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Abstract In this paper we consider a fully developed turbulent flow in a round pipe
with a small inner annulus. The diameter of the inner annulus is less than 10% of
the diameter of the outer pipe. As a consequence, the surface area of the inner pipe
compared to the outer pipe is small. The friction exerted by the wall on the flow is
proportional to the surface area and the wall shear stress. Due to the small surface
area of the inner annulus the additional stress on the flow due to the presence of
the annulus may expected to be negligible. However, it will be shown that the inner
annulus drastically changes the flow patterns and gives rise to unexpected scaling
properties. In previous studies (Chung et al., Int J Heat Fluid Flow 23:426–440, 2002;
Churchill and Chan, AIChE J 41:2513–2521, 1995) it was argued that radial position
of the point of zero shear stress does not coincide with the radial location of the
point of maximum axial velocity. In our direct numerical simulations we observe a
coincidence of these points within the numerical accuracy of our model. It is shown
that the velocity profile close to the inner annulus is logarithmic.

Keywords Turbulence · Pipe flow · DNS

1 Introduction

Turbulent pipe flow is one of the most studied turbulent flows. In this paper we
will investigate the effect of a small inner annulus with negligible surface area on
the flow and turbulent quantities in the pipe. It is shown that this inner annulus has
large effects on the flow field. Although there are several applications for this type
of flow such as oil drilling [8] or heat exchangers [2], our interest in this flow is not
driven by the applications, but by the observation that the total (shear) stress is a
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non-linear function of the distance to the wall. This is in contrast to almost all pres-
sure driven channel and pipe flows, where in general linear total shear stress profiles
are observed.

In the past annular turbulent pipe flow with an inner annulus has been studied
quite extensively by Brighton and Jones [5], Quarmby [6] and Rehme [3]. Most of this
work focuses on the determination of the friction factor and on the radial location of
the maximum streamwize velocity. In the paper of Rehme [3] it is argued that the
radial position for which the maximum axial velocity is obtained does not coincide
with the position for which the Reynolds shear stress becomes zero. Churchill and
co-workers [4, 7] use this observation to argue that eddy viscosity models can not be
used to predict this flow and that this observation has implications for other turbulent
flows. More recently Chung et al. [2] used Direct Numerical Simulation to calculate
the flow and heat transfer in annuli. They also observe a small difference in the
radial position for which the mean velocity profile has a maximum and the point
where the Reynolds shear stress is zero. It should be noted that the radial resolution
of the simulations performed by Chung et al. [2] is rather poor. Kaneda et al. [4]
model the flow between the concentric cylinders based on the assumption that the
point where the Reynolds shear stress is zero and the maximum for the mean axial
velocity do not coincide. At present there seems to be a consensus in the literature
for the non-coincidence of the location of the zero shear stress and mean velocity
in pipe flow with an inner annulus. In the present paper we will use a well resolved
direct numerical simulation to study the flow between two concentric cylinders. In
our simulations we do not observe a non-coincidence between the point where the
Reynolds shear stress is zero and the location of the maximum mean velocity. It is
argued that the experimental observations of Rehme [3] are biased by measurement
errors or end effects in the experimental setup. The work of Churchill and co-workers
is based on these observations.

The organization of the paper is as following. In Section 2 we give the governing
equations for the flow, in Section 3 we will discuss the numerical model which has
been used to solve the equations. In Section 4 we show results for the shear stress
profiles and the radial position of the maximum mean velocity. In Section 5 mean
and rms velocity profiles are presented. Next in Section 6 we show results for the case
of negligible shear stress on the outer pipe, and finally discussions and conclusions
are given in Section 7.

2 Geometry and Governing Equations

In this paper we will consider the flow in a fully developed cylindrical pipe with a thin
inner annulus. A sketch of the geometry is shown in Fig. 1. The radius of the inner
annulus will be denoted by ra and the radius of the outer annulus by R. Throughout
the paper we will assume that ra/R � 1 and that the fluid is incompressible.

