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Abstract
Ectoparasites, such as ticks, modulate host population dynamics by impacting demo-
graphic traits. They transmit infectious agents among their hosts, posing a critical threat 
to animal and public health. This study aimed to characterize and analyze the Hyalomma 
aegyptium infestation on one of its main hosts, the spur-thighed tortoise, its effects on de-
mographic traits, and to determine the diversity of infectious agents present in both ticks 
and tortoises in the Maamora forest (northwestern Morocco). Our results show that 100% 
of the tortoises were parasitized by adult ticks in spring, an infestation intensity of 4 ticks/
tortoise (5.1 and 3.6 ticks/tortoise in males and females, respectively; 4.2 and 3.3 ticks/
tortoise in gravid and non-gravid females, respectively) and an abundance ranging from 1 
to 12. Although without significant differences, male tortoises had higher tick abundances 
than females. The interaction of tortoise sex and body condition was significantly related 
to tick abundance, male body condition decreased with higher tick abundance in contrast 
to females. Nevertheless, the interaction of body condition and reproductive stage of fe-
males was not significantly related to tick abundance. Gravid females were significantly 
associated with tick abundance, showing a slightly higher infestation than non-gravid 
females. Molecular analysis of pooled tick samples revealed the presence of Ehrlichia 
ewingii, Candidatus Midichloria mitochondrii, and Rickettsia africae, with a minimum 
infection rate of 0.61 to 1.84%. However, blood sample analysis of the tortoises was in-
fectious agent-free, pinpointing a lack of significant health problems. Given the possible 
effect on the transmission of zoonotic diseases by spur-thighed tortoises associated with 
their frequent collection as pets, it should be surveyed to control possible human health 
problems. In conservation terms, as a long-lived species, the role of tick infestation in 
demographic traits might be included in the management and conservation programs of 
spur-thighed tortoises.
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Introduction

Ectoparasites may modulate host population dynamics by influencing natural selection 
(Fitze et al. 2004; Bull and Burzacott 2006). Long interaction between hosts and ectopara-
sites impacts host population structure and size, affecting defence effectiveness and result-
ing in most of the cases in adaptation and co-evolution (Hwang and Kuang 2003; Esser et 
al. 2019). Tortoises from the Testudo genus have been deeply documented as hosts of tick 
species of the Hyalomma genus, such as Hyalomma aegyptium L. (Hoogstraal and Kaiser 
1960; Široký et al. 2006), affecting those ectoparasites their life-history traits. Particularly 
high is the encounter rate of H. aegyptium with spur-thighed tortoise Testudo graeca in 
Morocco, Tunisia, Turkey and Algeria (Gharbi et al. 2015; Tiar et al. 2016; Segura et al. 
2019; Najjar et al. 2020), and to a lesser extend with Marginated tortoise Testudo marginata 
in Greece (Široký et al. 2006), Horsfield´s tortoise Testudo horsfieldii in Iran (Javanbakht et 
al. 2015), and Hermann´s tortoise Testudo hermanni in Albania (Hoogstraal, 1956; Široký et 
al. 2006; Bizhga et al. 2022). The endured contact between H. aegyptium and Testudo may 
depend on a complex interplay of factors involving host demographic factors such as sex, 
reproductive stage or population density, host-parasite factors including encounter, compat-
ibility and recognition strategies (Hoberg and Brooks 2008) and abiotic factors including 
elevation, temperature, rainfall and humidity (Cumming 2002; Javanbakht et al. 2015). In 
particular, the effect of tick parasitism is often higher in male tortoises than in females 
(Segura et al. 2019; Laghzaoui et al. 2022; but see Tiar et al. 2016), representing either dif-
ferences in exposure or susceptibility to ticks, such as male-specific behaviour in breeding 
time by differential habitat use (Robbins et al. 1998). Male parasitism might result in an 
extra biological cost if physiological aspects such as body condition are affected (Segura 
et al. 2019). The effect of parasitism in the reproduction of tortoise females may influence 
resource allocation trade-offs, reducing or increasing reproductive output according to dif-
ferent strategies (e.g., Lockley et al. 2020). Therefore, female reproductive success might be 
compromised as a direct consequence of resource exploitation by parasites. Whereas small 
(young) infected females could use a bet-hedging strategy in favour of lifetime reproductive 
success, older infected females could adopt a terminal investment strategy (e.g., Lockley et 
al. 2020). Additional external factors, such as the limitation of food resources, will favour 
resource allocation from current reproduction to survival (and future reproduction) until the 
infection has passed (e.g., Hurd 2001; Pollock et al. 2012).

