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Abstract
Tick-borne diseases like Rickettsia, Anaplasma and Ehrlichia are widespread infectious 
zoonoses that threaten the health of both humans and animals worldwide. Ticks and their 
hosts, such as hedgehogs, can play a crucial role in transmitting tick-borne diseases and 
the cycle of Rickettsia. To investigate the presence and identity of Rickettsia in hedgehogs 
and hedgehog-attached ticks in Xuyi County, Southeast China, 114 ticks were collected 
from 45 hedgehogs captured totally. Via morphological and molecular methods, all these 
ticks were identified as two species: Haemaphysalis flava (110/114, 96.5%) and Haema-
physalis longicornis (4/114, 3.5%). Rickettsia spp. were genotypically characterized by 
PCR targeting rrs, gltA, ompA, ompB, and sca4 gene fragments. The prevalence of spotted 
fever group rickettsiae (SFGR) infection found in hedgehogs and ticks was 17.8% (8/45) 
and 78.1% (89/114), respectively. Phylogenetic analyses demonstrated that those Rickettsia 
spp. belong to two species: Rickettsia heilongjiangensis (R. heilongjiangensis XY-1) and a 
potential new species, Candidatus Rickettsia xuyiensis XY-2. The present study gave the 
first evidence of R. heilongjiangensis and Candidatus R. xuyiensis in ticks and hedgehogs 
of Southeast China. Our findings suggest that hedgehogs might be involved in the natural 
transmission cycle of Rickettsia species.
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Introduction

Tick-borne intracellular bacteria, including Coxiella burnetti, Anaplasma spp., Ehrlichia 
spp. and Rickettsia spp., cause emergent or re-emergent infectious diseases among all con-
tinents (Ben Said et al. 2018; Boulanger et al. 2019; Eisen 2018; Fang et al. 2021). The 
genus Rickettsia (family Rickettsiaceae, order Rickettsiales) comprise tiny obligate intra-
cellular bacteria capable of infecting humans and animals with mild to severe symptoms 
(Merhej et al. 2014; Kho et al. 2019; Shpynov et al. 2018).

Ticks are the primary vector and reservoir of Rickettsia. The spotted fever group rickett-
siae (SFGR), including pathogenic and nonpathogenic species found worldwide, are trans-
mitted mainly by hard ticks (Ixodidae) to vertebrate hosts (Parola et al. 2000; Socolovschi 
et al. 2009). In China, > 110 species of hard ticks have been identified, of which Haema-
physalis longicornis and H. flava are the most common species throughout China (Zhang 
et al. 2019). A variety of Rickettsia species—including R. japonica, R. heilongjiangensis, 
R. raoultii, Candidatus Rickettsia tarasevichiae and Candidatus Rickettsia principis—have 
been screened out from H. longicornis and H. flava (Fang et al. 2021; Jiang et al. 2018; Liu 
et al. 2016).

Hedgehogs mainly inhabit natural open and green spaces as well as artificial, rural and 
urban areas, including farmlands, parks, gardens, scrubby habitats at the edge of forests, 
and shrubby vegetation. They feed on a broad spectrum, including caterpillars, earth-
worms, small vertebrates, bird eggs, and berries and fruits (Reuter et  al. 2019). Hedge-
hogs are crucial wild animal hosts for various ticks, including Ixodes hexagonus, H. flava, 
H. longicornis, H. erinacei, H. aegyptium, H. marginatum and Rhipicephalus sanguineus 
(Jahfari et al. 2017; Khaldi et al. 2012; Marié et al. 2012; Szekeres et al. 2019; Orkun et al. 
2019; Barradas et  al. 2021). Hedgehogs’ ecological and feeding habits, along with high 
population densities, resulting in their frequent contact with either human or domestic and 
wild animals, implicates the possibility of tick-borne diseases (Delogu et al. 2020). There-
fore, hedgehogs may be involved in the ecology of several potential emerging pathogens.

