7° jet pump at a frequency of 54 Hz.
Given the maximum achievable jet pump velocity amplitude with the current experimental
setup as a function of the driving frequency (thin lines), the turbulent regime can be reached
when driving the setup at a frequency between 40 Hz to 100 Hz. Hence, this frequency range
is chosen for the characterization of the onset of both flow separation and turbulence in the
two different jet pump samples.

4.1 Velocity time traces

A sweep over wave amplitude, equal to the jet pump performance measurements carried out
in Section 3, is executed for each jet pump sample and driving frequency. The velocity signal
is recorded for 60s per setpoint. This results in 2400 to 6000 wave periods captured per
setpoint, depending on the frequency. Figure 8 shows the velocity signal for five consecutive
periods at various values of K C,, for the 15° taper angle jet pump driven at 40 Hz. From all
the recorded wave periods, a phase-averaged velocity is calculated

N,
] P
W) () = =D u(@+G—1)-1), ®)
p

i=1
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Fig. 7 Theoretical boundaries of
flow regimes as a function of the
driving frequency and jet pump
velocity amplitude. Black solid
line indicates Re = Re., dashed
lines indicate K C, = 0.7 for

o = 7° jet pump (black) and

o = 15° jet pump (gray). Thin
lines indicate jet pump velocity
amplitude at maximal audio
signal amplification attainable
with the experimental setup using
o = 7° (black) and o = 15°
(gray) jet pump

uy ol [m/s]

f[Hz]

with T = 1/f the wave period, T a relative time ranging from 0 to T and N, the total
number of wave periods recorded. The phase-averaged velocity, which is still a function of
the relative time 7 or equivalently the wave phasing ¢, is shown by the overlaying black
solid lines in Fig. 8. The bottom velocity trace at KC, = 0.32 shows a clean acoustic
profile. Hardly any high-frequency perturbations are observed, which is reasonable given
that Re << Re,. The signal has a typical rectified sine shape due to the directional ambiguity
of the velocity derived from the hot-wire signal. When the wave amplitude is increased to
KC, = 0.79, a periodic burst in the velocity is observed. This periodic burst is also visible
at higher wave amplitudes (K C, = 1.0, 1.57 and 2.03 in Fig. 8). Furthermore, the amount of
high-frequency perturbations increases when the Reynolds number increases. In Section 5
these effects will be further quantified.

4.2 Identification of flow separation and vortex propagation

To identify the onset of flow separation and the related leftward vortex propagation, the
recorded phase-averaged velocity profile is examined. When a vortex passes the hot-wire

Fig. 8 Velocity recordings

during five consecutive wave

periods for o = 15° jet pump, KC(X
f = 40Hz. Traces shown at

KCy =0.32,0.79, 1.00, 1.57 2.03 |y
and 2.03 corresponding to Re =

98,243,311, 487 and 632,

respectively. Lines are vertically 1.57
displaced and normalized by the

median of the phase-averaged

velocity (9) to enhance 1.00 p
readability. Black solid lines
represent phase-averaged
velocity, five times repeated in
time

0.79 ¢

0.32 /N~ NN A

@ Springer



320 Flow Turbulence Combust (2017) 98:311-326

probe, a periodic burst in the signal is expected due to the temporal high absolute velocity.
This is confirmed from CFD simulations where a periodic peak in the velocity signal just
outside the jet pump is observed when flow separation occurs [9].

From the hot-wire measurements, three general shapes of the phase-averaged velocity
profile are distinguished and shown in Fig. 9 A-C for the 7° taper angle jet pump (top
row) and the 15° taper angle jet pump (bottom row) at f = 40Hz. At low amplitudes
(KCy <« 0.7, Fig. 9A), (u) has a harmonic shape at twice the driving frequency due to the
directional ambiguity of the hot-wire signal. When the amplitude is increased, a separate
peak starts to appear in the velocity profiles (Fig. 9B) and the velocity profile shows exactly
the same features observed in numerical results when leftward vortex shedding and flow
separation occurs. At even higher amplitudes (Fig. 9C, « = 15°) two close sharp peaks
are measured. In numerical results this additional peak is also observed and linked to an
interaction of the emerging vortex with weak vortex rings that are generated from the edge
of the large jet pump opening [9]. For cases with similar K C,, but a larger Reynolds number
(i.e., at higher frequencies or lower jet pump taper angles than 40 Hz and 15°) the secondary
peak is less prominent and probably dimmed by a larger turbulent intensity. This is visible
in the top right plot of Fig. 9 for the « = 7° jet pump.