Adults of H. aegyptium feed almost exclusively on tortoises of the genus Testudo. How-
ever, rare cases in other hosts, such as hares and hedgehogs, have been reported (Hoogstraal 
and Kaiser 1960; Gazyağci et al. 2010). Larvae and nymphs are less host-specific and feed 
on a variety of vertebrates (Estrada-Peña et al., 2017), including domestic animals (dogs, 
cattle, horses, or pigs; Aydin 2000), wild animals (lizards, birds, hedgehogs, rodents, or 
camels; Kar et al. 2011; Široký et al. 2011; Apanaskevich and Oliver 2014), and humans 
(Vatansever et al. 2008; Bursali et al., 2010). Ticks are considered the second vector of 
human diseases and are both vectors and reservoirs of infectious agents, harbouring bac-
terial, viral, and protozoan microorganisms (de la Fuente et al. 2017). The multitude of 
hosts affected by H. aegyptium poses a major concern as various dissemination scenarios 
may occur, leading to epidemiological consequences. Indeed, several infectious agents have 
been detected in H. aegyptium collected from spur-thighed tortoise, such as Rickettsia spp., 
Ehrlichia spp., Anaplasma spp., Coxiella burnetii, Crimean-Congo haemorrhagic fever 
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virus (CCHFV) or Hemolivia mauritanica (Tiar et al. 2010; Bursali et al., 2011; Paștiu et al. 
2012; Kautman et al. 2016; Barradas et al. 2019, 2020; Manoj et al. 2021; Mumcuoglu et al. 
2022; Rjeibi et al. 2022). Particularly in Morocco, the presence of H. mauritanica, Ehrlichia 
spp., Midichloria mitochondrii, Wolbachia spp., relapsing fever borreliae, Francisella spp., 
and Rickettsia spp. has been reported from spur-thighed tortoise infested by H. aegyptium 
(e.g., Harris et al. 2013; Norte et al. 2021).

In our study, we examined the presence of infectious agents in both H. aegyptium ticks 
and spur-thighed tortoises and the role of sex and female reproductive stage in tortoises as 
drivers of tick infestation in the host species. Spur-thighed tortoise have been red-listed as 
‘vulnerable’ by the International Union for Conservation of Nature (IUCN 1996; Rhodin et 
al. 2021) and one of their main threats through their distribution is the collection and trade as 
pets (Pérez et al. 2004; Tiar et al. 2019; Segura et al. 2020). We selected a population located 
in the Maamora forest, a cork oak forest located in northern Morocco that is characterized 
as highly humid, when comparing with other areas of the tortoise distribution range, and 
considered close to the optimum niche of the tortoise distribution (Anadón et al. 2012). The 
population has been previously studied in 2018 in a private reserve where there is no pet 
trade and the undergrowth is well preserved (Segura et al. 2020). The study revealed high 
prevalence and moderate intensity of tick parasitism, and the influence of tick infestation 
on tortoise age, sex, body condition and population density (Segura et al. 2019). Indeed, 
this spur-thighed tortoise population has been recognized as one of the densest documented 
to date (Segura and Acevedo 2019). However, the epidemiological status of the tortoise 
community present in the Maamora forest is unknown, even though several demographic 
studies had discussed the different drivers of this tortoise population (Segura and Acevedo 
2019; Segura et al. 2019, 2021). The high collection and trade of the species in this forest 
(Segura et al. 2020) pinpoint to the potential transmission of zoonotic pathogen agents. This 
study aims to (i) determine adult parasite prevalence, intensity and abundance in tortoises, 
(ii) analyse the role of tortoise sex, tortoise female reproduction stage and the interaction 
of both factors with the body condition as drivers of tick parasitism in the species, and 
(iii) identify and phylogenetically characterize tick-borne infectious agents, including Ana-
plasma spp., Babesia spp., C. burnetii, Ehrlichia spp., Hepatozoon spp. / H. mauritanica, 
Rickettsia spp., Borrelia spp., and CCHFV, in both H. aegyptium ticks and the spur-thighed 
tortoise. This study will contribute to the design of appropriate management and conserva-
tion plans and emphasizes the importance of surveillance and epidemiological profiling of 
both vectors and hosts.