A wide range of tick-borne bacteria has been reported in hedgehogs and their attached 
ticks (Skuballa et al. 2010; Szekeres et al. 2019; Bolanos-Rivero et al. 2017; Gong et al. 
2020). Therefore, from a public health perspective it is of great importance to understand 
the local tick species, tick hosts, and SFG rickettsiae carried by them. Despite the pre-
vious extensive efforts of clarifying this problem, the knowledge about the circulation of 
SFG rickettsiae in areas of Southeast China, such as Xuyi County, Jiangsu Province, is 
still unclear (Jiang et al. 2010; Tan et al. 2012; Li et al. 2018a, b). Therefore, to evaluate 
the prevalence of SFG rickettsiae within the Southeast China region, the present study col-
lected free-ranging hedgehogs and ticks from Xuyi County, Southeast China, and investi-
gated their diversity and related SFG rickettsiae, in order to provide a scientific basis for 
the prevention and control of SFGR.

Materials and methods

Ethical approval

All procedures and protocols for sample collection and processing were approved by the 
Administrative Committee on Animal Welfare of the Institute of Jiangsu CDC Veterinary 
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and the Ethics Committee of the CDC of Eastern Theater (approval nrs. 2017011 and 
2018012; approval dates 26-10-2017 and 15-08-2018).

Ticks and animal collection

Between November 2017 and April 2019, 45 hedgehogs were captured from forest sites 
near Tieshan Temple in Xuyi County, Jiangsu Province, China (Fig. 1). After careful exam-
ination, ectoparasitic ticks were removed from the hedgehogs using fine forceps and placed 
individually into 1.5-mL tubes with 70% cleaning ethanol. After cleaning, all ticks were 
marked with the collection date and stored at −80 °C. The tick species were identified 
based on morphological criteria (Deng and Jiang 1991) and molecular biology tools (Liu 
et al. 2016). After being anesthetized with diethyl ether, all hedgehogs were sacrificed to 
collect muscle tissue, hearts, livers, spleens, lungs, kidneys, brains, and intestines, which 
were all stored at −80 °C.

DNA extraction

Ticks and hedgehog tissues were homogenized with a stroke-physiological saline solu-
tion individually. Homogenates were centrifuged for 10 min at 1000×g and 4 °C, and 

Fig. 1  A Geographic location of rural area of Xuyi County, Jiangsu Province, where hedgehogs were col-
lected. B Two of the Amur hedgehogs collected in Xuyi (●) in the study
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pellets were collected for DNA extraction. Genomic DNA was extracted from each 
specimen by using the MiniBEST Universal Genomic DNA Extraction Kit (Takara, 
Beijing, China) according to the manufacturer’s instructions and subsequently stored at 
−20 °C before use.

PCR amplification and sequencing

To identify the species of each hedgehog, a partial sequence of the mitochondrial 16S 
rRNA gene—approximately 201–211 nucleotides (nt) in length—was PCR-amplified 
using genomic DNA from hedgehog muscle tissues, based on primers (HedF and HedR) 
as described by Sarri et al. (2014). To identify the species of each tick, the mitochon-
drial 16S rRNA gene from the genomic DNA of each tick was PCR-amplified using the 
forward and reverse primers TickHF and TickHR (Liu et al. 2016).

The rickettsial citrate synthase (gltA) gene was chosen as the target for its genus 
specificity and conservativeness (Mediannikov et al. 2004). All samples were screened 
for the presence of gltA by nested PCR using two sets of primers, RpCS877F and 
RpCS1258R, and approximately a 380 bp fragment of the gltA gene was amplified. The 
second PCR round will be performed if no product was visible by agarose gel electro-
phoresis. The full-length of gltA gene was amplified in 22 tick samples using primers 
CS2d and CSEndr. To further characterize SFGR strains, each positive sample for the 
gltA gene was tested for four other genes: the 16S ribosomal RNA gene (16S rRNA), 
outer membrane protein A gene (ompA), outer membrane protein B gene (ompB), and 
surface cell antigen-4 gene (sca4). The primer sets used in each of these assays are 
listed in Table 1. Sterile distilled water and a previously determined rickettsial-positive 
tick sample were used as negative and positive controls in each run, respectively. All 
positive amplicons were purified with PCR Clean-Up Kit (Beyotime, Shanghai, China). 
Sanger dideoxy DNA sequencing was performed using the BigDye Terminator v.3.1 
Cycle Sequencing Kit (Applied Biosystems, Foster City, CA, USA) and an ABI Prism 
3130 × genetic analyzer.

