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Abstract
Climate directly influences the epidemiology of vector-borne diseases at various spatial 
and temporal scales. Following the recent increased incidences of theileriosis in Zimba-
bwe, a disease mainly transmitted by Rhipicephalus appendiculatus, we determined lethal 
temperatures for the species and current and possible future distribution using the machine 
learning algorithm ‘Maxent’. Rhipicephalus appendiculatus larvae had an upper lethal 
temperature (ULT50) of about 44 ± 0.5 °C and this was marginally higher for nymphs and 
adults at 46 ± 0.5 °C. Environmental temperatures recorded in selected zonal tick micro-
habitats were below the determined lethal limits, indicating the ability of the tick to survive 
these regions. The resultant model under current climatic conditions showed areas with 
high suitability indices to the eastern, northeastern and southeastern parts of the country, 
mainly in Masvingo, Manicaland and Mashonaland Central provinces. Future predictions 
as determined by 2050 climatic conditions indicate a reduction in suitable habitats with 
the tick receding to presently cooler high elevation areas such as the eastern Highlands of 
Zimbabwe and a few isolated pockets in the interior of the country. Lowveld areas show 
low suitability under current climatic conditions and are expected to remain unsuitable in 
future. Overall, the study shows that R. appendiculatus distribution is constrained by cli-
matic factors and helps identify areas of where occurrence of the species and the disease 
it transmits is highly likely. This will assist in optimizing disease surveillance and vector 
management strategies targeted at the species.
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Introduction

Ticks and tick-borne diseases (TBDs) are major causes of livestock mortalities and sub-
sequent economic losses globally (Abbas et  al. 2014). Several tick species are disease 
vectors of veterinary importance and inflicting huge annual costs for management of the 
ticks and reduction of the burden of the diseases they transmit (Horak et al. 2009; Spickett 
et  al. 2011; Vudriko et  al. 2016). Direct and indirect production losses due to TBDs in 
sub-Saharan Africa are estimated to be in the range of 10–80%, depending on the disease 
transmitted (Chepkony et al. 2021). For example, in sub-Saharan Africa, theileriosis (East 
Coast fever) alone accounts for approximately one million cattle deaths annually resulting 
in approximately USD 300 million economic losses (Shekede et  al. 2021). Direct losses 
emanate from ticks as blood sucking parasites and indirect losses from ticks as disease vec-
tors which results in reduced growth rate, fertility problems, abortions, decline in meat and 
milk production, reduced value of hides and livestock mortalities.

Given the economic importance of ticks, there is need for constant surveillance to moni-
tor their current and also project future geographic distribution. Knowledge of tick ecology, 
physiology and geographic distribution will therefore be vital. However, for ectotherms, 
the distribution is highly dynamic and is heavily influenced by environmental factors, par-
ticularly temperature (Chidawanyika et  al. 2020; Zannou et  al. 2021). Body temperature 
among these ectotherms depends on ambient environmental conditions as well as behav-
ioral mechanisms for thermoregulation (Chown and Nicholson 2004; Kearney et al. 2009). 
Hence, arthropod distribution is mainly dictated by thermal margins with a presumptively 
higher abundance in areas offering most suitable conditions (Peterson et al. 1999; Estrada-
Peña et al. 2016).

In recent years, climate change-mediated shifts in the distribution of organisms have 
become evident. For instance, Longbottom et al. (2020) predicted a decline in tsetse abun-
dance in traditional endemic low-lying areas whereas previously cooler high-altitude areas 
are expected to provide suitable habitats in Zimbabwe. These predictions are premised 
on projected temperature rises which are expected to range between 3 and 4 ºC by 2100 
(Engelbrecht et al. 2015). Although some arthropods may counter these changes through 
mechanisms such as phenotypic plasticity and other adaptive evolutionary responses 
(Nyamukondiwa et  al. 2013; Sgro et  al. 2016; Mutamiswa et  al. 2017), biogeographical 
changes are expected for several species, which fail to adapt to changing environments 
(Parmesan et al. 1999; Forsman et al. 2016). Changes in climatic factors may alter arthro-
pod life-history traits—such as their survival, reproduction and fecundity—and impact the 
encounter of hosts and pathogen-carrying vectors, thereby affecting disease transmission 
dynamics and ultimately population dynamics (Nguyen et  al. 2014). For instance, Pfaf-
fle et al. (2013) reported that temperatures < 7 °C led to continuous tick inactivity which 
negatively affects their questing behaviour. Such individual responses to both diurnal and 
seasonal thermal fluctuations mediate population level effects where severe unfavourable 
conditions can lead to either migration or extinction.