Materials and methods

Study site

The study was conducted in an area of low-elevation sandy soil (72–185 m above sea level) 
in the Maamora forest (Northwest Morocco; 34°02′54.19′′ N, 6°27′19.24′′ W, Grou-Boure-
greg basin). The study area was located on the Mediterranean bioclimatic floor, with hot 
and dry summers, and the annual range of average rainfall was 300–500 mm and the mean 
annual temperature 22º C. Maamora forest is dominated by cork oak trees Quercus suber, 
scattered endemic wild pear Pyrus mamorensis, wild olive Olea europaea, green olive Phyl-
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lirea latifolia, and mastic Pistacia lentiscus, and a sparse understory of bush and shrub 
species such as Mediterranean broom Genista linifolia, Cytisus arboreus, Stauracanthus 
genistoides, dwarf palm Chamaerops humilis, French lavender Lavandula stoechas, sage-
leaved rockrose Cistus salviifolius, Halimium halimifolium, and Thymelaea lythroides. The 
study took place on a private reserve (3000 ha) characterized by well-represented under-
growth (e.g., species richness and cover) when compared with other unprotected sites in 
Maamora (highly overgrazed by livestock; Said et al. 2014).

Sampling

Tortoises were captured by hand between April and May 2022 (Table S1) following approved 
ethical wildlife capture and management protocols. Each individual encountered was sexed, 
the body mass was determined using a precise balance (± 1 g), and the body size was mea-
sured (± 1 mm) as the straight anteroposterior distance between the nuchal and supracaudal 
scutes using a calliper (carapace length, CL). Collection and tick extraction were carried 
out within a private initiative for the conservation of T. graeca in Maamora Forest. All ticks 
attached to the tortoise body were counted in the field, and a representative subsample was 
collected for analysis of infectious agents. The removed ticks were identified at the species 
level with DNA barcoding of mitochondrial genes. Blood was collected from the subcara-
pacial plexus using a 1-mL syringe. For determining the female reproductive stage, females 
were radiographed dorsoventrally with a portable X-ray at 60 kV (20 mA) at a distance of 
1 m, according to Gibbons and Greene (1979). The radiography allowed the identification 
of gravid females and assessed the clutch size. Figure 1 represents the methods employed 

Fig. 1  Methodological flowchart. Individual characteristics were recorded such as weight, sex, body size 
measures and quantification of eggs. The relationship between the variables was performed using general 
linear models and linear models with the R software. In addition, DNA was extracted from ticks and blood 
samples collected from the tortoises. Positive samples of the pathogens analysed were sequenced, and 
phylogenetic trees were generated
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in this article. All tortoises were released immediately after measurements and sample col-
lections at the capture site.

Three parasitological indicators were calculated: (1) infestation prevalence, by divid-
ing the number of infested tortoises by the number of examined tortoises and multiplying 
it by 100, (2) mean infestation intensity, by dividing the number of ticks by the number of 
infested tortoises, and (3) tick abundance, by dividing the number of ticks by the number 
of examined tortoises. The tortoise body condition (BC), which represents the body mass 
adjusted to the body size (Nagy and Medica 1986), was determined by calculating residual 
values through a linear regression analysis (all individuals pooled). In this analysis, the 
natural logarithm (ln) of body mass was used as the dependent variable, whereas ln CL was 
used as the independent variable. The individual body-condition index measures the extent 
of mass deviation compared to the expected values based on the animal’s size, which can 
change with age, stage of reproduction, drought and disease.

Both the ticks and the blood of the tortoises were stored at -25 °C in tubes with RNAlater 
and sodium heparin, respectively, for further analysis.

Tick DNA/RNA isolation and PCR infectious agents analysis

Nucleic acid extraction was accomplished from individual tick samples and tick pools 
(mean of 3,196 ticks/pool, ranging from 1 to 8 ticks). The pools were designed randomly, 
according to the number of ticks collected in the field. DNA and RNA were extracted from 
the internal tissues of ticks, discarding the external cuticle, and using TRI Reagent (Sigma-
Aldrich, St. Louis, USA), following the manufacturer’s instructions. The concentration 
(ng/µL) and purity of samples were evaluated using a Nanodrop One spectrophotometer 
(Thermo Scientific, Waltham, USA), through the quantification of the nucleic acids at an 
optical density of 260 nm (OD260) and the ratio of absorbance at 260/280 nm. The quality 
of the extraction protocol and confirmation of tick species were appraised by the amplifica-
tion of the mitochondrial 16S ribosomal DNA (16S rDNA) gene and the cytochrome oxidase 
subunit I (COI) gene of four individual ticks (Table 1). All samples were tested using con-
ventional polymerase chain reaction (PCR) aimed at detecting the presence of Anaplasma 
spp., Babesia spp., C. burnetii, Ehrlichia spp., Hepatozoon spp. / H. mauritanica, or Rickett-
sia spp., a nested PCR for the detection of Borrelia spp., and a nested reverse transcription 
(RT)-PCR for the identification of the CCHFV. Table 1 provides information on the specific 
targeted regions for each PCR assay, the used protocol, and primers.

