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Abstract Flame surface density (FSD) based reaction rate closure is an important method-
ology of turbulent premixed flame modelling in the context of Large Eddy Simulations
(LES). The transport equation for the Favre-filtered reaction progress variable needs clo-
sure of the filtered reaction diffusion imbalance (FRDI) term (i.e. filtered value of combined
reaction rate and molecular diffusion rate) and the sub-grid scalar flux (SGSF). A-priori
analysis of the FRDI and SGSF terms has in the past revealed advantages and disadvantages
of the specific modelling attempts. However, it is important to understand the interaction of
the FRDI and SGSF closures for a successful implementation of the FSD based closure. Fur-
thermore, it is not known a-priori if the combination of the best SGSF model with the best
FRDI model results in the most suitable overall modelling strategy. In order to address this
question, a variety of SGSF models is analysed in this work together with one well estab-
lished and one recent FRDI closure based on a-priori analysis. It is found that the success
of the combined FRDI and SGSF closures depends on subtle details like the co-variances
of the FRDI and SGSF terms. It is demonstrated that the gradient hypothesis model is not
very successful in representing the SGSF term. However the gradient hypothesis provides
satisfactory performance in combination of a recently proposed FRDI closure, whereas
unsatisfactory results are obtained when used in combination with another existing closure,
which was shown to predict the FRDI term satisfactorily in several previous analyses.
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1 Introduction

The complexity of the system of partial differential equations describing turbulent reac-
tive flows can be simplified assuming single-step chemistry and a unity Lewis number
(=thermal diffusivity/mass diffusivity). The mass fractions of the reactive species and the
non-dimensional temperature in a premixed flame can be utilised to define a reaction
progress variable c assuming the values c= 0 on the reactant side and c = 1 in the fully
burned products [1]. The Large Eddy Simulation (LES) approach is considered a promising
technique in order to improve the prediction quality of computational fluid dynamic simu-
lations. The LES filtering operation of a quantity Q with a Gaussian filter kernel G (r) is
given as:

Q (x)= ∫Q (x−r)G (r)dr, G (r) =
(
6/π�2

)3/2
exp (−6 r · r /�2) (1)

In Eq. 1, � is the filter width and Q̃ = ρQ/ρ̄ refers to the well-known Favre filter-
ing operation. In this framework, the transport equation for the filtered reaction progress
variable becomes:

∂ (ρ̄c̃) /∂t+∇· (ρ̄ũc̃) = −∇ · (ρuc − ρ̄ũc̃) + ∇ · (ρD∇c) + ω̇c. (2)

Here ρ,u,D and ω̇c denote density, velocity, progress variable diffusivity and reaction
rate respectively. The numerical solution requires closure for both terms on the right hand
side of Eq. 2, i.e. for the sub-grid scalar flux (SGSF) denoted as: T SGSF

i := ρuic − ρũi c̃

(where ui is the ith component of velocity) as well as the filtered reaction diffusion imbal-
ance (FRDI) term T FRDI = ∇ · (ρD∇c) + ω̇c. In the context of LES of premixed flames,
turbulent scalar flux modelling has been investigated by a number of authors in the past
[2–8]. A variety of concepts exist for turbulent premixed combustion modelling (e.g. G-
equation [9], artificially thickened flame concept [10], Flame Surface Density (FSD) closure
[2, 11–13]). In this work we focus on the FSD concept. In this context T FRDI is expressed
as:

T FRDI = ∇ · (ρD∇c) + ω̇c = (ρSd)S�gen = (ρSd)S� |∇ c̄| (3)

where Sd is the displacement speed of a given c isosurface and � =|∇c|/ |∇ c̄| is the wrin-
kling factor. The generalised FSD is defined as �gen = |∇c| and the surface weighted
filtering operation (·)S is given by (Q)S = Q |∇c|/|∇c| (see [2]). Interested readers are
referred to [11, 12] for examples of LES implementations of FSD based reaction rate
closures. A-priori analysis of both FRDI and SGSF terms individually was reported by
the authors in the past [13–15]. Recent a-posteriori analyses [16, 17] indicated complex
interaction of the closures of T FRDI and T SGSF

i , which is the main focus of this work.
The rest of the paper is organised in the following manner. The details related to the DNS

database and its filtering will be explained in the next section. Following this, the closures
of T FRDI and T SGSF

i used in this work will be briefly summarized. This will be followed
by the analysis of the models on term by term basis in order to understand how they interact.
Finally conclusions will be drawn.
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2 DNS Database

A DNS database of turbulent premixed flames under decaying turbulence with single step
Arrhenius type irreversible chemistry has been considered for the current analysis, con-
sisting of five flames with global Lewis number Le = 0.34 (case A), 0.6 (case B), 0.8
(case C), 1.0 (case D) and 1.2 (case E). The initial values of the normalised turbulent root-
mean-square (rms) velocity fluctuation u

′
/SL = 7.5, integral length scale to thermal flame

thickness ratio l/δth =2.45, Damköhler number Da = lSL/δthu
′ =0.33, and Karlovitz

number Ka =
(
u

′
/SL

)3/2
(l/δth)

−1/2 = 13.0 are taken to be the same for all cases consid-

ered here where SL is the unstrained laminar burning velocity, δth = (Tad−T0)/max |∇T |L
is the thermal flame thickness with Tad and T0 being the adiabatic flame temperature and the
reactant temperature respectively. Note that the subscript ‘L’ refers to the unstrained lam-
inar flame quantities. The heat release parameter τ = (Tad − T0) /T 0 and the Zel’dovich
number β = Tac (Tad − T0) /T 2

ad are taken to be 4.5 and 6.0 respectively where Tac is the
activation temperature. Standard values of Prandtl number (Pr = 0.7) and ratio of specific
heats (γg = 1.4) have been used.

