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Abstract

In many areas of Africa, recent studies highlighted the great impact of ticks on animal and
human health throughout the continent. On the other hand, very limited information on the
bacterial endosymbionts of the African ticks and their pattern of co-infections with other
bacteria are found in literature, notwithstanding their pivotal role in tick survival and vec-
tor efficiency. Thus, we investigated the distribution of selected pathogenic and symbiotic
bacteria in hard ticks collected from wild, domestic animals and from vegetation in various
ecological zones in Africa and their co-occurrence in the same tick host. Overall, 339 hard
ticks were morphologically identified as belonging to the genera Amblyomma, Dermacen-
tor, Hyalomma, Haemaphysalis, Ixodes and Rhipicephalus. Molecular screening provided
information on pathogens circulation in Africa, detecting spotted fever group rickettsiae,
Anaplasma spp., Ehrlichia ruminantium, Borrelia garinii, Babesia spp., Theileria spp.
and Coxiella burnetii. Furthermore, our work provides insights on the African scenario
of tick-symbiont associations, revealing the presence of Coxiella, Francisella and Midi-
chloria across multiple tick populations. Coxiella endosymbionts were the most prevalent
microorganisms, and that with the broadest spectrum of hosts, being detected in 16 tick
species. Francisella was highly prevalent among the Hyalomma species tested and corre-
lated negatively with the presence of Coxiella, showing a potential competitive interaction.
Interestingly, we detected a positive association of Francisella with Rickettsia in specimens
of Hy. rufipes, suggesting a synergistic interaction between them. Finally, Midichloria was
the most prevalent symbiont in Rhipicephalus sanguineus sensu lato from Egypt.
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Introduction

Over the last few decades, a growing number of studies have focused on exploring the
composition of microbial communities harboured by blood-feeding arthropods, such as
ticks (Acari: Ixodidae), reporting a mixture of commensal, mutualistic and pathogenic
microorganisms (Andreotti et al. 2011; Narasimhan and Fikrig 2015; Bonnet et al. 2017,
Duron et al. 2017). As a result of these efforts, a number of new tick-borne pathogens
(TBPs) and new microbial associations have been described (Vayssier-Taussat et al.
2013; Greay et al. 2018). Many of these microorganisms can coexist simultaneously
within the same host and synergistic or antagonistic interactions have been hypothesized
(Vautrin and Vavre 2009; Moutailler et al. 2016; Diaz-Sanchez et al. 2019) and also
proven in specific cases (Paddock et al. 2015; Budachetri et al. 2018).

In many areas of Africa, recent studies highlighted the great impact of ticks on ani-
mal and human health throughout the continent (Jongejan and Uilenberg 2004; Maina
et al. 2014; Lorusso et al. 2016; Kamani et al. 2018; Asante et al. 2019). The local envi-
ronmental conditions together with the close contact of wildlife animals with domestic
animals and humans provide the opportunities for colonizing multiple niches, driving
the spread of TBPs. The most common zoonotic bacteria reported in Africa are the spot-
ted fever group (SFG) rickettsiae, mainly represented by Rickettsia africae, R. aeschli-
mannii, R. conorii and R. massiliae (Macaluso et al. 2003; Parola et al. 2005). The
circulation of pathogens of veterinary importance have also been commonly reported,
including Ehrlichia ruminantium, Anaplasma marginale, A. phagocytophilum, and A.
centrale, widespread among ruminants (Bekker et al. 2002; Ikwap et al. 2010; Allsopp
2015), and piroplasms (Babesia spp. and Theileria spp.), which infect ruminants and
equids (Gebrekidan et al. 2014; Hawkins et al. 2015).