The PCR reactions were performed in a 25 µL volume, including 12.5 µL of PCR Master 
Mix 2x (Promega, Madison, WI, USA), 1 µL of each primer (10 µM working solution), 9 
µL of RNase-free water (Thermo Scientific), and 1.5 µL of DNA sample. For the nested 
RT-PCR assessment of CCHFV, the commercial kit Access RT-PCR System (Promega, 
Fitchburg, WI, USA) was used according to the manufacturer’s instructions. The PCRs 
were conducted in a C1000 touch PCR thermal cycler (Bio-Rad, Hercules, CA, USA), with 
the specific PCR fragments visualized in 1.5% agarose gel stained with GelRed (Biotium, 
Fremont, CA, USA) under UV transillumination.
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Sequencing and phylogenetic analysis

Presumed positive samples were purified and sequenced using the Sanger method at Secu-
gen (Madrid, Spain). Sequences were edited with the Chromas software v.2.6.6., and 
homology analysis was conducted using the National Center for Biotechnology Informa-
tion (NCBI) database, employing the Basic Local Alignment Search Tool (BLAST). The 

Table 1  Primers and PCR protocols according to the pathogen analysed
Pathogen and 
target gene

Sequence 5’-3’ (F: Forward / R: Reverse) Frag-
ment 
(bp)

An-
neal-
ing 
(ºC)

Reference

16S rDNA F: CCGGTCTGAACTCAGATCAAGT
R: CTGCTCAATGATTTTTTAAATTGCTGTGG

460 48 Rodríguez et 
al. 2022

COI F: GGTCAACAAATCATAAAGATATTGG
R: TAAACTTCAGGGTGACCAAAAATCA

650 50 Coimbra-
Dores et al. 
2018

Anaplasma spp. 
(16S rRNA)

F: CAGAGTTTGATCCTGGCTCAGAACG
R: GAGTTTGCCGGGACTTCTTCTGTA

421 42 Moraga 
Fernández et 
al. 2022

Anaplasma spp. 
(msp5)

F: GCATAGCCTCCGCGTCTTTC
R: TCCTCGCCTTGGCCCTCAGA

456 54 Moraga 
Fernández et 
al. 2022

Anaplasma spp. 
(msp4)

F: CGGATCCTTAGCTGAACAGGAATCTTGC
R: 
GGGAGCTCCTATGAATTACAGAGAATTGTTTAC

849 60 Moraga 
Fernández et 
al. 2022

Babesia spp. 
(18S rRNA)

F: AAT ACC CAA TCC TGA CAC AGG G
R: TTA AAT ACG AAT GCC CCC ACC

408 58 Barradas et 
al. 2020

Borrelia burg-
dorferi sensu 
lato (flagellin)

F1: GCATCACTTTCAGGGTCTCA
R1: TGGGGAACTTGATTAGCCTG
F2: CTTTAAGAGTTCATGTTGGAG
R2: TCATTGCCATTGCAGATTGT

390 55 
and 
58

Norte et al. 
2021

Coxiella bur-
netii (IS111a)

F: CAAGAATGATCGTAACGATGCGC
R: CTCGTAACACCAATCGCTTCG

349 63 Rjeibi et al. 
2022

Crimean-Congo 
Haemorrhagic 
Fever vírus 
(CCHFV S 
segment)

F1: TTGTGTTCCAGATGGCCAGC
R1: CTTAAGGCTGCCGTGTTTGC
F2: GAAGCAACCAARTTCTGTGC
R2: AAACCTATGTCCTTCCTCC

211 60 
and 
57

Moraga-
Fernández et 
al. 2021

Ehrlichia spp. 
(16S rRNA)

F: GGTACCYACAGAAGAAGTCC
R: TAGCACTCATCGTTTACAGC

345 54 Barradas et 
al. 2020; Gal 
et al. 2008

Hepatozoon 
spp. / Hemolivia 
mauritanica 
(18S rRNA)

F: GTTTCTGACCTATCAGCTTTCGACG
R: CAAATCTAAGAATTTCACCTCTGAC

600 60 Norte et al. 
2021; Ujvari 
et al. 2004

Rickettsia spp. 
(16S rRNA)

F: AGAGTTTGATCCTGGCTCAG
R: AACGTCATTATCTTCCTTGC

416 54 Rodríguez et 
al. 2022

Rickettsia spp. 
(ompA)