The simulation domain is taken to be a cube of 24.1δth × 24.1δth × 24.1δth which is
discretised using a uniform Cartesian grid of 230×230×230 points ensuring 10 grid points
are kept within δth. Spatial derivatives for all internal grid points are evaluated using 10th
order central differences but the order of discretization gradually drops to an one-sided
2nd order scheme at the non-periodic boundaries. Time integration is carried out using an
explicit 3rd order low storage Runge-Kutta scheme. The boundary conditions in the mean
flame propagation direction (aligned with negative x1-direction) are taken to be partially
non-reflecting, whereas boundaries in transverse directions are taken to be periodic. The
turbulent velocity fluctuations are initialised using a homogeneous isotropic incompressible
velocity field. The reacting flow field is initialised by a steady planar unstrained premixed
laminar flame solution. In all cases flame-turbulence interaction takes place under decaying
turbulence and all non-dimensional numbers mentioned earlier have to be understood as
initial values here and in the remainder of the text. The simulations have been carried out
for one chemical time scale (i.e. tchem = δth/SL), which corresponds to 3.34 initial eddy
turn over times (i.e. 3.34te = 3.34l/u′). By this stage, u

′
/SL decayed by 50 %, whereas

l/δth increased by a factor of 1.7 in the unburned gas ahead of the flame. The DNS database
considered here was used previously in several studies and interested readers are referred to
references [18–24] for more details.

The values of u′/SL , l/δth and Ret used for the current analysis remain comparable
to several previous analyses [2, 10, 25–27] which were used for a-priori DNS mod-
elling. Furthermore, FSD and SDR models proposed based on a-priori DNS analyses using
this database [28–30] have been found to be in good agreement with a-posteriori assess-
ments based on actual LES simulations [16, 31–33]. The aforementioned facts provide the
confidence in the findings of the present analysis.

For the purpose of the a-priori analysis carried out in this work, the DNS data has been
explicitly filtered using the Gaussian filter kernel given by Eq. 1. Results will be presented
from � ≈ 0.4 δth where the flame is almost resolved, up to � ≈ 2.8 δth where the flame
becomes fully unresolved and � is comparable to the integral length scale l. The result of
the filtering operation is a dataset with the same dimensions as the original DNS database
i.e. 230×230×230 points. For the purpose of a-priori analysis, one has to decide if gradi-
ents of a filtered variable should be evaluated numerically based on the DNS grid (filter)
size �DNS or based on the size of the convolution filter �conv , which corresponds in our
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case to �conv = n�DNS with n = 4, 8, 12, 16, 20, 24, 28. Liu et al. [34] noted that for
a meaningful a-priori test model expressions should be based solely on variables sampled
on the coarse grid. The same logic is followed in this work and all model expressions are
evaluated on the coarse grid. Consequently, one obtains truncation errors due to finite dif-
ference formulas in addition to the modelling errors in this approach. Nevertheless, it is
worth mentioning that sampling the filtered data on the fine grid is useful for examining the
potential of a model formulation. The difference between both approaches will be further
illustrated in Section 6.

3 Closures for Sub-grid Scalar Flux (SGSF)

The most conventional model for (ρuc − ρ̄ũc̃) is the gradient hypothesis model given by:

T GH
i = − μt

Sct

∂c̃

∂xi

, μt = ρ̄ (Cs�)2
√
2S̃ij S̃ij , S̃ij = 1

2

(
∂ũi

∂xj

+ ∂ũj

∂xi

)
(4)

where μt is the eddy viscosity and Sct is the turbulent Schmidt number, which are taken
to be Cs = 0.18, Sct = 1.0. Equation 4 will henceforth be referred to as the GH model.
Richard et al. [6] proposed a model (RF) for T SGSF

i in the following manner (CL = 0.12):

T RF
i = −ρ̄CLu′

��
∂c̃

∂xi

− ρ0SLMi (c̄ − c̃) ; M = − ∇ c̃

|∇ c̃| ; u
′
� =

√(
ũiuj − ũi ũj

)
/3. (5)

The first term ρ̄CLu′
��∂c̃/∂xi on the right hand side of Eq. 5 is responsible for gradient

transport (GT), whereas the second term −ρ0SLMi (c̄ − c̃) accounts for counter-gradient
transport (CGT). Variants of this model have been discussed in Chakraborty and Klein [14,
15] and only one representative model will be considered here for the sake of brevity. Nev-
ertheless it is worth mentioning that Lecocq et al. [8] suggested that replacing c̄ on the right
hand side of Eq. 3 by c̃ conveniently includes the CGT modelling along with the FRDI term.
Accordingly, a model for ∂

(
T SGSF

i

)
/∂xi can be formulated and will henceforth be denoted

as T IM because it implicitly accounts for CGT if |∇ c̄| in the LES closure of the unclosed
term in the Favre-filtered reaction progress variable equation (refer to Eq. 3) is replaced by
|∇ c̃|.

T IM = ∂
(
T GH

i

)
/∂xi+ρ0SL� (|∇ c̄| − |∇ c̃|) (6)

It is worth noting that this model can only be formulated in terms of the divergence of
SGSF subject to the assumption that (ρSd)S ≈ ρ0SL. For the purpose of this work, the
wrinkling factor � is modelled according to Eq. 10, i.e. in agreement with one of the FSD
models introduced below.