Phylogenetic analysis

Partial nucleotide sequences of rrs, gltA, ompA, ompB, and sca4 obtained from ticks, and 
hedgehog organs were compared to known sequences using the BLAST program from the 
NCBI website (https:// blast. ncbi. nlm. nih. gov/ Blast. cgi). The best-fit evolution model for 
each gene was calculated via MrModeltest v.2.3 in cooperation with BEAST v.1.10.4 using 
the Bayesian information criterion (BIC). The K81u (K3Pu), TVM, TPM3u, TN(TN93) 
and K81u (K3Pu) models were selected for the gltA, ompA, ompB, rrs, and sca4 gene, 
respectively. Substitution rates at polymorphic sites in both genes followed a gamma dis-
tribution with a large proportion of invariable sites. Maximum Likelihood (ML) methods 
of phylogeny inference on the individual were conducted in BEAST in the ‘Ultrafast’ boot-
strap model with the 5000 bootstrap samples, maximum interaction value 1000, and mini-
mum correlation coefficient of 0.90. Nodal support was evaluated by bootstrap resampling 
for the ML trees from posterior probabilities (PP) for Bayesian inferences. Bootstrap values 
of 70% or more and Bayesian support values of 0.95 and higher were considered signifi-
cant nodal support.

https://blast.ncbi.nlm.nih.gov/Blast.cgi
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Results

The amplified partial sequences (203–215 nt) of the hosts’ 16S rRNA gene (GenBank acc. nr. 
of the hedgehogs: OM865773) showed the highest nucleotide similarity (96.0–97.0%) to those 
of Erinaceus amurensis from the GenBank database (KX9646061). Therefore, all hedgehogs 
(n = 45) were identified as E. amurensis. 17.8% (8/45) of the hedgehogs were PCR positive for 
rickettsial gltA. The highest infection rate of SFGR in the eight positive hedgehogs was seen in 
the brain, whereas other organs varied in their presence of rickettsial gltA (Table 2).

A total of 114 adult ticks were collected from 45 hedgehogs and identified as H. flava 
and H. longicornis through their morphological characteristics and partial 16S rRNA gene 
(Table 2). 110 of the 114 tested Haemaphysalis ticks (96.5%, GenBank acc. nr. MH520707.1) 
were identified as H. flava (GenBank acc. nr. OM865774), with a similarity of 99.2%. The 
other four (3.5%, GenBank acc. nr. KX083342.1) were identified as H. longicornis (GenBank 
acc. nr. OM865775), with a likeness of 99.2%. Overall, 89 of 114 ticks (78.1%) were tested 
positive for SFGR, with the infection rate as 80.9% (89/110) in H. flava and 0% (0/4) in H. 
longicornis, respectively.

An 1183 bp rrs, 1153 bp gltA, 602 bp ompA, 784 bp ompB, and 861 bp sca4 gene frag-
ment of Rickettsia spp. was amplified and sequenced from our partial positive samples, 
which showed 100% identity to R. heilongjiangensis isolate Xinxian-HL9 (China), with the 
GenBank acc. nrs. MG9066701, MG9066691, MG9066651, MG9066671 and MG9066681, 
respectively. Meanwhile, phylogenetic trees (Fig.  2A–E, respectively), inferred from these 
genes, also showed one isolated strain formed a distinct cluster with R. heilongjiangensis in all 
trees, which also confirmed the identification of R. heilongjiangensis (Rickettsia heilongjian-
gensis XY-1).