F: ATGGCGAATATTTCTCCAAAA
R: AGTGCAGCATTCGCTCCCCCT

630 54 Moraga-
Fernández et 
al. 2019

Rickettsia spp. 
(ompB)

F: GGGTGCTGCTACACAGCAGAA
R: CCGTCACCGATATTAATTGCC

618 53 Moraga-
Fernández et 
al. 2019
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16S rDNA sequence was deposited in GenBank under the accession number OQ295899. 
The COI partial sequences obtained in this study were attributed the accession numbers 
OQ320497 and OQ556797. The 16S rRNA partial sequences of Ehrlichia identified in 
this study were ascribed the accession numbers OQ9931657, OQ991496, OQ991497 and 
OQ996270. The outer membrane protein A [ompA] partial sequence of Rickettsia was 
submitted to Genbank and assigned the accession number OR003919. Multiple sequence 
alignment was carried out using the Multiple Sequence Comparison by Log-Expectation 
(MUSCLE) algorithm. Phylogenetic analysis was performed in MEGA software v.11.0.13. 
Corrected Akaike Information Criterion (cAIC) was used to select the best-fit model, and a 
phylogenetic tree for positive infectious agents was generated using maximum likelihood 
and Neighbor-Joining methods. To ensure the reliability of produced trees, 1000 bootstrap 
replicates were implemented.

Blood nucleic acid isolation and PCR infectious agent analysis

Blood DNA was extracted from tortoises with suspected infectious agents present in tick 
samples using the DNeasy Blood & Tissue Kit (Qiagen, Hilden, Germany) and following 
the manufacturer’s instructions. The samples were tested using conventional PCR against 
Anaplasma spp., Ehrlichia spp. and Rickettsia spp. (Table 1). The PCR protocol followed 
the same indications as the one described for the tick infectious agents research.

Statistical analysis

χ2 tests were used to assess differences in infestation intensity between tortoise sexes and 
between gravid and non-gravid tortoise females. Two generalized linear models (GLM) 
with a Poisson distribution and logarithmic link function were performed with the R v.4.3.1 
(2023) software, to analyse the relationship between tick infestation rate (tick abundance) 
and (i) the tortoise sex and the interaction of body condition with sex, and (ii) female repro-
ductive stage (gravid/non-gravid females) and the interaction of body condition with repro-
ductive stage. For all analyses, statistical significance was declared at α = 0.05 (confidence 
level of 95%).

Results

Tick infestation rate and tortoise demographic traits

In total 520 ticks (mostly adults with the exception of four nymphs) were counted on the 
130 tortoises captured (98 females, 32 males). Overall, the infestation prevalence was 100% 
with all the tortoises parasitized by ticks, and the mean (± 95% confidence interval) infesta-
tion intensity was 4 ± 0.42 ticks/tortoise. Tick abundance ranged from 1 to 12 ticks/tortoise.

Males presented higher infestation intensity (5.3 ± 1.11 ticks/tortoise) than females 
(3.6 ± 0.40 ticks/tortoise) but the differences between them were not significant (χ2 = 2.4, d.f. 
= 1, P = 0.1). The model for determining the infestation rate effect on sex and body condition 
showed a significant relation of sex and a significant interaction between body condition and 
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sex. Males had higher tick abundances, and tick abundance decreased in males in relation to 
their body condition (Table 2; Fig. 2).

Gravid females (34%; 1–5 eggs) presented higher mean infestation intensity than non-
gravid females (4.2 vs. 3.3 ticks/tortoise, n = 33 and 65, respectively) but the differences 
between them were not significant (χ2 = 1.08, d.f. = 1, P = 0.29). The model showed a sig-
nificant relation between tick abundance and the reproductive stage of the females, gravid 
females with higher tick abundance than non-gravid females. In addition, it showed a lack 

Table 2  Statistical parameters of the generalized linear model (GLM) carried out to determine tick abundance 
variation in relation to the tortoise sex and the interaction of body condition and sex in tortoises
Model predictors Estimate SE t P
(Intercept) 1.287e + 00 5.307e-02 24.252 < 0.01
Body condition -2.617e-05 4.945e-04 -0.053 0.96
Sex1

  Males 2.620e-01 1.003e-01 2.613 < 0.01
Body condition × males -4.978e-03 1.083e-03 -4.597 < 0.01
1Class reference for the categorical variable sex is ‘female’

Fig. 2  Number of ticks encountered categorized by sex and according to body condition (BC). Female 
data are represented in red, male data in blue
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of significance in the interaction between body condition and the reproductive stage of the 
females (Table 3).