Clark et al. [35] proposed a model in the context of momentum transport closure for
incompressible flows which takes the following form for the SGSF closure in this particular
context:

T CM
i = ρ̄

�2

12

∂ũi

∂xk

∂c̃

∂xk

. (7)

Equation 7 will henceforth be referred to as the CM (Clarks model) model in this paper.
The CM model allows for both GT and CGT. This can be explained based on the follow-
ing scaling analysis, which shows that Eq. 7 is indeed related to Eq. 5. Under strict flamelet
assumption one obtains [36]: ũi ≈ c̃ (ui)P + (1−c̃) (ui)R , which upon using Eq. 7 results in
T CM

i ∼ ρ̄�2
(
(ui)P −(ui)R

) |∇ c̃|2 subject to the scaling |∇ c̃|2 ∼ c̃ (1−c̃) /�2 . This shows
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that the CM model scales as T CM
i ∼ ρ̄c̃ (1−c̃)

(
(ui)P −(ui)R

)
or according to BML anal-

ysis T CM
i ∼ ρ0 (c̄−c̃)

(
(ui)P −(ui)R

)
/τ [36]. Hence the CGM model inherently accounts

for the possibility of CGT (GT) when (ui)P >(ui)R
(
(ui)P <(ui)R

)
and ∂c̃/∂xi > 0. It

was demonstrated in [14, 15] that the CM model performs very well in a-priori analysis
despite the fact that it was originally proposed for momentum transport in the context of
incompressible flows.

4 Closures for Filtered Reaction Diffusion Imbalance (FRDI) Term

The analysis of Ma et al. [16] demonstrates that the Fureby model [11] seems to be a promis-
ing representative of an algebraic FSD model with the following modification (the unity is
not present in the original model formulation)

T FU = ρ0SL

(
1 + ·u′

�/SL

)Df −2 |∇ c̄| (8)

where it has been again assumed that (ρSd)S ≈ ρ0SL and �F = (
1 + ·u′

�/SL

)Df −2 is
the modelled wrinkling factor [11]. The fractal dimension Df , evaluated using an empirical
parameterisation, and the efficiency function  are given by [11]:

Df = 2.05

u
′
�/SL + 1

+ 2.35

SL/u
′
� + 1

;  = 0.75 exp

[
− 1.2

(
u

′
�/SL

)0.3
](

�

δL

)2/3

(9)

where δL= D/SL is the Zel’dovich flame thickness. It is worth noting that the original model

formulation by Fureby [11] reads: TFU=ρ0SL
(
·u′

�/SL
)Df−2 |∇ c̄|. It has been pointed out

in Ref. [16] that the original version of Fureby model (i.e. TFU=ρ0SL
(
·u′

�/SL
)Df−2 |∇ c̄|)

has neglected the resolved contribution of wrinkling and so, in the presence of no turbulence
(or under fully resolved condition) the wrinkling factor becomes zero. This is the reason for
suggesting the modified version given by Eq. 8 where the resolved component ρ0SL |∇ c̄|
is explicitly accounted for. The underestimation of the original model formulation has also
been demonstrated in Ref. [13]. The quantity TFU will henceforth refer to Eq. 8 in this paper.

An alternative FRDI model particularly developed to represent high pressure flames has
recently been proposed by Keppeler et al. [37] and will be considered here, where εO= 2.2�
and εI= max (δLKa

−1/2
� , 2δL) denote outer and inner cutoff scale respectively:

T K1 = ρ0SL

(
εO

εI

)Df −2

4.5 c̃(1 − c̃)F (c̃)−1 |∇ c̃| ; �k =
(

εO

εI

)Df −2

(10)

Here Ka�, the subgrid Karlovitz number, and the fractal dimension Df are given by
[37]:

Ka� =
(

u
′
�

s0L

) 3
2 (

�

δL

)− 1
2 ; Df = 8/3Ka� + 2CD

Ka� + CD

; CD = 0.03 (11)

The function F (c̃) can be approximated as F (c̃) = 0.9952 − 2.8181 (c̃ − 0.5)2 −
4.3072 (c̃ − 0.5)4. For further details the reader is referred to the original papers [11,
37], where these models have been proposed. A comparison between Eqs. 8 and 10
reveals that T K1 can also be considered as an algebraic FSD model. Noting that the term
4.5 c̃(1 − c̃)F (c̃)−1 assumes a value of the order of unity [37], and the term �k can be
understood as the wrinkling factor. In addition to the differences between �F and �k , and
the expressions for the fractal dimension Df , the resolved FSD |∇ c̄| in Eq. 8 is replaced by
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|∇ c̃| in Eq. 10. A comparison of Eq. 10 with Eq. 3 indicates that it is useful to analyse the
following variants of Eq. 10:

T K2 = (T K1/ |∇ c̃|) · |∇ c̄| (12i)

T K1,∗ = T K1/ (4.5 c̃ (1−c̃) F (c̃)−1) (12ii)

T K2,∗ = T K2/ (4.5 c̃ (1−c̃) F (c̃)−1) (12iii)

T FU,∗ = (T FU/ |∇ c̄|) · |∇ c̃| (12iv)

T FU,∗∗ = T FU · (4.5 c̃ (1−c̃) F (c̃)−1) (12v)

In other words, the models T K1,∗, T K2,∗(see Eqs. 12ii and 12iii) correspond to
T K1, T K2 but the term 4.5 c̃ (1−c̃) F (c̃)−1 is omitted. In this paper, the term T FU,∗ rep-
resents the Fureby model where |∇ c̄| is replaced with |∇ c̃| (Eq. 12iv) and T FU,∗∗ equals
T FU multiplied with 4.5 c̃ (1−c̃) F (c̃)−1 (Eq. 12v). These variants will be only considered
once during the correlation analysis in order to separate the effects of the various terms
from each other. Finally, it is important to note that the approximation (ρSd)S≈ρ0SL is not
valid even for planar flames with Lewis numbers considerably smaller than unity. Hence,
Chakraborty and Cant [22] suggested the following scaling in the context of Reynolds
Averaged Navier-Stokes (RANS) simulations:

(ρSd)S ≈ ρ0SL/Le . (13)

It will be explicitly mentioned in the text and table captions if the terms T FU , T K1, T K2

are used in conjunction with a modelling assumption other than (ρSd)S≈ρ0SL.