Whereas studies on TBPs in Africa are flourishing, to date there is very limited infor-
mation regarding the bacterial endosymbionts of the African ticks and their pattern of
co-infections with other bacteria. Endosymbionts, intracellular bacteria with high preva-
lence and load that are generally transovarially transmitted, have been proven to be fun-
damental in the survival of hematophagous arthropods, ticks included, and thus warrant
extensive investigation. The main bacterial endosymbionts of ticks are Coxiella (order
Legionellales), Francisella (order Thiotrichales), ‘Candidatus Midichloria’ and Rick-
ettsia (order Rickettsiales) (Duron et al. 2017). The most common tick endosymbiont
is Coxiella, detected in most individuals of numerous tick species (Clay et al. 2008;
Lalzar et al. 2012; Machado-Ferreira et al. 2016; Duron et al. 2017). Recent studies
focused on the intricate interaction of this symbiont in ticks showed that Coxiella endo-
symbionts possess the typical hallmarks of an obligate symbiont from a physiological
point of view. For example, their pronounced tropism to the host ovary is indicative of
the predominantly maternal transmission (typical of bacterial intracellular symbionts),
and the negative effect on the hosts physiology caused by a reduction of the symbi-
ont load is consistent with a mutualistic role (Zhong et al. 2007; Guizzo et al. 2017;
Zhang et al. 2017). Such role is thought to be the provisioning of essential nutrients.
Indeed, the presence of B vitamins and cofactors biosynthesis pathways in genomes of
different strains of Coxiella endosymbionts suggest their capability of supplementing
the unbalanced blood diet of the hosts (Gottlieb et al. 2015; Smith et al. 2015). Coxiella
is believed to be the bacterium with the oldest symbiotic association with tick hosts,
but other endosymbiotic bacteria, especially Francisella, have been reported to have a
similar role, possibly having replaced Coxiella in some tick species (Duron et al. 2017).
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Indeed, Francisella endosymbionts have been commonly reported in Coxiella-free
ticks, belonging to the genera Dermacentor, Amblyomma, Hyalomma and Ornithodorus.
Genome comparison of selected Francisella symbionts together with physiological experi-
ments strongly suggest their important role in conferring advantages for the tick fitness,
mainly providing B vitamins (Gerhart et al. 2016; Duron et al. 2018).

Multiple essential roles, including B vitamins provision, were also hypothesized for
the symbiont ‘Candidatus Midichloria mitochondrii’ (hereafter M. mitochondrii) (Sassera
et al. 2011; Olivieri et al. 2019). This bacterial endosymbiont was originally described in
one of the most widespread ticks in Europe, Ixodes ricinus, and later reported in several
other tick species from different continents (Beninati et al. 2004, 2009; Sacchi et al. 2004;
Epis et al. 2008; Cafiso et al. 2016).

Interestingly, recent phylogenetic investigations revealed the occurrence of regular tran-
sitions between endosymbiotic and pathogenic forms during the course of evolution, such
as Coxiella burnetii that seems to have recently evolved from a Coxiella endosymbiont
ancestor (Duron et al. 2015) or conversely Francisella endosymbionts that probably origi-
nated from a pathogenic ancestor (Gerhart et al. 2016, 2018).

The well-known relevance of symbionts of arthropods on the host physiology and the
nested interactions that can develop among symbionts and pathogens call for further inves-
tigation. For these reasons, the aims of this work were: (i) to update the knowledge on the
prevalence, distribution and molecular characterization of selected TBPs and symbionts in
different ecological zones in Africa, and (ii) to evaluate the patterns of co-infections detect-
ing eventual competitive or facilitative interactions.

Materials and methods
Study sites, tick collection and identification

From 2009 to 2017 ticks were collected in various locations in Kenya from sympatric wild
(African elephant, African buffalo, black and white rhinoceros, bongo antelope, dromedary
camel, giraffe, hyena, lion, leopard, zebra and Grévy’s zebra) and domestic animals (cattle,
sheep). Most of the samples were collected during routine veterinary surveillances of the
Kenya Wildlife Service (KWS) performed in national parks, reserves, game reserves and
from the vegetation (Fig. 1). Ticks were additionally collected in two districts in Ethiopia
from cattle and sheep, where animals are managed under an extensive farming system at
communal grazing land shared among small scale farmers. An additional portion of the
dataset was collected from dogs living in close proximity with domestic ruminants in a
single location in Egypt (Fig. 1). For each sampling point, the ecological zone values were
extracted from the African ecological zones layer (AEZs; HarvestChoice 2011), by using
the QGIS 3. According to this database, the samples were located in six agro-ecological
zones. Collected ticks were preserved in vials containing 70% ethanol and morphologically
identified using standard taxonomic keys (Theiler and Salisbury 1959; Walker et al. 2003).