PCR analysis

A sample of 163 ticks (156 males, six females, and one nymph) was used for DNA extrac-
tion and analysis. All 163 ticks were confirmed as H. aegyptium by barcoding of 16S rDNA 
and COI genes. BLAST analysis revealed 98.9–100% identity of two ticks, one identified 
for both genes, with H. aegyptium (GenBank accession numbers MG418679, AF132821 
and KY548846). Phylogenetic analysis was performed to evaluate the genetic association 
between the sequenced samples and other Hyalomma species obtained from the GenBank 
database (Figs. 3 and 4). Both phylogenetic trees present clusters of the genotypes H. mar-
ginatum, H. excavatum, H. aegyptium and H. impeltatum and an outgroup of Ixodes ricinus 
(GenBank accession number MH645522 and MZ305543). The samples retrieved in this 
study cluster in the subgroup of H. aegyptium, being aggregated with samples collected 
from Turkey (KR870970) or Israel (KU130407), in the case of 16S rDNA sequences, and 
from Israel (KT989617), Morocco (OL467652) or Algeria (OL467646) in COI sequences.

Sequence and BLAST analysis of suspected positive samples revealed four tick pools 
as positive for the Ehrlichia 16S rRNA gene (7.84%), and one (1.96%) as positive for the 
Rickettsia ompA gene. BLAST analysis of the Ehrlichia 16S rRNA gene of H. aegyptium 
showed three samples sharing 98–99% identity with Candidatus M. mitochondrii (Gen-
Bank accession number MG668797, OQ320500 or MK416236.1) and one with 99.6% iden-
tity to Ehrlichia ewingii (GenBank accession number MW092750). One sample (isolate 
12) positive to Ehrlichia 16S rRNA presented a co-infection with Rickettsia sharing 99.7% 
identity with Rickettsia africae when targeting the ompA gene (GenBank accession number 
MW874463).

Phylogenetic analysis for the Ehrlichia 16S rRNA (Fig. 5) confirmed the classification 
as Candidatus M. mitochondrii and E. ewingii. It shows a cluster between the isolates 44 
(OQ996270), 20 (OQ991497) and 7 (OQ9931657) and Candidatus M. mitochondrii detected 
in H. anatolicum ticks from China (MG668797), H. aegyptium from Qatar (MW092748) 
and Morocco (MW293914), H. dromedarii from Tunisia (MK416236) and H. rufipes from 
Ghana (OQ320500). Concerning isolate 12 (OQ991496), it clusters with sequences identi-
fied as E. ewingii collected from Haemaphysalis bandicota from Taiwan (OK345369) and 
H. aegyptium from Qatar (MW092750). In terms of the Rickettsia ompA sequences, the 
phylogenetic analysis confirms the classification as R. africae (Fig. 6). The positive sample 
(isolate 12 - OR003919) clusters with R. africae sequences from Turkey (JQ691730) or 

Table 3  Statistical parameters of the generalized linear model (GLM) carried out to determine tick abundance 
variation in relation to the reproductive stage (gravid and non-gravid females) and the interaction of body 
condition and reproductive stage
Model predictors Estimate SE t P
(Intercept) 1.448 0.084 17.108 < 0.01
Reproductive stage
Non-gravid1 -0.251 0.108 -2.316 < 0.01
Body condition -0.0004 0.0009 -0.478 0.63
Body condition × non-gravid 0.0004 0.001 0.449 0.65
1Class reference for the categorical variable sex is ‘gravid’
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Algeria (MW874462). However, tick samples were PCR-negative for Babesia spp., Bor-
relia spp., C. burnetii, CCHFV, and Hepatozoon spp. / H. mauritanica infectious agents.

The infectious agents search in tortoises’ blood, which included Anaplasma spp., 
Ehrlichia spp. and Rickettsia spp., detected no positive samples.

Fig. 3  Phylogenetic tree of mitochondrial 16S rDNA sequences of Hyalomma aegyptium isolated from 
spur-thighed tortoise (Testudo graeca), Morocco. The analysis was obtained based on the Neighbor-
joining method with Tamura-3-parameter with a discrete Gamma distribution model. The characterized 
species in this study are represented in bold. Sequence names include the GenBank accession number, 
organism name, host (if mentioned), country of origin and year of collection or submission. The reliability 
of internal branches was assessed using the bootstrapping method with 1000 replicates
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Discussion