Even though climatic factors such as temperature and humidity play a role in the 
distribution of animal disease vectors (Tønnesen et al. 2004), host distribution, vegeta-
tion cover and control efforts also modulate observed distributions (Estrada-Pena et al. 
2008). Absence of ticks in some areas may not be an indicator of non-conducive eco-
physiological requirements as host animal movement is key in the dispersal of ticks into 
novel environments regardless of the prevailing climatic conditions (Barre and Uilen-
berg 2010; Sungirai et  al. 2018). However, the survival and proliferation of the ticks’ 
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free-living stages in these environments is mainly determined by their adaptability to 
microclimates, availability of suitable hosts and vegetation cover among other key fac-
tors (Greenfield 2011). For example, the presence of Rhipicephalus microplus both in 
the southern and northern Lowveld of Zimbabwe was attributed to animal movement 
during the land redistribution exercise which affected land ownership, methods of culti-
vation and farm organisation across the country (Mavedzenge et al. 2008).

Species distribution models have often been used to predict suitable habitats or eco-
logical niches and model potential habitats for ticks based on presence data and environ-
mental covariates (Hahn et al. 2016; Sungirai et al. 2018; Pascoe et al. 2019; Namgyal 
et al. 2021). Elsewhere, these models have been used to optimize the control of animal 
disease vectors. For example, Dicko et  al. (2014) used a Maxent-derived habitat suit-
ability model to delimit target areas for the implementation of an area-wide integrated 
tsetse control program in Senegal. Thus, predictive models fill in gaps of a known dis-
tribution (Estrada-Pena et al. 2016) and address issues of accessibility and costs which 
prohibit large-scale intensive surveys (Chikowore et  al. 2017; Dobson and Randolph 
2011) described this as a ‘top-down’ approach which can be implemented rapidly. Fur-
thermore, the availability of spatially explicit species occurrence records and remotely 
sensed datasets allows species-specific microenvironments to be identified (Ozdenerol 
et al. 2008). Putting the predicted potential risk areas under surveillance is an effective 
way of managing the vector and its associated diseases (Hahn et al. 2016).

In Zimbabwe, the distribution of most tick species previously followed altitude-
delimited temperature zones with high prevalence on the Highveld (> 600 m above sea 
level) (Sungirai et al. 2015). Recent studies have shown shifts for several species, with 
some becoming established beyond their previous geographical ranges (Gambiza and 
Nyama 2000). For instance, Sungirai et al. (2017) reported shifts in the distribution of 
Amblyomma variegatum and R. microplus ticks in Zimbabwe. The former is reported 
to have expanded its range from the Lowveld to some parts of the Highveld. The latter 
shifted from occupying only the eastern Highveld to reach as far as the south-eastern 
Lowveld, northern Highveld and northern Lowveld of the country offering low tempera-
tures and high rainfall suitable for its survival. Studies by Shekede et  al. (2021) have 
also confirmed these shifts by reporting spatial clustering of R. microplus in the north 
and northeastern districts of the country.

The brown ear tick, Rhipicephalus appendiculatus, is highly prevalent in the High-
veld (> 600 m asl) areas characterized by high rainfall (≥ 650 mm per year), lower tem-
peratures (10–30 ºC) and adequate vegetation cover (Hove et  al. 2008; Sungirai et  al. 
2015). The tick transmits the parasite Theileria parva, which causes theileriosis in 
bovids. Norval et al. (1991) previously reported that R. appendiculatus diapause broke 
the transmission of the parasite in Zimbabwe. However, the Department of Veterinary 
Services in Zimbabwe reported an increase in the incidence of the disease and related 
cattle mortalities over the past 4 years. Some of the incidences were reported in tra-
ditionally non-endemic areas and cases also changed from being seasonal to all year 
round. Therefore, questions arise on the distribution of the disease vector, R. appendicu-
latus. Thus, the overall goal of this study was to model the current and future distribu-
tion of habitats suitable for R. appendiculatus. Specifically, the study aimed to answer 
the following questions: (1) what is the current distribution of R. appendiculatus and 
how will this be affected by climate change? And (2) which temperatures are lethal for 
the tick species and how do these influence current and future distributions? The study 
hypothesized that the distribution of R. appendiculatus is shaped by climatic conditions 
and these will shape the distribution of the species in future.
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Materials and methods