Another 1230 bp rrs, 1156 bp gltA, 540 bp ompA, 789 bp ompB, and 886 bp sca4 gene frag-
ment of Rickettsia spp. was amplified and sequenced from the positive ticks. The rrs sequence 
showed 99.7% nucleotide identity with Candidatus Rickettsia principis (MG5172531), the 
gltA sequence showed 99.8% nucleotide identity with Candidatus R. principis (AY5781151), 
the ompB sequence showed 96.9% nucleotide identity with Candidatus R. principis iso-
late (MG5449911), ompA sequence showed 98.6% nucleotide identity with Rickettsia sp. 
NGT116-2016-Hfla (LC4610751) and sca4 showed 99.2% nucleotide identity with an uncul-
tured Rickettsia sp. Hme_2021 (LC3794771). The isolated strain could not be classified into 
specific species due to a lack of consensus between the phylogenetic trees (Fig. 2). Accord-
ing to the gene sequence-based criteria proposed by Fournier et  al. (2003), this Rickettsia 
isolate can therefore be classified as a potentially novel SFGR, named Candidatus Rickettsia 
xuyiensis-XY2.

GenBank acc. nrs. of partial sequences obtained in the study are: MZ646340-MZ646341 
(rrs genes of Rickettsia spp.), MZ646342-MZ646345 (gltA, sca4, ompB, and ompA gene of 
R. heilongjiangensis XY-1), MZ646346-MZ646349 (gltA, ompA, sca4, and ompB gene of 
Candidatus R. xuyiensis XY-2), OM865773(16S rRNA gene of hedgehog), OM865774 and 
OM865775 (16S rRNA gene of H. flava and H. longicornis).
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Discussion

This study reports Rickettsia sp.’s finding in hedgehogs and ticks from Jiangsu Province, 
Southeast China. In addition, this is the first report of R. heilongjiangensis and a novel 
potential species of Rickettsia (Candidatus R. xuyiensis XY-2) in H. flava and hedgehogs 
of Xuyi, Southeast China.

SFGRs are widely distributed throughout China and tend to have regional characteris-
tics. Previous studies have revealed the extensive diversity of rickettsiae among tick species 
and geographic areas (El-Mahallawy et al. 2015; Fang et al. 2021). There are many hills 
and low mountains in the Xuyi area, and it has a developed presence of animal husbandry. 
Many tick bites have been reported among fever cases with thrombocytopenia syndrome in 
Jiangsu Province (Li et al. 2017). Therefore, improving the knowledge on the prevalence 
of Rickettsia in ticks and hosts from this region can identify potential rickettsioses in the 
population and reduce the risk for tick-borne Rickettsia transmission.

Small mammals and ticks are intermediate hosts or vectors of many zoonoses. Hedge-
hogs, one of the most important hosts of ticks, can play an essential role in the natural 
foci of tick-borne pathogens (Orkun et al. 2019). Our results demonstrate that the domi-
nant tick species carried by hedgehogs in the Xuyi area is H. flava, followed by H. longi-
cornis, which agrees with the findings of both Sun et al. (2009) and Lan et al. (2016). The 
number of ticks carried by each hedgehog in this study may vary significantly due to the 
sampling season or the activity tracking of hedgehogs. Additionally, an initial screening 
test using gltA nested PCR revealed that 78.1% of the ticks and 17.8% of the hedgehogs 
were infected with SFG rickettsiae. This percentage was significantly higher than previ-
ous work from the Sichuan (33.5%), Yunnan (12.1%), and Zhejiang (7.5%) provinces (Liu 
et al. 2020; Sun et al. 2015; Zhang et al. 2018). We found that the prevalence of SFGR 
infection of ticks in eight positive hedgehogs was 76.9 ~ 100%, and most SFGR infec-
tion of ticks collected from negative hedgehogs was 0–100%. Of 89 ticks infected with 
SFG rickettsiae, 63 positive ticks were carried by eight positive hedgehogs (Table 2). As 
the ticks may suck the blood of these hedgehogs, they had a high positive rate of spotted 
fever.