Assessing the impact of H. aegyptium infestation intensity on the spur-thighed tortoise’s 
health status and the potential transmission of zoonotic infectious agents are crucial aspects 
to improve conservation strategies for this vulnerable species and promote human health 
(Laghzaoui et al. 2022). Our study documents high prevalence and medium infestation 
intensity of H. aegyptium in spur thigh-tortoise, and the influence of tortoise sex and female 
reproductive stage in the infestation rate. The H. aegyptium ticks exhibited a minimum 
infection rate, calculated as the number of positive pools to the total number of ticks tested, 
of 0.61–1.84% of infectious agents, harbouring R. africae, Candidatus M. mitochondrii 

Fig. 4  Phylogenetic tree of COI sequences of Hyalomma aegyptium isolated from spur-thighed tortoise 
(Testudo graeca), Morocco. See Fig. 3 for details of the analysis
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and E. ewingii species. The lack of transference of those agents to the spur-thighed tortoise 
imposes a greater concern for human health problems, primarily due to high human contact 
through collecting them as pets (Segura et al. 2020; Segura and Acevedo 2019), rather than 
posing significant health and demographic problems for the tortoises themselves.

The tick prevalence of the Mediterranean spur-thighed tortoises in the Maamora forest 
has been documented to be one of the highest in their distribution range (Gharbi et al. 2015; 
Tiar et al. 2016; Najjar et al. 2020; Table S2). Acknowledging that this is a 1-year study, it 

Fig. 6  Phylogenetic tree of Rickettsia (ompA) sequences of Hyalomma aegyptium isolated from spur-
thighed tortoise (Testudo graeca), Morocco. See Fig. 3 for details of the analysis

 

Fig. 5  Phylogenetic tree of Ehrlichia (16S rRNA) sequences of Hyalomma aegyptium isolated from spur-
thighed tortoise (Testudo graeca), Morocco. See Fig. 3 for details of the analysis
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shows medium infestation intensity, when compared to other studies (e.g., Robbins et al. 
1998; Brianti et al. 2010; Gharbi et al. 2015; Tiar et al. 2016), and allows comparisons with 
the previous study of 2018. Segura et al. (2019) detected higher infestation intensity, which 
might be associated with the decrease of temperatures and humidity in 2022 (134 mm and 
a minimum temperature of 8.7 ºC in the spring and winter of 2018 and 56 mm and 10 ºC in 
the spring and winter of 2022; Meterological station Tiflet). Temperature and humidity are 
crucial determinants for the distribution and development of ticks, which limits their abun-
dance and distribution (Javanbakht et al. 2015). Overall, in this Mediterranean forest, the 
high tick prevalence and medium infestation intensity might be the result of the highly dense 
tortoise population (Segura et al. 2019), which might be interpreted as a host adaptation to 
the impact of parasites. Ticks make an oriented choice to gather in the most profitable plots 
(e.g., Barbault 1992), represented in our case by dense host population, as occurred in an 
Algeria population (Tiar et al. 2016).

In our study, tortoise sex plays a role in tick infestation, with male tortoises presenting 
higher infestation rates than females, as occurred in our previous study (Segura et al. 2019) 
and in other populations (Laghzaoui et al. 2022), which could be related to home range dif-
ferences between sexes (Robbins et al. 1998). Male body condition decreased with higher 
infestation rates, as reported in 2018 (Segura et al. 2019), which might suppose an extra 
biological cost. Nevertheless, there was no relationship between tick infestation and the 
body condition of gravid females. Indeed gravid females presented higher infestation rates 
compared to non-gravid females, as documented in western lizards (Pollock et al. 2012). 
This could be caused by nesting search by gravid females, which might increase their home 
range and therefore the encounter rate of ticks (Tiar et al. 2016). Those facts might affect 
demographic traits, under conditions where there is not enough energy to support both the 
immune and reproductive systems (e.g., Hurd 2001; Pollock et al. 2012; Lockley et al. 
2020). Indeed, this population has been documented as highly female biased (Segura and 
Acevedo 2019), and the infestation rate in males may be a factor among others contributing 
to keep males in low densities. However, tortoise reproductive traits are strongly influenced 
by other factors such as female age or drought periods. For instance older females produce 
more and larger clutches (Díaz-Paniagua et al. 2001; Segura et al. 2021) and drought peri-
ods strongly reduce female reproduction investment (Rodríguez-Caro et al. 2021). Due to 
this, further studies coping with long-term data on reproductive females and accounting for 
environmental variables are crucial for determining the role of tick infestation in reproduc-
tive success.