The study area

The study was conducted in Zimbabwe, which lies in the sub-tropical region and is pre-
dominantly savanna. The country is divided into five agro-ecological regions based on 
temperature and rainfall; regions I, II and III lie in the Highveld whereas region V and 
part of IV are in the Lowveld (Fig. 1; Norval et al. 1994; Sungirai et al. 2018). Rainfall 
received per annum generally decreases from region I (> 100 mm/year) to V (< 450 mm/
year) whereas temperature increases from 10 to 30 °C in the Highveld, to > 30 °C in the 
Lowveld. Soil type also decreases in quality from heavy textured red clay loams in region 
I, greyish brown sands and sandy loams derived from granite rocks in regions II and III, 
to very shallow vertisols in region V. Despite the differences in rainfall regimes, soil types 
and temperature patterns, agricultural activities are carried out across all regions. Special-
ized and diversified crop-livestock farming is practiced in region I. Region II and III are 
intensive and semi-intensive farming regions whereas regions IV and V receive extremely 
low rainfall (< 500 mm) per annum and are therefore occupied by semi-intensive and inten-
sive beef and game ranching.

Influence of temperature on survival and distribution of Rhipicephalus 
appendiculatus

Hygrochron iButton data loggers (DS1923-F5, ± 0.5 °C; Cold Chain Technologies, Frank-
lin, MA, USA) were deployed in tick habitats in selected districts to record microhabitat 
temperature fluctuations between April and November 2021 at hourly intervals. In Zimba-
bwe, the highest temperatures are experienced in October whereas June records the lowest 

Fig. 1   Study area showing the agro-ecological regions of Zimbabwe. (redrawn from Vincent and Thomas 
1961)
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temperatures. Hence, the sampling period encompassed months during which temperature 
extremes are experienced.

To determine the impact of thermal extremes on the survival of R. appendiculatus, 
upper lethal temperatures (ULTs) were assayed using the direct plunge protocol (Chi-
dawanyika et  al. 2020; Fieler et  al. 2021). Higher temperatures were considered due to 
heatwaves experienced in the country recently as well as the absence of sub-zero tempera-
tures from environmental data collected during the study. As R. appendiculatus is a three-
host species, larval, nymphal and adult stages were assayed. For each developmental stage, 
10 unfed ticks were placed in five 60-ml screw top polypropylene vials to yield a sample 
size of n = 50 for each treatment. Lids of the vials were perforated for ventilation and a 
piece of moistened cotton wool was attached in each vial to maintain relative humidity 
above 80%. Vials were then placed in Ziploc bags and immersed in a programmable Nuve 
water bath (Sanayi Malzemeleri, İzmir, Turkey) for 2-h durations at temperatures ranging 
from 38 to 50 ± 0.5  °C that elicit 0–100% mortality. After the treatment, the vials were 
incubated in a POL-EKO humidity chamber (POL-EKO Aparatura, Wodzisław Śląski, 
Poland) at 27 ± 1 °C and 80–90% r.h. for 24 h before scoring survival. Survival was defined 
as the ability to coordinate normal locomotory response to stimuli such as gentle prodding.

Tick presence data

Tick presence data was collected during a national tick survey conducted across all agro-
ecological zones of Zimbabwe by the Department of Veterinary Services in 2013. This 
survey was carried out using a stratified sampling approach where agro-ecological zones 
of Zimbabwe were the strata. Five districts were randomly selected from each stratum 
except the stratum representing agro-ecological zone I, with three districts which were all 
sampled. In total, 23 districts were selected and 10 dip tanks, which constituted the sam-
pling units, were sampled from each of the selected districts. At each dip tank, ten animals 
were randomly sampled (maximum of ten ticks per preferred attachment site). Targeted 
sites were the head, neck and dewlap, ears, body and belly, legs and tail switch, udder and 
scrotum. Samples were collected in universal bottles and preserved in 70% alcohol, 5% 
glycerol and 1% chloroform. Ticks were collected on a monthly basis throughout the year 
and were identified at the Central Veterinary Laboratory (CVL) using morphological keys 
by Walker et al. (2003). Rhipicephalus appendiculatus presence locations were cleaned in 
ArcGIS to ensure coordinate precision, remove duplicates and remove wrong coordinates. 
As a result, 144 presence locations with a spatial distance of 5 km remained and were used 
to train and evaluate the Maxent model. The distance of 5 km was chosen as it is the catch-
ment area for each dip tank which constituted the sampling unit.