Furthermore, we determined partial sequences of the gltA gene of SFG rickettsiae 
by conventional PCR in 45 hedgehogs organs (heart, brain, intestine, spleen, lung, 
liver, kidney). Based on the sequences of the gltA gene obtained from 45 hedgehogs’ 
organs, the highest infection rate of SFG rickettsiae was detected in the brain (5/45); 
other organs varied in their presence of rickettsial gltA (Table 2). Therefore, the brain 
of the hedgehog may be particularly susceptible to Rickettsia. Our findings also indicate 
that hedgehogs and their carrying ticks can serve as the animal host and vector for SFG 
rickettsiae.

For the molecular classification of SFG rickettsiae that were obtained in the study, 
partial sequences of rrs, gltA, ompA, ompB, and sca4 were analyzed. Phylogenetic trees 
inferred from rrs, gltA, ompA, ompB, and sca4 analysis are shown in Fig. 2. One isolated 
strain formed a distinct cluster with R. heilongjiangensis in all trees (Fig. 2) and thus were 
identified as R. heilongjiangensis (XY-1). Nucleotide sequence analysis of five genes of 
R. heilongjiangensis XY-1 showed 97–100% similarity with R. heilongjiangensis isolate 
Xinxian-HL9 and R. japonica YH_M. The isolated strain could not be classified into spe-
cific species due to a lack of consensus between the phylogenetic trees. It shares a branch 
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with the previously reported Candidatus R. principis isolate Kh-81, uncultured Rick-
ettsia sp. Hme_2021, uncultured Rickettsia sp. clone 7–17, whereas it forms a separate 
branch in the ompB and sca4 phylogenetic tree (Fig. 2). Moreover, in the isolated strain, 
the sequence nucleotide identity to recognized Rickettsia species was < 99.8, 99.9, 98.8, 
99.2 and 99.3% for rrs, gltA, ompA, ompB, and sca4, respectively, which suggests that 
this agent is novel potential SFG Rickettsia according to Fournier et al. (2003). Therefore, 
this species was provisionally named Candidatus R. xuyiensis-XY2, concerning the loca-
tion where it was found. Our findings indicate that hedgehogs and H. flava collected from 
hedgehogs in Southeast China were infected with R. heilongjiangensis and Candidatus 
R. xuyiensis. The diseases caused by these pathogens should therefore be monitored in 
Southeast China. Further isolation and identification are needed to obtain morphologi-
cal characteristics and the entire genome of these species. Previous studies have reported 
that H. longicornis is an essential vector of R. heilongjangensis (Jiang et  al. 2019; Liu 
et al. 2020; Zhuang et al. 2018). However, no rickettsiae were detected in any of the H. 
longicornis ticks collected in our study, which may be due to the limited sample size of H. 
longicornis ticks.

There are some limitations of this study worth noting. Firstly, our investigation is 
biased because the infection rates were calculated using ticks collected from the infected 
hedgehogs, where we collected fewer ticks from uninfected hedgehogs. Therefore, the 
actual infection rates might be lower than those determined by this research. Secondly, 
we mainly focused on the infection rates and tick species collected from hedgehogs, and 
we did not identify ticks carried by other small mammals in the Xuyi area. Thus, it is cru-
cial to find Rickettsiales infection among other local animals and humans in a subsequent 
study.

Fig. 2  Phylogenetic tree of Rickettsia spp. detected in ticks and hedgehogs from Southeast China with other 
rickettsial strains based on partial (A) rrs, (B) gltA, (C) ompA, (D) ompB and (E) sca4 sequences. Rick-
ettsial strains in red ( ) were detected in ticks and hedgehogs of this study. Maximum likelihood (ML) 
methods of phylogeny inference on individuals were conducted in BEAST v.1.10.4 under the ‘Ultrafast’ 
Bootstrap model with 5000 bootstrap samples, maximum interaction value 1000 and minimum correlation 
coefficient of 0.90

▸
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