The time and spatially averaged flow in the pipe is described by the Navier–
Stokes equations in cylindrical coordinates. The axial component of the Navier–
Stokes equation reads:
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Fig. 1 A sketch of the
geometry R

ra

L
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In which u, v, w are the velocity components in the radial, circumferential and axial
directions, ρ the density, p is the pressure, and ν the kinematic viscosity. If we
apply a Reynolds averaging procedure and assume that the flow is fully developed in
the axial direction, (statistically) axi-symmetric and statistically steady, equation (1)
reduces to:

1

r
∂

∂r

(
ru′w′ − νr

∂w

∂r

)
= − 1

ρ

∂ p
∂z

. (2)

In which u′w′ is the Reynolds shear stress, w the Reynolds averaged axial velocity
profile, and p the Reynolds averaged pressure. With help of the radial component of
the Reynolds averaged Navier–Stokes equations (not shown here) it can be shown
that ∂ p/∂z is not a function of r and equation (2) can be easily integrated. The result
reads (

ru′w′ − νr
∂w

∂r

)
= −r2

2

1

ρ

∂ p
∂z

+ C (3)

Where C is an integration constant. We can also rewrite equation (3) as
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The actual value of C can be expressed as a function of the wall shear stress on the
annulus and outer cylinder, denoted by τa and τo respectively:

C = − 1
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, (5)

If we take the limit ra → 0 the value of C → 0. The assumption that the flow
is statistically steady implies that the pressure gradient in equation (4) should be
balanced by the wall shear stress on the inner and outer cylinder, this results in:
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With help of this relation and the expression we found for C we can rewrite equation
(4) as
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For scaling purposes it is useful to introduce a velocity scale. Here we will use velocity
U∗ which is based on the applied (external) pressure gradient

U∗ =
√

− R
2ρ

∂ p
∂z

If ra → 0 the velocity scale U∗ is equal to the classical friction velocity in a standard
pipe flow.

3 Direct Numerical Simulations and Simulation Details

For the direct numerical solution of the Navier–Stokes equations we use the nu-
merical model developed by Eggels et al. [1] for cylindrical pipe flow. In this model
the Navier–Stokes equations, formulated in a cylindrical coordinate system, are
discretized with a second order finite volume method. The time integration has been
performed with a second order Adams–Bashforth method. Conservation of mass is
ensured with a pressure correction method. Due to the presence of the small inner
annulus no singularity is present in the computational domain which would be the
case if we would include the centre region. Therefore, there is no need for special
treatment near r = ra. At the in and outflow section periodic conditions are used.
No slip conditions are used on both the inner and outer wall. The length of the
computational domain is 10R with R the radius of the outer cylinder. This domain
length is the same as was used by Eggels et al. [1] in which it was shown that this
domain length was sufficient to obtain negligible autocorrelation function of the
velocity components halfway the domain. The ratio ra/R is equal to 0.02, 0.04 or
0.10. The Reynolds number based on the mean friction velocity and pipe diameter
Re = 2U∗ R/ν is equal to 600. For the case with ra/R = 0.10 we have also performed
a simulation with a slightly higher Reynolds number Re = 2U∗ R/ν = 900. This has
been done to check the Reynolds dependency of the flow. The simulations are
performed on a uniform mesh of 192 × 192 × 384 points in the radial, circumferential
and axial direction respectively. To check the accuracy of the simulations also
simulations on a finger mesh of 384 × 320 × 512 have been performed. The grid
spacing in plus units for the various simulations is reported in Table 1. When we
compute the results obtained with the different grid sizes we observe no noticeable
difference between the results. Most of the results presented in here are obtained
with the resolution of 192 × 192 × 384 points. The flow in our simulations is driven

Table 1 The grid spacing in plus units, based on the mean friction velocity U∗
r+ ra�θ+ z+

r/ R = 0.02(192 × 192 × 384) 1.5 (2.6) 9.8 7.8
ra/R = 0.04(192 × 192 × 384) 1.4 (2.2) 9.8 7.8
ra/R = 0.10(192 × 192 × 384) 1.3 (1.5) 9.8 7.8
ra/R = 0.02(384 × 320 × 512) 0.8 (1.3) 5.9 5.6
ra/R = 0.04(384 × 320 × 512) 0.7 (1.1) 5.9 5.6
ra/R = 0.10(384 × 320 × 512) 0.7 (0.8) 5.9 5.6

The value between brackets is the gridspacing close the inner annulus based on the local friction
velocity
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Fig. 2 A slice in the
r − θ -plane. The contour
denotes the axial velocity
scaled with U∗ and the vectors
the flow in the r − θ -plane
(every fourth vector is shown),
ra/R = 0.02
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by a constant pressure gradient. The pressure gradient is given by equation (6)
but the values of τo and τa are not known a priori. We fix the value of pressure
gradient as