Molecular analyses
Genomic DNA was extracted individually from 339 ticks using the NucleoSpin® Tis-

sue Kit (Macherey Nagel, Duren, Germany), according to the manufacturer’s instruc-
tions. The DNA quality was tested on a random subset of 68 samples (20%) using PCR
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Fig. 1 Political map of Africa indicating the countries where ticks were collected (i.e., Egypt in pink, Ethio-
pia in light-blue and Kenya in light-green). Insets show the localities where the ticks were collected. (Color
figure online)

amplification of tick mitochondrial ribosomal small RNA gene (12S rRNA) using a
previously described protocol (Beati and Keirans 2001) (Additional file 1: Table S1).

The DNA samples were then tested by PCR for the presence of Rickettsia spp.,
Anaplasma spp./Ehrlichia spp., Borrelia burgdorferi (s.l.), Babesia spp./Theileria
spp., Coxiella spp., Midichloria and Francisella using primers and conditions previ-
ously described (Additional file 1: Table S1). Positive PCR products of the expected
size were extracted from agarose gel, purified using the QIAquick® Gel Extraction Kit
(Qiagen, Hilden, Germany) following the manufacturer’s instructions. Purified DNA
was sequenced with forward and reverse amplification primers (Eurofins Genomics,
Ebersberg, Germany). Sequences were manually verified with Chromas Lite (Techne-
lysium, Australia) and compared with those available in GenBank database using Basic
Local Alignment Search Tool (BLAST: http://www.ncbi.nlm. nih.gov/BLAST). All the
consensus sequences obtained in this study were deposited in GenBank database under
the accession numbers given in the Additional file 2.
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Phylogenetic analyses

For the phylogenetic analyses on the sequences obtained in this study, two approaches were
employed depending on the kind of sequence amplified. For each of the assays targeting SSU
rRNA gene (AnaplasmalEhrlichia, Coxiella, Midichloria, BabesialTheileria), the newly
obtained sequences were aligned on the SSU rRNA SILVA 128 Ref NR 99 database (Quast
et al. 2012) with the ARB software package (Westram et al. 2011). After selection of simi-
lar sequences, the alignments were manually edited to optimize base-pairing in the predicted
stems of the rRNA, and trimmed at both ends to the length of the amplicon sequences (i.e.,
excluding flanking regions present only in the database-derived sequences). For all other non-
SSU assays (the three Rickettsia genes, Borrelia and Francisella), the sequences were directly
aligned with selected database sequences using MUSCLE (Edgar 2004), and polished with
Gblocks (Talavera and Castresana 2007).

For each final alignment thereby obtained, nucleotide substitution models were ranked
according to the Akaike’s Information Criterion with jModeltest (Darriba et al. 2012). After
model selection, maximum likelihood phylogenetic analyses were performed using phyML
(Guindon and Gascuel 2003) with 100 bootstrap pseudo-replicates.

Microorganisms co-presence and ecological network inference

An ad-hoc script in R (R Core Team 2019) has been developed (available at https://githu
b.com/Montagnal.ab/co-presence_test) for testing whether the co-presence/co-absence of two
microorganisms in the same tick individual is due to chance. This hypothesis has been tested
simulating a null model (representing the hypothesis that co-presence of the same microorgan-
ism in individuals is due to chance) developed permuting the columns of a presence/absence
matrix obtained for each couple of microorganisms based on PCR assays results (21 matrices
in total). Each matrix was permuted 9999 times and the number of co-presences of each cou-
ple of microorganisms estimated for each permuted matrix. A two-tailed test with /2=2.5%
was performed for testing the null hypothesis. The values corresponding to the 2.5th and
97.5th percentiles of the simulated distribution were estimated. The number of co-presences
observed for each couple of microorganisms in the total number of screened ticks was than
calculated from the real presence/absence matrix. The null hypothesis is accepted when the
observed value of co-presence was included between the values corresponding to the 2.5th
and the 97.5th percentiles of the simulated distribution. In the event that the null hypothesis
was rejected a p-value was calculated.