The height of the periodic peak in the phase-averaged velocity profile caused by leftward
vortex propagation, will be used to identify the occurrence of flow separation. To calculate
the height of this peak, first an appropriate baseline value from the phase-averaged velocity
profile is defined to avoid any mean velocity from affecting the calculated peak. To avoid
the flow separation peak itself from influencing this baseline velocity, the median is used
instead of the arithmetic mean,

(1) = median ({(u)) . 9)
Then, the peak height is defined as the distance between the maximum and baseline value
of the phase-averaged velocity profile,

Upk = max (u) — (u). (10)
Figure 10 shows the calculated velocity peak as a function of KC, for both jet pump
samples and all driving frequencies. By dividing u ;. by the (angular) frequency, the con-
tribution of the frequency to the magnitude of the velocity peak is correctly accounted for

and all cases collapse to a single curve with u i /w representing an instantaneous displace-
ment amplitude. The thin lines in Fig. 10 indicate the theoretical course of u i /w if the flow

Fig. 9 Typical shapes of the

. . A, 0=7 B, a=7 C,o0=7
phase-averaged velocity (u) with ¢ 15 @ “
K Cy increasing from A to C: 15 20
pure acoustic profile, KC, ~ 0.3 & 10
(A); flow separation, single peak, E 1 10
KCy ~1.0(B)and KCy = 2.0 305 5
(C). Results shown for the ’
a = 7° jet pump (top row) and 0 0 0
the o = 15° jet pump (bottom 0 . TO . T O . T
row), f = 40Hz A, o=15 B, =15 C,o0=15
07 10 20
@
£
= 10
503 5
0
00 T O T 0 T
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Fig. 10 Peak height u y; in 01r
phase-averaged velocity profile
(10) scaled by the angular
frequency w and shown as a
function of K C,. Black lines
indicate « = 7° jet pump, gray
lines indicate @ = 15° jet pump.
Line styles represent different
frequencies: 40 Hz (solid), 80 Hz
(dashed) and 100 Hz (dotted).
The thin lines show the
theoretical course of u px /@ in
the case of a purely sinusoidal
velocity without flow separation

0.08 -

upk / ®[m]

would be purely oscillatory, i.e. when no flow separation or vortex shedding occurs. This
corresponds to a pure sinusoid, assuming the volume flow rate to be equal at the hot-wire
location and in the jet pump waist. The theoretical course of u ,;/w is well approached by
the measured values up to the point where the flow separation and leftward vortex propa-
gation is initiated. In all cases, a clear increase in the peak is observed around K C,, = 0.7,
which matches well with the onset of flow separation determined in a previous numerical
study [10]. It becomes clear that the Keulegan-Carpenter number is indeed the parameter
that determines the onset of flow separation and that the effect of the jet pump taper angle
is nicely accounted for in K Cy.

Using the magnitude of the velocity peak as a measure for the vorticity of the leftward
propagating vortex, it can be concluded that the Reynolds number has no effect on the
strength of the vortex generated. For a given K Cy, the Reynolds number differs approxi-
mately by a factor of two between the 7° and 15° jet pump samples. As the curves in Fig. 10
overlay, it becomes clear that there is no effect of the Reynolds number on the height of the
velocity peak. Alternatively, the propagation speed of the vortex is quantified by calculat-
ing the width of the velocity peak as the time that the phase-averaged velocity () exceeds
its median value (1) incremented by the standard deviation. For all cases investigated, the
peak duration converges to At /T = 0.3 for KC, > 0.7. Hence, no significant influence
of the Reynolds number is observed, which is also widely reported in vortex ring literature
[20-22].

This behavior might seem to be in contradiction with the measured jet pump performance
introduced in Section 3 where Ap3 showed a stabilizing tendency for Re > Re. and the
acoustic power dissipation decreased as a function of the Reynolds number for a given value
of KC,. However, it is important to realize that the peak in the velocity profile is caused
by the leftward vortex propagation from the jet pump waist and not directly by the flow
separation itself. Although the onset of these two flow phenomena do coincide, it has been
discussed that only the flow separation significantly influences the occurring minor losses
[9, 11]. A detailed investigation of the flow field inside the jet pump is required to directly
reveal the behavior of the flow separation as a function of the Reynolds number.