Environmental covariates

Climatic variables were downloaded from the Worldclim v.2.0 database (Hijmans et  al. 
2005). As bioclimatic variables are highly correlated and several multicollineality tests 
have been performed on them, we used results of the hierarchical cluster analysis per-
formed by Mudereri et al. (2021) which produced five clusters based on Pearson’s r as the 
distance and a correlation coefficient of 0.7 as the cutoff point. From each cluster, variables 
which best describe the ecology of ixodid ticks were selected to avoid model overfitting 
and improve the interpretability of the model (Merow et al. 2013). As a result, a total of 
five bioclimatic variables (Table 1) were used to construct the model.
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Data analysis

Microclimatic data

To visualize temperature and humidity in tick habitats, readings were plotted against sam-
pling time in Excel (Microsoft Office 2016). Differences in mean temperatures were then 
compared using one-way ANOVA in STATISTICA v.7 (TIBCO Software, Palo Alto, CA, 
USA) whereas Tukey-Kramer post hoc tests were used to separate statistically significant 
groups.

Lethal temperature limits

The response of R. appendiculatus larvae to increasing temperatures were modelled using 
R statistical software v.3.3.0 (R core team 2021). The ‘drc’ package (Ritz et al. 2015) was 
used to construct a 2-parameter log-logistic model with the lower and upper limits fixed at 
0 and 1, respectively. The temperature at which 50% of the larvae died was inferred from 
the model using the ‘ED’ function of the package.

Habitat suitability modelling

Current and future R. appendiculatus habitats were modelled using the maximum entropy 
technique (Maxent; Phillips et  al. 2006). Maxent is a logarithmic technique which uses 
mathematical principles to determine habitat suitability by comparing conditional den-
sity of presence sites with marginal density of an object (Hijmans and Graham 2006). The 
model uses presence data, randomly selected pseudo-absences as background points and 
environmental variables to generate a probability distribution across a landscape (Phillips 
et  al. 2006; Elith and Leathwick 2009). Modelling was done using Wallace, an R-based 
graphic user interface (GUI) application for ecological modeling for building, evaluating, 
and visualizing models of species niches and distributions that is fully reproducible (Kass 
et  al. 2018). As sampling was stratified covering all the agro-ecological regions, 10,000 
background sampling points were selected from the entire country. The presence dataset 
was randomly split into two folds (k = 2) for training and evaluation. Optimum tuning and 
parameter settings for Maxent with presence-only R. appendiculatus observations were 
derived from the ‘ENMevaluate’ function in the ‘ENMeval’ package within the Wallace 
GUI. Model parameters with the lowest change in the corrected Akaike information crite-
rion (ΔAICc = 0) were derived from a range of 0.5–4 with an incremental value of 0.5 for 
linear (L), quadratic (Q), product (P), threshold (T), hinge (H) features (Fig. 2). The model 

Table 1   Predictor variables used 
to model suitable habitats for 
Rhipicephalus appendiculatus in 
Zimbabwe. (source: Worldclim)

Variable Code

Temperature seasonality bio4
Maximum temperature of the warmest month bio5
Temperature annual range bio7
Precipitation of wettest month bio13
Precipitation seasonality bio15
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transfer module of the Wallace application was then used to predict future R. appendicu-
latus habitat suitability for the 2050 climate scenario. For this prediction, the Shared Soci-
oeconomic Pathway 2 (SSP2-4.5) was used (Fick and Hijmans 2017; Meinshausen et al. 
2020). This pathway predicts that CO2 emissions will hover around current levels before 
beginning to decline by mid-century leading to a 2.7  °C rise by the end of the century. 
In addition, socio-economic factors are expected to follow their historical trends, coupled 
with slow progress towards sustainability. Model performance was then assessed quantita-
tively using the area under the curve (AUC) statistic, derived from threshold-independent 
receiver operating characteristic (ROC) analysis. The ROC curve is a plot of true positives 
against false positives with AUC values between 0 and 1. An AUC closer to 1 indicates a 
high predictive capability of the model. In addition, the Continuous Boyce index (CBI), a 
measure which only requires presences and measures how much model predictions differ 
from random distribution of the observed presences across the prediction gradients was 
used to evaluate model performance (Boyce et  al. 2002). Positive CBI values (closer to 

Fig. 2    Changes in corrected Akaike Information Criterion (ΔAICc) during model tuning in response to 
varying feature classes – hinge (H), linear (L), quadratic (Q), product of linear and quadratic (LQ) – and a 
range of regularization multipliers (rm)
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+ 1) indicate a model in which present predictions are consistent with the distribution of 
presences in the evaluation dataset whereas values closer to 0 mean that the model is not 
different from a random model.

