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Abstract The Poisson equation for pressure, together with the evolutions equations
for the velocity gradients, reveals the role of vorticity in generation of pressure
sources. Specifically, it was shown how a pressure field created by a local source,
acting on nearby vorticity, would create new pressure sources. It was further es-
tablished that a moving pressure field, which moves with the velocity of its source,
but extends well beyond the source location, could lead to generation of fast and
slow streaks as wells as contribute to formation of flow structures in the wall region.
These processes, which are part of central mechanisms of maintenance of turbulence,
suggest that turbulence could be self-sustaining only if the perturbation pressure
force could overcome the diffusion effects; the value of friction Reynolds number
reflects the balance between the two.
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1 Key Properties of Poisson Equation for Pressure

In the following, the symbols used are standard for the field, and the notation of
Cartesian tensor assumes its common conventions. The coverage will be limited to
wall turbulence, and specifically to flows between parallel plates of homogenous fluid
without body forces. The mean flow is in the x-direction, and the y-coordinate is
normal to the walls.

The Poisson equation for pressure shows that vorticity is an essential source for
generation of pressure sources and it is the only source available for generation of
negative sources.
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Divergence of the momentum equation yields the Poisson equation for pressure,

∇2 p = −S,

where the source term S is given as:
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The following important features of the Poisson equations could be readily
identified:

i) The length scale of a pressure field is always larger that the length scale of the
source that created it;

ii) for S > 0, the source would increase nearby pressure, otherwise, for S < 0, it
would lower the pressure;

iii) each of the three cross-product terms ∂ui
∂x j

∂u j

∂xi
with i �= j, is comprised of two

velocity gradients whose difference forms a vorticity component.

An obvious consequence of the last point is that in irrotational flows all the terms in
the source tensor would be quadratic: if �ω = 0 then ∂ui

∂x j
= ∂u j

∂xi
for any i and j, and thus

turbulent motions cannot exist in them.
Additionally, from the fact that if any of ∂ui

∂x j

∂u j

∂xi
terms were negative would imply a

rollup of vorticity, follows a second corollary: the square root of the sum of squares
of negative pressure source terms can be used to identify instantaneous locations of
vortices.

2 Evolution Equations for Velocity Gradients

Each of the six source terms in the Poisson equation is comprised of products
between two velocity gradients. This fact suggests that one could get a critical insight
into generation of the sources by examining the evolution equations for the velocity
gradients.

Applying the gradient operator to the momentum equation yields the evolution
equations tensor for the gradients:
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)
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There are two important inferences that follow from the above evolution equation.
First, it is evident that second derivatives of pressure could create (or change) velocity
gradients. Second, the mixed derivative of pressure ∂2 p

∂xi∂x j
, i �= j, would change the

two gradients belonging to a single vorticity component, ∂ui
∂x j

and ∂u j

∂xi
, for the same

amount. As an example, we consider below the two gradients forming ωz; (analo-
gous conclusions would hold for the other two vorticity components). Equation 2,
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together with the continuity equation, gives the respective evolution equations for
the derivatives of ∂v

∂x and ∂u
∂y the following:
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The above relations show that, if in a material volume where originally only the
∂u
∂y component of ωz were present, action of the mixed derivative of pressure ∂2 p

∂x∂y

would change the ∂u
∂y as well as create the ∂v

∂x gradient. This process of changing
both gradients for the same amount would not change the value of the z-component
of vorticity there, but significantly, it would create a new pressure source with its
own contribution to the pressure field that would extend beyond the instantaneous
location of the source, thus enabling generations of new sources. If ∂2 p

∂x∂y < 0, the
newly created source term would be positive; otherwise, for positive values of the
mixed derivative of pressure, the source term would be negative.

Subtracting the evolution equation for ∂u
∂y from the one for ∂v

∂x , after some re-

arrangement (including adding and subtracting the ∂w
∂x

∂w
∂y term), returns the evolution

equation for ωz:
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The above, of course, is identical with the expression that could be obtained directly
from the evolution equation for the vorticity vector shown below.