S Turbulence
Besides the leftward vortex propagation, the recorded hot-wire signals allow us to analyze

the amount of turbulence generated by the jet pump. Turbulence in oscillatory pipe flow
has been studied extensively [11, 16, 23]. In general, turbulence can be characterized by the
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acoustic Reynolds number (6) if the tube diameter is sufficiently large (R/5, > 10). How-
ever, the Reynolds number for the oscillatory flow through jet pumps is not uniquely defined
because the velocity amplitude is not constant throughout the jet pump. So far we have
assumed the jet pump waist, where the velocity amplitude is maximal, to be the point where
turbulence is first generated. Depending on the displacement amplitude and the amount of
turbulent mixing, the generated turbulent eddies will propagate to the hot-wire measurement
location where they will be registered as velocity fluctuations. After calculating the periodic
contribution to the velocity signal using the phase-averaged velocity (8), the fluctuating part
of the velocity is calculated from

u'(t) = u(t) — (u), (1)

and in a similar way as the phase-averaged velocity (u), the standard deviation as a function
of the relative time 7 is calculated using,

N,
1/2 1 <
() "= | gL+ =1 =) @) (12)
p

i=1

There are two phenomena affecting the phase-averaged standard deviation. First, (u2)1/2
increases as soon as the flow undergoes a transition to turbulence due to its random nature
[24]. The second phenomenon resulting in an increased phase-averaged standard deviation
is the occurrence of leftward vortex propagation. It was already visible in the velocity traces
in Fig. 8 that the peaks in the velocity signal, which have been linked to the existence of
leftward vortex propagation, do not always occur exactly at the same phase and vary in
strength from period to period. This also results in a strong increase in the phase-averaged
standard deviation. Consequently, the phase-averaged standard deviation by itself is not
sufficient to uniquely identify the onset of turbulence in the current situation.

Nevertheless, there is one major difference in how the leftward vortex propagation and
turbulence influence the phase-averaged standard deviation. This is illustrated in Fig. 11
by plotting the phase-averaged standard deviation against the phase-averaged velocity, both
normalized using the jet pump waist velocity amplitude, and shown for various operat-
ing conditions. When only vortex propagation occurs (dashed gray line, Re/Re, = 0.54

Fig. 11 Phase-averaged standard 03
deviation (u2)1/2 plotted against

phase-averaged velocity (u), both 0.25
normalized by the velocity

amplitude in the jet pump waist —_ 02

|uz,yp|. Four different operating

20172
(U My g

conditions shown as indicated in 0.15
the legend. In all cases
f =40Hz 0.1
0.05
0 . . ,
0 0.2 0.6 0.8

0.4
@, ol

0=15', Re/Re_=0.19, KC _=0.32
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0=7', Re/Re_=1.98, KC =154
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and KC, = 0.89), the peak in the phase-averaged velocity occurs simultaneously with
an increased phase-averaged standard deviation. This leads to a very narrow loop where
the increase and decrease in both quantities follow almost the same line. When the criti-
cal Reynolds number is exceeded (black solid line, Re/Re. = 1.98, KC, = 1.54), the
loop has a totally different shape. Following the black line in a counter-clockwise direction,
the standard deviation initially stays low until a certain transition velocity is reached, then

<u2)1/ 2 rapidly increases until () reaches a maximum. When the phase-averaged veloc-
ity subsequently goes down, the standard deviation does not decrease immediately but lags
with respect to the phase-averaged velocity. This is caused by the relaminarization of the
fluid which takes more time than the earlier transition to turbulence and occurs every period
[25-27]. The wide hysteresis loops are observed for all cases where Re > Re.. The solid
gray line in Fig. 11 represents a situation where both strong vortex propagation and turbu-
lence occur for the o = 15° jet pump. This results in a wider shape compared to the laminar
case (dashed gray line). For the situation where both Re and K C, are below their criti-
cal values (gray dotted line), no significant standard deviation is measured and due to the
absence of flow separation the phase-averaged velocity stays low, even when normalized
by the jet pump waist velocity amplitude. The cases shown are exemplary for all mea-
sured operating conditions, taking into account the flow regime boundaries defined by Re
and KC,.

To further quantify the effect that both vortex propagation and turbulence have on the
phase-averaged standard deviation, the area enclosed by the loops in Fig. 11 is calculated.
Figure 12 shows the enclosed area, S,, for both jet pump samples (black and gray lines)
and all frequencies (dotted, dashed and solid lines) as a function of K C, (left) and Re/Re,
(right). As soon as leftward vortex propagation and flow separation occur (from KC, =
0.7), resulting in narrow-shaped loops in Fig. 11, a coherent increase in the enclosed area
is observed. The effect of the turbulence on S, becomes visible in the right plot of Fig. 12.
For Re/Re. > 1, the enclosed area eventually increases with roughly the same slope for
all cases. This suggests that the enclosed area is proportional to the increase in Reynolds

number due to the aforementioned hysteresis in <u2>1/ ®_ The fact that the different curves
do not overlay one another and that the 15° jet pump at 40 Hz (dashed gray line) has not