5 Postprocessing Methodology

LES models are supposed to accurately capture the local behavior of the corresponding
term. Hence the Pearson correlation coefficient [38] is in this work considered an important
indicator for the quality of a LES closure model and it should be as close to unity as possi-
ble. However, it is only a measure of linear dependence between two quantities and hence
invariant under multiplication of the model with a constant. The second step in the analysis
is therefore to compare the magnitude of the modelled expressions with the magnitude of
the corresponding DNS counterpart. The approach adopted in this work is to first prepare
conditional plots of each quantity. However, instead of showing all line plots for all cases,
all filter widths and all models, a normalized mean deviation between closure and exact
value of an unclosed term T is computed in the following manner:

ε(Le, �T Model) :=
(∫ 1

0

∣∣∣T Model (c̃) − T DNS (c̃)

∣∣∣ dc̃

)
/

∫ 1

0

∣∣∣T DNS (c̃)

∣∣∣ dc̃ (14)

The divergence of SGSF (ρuc−ρ̄ũc̃) conditionally averaged on c̃ for the unity Lewis
number flame D is considered here to illustrate the definition given by Eq. 14 . The SGSF
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obtained from DNS data (T DNS) for a filter width of �/δth = 0.8 is shown in Fig. 1
along with its absolute value which is used for the normalization shown in Eq. 14. The
GH model (see Eq. 4) prediction

(
T GH

)
and the absolute value of the modelling error(

|T DNS − T
GH |

)
are shown as well. The normalized deviation is then given by the integral

value of |T DNS − T
GH | divided by the integral value of

∣∣T DNS
∣∣, which in this particular

example is given by: ε = 0.0283/0.0222 = 1.275. This implies that the error is larger than
100 % which is due to the wrong sign of the GH model prediction.

The average error over all Lewis numbers and all filter widths εLe,� , and the average
error over all filter widths for one specific Lewis number case ε� for a given model T Model

are defined in the following manner to condense the data further,

εLe,� = εLe,�
(
T Model

)
= 1

35

∑
n∈S�

∑
Le∈SLe

ε(Le, n�x, T Model)

ε� = ε�
(
Le, T Model

)
= 1

7

∑
n∈S�

ε
(
Le, n�x, T Model

)
(15)

where the set SLe = {0.34, 0.6, 0.8, 1.0, 1.2} contains all Lewis numbers considered and the
set S� = {4, 8, 12, 16, 20, 24, 28} contains all filter width to flame thickness ratios �/δth.

Similar abbreviations with obvious meaning will be used for the correlation coefficients.
As an example cLe,�(T Model) denotes the Pearson correlation coefficient between T Model

and T DNS averaged over all Lewis numbers and filter widths.

6 Analysis of Sub-grid Scalar Flux Models

Before analysing the SGSF models (given by Eqs. 4–7) it is essential to provide some phys-
ical insight into the database used in this work. Veynante et al. [39] have pointed out that
the competition between scalar transport due to turbulent velocity fluctuations and flame

Fig. 1 Magnitude of the SGSF model expression ∇ · (ρuc−ρũc̃) × δth/ρ0sL for the GH model T GH

compared with its DNS counterpart T DNS for flame D and a filter width of �/δth = 0.8. The relative error
is given by ε = ∫ 1

0 |T DNS − T GH |dc̃ /
∫ 1
0 |T DNS |dc̃ (see Eq. 14). Both integrands are shown as well in the

figure
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normal acceleration determines the statistical behaviour of turbulent scalar flux: when the
effects of flame normal acceleration are stronger than the effects of turbulent velocity fluc-
tuation a counter gradient transport (CGT) is observed and vice versa. For our database
this means that a strong CGT is observed when the Lewis number is considerably smaller
than unity (Le = 0.34, 0.6, cases A, B). This is due to the effect that all Le < 1 flames
are thermo-diffusively unstable because reactants diffuse into the reaction zone at a faster
rate than the rate at which heat is conducted out, which leads to simultaneous occur-
rence of high temperature and reactants concentration. For flames with Le ≈ 1 turbulence
effects become relatively strong and the amount of CGT is reduced for cases C, D, E with
Le = 0.8, 1.0, 1.2. Details are presented in [14, 15] and are not repeated here. In contrast
to [14, 15], the analysis of the SGSF models is done here in terms of the divergence of the
scalar flux T SGSF

i rather than the individual vector components. This is due to the fact that
only the scalar expression ∂

(
T SGSF

i

)
/∂xi can be combined with T FRDI . Consequently, the

evaluation of ∂
(
T SGSF

i

)
/∂xi includes truncation errors due to finite difference formulas

in addition to modelling errors. In particular, the magnitude of gradients is under-predicted
if the numerical differentiation is done on the LES grid size. This effect is illustrated in
Fig. 2 where the divergence of the SGSF term extracted from explicitly filtered DNS data is
numerically evaluated based on both the DNS grid �(DNS) and the LES grid �(LES) for
filter widths �/δth = 0.4 and �/δth = 2.8 in cases A and D. It can be seen from Fig. 2 that
evaluating the finite differences on the coarse grid results in a considerable underprediction
of the magnitude of the gradients and hence of the divergence of SGSF.