The relation between each tick-borne microorganism, tick species and vertebrate host was
analysed and visualized by constructing a bipartite ecological network. Nodes of the network
represent the vertebrate host and the tick species, whereas the edges represent the presence of
individuals of the tick species on the vertebrate host. In addition, the information of the per-
centage of carried microorganisms was plotted as pie charts for each tick species. The network
visualization was carried out using Cytoscape v.3.7.1 by importing the nodes and edges data
mentioned above (Shannon et al. 2003).
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Results

In total, 339 ticks belonging to the Ixodidae family were collected. The ticks were morpho-
logically identified as belonging to six genera: Amblyomma, Dermacentor, Haemaphysalis,
Hyalomma, Ixodes, Rhipicephalus, for a total of 30 tick species. Additional information on
tick species identification, number, gender, collection sites and hosts is listed in Table 1.

Molecular screening revealed the presence of pathogens belonging to the genera Rick-
ettsia, Anaplasma, Ehrlichia, Borrelia, Babesia, and Theileria, with Rickettsia bacteria
being the most widespread. Indeed, Rickettsia spp. were found in 18 out of 339 ticks tested
(5.3%). Subsequent analyses of the gitA gene sequences revealed that 10 out of 18 rick-
ettsias share high identity with Rickettsia aeschlimannii (detected in 9/30 Hy. rufipes and
1/7 Hy. impeltatum). The gltA marker did not allow to discriminate the remaining eight
Rickettsia sequences at the species level (Additional file 2: Fig. Sla). Thus, additional
sequencing of ompA and ompB genes of a representative subset of positive samples was
performed, and, besides confirming that the most prevalent species was R. aeschliman-
nii (n=10), allowed to identify other rickettsial species: R. africae (n=5) detected in Am.
gemma (n=2), Am. variegatum (n=2) and Hy. impeltatum (n=1); R. massiliae (n=2) in
Rh. praetextatus; and one R. rhipicephali in Am. cohaerens (Additional file 2: Fig. S1b,c).

Anaplasma spp. DNA was detected in 2.1% (7/339) of the ticks. The phylogenetic
analysis based on 16S rRNA sequences did not provide sufficient discriminatory power to
clarify the species assignment. However, the obtained sequences formed two distinct clus-
ters: the sequences from three Rh. pravus and two Rh. decoloratus ticks clustered with A.
marginale, A. centrale and A. ovis sequences downloaded from NCBI with 100% bootstrap
support; whereas two sequences, from Am. variegatum and Rh. decoloratus, clustered with
A. platys (74% bootstrap support) (Additional file 2: Fig. S2).

Ehrlichia bacteria were detected in three ticks only (0.9% of the total, one Am. var-
iegatum, one Am. lepidum, one Hy. impeltatum), collected from cattle and Grevy’s zebra.
The sequences showed 100% of identity with E. ruminantium (GenBank: NR074155), sup-
ported with 100% bootstrap in the phylogeny (Additional file 2: Fig. S2).

Different Theileria spp. were detected in seven out of 339 ticks (2.1%). Among these,
three were clearly identified as T. raurotragi (detected in two Rh. appendiculatus collected
from antelope) and as T. velifera (detected in an Am. cohaerens collected from Black rhi-
noceros). Two sequences, from Am. cohaerens and Am. gemma collected from white rhi-
noceros, clustered together with an unknown Theileria species detected in cheetahs in the
same area in 2009 (Githaka et al. 2012). One Theileria sequence detected in Rh. pulchel-
lus collected from black rhinoceros clustered together with another unknown Theileria sp.
detected in blood samples from giraffes in the same area in 2011 (GenBank AB650504).
Finally, a Theileria sequence detected in Am. cohaerens collected from white rhinoceros
likely represents a new species, showing only 89.97% nucleotide identity with T. mutans
(GenBank: JN572694). However, additional characterization would be required as it is not
possible to establish new variants of piroplasms based only on the use the 18S rRNA gene
(Chae et al. 1999; Allsopp and Allsopp 2006) (see Additional file 2: Fig. S3 for the phylog-
eny of the Theileria).

Babesia was detected in two ticks (0.6%). The sequence obtained from Am. variegatum
shows 98% of identity with B. caballi (GenBank: MH424325) and the one from Hy. rufipes
shows 100% identity with B. occultans (GenBank: MH899757). Both identifications were
highly supported in the phylogeny (Additional file 2: Fig. S3).
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Borrelia positivity was detected in only one tick (Hy. rufipes). The obtained ITS sequence
shows 100% identity with B. garinii from an Ixodes ricinus sample in Finland (GenBank:
MG356954). Consistently, the novel sequence results embedded in a clade of B. garinii in a
phylogenetic analysis (Additional file 2: Fig. S4).