− 1

ρ

∂ p
∂z

= 2U2∗
R

With this pressure gradient we expect that τo is O(ρU2∗). The actual values of τo

and τa can be calculated from the simulation results. As initial conditions for the
simulations we use a constant axial velocity w = 18U∗. On top of this velocity profile
white noise random perturbations, with a maximum of 5U∗, are superimposed. The
simulations are run sufficiently long (typically for 30R/U∗) to become independent
of the initial conditions. After this initial period the simulations are continued for

Fig. 3 A slice in the
r − z-plane. The contours of
the circumferential velocity
v = vθ normalized with U∗ are
shown, ra/R = 0.02
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another 10R/U∗ over which 50 datafields equally separated in time are stored. The
results presented in the following sections are based on the spatial and temporal
averages over these 50 datafields. Most of the results presented in the following
sections will be normalized with the mean friction velocity U∗ or with the local
rescaled wall shear stresses

√
τa/ρ,

√−τo/ρ.
An illustration of the simulated flow is given in Figs. 2 and 3 where we show

the axial velocity component in the r − θ -plane and the circumferential velocity
component in the r − z plane, for a flow with ra/R = 0.02.

4 Reynolds Shear Stress Profiles and Velocity Maximum

In this section we will present the Reynolds and total shear stress profiles and we
will compare the radial position for which the total stress is zero with the radial
position for which the axial velocity has a maximum. In Fig. 4, (left) we show the
Reynolds shear stress profile u′w′, normalized with U2∗ , for a standard pipe flow,
see Eggels et al. [1] and for the flow with three different inner annuli, labeled with
ra/R = 0.02, 0.04 and 0.1 (the “l” denotes the result obtained with the low resolution,
192 × 192 × 384 and the “h” denotes the result obtained with the high resolution,
384 × 320 × 512). Close to the outer wall the profiles are very similar. Close to the
inner annulus the 1/r behavior is clearly visible in the profiles. The effect of the
different numerical resolution is very small. In Fig. 4, (right) we show the total stress,
equation (4), u′w′ − ν∂w/∂r.

The numerical value of the constant C appearing in equation (4) can easily be
calculated using the values for the wall shear stress τo, τa and equation (5). The
numerical values for the constant C and the values of τo and τa are given in Table 2.
In Fig. 5 we plot the total shear stress from the simulation with an annulus of
ra/R = 0.04 together with the profile − 1

2ρ
r∂ p/∂z + C/r. Clearly the agreement is

excellent, which is a good indication that our results are statistically converged.
As mentioned in the introduction there is some discussion in the literature about

the coincidence of the radial position where the shear stress is zero and the maximum
of the axial velocity profile. In Table 2 we have given the radial locations for which
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Fig. 4 The Reynolds stress (left) as a function of the radial coordinate for a standard pipe flow
and the flow in annuli with ra/R = 0.02, ra/R = 0.04, ra/R = 0.10. Right the total shear stress in
standard pipe flow and the flow in annuli
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Table 2 Simulation details

ra/R 0.02 0.04 0.1 0.1
Reb 8,900 8,910 9,270 13,940
C −0.0318 −0.0445 −0.0744 −0.0721
< r|u′w′ = 0 > 0.126 (0.126) 0.149 (0.147) 0.193 (0.194) 0.190
< r|w = wmax > (= rm) 0.124 (0.125) 0.147 (0.148) 0.194 (0.194) 0.190
|τa|/(ρU2∗) 3.16 (3.14) 2.18 (2.20) 1.39 (1.40) 1.34
|τo|/(ρU2∗) 0.91 (0.91) 0.91 (0.90) 0.84 (0.85) 0.85