As a result, it is difficult to differentiate between the (theoretical) performance of a model
T SGSF

i and the performance of the full expression ∂
(
T SGSF

i

)
/∂xi contained in the trans-

port equation. It is also important to note that the expression T SGSF
i may also depend on

the gradients of flow variables. In that case the numerical errors will deteriorate the model
performance further. In order to discuss these effects further, Fig. 3 shows the correlation
coefficients for the different model expressions as well as the relative error as defined by
Eqs. 14 and 15 for different Lewis number cases considered here. The results in Fig. 3a and
b rely on the numerical differentiation performed on the DNS grid for discretising the diver-
gence operator, whereas Fig. 3c and d are obtained by using the finite difference formulas
based on the LES grid size.

As described in much more detail in [14, 15] it can be seen from Fig. 3a and c that
the gradient hypothesis model (GH) is in all cases negatively correlated with SGSF. Due
to the increasing amount of CGT the correlation becomes more negative with decreasing

(a) (b)

Fig. 2 Divergence of SGSF ∇.(ρuc−ρ̄ũc̃) × δth/ρ0sL evaluated on LES and DNS grids for �/δth =
0.4 and �/δth = 2.8: a Case A; b Case D
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(a) (b)

(c) (d)

Fig. 3 a Correlation coefficents between ∂
(
T SGSF

i

)
/∂xi and ∂

(
T model

i

)
/∂xi for models GH, RF, CM, IM:

cLe,� ; c�(Le = 0.34) ; c�(Le = 0.6) ; c�(Le = 0.8) ; c�(Le = 1.0) and c�(Le = 1.2) .
b Deviation ε of the conditional plots of ∂/∂xi

(
T model

i

)
as defined by Eq. 14). Colour-code is identical to

subfigure a. Numerical differentiation has been performed on the DNS grid for subfigures a and b. Subfigures
c, d correspond to subfigures a and b but numerical differentiation is performed on the LES grid

Le. Richard’s model (RF, Eq. 5) and the implicit model IM (Eq. 6) show a relatively high
positive correlation for flames with small Le but the correlation strength decreases when
turbulence effects become more dominant for high Le cases. Essentially it can be seen that
the expression ρ0SL(|∇ c̄| − |∇ c̃|) changes the strong negative correlation of gradient type
models (see Eq. 4 and first part of Eqs. 5 and 6) into a positive correlation, which shows
that this term is of CGT type. Note, that assuming Mi ≈ const the second term in Eq.5 can
be written as ρ0SL(|∇ c̄| − |∇ c̃|) when the divergence of the SGSF term is calculated, as
pointed out by Ma et al. [16]. Only Clarks model (Eq.7) shows a reasonably high positive
correlation for all cases considered here. A comparison between Fig. 3a and 3c reveals that
the correlation strength decreases when finite difference expressions are calculated on the
coarse LES grid. The effect is most pronounced for the CM model. Considering next the
deviation in Fig. 3b it is clear that the CM model has the smallest overall error εLe,�. In
contrast to Fig. 3d the error εLe,� is of comparable magnitude for the models RF, CM and
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IM when the differentiation is done on the coarse grid. In particular, it can be seen that
the IM model provides a slightly smaller error than the CM model. This behaviour can be
explained in the following manner. Let us consider two models for approximating ρuic −
ρũi c̃ where model 1 properly predicts SGSF but model 2 over-predicts SGSF. Taking the
divergence on a coarse grid gives rise to an under-prediction of ∇i (ρuic−ρ̄ũi c̃) magnitude
as discussed before, and this can potentially result in a situation where model 2 performs
better than model 1 on a particular grid, because the overprediction is compensated by
numerical differentiation on a coarse grid.

7 Analysis of Generalised FSD Models

In this section, we focus on the modelling of the generalized FSD. In order to avoid
introducing additional nomenclature, the models T FU , T K1, T K2 have to be understood
in this section as the models for �gen only (rather than (ρSd)S�gen). Table 1 shows
the averaged correlation coefficients cLe,� for T FU , T K1, T K2 together with the variants
T K1,∗, T K2,∗, T FU,∗, T FU,∗∗. Furthermore, Table 1 shows the averaged individual case
specific correlation coefficients c� for the FRDI models T FU , T K1, T K2 considered in
detail in this work. It is clear from Table 1 that the correlation strength decreases consistently
with decreasing Le. The individual case-specific correlation coefficients c� for the model
variants T K1,∗, T K2,∗, T FU,∗, T FU,∗∗ are not shown in Table 1 because this data does not
provide any additional information in comparison to the averaged correlation coefficients
cLe,� , and also because these model variants (i.e. T K1,∗, T K2,∗, T FU,∗, T FU,∗∗) are not
discussed further in this paper. It can be seen that T K1, T K2 have slightly higher positive
correlation coefficients than that of T FU . This effect is entirely due to the inclusion of the
additional factor 4.5 c̃ (1−c̃) F (c̃)−1 as can be seen from the correlation coefficients of the
model variants T K1,∗, T K2,∗ (where 4.5 c̃ (1−c̃) F (c̃)−1 has been removed) and T FU,∗∗
(where the term 4.5 c̃ (1−c̃) F (c̃)−1 has been included). Furthermore, Table 1 indicates that
the models where �gen ∝ |∇ c̃| (e.g. T K1, T K1,∗, T FU,∗) show comparable correlation
coefficients to the models where �gen ∝ |∇ c̄| (e.g. T K2, T K2,∗, T FU ).