Molecular screening of bacterial symbionts revealed the presence of Coxiella, Francisella
and Midichloria across the tick populations. The most prevalent endosymbionts were Coxiella
spp., successfully amplified from 95 of the 339 ticks tested (28%). Putative Coxiella endo-
symbionts were found among 16 tick species, whereas only one Coxiella strain identical to
the pathogenic Coxiella burnetii was detected in one specimen of Rh. pulchellus. (Table 2).
Phylogenetic analysis based on the 16S rRNA gene showed, in most cases, that closely related
Coxiella strains are found in closely related tick species (Additional file 2: Fig. S5).

Francisella spp. were detected in 32 ticks out of 339 tested (9.4%). Francisella positive
ticks belonged to seven tick species, mainly within the Hyalomma genus, in which the preva-
lence was high, ranging from 20 to 50% (Table 2). Although the phylogenetic analysis of the
rpoB gene was poorly informative in terms of species determination, it still allowed to iden-
tify the detected organisms as members of the Francisella-like endosymbionts (FLE) clade,
and genetically distant from strains of pathogenic Francisella species and subspecies. In addi-
tion, all of the sequences of FLE detected in Hyalomma ticks were closely related, whereas
FLE detected in De. rhinocerinus and Rh. praetextatus clustered together with a distinct, long
branch, probably due to higher sequence divergence (Additional file 2: Fig. S6).

A total of 24 ticks out of 339 (7.1%) were positive for Midichloria. The rate of infection
among specimens of the positive tick species was generally lower compared to Coxiella and
Francisella endosymbionts. However, Midichloria resulted the most prevalent symbiont of
Rh. sanguineus s.l., reaching an infection rate of 33.3% versus 11.1% of Coxiella endosymbi-
onts, and the two symbionts were never detected in the same individual (Table 2). On the other
hand, the phylogenetic tree clearly showed that similar sequences of Midichloria are found in
genetically distant tick species, with the most diverging Midichloria member identified in Am.
lepidum (Additional file 2: Fig. S7).

Interestingly, co-infections were spotted: 21 ticks resulted infected with more than one
microorganism, including 16 double infections with seven combinations and five triple
infections, mainly involving Midichloria, Francisella and Rickettsia (Table 3). Co-infection
between tick-borne microorganisms occurred more frequently in generalist tick species with
a broad host spectrum, such as Hy. rufipes and Am. variegatum, whereas ticks with a pro-
nounced host specificity, such as Am. tholloni and Rh. carnivoralis, resulted mainly bearing
single microorganisms, especially vertically transmitted endosymbionts (Fig. 2).

Furthermore, comparing the null model distribution with the observed values of co-pres-
ence, the association between Rickettsia and Francisella in the same host tick resulted posi-
tively significant (p<0.01) (Additional file 3: Fig. S8 A), this association was often observed
in Hy. rufipes individuals (Fig. 2). Through the same analysis, Francisella and Coxiella asso-
ciation was found to be negatively significant (p<0.001) (Additional file 3: Fig. S8 B).

Discussion
Spotted fever group (SFG) rickettsioses are the most frequently tick-borne diseases rec-
ognised among travellers returning from sub-Saharan Africa with acute febrile illness,

this is indicative of the endemicity of rickettsial diseases in African countries and their
impact on public health (Freedman et al. 2006; Parola et al. 2013). Rickettsia africae, R.
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aeschlimannii and R. massiliae, all detected in this investigation, are considered among
the main pathogenic SFG rickettsiae (Parola 2006). Our results are in agreement with
those of previous studies, which identified several tick species as potential vectors for
these rickettsiae in multiple sub-Saharan African countries. Indeed Hyalomma ticks
frequently harbour R. aeschlimanni, especially Hy. rufipes and Hy. marginatum (Mura
et al. 2008; Kumsa et al. 2015; Azagi et al. 2017). On the other side, our finding of R.
africae in multiple Amblyomma species, with higher prevalence in Am. variegatum and
Am. gemma, confirms previous findings (Jensenius et al. 2003; Macaluso et al. 2003;
Mediannikov et al. 2010; Mutai et al. 2013; Vanegas et al. 2018). The geographical dis-
tribution of these SFG rickettsiae strongly overlaps with the distribution of their respec-
tive tick vectors.