D�ω
Dt

= �ω · ∇ �V + ν∇2 �ω (5)

The evolution equation for vorticity implies that vorticity could be generated solely
on the fluid boundaries; (the first term on the right side simply states that the existing
vorticity could be locally enhanced by stretching, or that each of the three vector
components of vorticity could undergo tilting in other two directions).

The boundary fluxes of vorticity, which are the sole sources of vorticity, can be
related to the pressure gradients on the wall trough the x and z-direction momentum

equations: Since on the solid boundary the following holds:
(
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)
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= −
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0
,

and ( ∂2w
∂y2 )0 = ( ∂ωx

∂y )0, the vorticity fluxes (into the fluid) follow from the respective
momentum equations as:

−ν

(
∂ωz

∂y

)
0

= 1
ρ

(
∂p
∂x

)
0
, and, −ν

(
∂ωx

∂y

)
0

= − 1
ρ

(
∂p
∂z

)
0

(6)

The vorticity that is generated would be comprised of a single velocity gradient
term ( ∂u

∂y or ∂w
∂y ); only a subsequent action of the corresponding mixed derivative of

pressure could create pressure sources, both positive and negative, depending on the
sign of the derivatives.



332 Flow Turbulence Combust (2012) 89:329–334

The source terms, ones formed, could be further augmented. It can be shown,
using Eq. 2, that the cross products terms, with i �= j, could be enhanced by stretching.
For instance, using as an example ∂u

∂y
∂v
∂x source term, from Eqs. 3a and 3b, the

evolution equation for this source term, showing only (for the sake of brevity)

the stretching component of the equation, has the following form: D
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)
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The above clearly indicates a potential for the exponential growth of the source
strength due to stretching. This conclusion holds for both positive and negative values
of the source term, that is, it is more general than vortex stretching effect that could
be related only to the negative values of the source; each of the two gradients making
a vorticity component could be individually enhanced by stretching even if they were
not rolled-up into a vortex. This is clearly evident from the Eqs. 3a and 3b.

3 On Generation of Flow Structures in the Wall Region

Pressure sources are transportable quantities. The pressure fields they generate
will move with the velocity of their source, but they will extend well beyond the
instantaneous location of the source—they easily will reach the bounding walls. This
means that intermittently there will be occurrences of a relative motion between
a moving 3-D pressure field and the fluid in the wall regions; typically, a pressure
field would be moving faster. One of the consequences of such an event will be
development of fast and slow streaks in the wall regions as well as rotation of the
surrounding fluid mass around the moving pressure field and the attendant formation
of streamwise vortices.

The first effect follows directly from the evolution equation for the ∂u
∂z , and the

second would require also the evolution equation for streamwise vorticity.
The evolution equation for ∂u

∂z follows from relation 2 and the continuity equation
as:
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Evidently, a presence of the mixed derivative of pressure ∂2 p
∂x∂z in the wall region,

which is imposed on the fluid by a moving 3-D pressure field, will generate the ∂u
∂z

gradient that could lead to formation of fast and slow streak commensurate with
the spanwise width of the moving pressure field. Furthermore, the action of the
∂u
∂z gradient would tilt ωz in the x-direction, thus creating ωz. The latter effect is
visible from the third term on the right side of the evolution equation for streamwise
vorticity shown below.
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The above sequential arguments support the following inference: a moving 3-D
pressure field trough a wall region could lead to generation of fast and slow streaks
there as well as contribute to rotation of a fluid mass around the y-axis, thus initiating
conversion of the gradient ∂u

∂y of ωz into ± ∂w
∂y of ωx.