Results

Environmental temperatures in Rhipicephalus appendiculatus microhabitats

Bindura in Mashonaland Central recorded the highest mean temperatures in tick habitats 
(Fig. 3a). Post-hoc tests also indicated that mean temperatures were significantly higher at 
this site, whereas Murombedzi in Mashonaland West had the lowest temperatures (Fig. 3b). 
There were no significant differences in mean temperatures for Nyazura and Tsanzaguru 
tick habitats in Manicaland province compared to Masiyarwa in Mashonaland West prov-
ince. When temperatures were decoupled into minimum and maximum, Masiyarwa in 
Mashonaland West had the highest maximum temperatures (Fig. 3c) and Murombedzi had 
the lowest minimum temperatures (Fig. 3d).

Upper lethal temperature assays

The 2-parameter log-logistic model predicted the upper lethal temperature (ULT50) for R. 
appendiculatus larvae at 44.23 ± 0.27 °C (mean ± SE) whereas those of nymphs and adults 
were 46.81 ± 0.09 and 46.98 ± 0.04, respectively (Fig. 4). Mortality of R. appendiculatus 
was directly proportional to temperature with an increase in temperature severity resulting 
in a corresponding increase in tick mortalities.

Fig. 3   Mean temperature fluctuations (a), differences in mean (+ 95% confidence interval) temperatures (b), 
maximum temperature fluctuations (c) and minimum temperature fluctuations (d) in five selected districts 
in Zimbabwe. Means in panel b capped with different letters are significantly different (Tukey-Kramer test: 
P < 0.05)
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Distribution of Rhipicephalus appendiculatus

The observed distribution of R. appendiculatus based on 2013 presence data is mainly con-
fined to the high elevation regions (> 600 m asl) (Fig. 5). These areas mainly constitute the 
interior regions although some presence records were also recorded within the marginal 
regions of Zimbabwe. Although the tick was found across all ecological regions, it was 
rarely found in low lying areas (< 400 m asl) and distribution also decreased towards the 
extreme southern and western parts of the country characterized by hot-dry weather condi-
tions. Highest densities of the tick were found in Mashonaland Central to the northern side 
of the country (Fig. 5). Most of the R. appendiculatus occurrence locations were associated 
with temperatures between 15 and 26 °C with the highest frequency of occurrence records 
coinciding with the 19–20 °C range (Fig. 6).

Current and future distribution of suitable habitats for Rhipicephalus 
appendiculatus

The potential distribution of R. appendiculatus based on habitat suitability indices 
under prevailing climatic conditions indicate that the suitable range of the tick is very 
wide despite spatial differences in suitability indexes. The eastern parts of the country, 
which experience low average annual temperatures, had the highest habitat suitability 
indices, followed by southeastern and central parts of the country including Masvingo 
and Mashonaland provinces. (Fig. 7a). The extreme southern and northern parts of the 

Fig. 4   Response of Rhipicephalus appendiculatus larvae (a), nymphs (b) and adults (c) to increasing tem-
perature in a 2-parameter log-logistic model (with lower limit at 0 and upper limit at 1) with predicted 
ULT50 ± SE
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country which are characterized by high average annual temperatures had the least suit-
able habitats despite having isolated records of R. appendiculatus presence. However, a 
significant reduction in areas suitable for R. appendiculatus is expected by 2050 if tem-
peratures rise by 2.7 °C as predicted by the SSP2-4.5 global circulation model. Areas 
with highest suitability indices will be limited to the eastern highlands whereas Masho-
naland East, Midlands and parts of Matebeleland South province will become moder-
ately suitable (Fig. 7b). The AUC for both training and evaluation was 0.66 whereas the 
continuous Boyce Index was 0.96.