The numbers between () are obtained with a resolution of 384 × 320 × 512 points. |τa|/(ρU2∗) denotes
the normalized wall shear stress at the annulus and |τo|/(ρU2∗) the normalized shear stress at the outer
pipe wall
ra is the radius of the inner annulus
R the radius of the outer annulus
Reb the Reynolds number based on the bulk flow
C the constant in equation (4)
< r|u′w′ = 0 > the radius for which the total shear stress is zero
< r|wmax > the radius at which the axial velocity reaches its maximum

we observed a zero Reynolds shear stress. Also we have included the radial position
for which the velocity profile reaches its maximum. This radial position is obtained by
numerically differentiating the axial velocity profile. With a resolution of 192 points
in the radial direction we have a radial gridspacing �r ≈ 0.005R. The differences
between the radial positions for the zero shear stress and the maximum velocity are of
the same order of the gridspacing and therefore we conclude that the radial positions
for zero shear stress and maximum axial velocity coincide within the accuracy of the
present direct numerical simulation. The difference in radial locations in the DNS
performed by Chung et al. [2] is in our view caused by the rather poor numerical
resolution (65 points) in the radial direction. From a theoretical point of view it is
also unlikely that in a high Reynolds number flow a difference between the zero
crossing of the Reynolds shear stress and the maximum axial velocity occurs. At the
point in the flow for which the total shear stress is zero, equation (4) gives

u′w′ = ν
∂w

∂r

Fig. 5 The total stress a
function of the radial
coordinate for the flow with
the annulus, symbols DNS,
line − 1

2ρ
r∂ p/∂z + C/r with C

as given in Table 2
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In principle u′w′ does not have to be equal to zero. However in a high Reynolds
number channel or pipe flow viscous effects are only important in the near wall
region where the gradients in the mean velocity profile are very large. If we assume
that the point where the total shear stress is zero is located sufficient away far from
the wall viscous effects can be considered negligible and we can assume that u′w′ = 0
at the point where the total shear stress is zero. For nearly parallel flows, such as for
instance discussed by [10] additional terms may play a role and it will be possible that
u′w′ �= 0, but for the present flow u′w′ should be zero, or at least u′w′/U2∗ ≤ O(Re−1).
Unfortunately, we can not show from first principles that ∂w/∂r is zero in the point
with zero total stress, but the DNS results clearly show this.

5 Mean Velocity Profiles

In this section we will first give some standard closure approximations for wall
bounded shear flows and will try to predict the mean turbulent velocity profile.
Subsequently these findings will be compared with the results of the DNS.

In previous work by, Churchill and co-workers [7], it was argued that the use of
eddy viscosity approaches for this flow is “futile” because there is a shift in the radial
position between the point for zero shear stress and the maximum velocity profile.
The results from our DNS do not support this statement and therefore we base our
model on classical eddy viscosity assumptions. We will only consider the flow in the
layer r ≤ rm, where rm is the radial location for which the axial velocity reaches its
maximum (the layer r ≥ rm scales as a classical pipe flow and results can be found
elsewhere [12]).

5.1 The viscosity dominated region

In the region very close to the annulus (r ≈ ra) it is assumed that the viscous stresses
are much larger than the Reynolds shear stress, equation (7) reduces to:

−ν
∂w

∂r
= − 1

ρR2

(
r[τo R − τara] − ra R

r
[τora − τa R]

)
≈ −raτa

ρr
, if ra � R, (8)

After integration and applying the no-slip condition on the annulus, we find that the
velocity profile for r ≈ ra is given by

w(r) = raτa

ρν
log

(
r
ra

)
. (9)

This solution is clearly different from the near wall solution for a standard wall
bounded shear flow where the region close to the wall is linear.

5.2 The Reynolds stress dominated region

Away from the wall we assume that the Reynolds shear dominates the viscous stress
and equation (7) reduces to

−u′w′ ≈ 1

ρR2

(
r[τo R − τara] − ra R

r
[τora − τa R]

)
≈ 1

ρ

(τara

r
+ τor

R

)
if ra � R
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Let us first consider the case τor2/τara R � 1. In this case the right hand side of the
equation above reduces to: τara/ρr In standard eddy viscosity approach the following
closure for the Reynolds shear stress is used [12]:

u′w′ = −νt
∂w

∂r
(10)

In which νt is the eddy viscosity. The eddy viscosity is in general modeled with a
mixing length model:

νt = L2

∣∣∣∣∂w

∂r

∣∣∣∣ (11)

Where L is the length scale of the eddies. The size of the eddies scales with the
distance to the wall, in this case r − ra and we can write

νt = α2(r − ra)
2

∣∣∣∣∂w

∂r

∣∣∣∣
where α is a non-dimensional constant. Equation (7) can now be approximated as

α2(r − ra)
2

∣∣∣∣∂w

∂r

∣∣∣∣ ∂w

∂r
≈ τara

ρr

The solution of this equation is given by

w(r) = 2

α

√
τa

ρ
arctanh

[√
r
ra

]
+ Const

This solution does not exist for r > ra.
Another model for the eddy viscosity νt could be