A detailed investigation reveals that the amplitude spectrum of c̃ and c̄ differs mainly at
high frequencies. To illustrate this effect we consider a planar laminar back to back flame
with Le = 1.0, because this configuration allows to perform a Fourier transformation in
a natural manner due to periodicity. Figure 4a show the corresponding profiles of reaction
progress variable c and the normalized density ρ. In Fig. 4b the distribution of c̃ and c̄

Table 1 Correlation between actual and modelled generalised FSD (i.e.�genand �model
gen ) where �model

gen =
T FU , T K1, T K2, T K1,∗, T K2,∗,T FU,∗and T FU,∗∗

T FU T K1 T K2 T K1,∗ T K2,∗ T FU,∗ T FU,∗∗

cLe,� 0.64 0.70 0.72 0.64 0.64 0.64 0.72

c�(Le = 0.34) 0.58 0.59 0.64

c�(Le = 0.6) 0.63 0.66 0.71

c�(Le = 0.8) 0.63 0.70 0.72

c�(Le = 1.0) 0.66 0.76 0.76

c�(Le = 1.2) 0.68 0.78 0.78
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(a) (b)

(d)(c)

Fig. 4 Sketch of a planar laminar back to back flame with Le = 1.0: Profiles of a normalised density ρ/ρ0
and reaction progress variable c. b filtered c̄ and Favre filtered c̃ reaction progress variable, assuming a filter
size of �/δth = 2.8; c magnitudes of ∂c̄/∂x and ∂c̃/∂x normalized with δth. The numerical differentiation
is done with respect to either the DNS grid size or the LES filter width, as indicated in the subfigure; The
x-coordinate is normalised with the thermal flame thickness δth in subfigures a-c; d Semi-logarithmic plot
of the one-sided amplitude spectra of c̄ and c̃ as functions of the non-dimensionalised wave number

are shown for �/δth = 2.8. The magnitude of the gradients of these two quantities (see
Fig. 4c) is numerically evaluated using both DNS grid size as well as the LES filter width
�/δth = 2.8. Finally Fig. 4d displays the one sided amplitude spectra of c̃ and c̄. Two
effects can be seen from Fig. 4c and d, which are discussed in the following manner. The
spectral content of c̃ and c̄ differs mainly at high wavenumbers, i.e. the part which is in
the sub-filter range. If c̃ and c̄ are sampled and differentiated on an increasingly coarser
grid the Nyquist theorem shows that only the lowest frequencies can play a role and this
is exactly the frequency range where both quantities are similar in terms of their frequency
content. Secondly, it can be seen (refer to Fig. 4c) that the difference between |∇ c̃| and
|∇ c̄| evaluated numerically on the LES grid is very small in comparison to the exact value
of |∇ c̄| obtained using the DNS grid. This explains why the correlation coefficients of the
models proportional to |∇ c̄| and the models proportional to |∇ c̃| approach each other for
large filter sizes, because they have to be compared to exact quantities evaluated on the DNS
grid.
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In order to assess the performances of the three different models further, it is important
to understand the variation of the volume averaged value of the modelled FSD with filter
size. Ideally this quantity should not vary with the filter size as the total flame surface area
remains unchanged. Figure 5 shows the relative error of total model and real flame surface
area as a function of filter width �. It can be seen from Fig. 5 that Fureby’s model slightly
under-predicts the flame surface area but it has the correct behaviour in the limit of small
filter size. In contrast, Keppeler’s model tends to over-predict the flame surface area for large
filter width and in addition it under-predicts when the flame is well resolved. The amount of
under-prediction is even larger than the flame wrinkling observed for this filter width, which
can be explained by the fact that the modelled wrinkling factor �k assumes values smaller
than unity for � <δL. This could be easily fixed by taking the maximum of unity and
modelled�k. The same behaviour can also occur for Fureby’s model when the unity in Eq. 8
is omitted [16]. Despite the fact that T K1 and T K2 tend to overpredict the flame wrinkling
in comparison to this DNS data for large filter widths, it is worth noting that this model
was calibrated and shown to work satisfactorily in a-posteriori analysis for a variety of
flames.

8 Analysis of Filtered Reaction Diffusion Imbalance Models

The next step in the analysis is to consider the modelling of (ρSd)S because this quantity
needs to be modelled in addition to �gen in order to model the FRDI term (ρSd)S�gen.
Table 2 shows the correlation coefficients using the standard assumption (ρSd)S ≈ ρ0SL

in comparison with the exact expression obtained from DNS as well as combined with
the different models for �gen (i.e. T FU , T K1, T K2). The results for the approximation
given by Eq. 13, i.e. the Lewis number correction, are not shown in Table 2 because
the correlation coefficient is invariant under this multiplication. A comparison between
Tables 2 and 1 reveals two effects. Firstly, neglecting the variation of (ρSd)S by assuming
(ρSd)S = ρ0SL results in a considerable reduction of the correlation coefficient. Sec-
ondly, including the exact expression for (ρSd)S results in an increased correlation between

Fig. 5 Relative error
( 〈�gen〉 − 〈�model

gen 〉)/〈�gen〉 of
modelled versus real total flame
surface for the models
T FU , T K1, T K2 as a function of
filter width: � ≈ 0.4δth( );
� ≈ 0.8δth ( ); � ≈ 1.2δth

( );� ≈ 1.6δth ( ); � ≈ 2.0δth

( );� ≈ 2.4δth ( ) and
� ≈ 2.8δth ( ). All numbers are
averaged over all Lewis number
cases and 〈·〉 denotes volume
averaging
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Table 2 Correlation between (ρSd)S�gen and ρ0SL�model
gen (column 2-4) and between (ρSd)S�gen and