Fig. 5   Distribution and presence locations of Rhipicephalus appendiculatus in relation to elevation during 
the 2013 national tick survey

Fig. 6   Relationship between 
occurrence of Rhipicephalus 
appendiculatus and average 
annual temperature in Zimbabwe
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Discussion

This study predicted a wide geographic range for R. appendiculatus in Zimbabwe under 
current climatic conditions. However, this distribution is expected to shrink with a 2.7 °C 
rise in temperature by 2050 as predicted by the SSP2-4.5. These results indicate that 
despite the widespread distribution of the tick observed currently, this is constrained by cli-
matic conditions. Previously, the distribution of ticks in Zimbabwe was influenced by land-
use practices with R. appendiculatus commonly occurring in commercial farms (Norval 
1979). However, this study has shown additional areas where the tick is likely to establish 
in view of changes in land tenure effected in Zimbabwe. These predicted suitable habitats 
are mainly based on climatic conditions. Several authors have also noted the importance 
of climate on tick survival, development, behavior, activity and pathogen incubation and 
transmission (Hunter 2003; Dantas-Torres and Otranto 2011; Bellard et al. 2012). In this 
regard, the model gives an insight into areas which may require attention during surveys 
for R. apendiculatus and responses to theileriosis outbreaks. Moreover, climatic conditions 
are expected to play a critical role in moderating future tick distributions as Sungirai et al. 
(2018) also predicted a reduction in suitable habitats for a congeneric tick, R. microplus in 
Zimbabwe. Danielova et al. (2010) suggested that rising temperatures may expand both the 
altitudinal and latitudinal ranges of tick species as they observed the occurrence of Ixodes 
ricinus shift, from 750 to > 1000 m asl when temperatures rose by 1.4 ºC over 2 decades. 
However, in our case R. appendiculatus already occupies the high-altitude areas which 
are characterized by lower temperatures and it is expected to remain in those areas in the 
future.

This study further revealed the utility of modelling in understanding current spe-
cies distributions for operational purposes. Sampling particularly at wider geographical 
scales is often logistically challenging hence modelling can be used to infer the distribu-
tion of a particular organism from presence locations. This is particularly important in 
this study as questions have been arising on the factors modulating the occurrence of 
theileriosis, a bovine disease transmitted by R. appendiculatus. Therefore, the habitat 
suitability model helps explain these disease incidences as it shows that the tick can 
survive in most Highveld areas of Zimbabwe. As the dataset used in modelling suit-
able habitats for R. appendiculatus was collected a decade ago, this model explains 
the occurrence of the diseases transmitted by the tick in areas previously classified as 

Fig. 7   Suitable habitats for Rhipicephalus appendiculatus under current environmental conditions (a) and 
the Shared Socioeconomic Pathway 2 (SSP2-4.5) 2041–2060 climate scenario (b)
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non-endemic. Species distribution models have been previously used to optimize large-
scale vector control programs (Dicko et al. 2014) where species-specific interventions 
can be strengthened. However, many countries lack long-term replicated data on tick 
abundance, distribution and prevalence (Nuttall 2021).

Results of thermal assays using static protocols, showed that temperatures (ULT50) 
above 44 °C are lethal for R. appendiculatus larvae. Zimbabwe has in recent years been 
experiencing flushes of high temperatures (heat waves) with a record high of 46.5 °C in 
Chipinge District, South-East Zimbabwe, in 2015. Ticks as ectotherms are expected to 
be affected by these extreme temperatures. However, the lethal temperatures recorded in 
this study were well above the microhabitat temperatures measured in selected districts, 
further indicating that the tick species can survive current climatic conditions. This has 
implications on diseases transmission dynamics as the success of disease vectors such 
as ticks is often determined by the ability to survive in unfavorable conditions such as 
temperature fluctuations that directly affect their physiology and behavior (Gilbert et al. 
2014; Rosendale et  al. 2016). Although thermal tolerance, physiological mechanisms 
and thresholds in relation to survival may vary from one developmental stage to another 
(Holmes et al. 2018; Mutamiswa et al. 2019), this study showed that there is little varia-
tion in lethal temperature between larvae, nymphs and adults. However, the larval stage 
is the most vulnerable as it may be exposed to extreme temperatures on the host as 
opposed to the other stages which may seek refuge under plant litter. Questing larvae, 
nymphs or adults have been observed to withdraw into refugia as a survival mechanism 
against high temperatures (Hove et al. 2008).

In conclusion, this study has shown that R. appendiculatus can survive under a wide 
range of climatic conditions. However, its distribution is expected to be restricted in 
future with an increase in temperatures as indicated by reduction in areas with suit-
able habitats. Therefore, under current climatic conditions, it should be expected that 
the tick should disperse and establish into these habitats thus increasing the probabil-
ity of occurrence of the associated tick-borne diseases. These findings justify the need 
to review the national tick control strategies considering the predicted current wide 
distribution.
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