νt = α

√
τa

ρ
(r − ra)

with this model equation (7) can be approximated as

α

√
τa

ρ
(r − ra)

∂w

∂r
≈ τara

ρr

In this case the solution for the velocity profile w is given by

w =
√

τa

ρ

1

α
log

[
r − ra

r

]
+ D1 (12)

Where D1 is an integration constant. This solution does exist for values r > ra.
If we consider the case τor2/τara R � 1 we find the (classical) linear relation for

the shear stress and the resulting velocity profile will be logarithmic, see for instance
Pope [12].

5.3 DNS results

In this section we will present DNS results for the mean flow profiles and compare
them with the approximations given before. The mean axial velocity profiles for
standard pipe flow [1] and for the cases with different inner annuli are given in
Fig. 6. All the results are scaled with the velocity scale U∗. The profiles close to
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Fig. 6 Left: The mean velocity profiles normalized with U∗ as a function of the radial coordinate, for
the standard pipe flow and annuli with ra/R = 0.02, ra/R = 0.04 and ra/R = 0.10. Right, the profile
close to the inner annulus for the case ra/R = 0.04, together with the approximate solution given by
equation (9)

the outer wall, i.e. near R = 0.5 are nearly identical for both flows. The flow rate
is clearly larger for the flow without the annulus, i.e. less friction results in a higher
bulk velocity. The approximate solution given by equation (9), which is valid close
to the inner annulus is also shown for the case ra/R = 0.04. As can be seen from
the Fig. 6, equation (9) agrees nicely with the result of the DNS in the region r ≈ ra.
From the literature, see for instance [3], it is known that the r value (rm) for which
the mean velocity reaches a maximum, is given by the following empirical relation

rm − ra

R − rm
=

(ra

R

)0.343

For our geometry with ra/R = 0.02 this gives a rm/R = 0.11. In the DNS we observe a
slightly higher value rm/R ≈ 0.13. For ra/R = 0.04 the correlation gives rm/R = 0.14
and the DNS gives 0.15, for ra/R = 0.1 we find rm/R = 0.19 and for the DNS also
0.19. For small values of ra/R there is thus a difference between the results of the
correlation and the DNS. For larger values of ra/R the agreement is excellent.

In Fig. 7 we show velocity profiles scaled with the local friction velocity. The
flow close to the outer wall behaves as a standard pipe or channel flow. In the
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Fig. 8 The mean velocity
profiles and the profiles given
by equation (12). The
constants are obtained with a
least square fit
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first 5 to 10 viscous wall units (r+ = |R − r|√−τo/ρ/ν) the mean velocity profiles
is approximately linear. For larger distance to the wall we observe a logarithmic
region. The slope and the constant are similar to what is found for standard pipe flow
W(r) = 2.5U∗log(rU∗/ν) + 5.5 (see for instance Eggels et al. [1]). The flow close to
the inner annulus is completely different. Very close to the annulus, in the first 10–
25 viscous units (r+ = (r − ra)

√
τa/ρ/ν) the profile is logarithmic, which agrees with

the result given by equation (9). For comparison we have also included some of the
experimental data reported by [3]. The agreement between the experimental data
and simulation is reasonably good.

In Fig. 8 we show the axial velocity profiles together with the velocity profiles
given by equation (12). The two constants in equation (12) are obtained with a least
square fit. The values of the constants are given in the figure.

5.4 Turbulence intensities

In this section the turbulence intensities on the inner and outer wall will be presented.
In Fig. 9 we show the turbulence intensities of the three velocity components,

Fig. 9 The rms profile of the
three velocity components
scaled with the mean friction
velocity
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Fig. 10 The rms profile of the three velocity components plotted as a function of r+, left inner wall
(r+ = (r − ra)

√
τa/ρ/ν), right outer wall (r+ = |R − r|√τa/ρ/ν.)

scaled with velocity scale U∗. In Fig. 10 we show the axial component of the rms
profile scaled with the square root of the local wall shear stress and plotted as a
function of r+ (defined in the caption of Fig. 10). The profiles at the outer wall
collapse and the maximum is approximately 2.7 times the local friction velocity.
This is a value which is observed in almost all wall bounded flows [9]. At the inner
wall the peak of the axial rms clearly depends on the radius of the inner cylinder.
This dependency was also observed by [11]. They give the following argument:
In transversely curved flows there is a smaller surface area over which vorticity
fluctuations can be generated relatively to the volume of turbulent flow supported.
The annulus is not less efficient as a source of turbulent kinetic energy but is has to
support a larger area. Furthermore there is a clear Reynolds number effect visible,
between the two simulations with an annulus ratio of 0.1. This effect is absent at the
outer wall.