Flow Turbulence Combust (2012) 89:329–334 333

Additional effects of a pressure field motion over the confining walls include
generation of local pressure gradients around the edges of instantaneous ‘footprints’
of the moving pressure field. These gradients could reach very high intensities. For
instance, in a DNS study at Reτ = 180, [1], it was found that the local maximum

values of
(

∂p
∂x

)
0

could be almost two orders of magnitude larger then the mean

pressure gradient that drives the flow, dp̄
dx ; similar findings hold for the maximum

values of
(

∂p
∂z

)
0
. The above findings indicate that in turbulent flows there would be

a significant intermittent generation of local fluxes of vorticity on the boundaries.
Thus, as follows from the relations 6, the presence of local spanwise pressure

gradients,
(

∂p
∂z

)
0

�= 0, at two spanwise sides of a moving pressure field, implies flux

of ωx there. Obviously, the respective signs (orientations) of these vorticity will be
different at each corresponding spanwise side of the pressure field, but each would
have the same orientation as the local streamwise vorticity created by rotation of the
fluid mass around the y-axis that is induced by the ∂u

∂z gradient. Consequently, the
two effects could act synchronously in formation of two counter-rotating strands of
ωx in the wall region.

Equally significant is the role of streamwise perturbation pressure gradients on
the wall. Specifically, referring only to the lower wall (with an obvious modification

analogous argument would hold for the upper wall), the presence of
(

∂p
∂x

)
0

> 0
would create flux of ωz that would have the counterclockwise orientation. Since the
spanwise vorticity near the lower wall has the clockwise orientation, the generated
vorticity would annihilate (by diffusion) some of the clockwise vorticity near the
wall, thus creating a local maximum of ωz (as well as the rate-of-strain maximum)
away from the wall. The latter establishes conditions for a local rollup of displaced
clockwise ωz vorticity. Given that vorticity has solenoidal properties, this process,
together with concurrent creation of two strands of ωx by a moving pressure field,
could play a role in formation of hairpin structures in the wall regions.

4 Concluding Remarks

Using for the first time the evolution equations for the velocity gradients, it was
explicitly shown how a perturbation pressure field created by a local pressure source
could generate fresh pressure sources, and more specifically, it revealed the role of
vorticity in those processes. These findings, together with the processes involving
relative motion between pressure fields and the fluid in the wall regions that could
lead to formations of flow structures, point to contributing mechanisms for spreading
and maintaining of turbulent motions.

To explore further the notion that processes of evolution of velocity gradients
(and by extension, generation of pressure sources), are among the key features
in maintenance of turbulent motions, one could compare competing terms in the
evolution equations for velocity gradients, specifically, the pressure term (mixed
derivative of pressure) and viscous term in Eq. 2. Using the established scaling in
turbulent flows for perturbation pressure and velocities—the mean wall shear (τ̄0) for

perturbation pressure, and the friction velocity
(√

τ̄0
ρ

)
for perturbation velocities—
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one gets that the pressure term scales with τ̄0
ρ�2 , and the viscous term with v

√
τ̄0
ρ

�3 ; �

above stands for the integral length scale of the system (the channel half-height for
flows between parallel plates, the tube radius for flow in pipes, the boundary layer
thickness for external flows).

Significantly, the ratio between the two yields the familiar friction Reynolds

number, Reτ =
�

(√
τ̄0
ρ

)
v

which is already extensively used to denote intensity of
turbulence in turbulent flows.

There is a strong indication that a Reτ value could be also an appropriate choice
to demarcate a cutoff point below which turbulence could not be self-sustaining.
Converting the accepted transition Re-numbers for various systems into Reτ , using
the laminar values for wall shear, consistently gives the corresponding values of Reτ

at transition around 50. Moreover, experiments using modification of a basic flow by
periodically transversely placing round cylinders in a parallel channel, a modification
that will increase the amount of vorticity in the fluid as well as augment intensities
of perturbation pressure events at a given flow rates, led to a significant reduction of
Re-number (flow rate) at transition (up to fourfold), whereas, at the same time, the
transition- Reτ values remained approximately invariant, [2, 3].

The above findings suggest that turbulent motions could be self-sustaining only
when perturbation pressure forces could overcome the diffusion effects in generation
of new pressure sources, that is, in changing or creating velocity gradients. Consistent
with this inference is the fact that in the absence of internal pressure sources, laminar
flows could persist well beyond the established values of transition Re-numbers.
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