(ρSd)S�model
gen (column 5-7) where �model

gen = T FU , T K1, T K2

(ρSd)S ≈ ρ0SL (ρSd)S = exact

T FU T K1 T K2 T FU T K1 T K2

cLe,� 0.33 0.46 0.42 0.77 0.82 0.81

model prediction and DNS data for (ρSd)S�gen compared to �gen. The increased corre-
lation between the two variables (ρSd)S�DNS

gen and (ρSd)S�model
gen (in comparison to the

correlation between �DNS
gen and �model

gen ) arises from the correlations of (ρSd)S�DNS
gen and

(ρSd)S�model
gen with (ρSd)S . The influence of density weighted displacement speed can be

excluded from the correlation between (ρSd)S�DNS
gen and (ρSd)S�model

gen using the concept
of the partial correlation coefficient cpartial which assumes a linear relationship between the
variables.

cpartial

(
(ρSd)S�DNS

gen , (ρSd)S�model
gen , w/o(ρSd)S

)
=

c
(
(ρSd)S�DNS

g en , (ρSd)S�model
gen

)
− c

(
(ρSd)S�DNS

gen , (ρSd)S

)
× c

(
(ρSd)S�model

gen , (ρSd)S

)
√[

1 − c
(
(ρSd)S�DNS

gen , (ρSd)S

)]2 ×
[
1 − c

(
(ρSd)S�model

gen , (ρSd)S

) ]2 (16)

As an example, the Fureby model is considered for Le = 1 and � ≈ 2.8δth : One obtains
c
(
�DNS

gen , �FU
gen

)
= 0.39 and c

(
(ρSd)S�DNS

gen , (ρSd)S�FU
gen

)
= 0.79. After excluding

the common influence of the variable (ρSd)S using the concept of partial correlation one

obtains cpartial

(
(ρSd)S�DNS

gen , (ρSd)S�FU
gen , w/o(ρSd)S

)
= 0.34, i.e. the value 0.39 is

approximately recovered which illustrates the aforementioned effect.
Figure 6 shows the effects of (ρSd)S estimation on the error incurred due to FSD based

closure. As pointed out by Chakraborty and Cant [22] the approximation (ρSd)S ≈ ρ0SL

does not hold true for non-unity Lewis number flames and consequently there is an increas-
ing trend of ε� when Le deviates from unity. This can especially be seen for cases A and
B. It is remarkable that using the correction given by Eq. 13 brings the errors down nearly
to the level one gets using the exact numbers from DNS for (ρSd)S .

9 Analysis of Combined Modelling of FRDI and SGSF

In order to explain the effect of combined SGSF and FRDI modelling on the evaluation
of −∇ · (ρuc − ρ̄ũc̃) + ∇ · (ρD∇c) + ω̇c, it is useful to note that the correlation coef-
ficient c (X, Y ) can be expressed as c (X, Y ) = Cov (X, Y ) /

√
V ar (X) V ar (Y ) where
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Fig. 6 Deviation of conditional values of (ρSd)S�gen, where �model
gen = T FU , T K1, T K2 and a

ρ0SL�model
gen ; b ρ0SL/Le �model

gen ; c (ρSd)S�model
gen ; εLe,� ; ε�(Le = 0.34) ; ε�(Le = 0.6) ;

ε�(Le = 0.8) ; ε�(Le = 1.0) and ε�(Le = 1.2)

Cov (X, Y ) is the covariance of two random variables and V ar (X) the variance. Using the
bi-linearity of the covariance one gets:

c
(
−T SGSF

DNS + T FRDI
DNS ,−T SGSF

LES + T FRDI
LES

)
= N/D where

D =
√

V ar
(
T FRDI

DNS

) + V ar
(
T SGSF

DNS

) − 2Cov
(
T SGSF

DNS , T FRDI
DNS

)

×
√

V ar
(
T FRDI

LES

) + V ar
(
T SGSF

LES

) − 2Cov
(
T SGSF

LES , T FRDI
LES

)

N = Cov
(
T SGSF

DNS , T SGSF
LES

)
+ Cov

(
T FRDI

DNS , T FRDI
LES

)

−Cov
(
T SGSF

DNS , T FRDI
LES

)
− Cov

(
T FRDI

DNS , T SGSF
LES

)
(17)

The FRDI term and its variance are larger in magnitude than the SGSF term. If
the random variables representing expressions for SGSF and FRDI are considered to be
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Table 3 Correlation between −∇· (ρuc−ρ̄ũc̃) + ∇ · (ρD∇c) + ω̇c and the combination of the different
models for SGSF and FRDI using two different approximations for (ρSd)S

(ρSd)S ≈ ρ0SL

T FUGH T K1GH T K2GH T FUCM T K1CM T K2CM T FURF T K1RF T K2RF

cLe,� 0.32 0.49 0.41 0.34 0.47 0.41 0.33 0.46 0.40

(ρSd)S = exact

T FUGH T K1GH T K2GH T FUCM T K1CM T K2CM T FURF T K1RF T FUGH

cLe,� 0.73 0.82 0.79 0.76 0.82 0.80 0.76 0.82 0.80

approximately uncorrelated the denominator D reduces to
√

V ar
(
T FRDI

DNS

)√
V ar

(
T FRDI

LES

)
and one gets:

c
(
−T SGSF

DNS +T FRDI
DNS ,−T SGSF

LES +T FRDI
LES

)
≈

c
(
T FRDI

DNS , T FRDI
LES

)
+ Cov

(
T SGSF

DNS , T SGSF
LES

) − Cov
(
T FRDI

DNS , T SGSF
LES

) − Cov
(
T SGSF

DNS , T FRDI
LES

)
√

V ar
(
T FRDI

DNS

)√
V ar

(
T FRDI

LES

) (18)