Ticks of H. aegyptium carry and transmit several pathogens (Paștiu et al. 2012; Kautman 
et al. 2016; Barradas et al. 2020; Manoj et al. 2021; Norte et al. 2021). In this study, we 
detected three species of pathogens, R. africae, E. ewingii, and Candidatus M. mitochon-
drii, that have been previously detected in spur-thighed tortoise ticks in Morocco (Norte et 
al. 2021), Qatar (in imported tortoises from pet trade; Barradas et al. 2019, 2020), Israel 
(Mumcuoglu et al. 2022), and Italy (Manoj et al. 2021). In Africa, the estimated prevalence 
of R. africae in Hyalomma ticks is 13.9% (Cossu et al. 2023), and particularly in the North 
of Morocco, R. africae and Candidatus M. mitochondrii in spur-thighed tortoises have been 
reported to present a higher prevalence (2.94 and 14.58%, respectively; Norte et al. 2021) 
than the one encountered by this study. Additionally, although Anaplasma spp., C. burnetii, 
Babesia spp., CCHFV and H. mauritanica have been documented in other populations of 
spur-thighed tortoises infested by H. aegyptium throughout their distribution range (Paștiu 
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et al. 2012; Kautman et al. 2016; Akveran et al. 2020; Mumcuoglu et al. 2022; Rjeibi et al. 
2022), our study did not yield positive results. Indeed, for example, Africa presents a low 
estimated prevalence of C. burnetii (Cossu et al. 2023), and in Morocco, of the four patho-
gens, only H. mauritanica has been detected in spur-thighed tortoises, with a low prevalence 
of 0–2.1%, being higher in eastern regions (Široký et al. 2009; Norte et al. 2021). The low 
prevalence of pathogens in ticks might be related to the range and abundance of other poten-
tial hosts (wildlife, livestock, or domestic animals), host predation, barriers within ticks – 
e.g. their immune system potentially influences their infection –, potential co-infection with 
other pathogens impacting ticks and their ability to maintain the infection and/or possibly 
infect hosts, and environmental variables including temperature, humidity, daylight dura-
tion, and season (Daniel et al. 1976; Randolph 2004; de la Fuente et al. 2017).

The pathogens encountered in H. aegyptium may impact both domestic and wild ani-
mal health, causing, e.g., granulocytic anaplasmosis, ehrlichiosis, or coxiellosis (Wernery, 
2014). Some of these diseases lead to asymptomatic (e.g., CCHFV; Temur et al. 2021) 
or non-specific symptoms such as fever (e.g., Anaplasma spp. or Ehrlichia spp.; Karlsen 
et al. 2020), whereas others lead to reproductive losses like abortions, stillbirths or weak 
offspring in wild mammals and birds, among others (e.g., C. burnetii; González-Barrio and 
Ruiz-Fons 2019; Celina and Cerný 2022). However, acknowledging the limited study of 
the effects of such pathogens in reptiles, it results in anaemia, dehydration or emaciation 
(Mendoza-Roldan et al. 2021), symptoms which might be overlooked or associated with 
other factors. Accordingly, the absence of pathogens in the tortoise blood samples suggests 
that the infection of ticks occurred from another source other than the spur-thighed tortoises 
or that the transmission of pathogens from vector to host was inefficient (Rocha et al. 2022). 
Previous studies have successfully detected pathogens in blood, demonstrating that spur-
thighed tortoises could serve as reservoirs and/or sources of tick-borne infections (Akveran 
et al. 2020; Kar et al. 2020; Mihalca et al. 2008; Široký et al. 2009). The effect of pathogens 
on the tortoise’s health, although seldom reported, seems to be minimal or even inexistent 
(Mihalca et al. 2008), pinpointing the coevolution of tortoises as a host species according 
to the long-term exposure. On the other hand, pathogens found in the ticks attached to 
spur-thighed tortoises might affect human health due to the ability of H. aegyptium to feed 
on humans (Vatansever et al. 2008) and the high collection of this tortoise species as a pet 
throughout their whole distribution (Segura et al. 2020). Both E. ewingii and R. africae are 
zoonotic pathogens inducing, respectively, monocytic ehrlichiosis (Andoh et al. 2015) and 
African tick bite fever – a systemic fever in travellers from Africa (Jensenius et al. 2004). 
Therefore, the study raises concern about the collection of spur-thighed tortoises as pets due 
to the emerging or re-emerging of zoonotic infections.

Spur-thighed tortoise management and conservation programs might include long-term 
studies to determine the tortoise epidemiological status and the transmission of zoonotic 
infectious agents, accounting for both, demographic drivers (sex, age, reproduction) and 
abiotic drivers (temperature, rainfall, vegetation cover) that affect the tick infestation in the 
host.
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