6 Flow Without Outer Pipe

In the right hand side of equation (7) there is always a r−1 and a r behavior. The r−1

behavior is due to the inner cylinder and the r behavior due to the outer cylinder. In
this section we will present some results obtained from simulations without an outer
cylinder (τo = 0), i.e. equation (7) reduces to

u′w′ − ν
∂w

∂r
= raτa

ρr
(13)

In the DNS the no slip boundary conditions at the pipe wall are replaced by free-slip
conditions, similar to the one used by [11]

u(R) = 0; ∂v

∂r

∣∣∣∣
r=R

= ∂w

∂r

∣∣∣∣
r=R

= 0.
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Fig. 11 The Reynolds shear
stress u′w′ and the total stress
τrz = u′w′ − ν∂w/∂r,
ra/R = 0.02
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Note, that in this case we assume explicitly that the point of zero shear stress
coincides with the point of maximum velocity. The flow is still driven by a constant
pressure gradient ∂ p/∂z. In Fig. 11 we show the Reynolds shear stress, scaled with√

τa/ρ, together with the profile given by equation (4). The value for the constant
C is in this case easy to calculate. At the outer boundary r = R the Reynolds shear
stress u′w′ and the velocity gradient ∂w/∂r are zero, thus the constant C is equal to
1

2ρ
R2∂ p/∂z.
The mean velocity profile is shown in Fig. 12. Close to the annulus we again

observe a logarithmic behavior as given by equation (9). Further away from the wall
the profile given by equation (12) matches well with the DNS.

Finally, we show in Fig. 13 the rms profiles of the velocity fluctuations as a function
of the non-dimensional coordinate r+ = (r − ra)

√
τa/ρ/ν. The peak of the rms is

considerable lower than was the case for the flow with outer pipe, see Fig. 10.

Fig. 12 The velocity profile as
a function of
r+ = (r − ra)

√
τa/ρ/ν, scaled

with with the friction velocity√−τa/ρ, ra/R = 0.02
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Fig. 13 The rms profile of the
three velocity components as a
function of
r+ = (r − ra)

√
τa/ρ/ν, scaled

with the friction velocity√−τo/ρ, ra/R = 0.02
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7 Discussion and Conclusion

In this paper we have used direct numerical simulation to calculate the flow in
concentric annuli. In the literature it is argued that for this geometry the radius for
which the maximum axial velocity is obtained is not the same as the position where
the Reynolds shear stress is zero. If this would be the case then the widely used
eddy viscosity approach would be invalid. In our direct numerical simulation we have
not observed this shift between the zero shear stress point and the maximum axial
velocity. This is in contrast to the DNS performed by Chung [2]. The discrepancy
with the results obtained by Chung is most likely due to a poor radial resolution of
this DNS. Churchill et al. use the experimental observations of Rehme [3] to support
their claim. In our view the accuracy of the measured Reynolds shear stress in the
work of Rehme is questionable. For the shear stress measurement he used a DISA
hotwire. A slight misalignment of one degree of the crosswire could already give a
faulty reading for the Reynolds shear stress. In the paper of Rehme [3] not much
attention and/or documentation is given to or on the calibration of the hotwire.
Furthermore, it is likely that Rehme his measurements are biased by end effects in
his setup. The measurements where taken very close to the outflow of the pipe, the
exact distance is not reported in the paper.

In view of our results of the DNS and the uncertainties about the experiments we
feel that the argument of Churchill [7] and Rehme [3] is wrong. Unfortunately we
have not yet been able to show from first principles that the points should coincide
as they do in our DNS. Furthermore, we do not claim that in more general flows the
point for zero shear stress should coincide with maximum velocity. An analysis for
nearly parallel flows which shows this fact is given by [10].

Open Access This article is distributed under the terms of the Creative Commons Attribution
Noncommercial License which permits any noncommercial use, distribution, and reproduction in
any medium, provided the original author(s) and source are credited.
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