2 2r
1.5 150
i 8
ER I 1
\:! s
(2] (2]
05 051
0 : 0
0 2 25 3 0 05

Re/Re
c

Fig. 12 Area S, enclosed by ((u) R (u2)1/2)—loops (see Fig. 11), scaled with the jet pump waist velocity

|uz,sp| and plotted against K Cy (left) and Re/Re. (right). Black lines indicate results using the o = 7° jet
pump, gray lines indicate @ = 15° jet pump. Line styles represent different frequencies: 40 Hz (solid), 80 Hz
(dashed) and 100 Hz (dotted)
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Fig. 13 Power spectral density at various acoustic Reynolds numbers: Re/Re, = 0.2, 0.6, 1.0, 1.2, 1.6 and
2.0, using the o« = 7° jet pump driven at f = 40 Hz as indicated by vertical dashed line. Slope of Kolmogorov
turbulent spectrum is illustrated by black solid line

reached a linear increase as a function of Re/Re. may be caused by the difference in K C,
among the various cases and thus, a different influence of the leftward vortex propagation.

The applicability of the critical Reynolds number (7) as a predictor for turbulence in
the oscillatory flow in jet pumps is emphasized by investigating the frequency spectra.
Figure 13 shows the power spectral density (PSD) using the 7° jet pump driven at 40 Hz. The
PSD is calculated from the fluctuating part of the velocity signal u’, which results in a fre-
quency spectrum where the driving frequency and all its higher harmonics are not included.
The method of Welch is used to calculate the PSD where the velocity signal is divided in
blocks of ten wave periods with 50° overlap each [28]. After applying a Hamming window,
the PSD is calculated by Fourier transforming the signal. The individual lines in Fig. 13
each represent a different Reynolds number, shown as a ratio to the critical Reynolds num-
ber. The spectra for low Reynolds numbers (Re/Re, < 1) decay more rapidly at higher
frequencies than the higher Reynolds number spectra. As the Reynolds number exceeds its
critical value, the spectra start following a —5/3 power law decay. Although the flow at the
hot-wire location is far from uniform, the energy spectrum does correspond to a theoreti-
cal Kolmogorov spectrum for homogeneous isotropic turbulence [24]. For the other cases
investigated, the frequency spectra show a similar behavior as a function of Re/Re.. The
previous analysis underlines the applicability of a critical Reynolds number for oscillatory
pipe flows (7) to jet pumps.

6 Conclusion

The performance of two jet pump samples is determined experimentally in terms of the
time-averaged pressure drop and the acoustic power dissipation. The results are compared
against published numerical results. Good correspondence in jet pump performance is found
between numerical and experimental results for Reynolds numbers in the laminar regime.
However, in the experimental results the dimensionless time-averaged pressure drop sta-
bilizes for Reynolds numbers larger than the critical Reynolds number. Furthermore, for
a given Keulegan-Carpenter number K C,, the dimensionless acoustic power dissipation
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decreases as a function of the Reynolds number. Both of these findings indicate that the
negative effect flow separation has on the jet pump performance is reduced in the turbulent
regime.

Hot-wire anemometry near the jet pump big opening is used to study the onset of flow
separation and turbulence in the jet pump. The occurrence of vortex propagation through the
jet pump and the related flow separation is identified from periodic peaks in the recorded
velocity signal. The onset of flow separation is observed from KC, > 0.7 for all jet pump
samples and frequencies investigated. This is fully in line with published numerical results.

Furthermore, we have shown that the Reynolds number calculated at the jet pump waist
is a correct predictor for turbulence in the oscillatory flow in jet pumps. For Re > Re,
the power spectral density follows the classical —5/3 Kolmogorov spectrum. Additionally,
for Re > Re. a hysteresis in the phase-averaged standard deviation was found which is
attributed to the periodic relaminarization of the fluid taking more time than the transition
to turbulence.

Although the measured jet pump performance together with the defined onset of flow
separation and the transition to turbulence all strongly support the hypothesis that the flow
separation is reduced at high Reynolds numbers, further research is required to decisively
conclude this. Supported by literature on flow separation in steady flows, the pressure gra-
dient along the jet pump wall is of interest to determine both the location and duration of
the flow separation. Moreover, the effect of the wall roughness on both the flow separation
as well as on the generation of turbulence is subject to future research.

A better understanding of the flow separation inside jet pumps is shown to be key
in understanding and predicting the performance of jet pumps. Design adjustments that
reduce the flow separation in jet pumps with high taper angles could improve the jet pump
effectiveness while maintaining a compact design.
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