It turns out that the sum of the three covariances in Eq. 18 is on average of the order of
5 % of Cov

(
T FRDI

DNS , T FRDI
LES

)
and consequently one can expect that the correlation coeffi-

cients of the combined model expressions (SGSF+FRDI) are within a few percentages of
those for FRDI listed in Table 2 where the small differences observed are to a large extent
due to the interaction of the 3 co-variances shown in Eq. 18. In fact, Table 3 shows that this
indeed is the case. It is interesting to observe that the Fureby model performs slightly better
when combined with the RF or the CM model which can be expected from a-priori anal-
ysis of sub-grid scalar flux models. The K2 model is rather insensitive to combination with
a flux model. However, the Keppeler model in its original formulation (K1) performs best
when combined with the worst performing scalar flux model i.e. the GH model. This can
be understood from the fact that using |∇ c̃| instead of |∇ c̄| acts as an implicit CGT model
which in combination with the GH model indeed behaves similar to the RF model as can be
seen from Fig. 3. Indeed the terms ρ0SL(|∇ c̄| − |∇ c̃|) and ρ0SL�(|∇ c̄|− |∇ c̃|) seem to be
particularly good in representing CGT. Therefore adding another flux model which is good
in representing CGT ultimately results in a worse overall behaviour because CGT effects are
taken twice into account. The highest correlation coefficients are achieved for the Keppeler

Table 4 Deviation between conditional plots of −∇· (ρuc−ρ̄ũc̃) + ∇ · (ρD∇c) + ω̇c and the combination
of different models for SGSF and FRDI using two (ρSd)S approximations

(ρSd)S ≈ ρ0SL

T FUGH T K1GH T K2GH T FUCM T K1CM T K2CM T FURF T K1RF T K2RF

εLe,� 0.48 0.40 0.38 0.46 0.40 0.38 0.46 0.40 0.38

(ρSd)S ≈ ρ0SL/Le

T FUGH T K1GH T K2GH T FUCM T K1CM T K2CM T FURF T K1RF T K2RF

εLe,� 0.33 0.29 0.26 0.32 0.31 0.27 0.33 0.30 0.27
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model K1 in combination with the GH model. A similar behavior is observed in Table 4
which shows the errors based on the conditional quantities. It is worth noting again, that the
Lewis number correction (Eq. 13) considerably improves the model behavior in terms of
the magnitude of the model expression but it does not affect the correlation coefficients.

10 Conclusions

The performance of several models for subgrid-scale scalar flux and filtered reaction diffu-
sion imbalance (FDRI) in the context of turbulent premixed flames has been assessed on an
individual basis and in terms of their combined contribution. The analysis is based on a-
priori investigations of DNS data for a range of different Lewis numbers. The main focus
of this analysis is to assess a new FRDI closure and in particular the effect of combining
SGSF and FRDI models. The main findings of the paper can be summarized as follows:

• The gradient hypothesis model (GH) is negatively correlated with the DNS SGSF
term in all cases. The correlation becomes increasingly negative with decreasing Lewis
number. By contrast, Richard’s flux model (RF) shows a clear positive correlation in
particular when CGT is dominant, i.e. for small Le cases. Clark’s model (CM) shows
overall the best performance in representing SGSF. However, it is important to note that
the performance of the models is affected by numerical errors because the transport
equation contains the divergence of the SGSF term, rather than its model.

• Keppeler’s model KP1 exhibits a slightly higher positive correlation than the Fureby’s
model. It has been shown that this is due to the appearance of the additional term
4.5 c̃(1 − c̃)F (c̃)−1 in this model expression. However, Fureby’s model, with the
modification used in this work, is more successful in predicting the flame surface area
for the cases considered in this work, in particular in response to the variation of filter
size.

• The magnitude of the FRDI term dominates over the SGSF term. However, an ideal
combination of FRDI and SGSF models does not necessarily consist of the best indi-
vidual models. However, the resulting closure depends on subtle details, such as the
co-variances of the FRDI and SGSF terms.

• The approximation (ρSd)S ≈ ρ0SL is in the context of non-unity Lewis number
flames not at all applicable even for statistically planar flames. The scaling (ρSd)S ≈
ρ0SL/Le improves the magnitude of the surface-weighted filtered values of density
weighted displacement speed considerably but the correlation remains low. The results
show clearly that a more accurate modelling of (ρSd)S is necessary in the context of
LES.

The a-priori analysis performed in this work helped to explain some of the observations
from a-posteriori analysis reported by Allaudin et al. [17]. For example, it is possible to
explain that results obtained with the Keppeler model (KP1) will not improve when a more
advanced SGSF closure than GH is used. Regarding the expectation that a FRDI model
proportional to |∇ c̃| should perform worse than a model proportional to |∇ c̄|, it has been
demonstrated that both versions yield similar results when the gradients are evaluated on a
coarse LES grid. However, a recent a-posteriori analysis [16] showed that using |∇ c̄| can
result in undesirable flame thickening and that using |∇ c̃| is sometimes required to counter
this effect. To explain this phenomenon it is certainly important to include numerical dis-
cretization errors in the analysis, in particular because transport of c̃ is often achieved with
the help of flux-limiter schemes that are prone to numerical diffusion. Understanding and
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explaining these effects in detail is beyond the scope of this analysis and the state of the art
of a-priori analysis.
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