In the last years several SFG rickettsial species that are pathogenic for the vertebrate
hosts have also been identified as secondary tick symbionts, reaching a high frequency
of infection in some tick populations, enhancing the host fitness and being transovarially
transmitted to the offspring, e.g., Rickettsia parkeri or R. monacensis (Ahantarig et al.
2013). Whether the three rickettsial species detected here play a similar role in their
host remains an open question.

A noteworthy finding for human health is the unusual detection of B. garinii DNA in a
Hy. rufipes tick collected from a Giraffe in Kenya. Borrelia garinii is one of the predomi-
nant genospecies of the B. burgdorferi sensu lato complex, known to cause Lyme disease
in Europe, and is considered the most neurotropic Borrelia spirochete (Benredjem et al.
2014; Stanek and Strle 2018). Borrelia garinii is usually vectored by Ixodes ticks in Europe
and Asia, but was also reported in North Africa (Tunisia and Morocco) in association with
Ixodes species (Bouattour et al. 2004), identified as 1. ricinus by Bouattour, but possibly
belonging to the subsequently described species I. inopinatus (Estrada-Pena et al. 2014).
Birds are considered the main reservoirs and biological carriers of B. garinii (Comstedt
et al. 2011; Pajoro et al. 2018). The role of migratory birds in the spread of this spirochete
can explain the novel finding of the positivity of Hy. rufipes, a tick species that has been
reported infesting various migratory birds worldwide (England et al. 2016). Based on this
evidence, and on previous reports of Borrelia lusitaniae in Hy. marginatum (Michelis et al.
2000), these findings represent uncommon cases of B. burgdorferi sensu lato species asso-
ciated with metastriate ticks (Margos et al. 2020). Considering that ticks can be infected
following an infected blood meal, only further studies can confirm the vectorial compe-
tence of Hyalomma ticks for Borrelia species focusing on the acquisition, maintenance,
and subsequent transmission into a vertebrate host during blood feeding.

Additionally, a high diversity of tick-borne pathogens relevant for domestic and wild
animal health were here detected in the tick populations tested, although with low preva-
lence. Among others, we detected E. ruminantium, a bacterium mainly transmitted by ticks
of the genus Amblyomma, causing heartwater disease affecting wild and domestic rumi-
nants (Uilenberg 1997; Allsopp 2010). The occurrence of several piroplasm species, such
as B. caballi, B. occultans, T. taurotragi and T. velifera, considered mildly to severely path-
ogenic with significant impact on animal health, is here reported, in accordance with previ-
ous surveys (de la Fuente et al. 2008; Sivakumar et al. 2014; Omondi et al. 2017).

The most retrieved symbiont was Coxiella, found in representatives of four out of six
tick genera analysed, reaching high prevalence in many of the analysed species, especially
within the Rhipicephalus and Amblyomma genera (Table 2). According to phylogenetic
analysis based on the 16S rRNA gene sequence, most of the novel sequences result closely
related to other Coxiella associated to tick species of the same genus. Moreover, although
not fully supported, the deeper tree topology is overall consistent with the four Coxiella
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Table 3 Tick-borne pathogens and endosymbionts co-infections in ticks tested (n=339)

Tick-borne microorganism Positive Tick species
(no. positive specimens; m =male,

No. Prevalence f=female ), host
(%)
Dual infection 16 4.7
Coxiella+ Anaplasma 4 1.2 Rh. pravus (3m), sheep
Am. variegatum (1m), white rhinoceros
Coxiella+ Theileria 4 1.2 Am. cohaerens (2f), white rhinoceros
Rh. appendiculatus (2f)
Coxiella+ Midichloria 4 1.2 Am. cohaerens (1f), white rhinoceros
Am. personatum (1m), white rhinoceros
Am. variegatum (1m), white rhinoceros
Rh. praetextatus (1m), cow
Coxiella+ Rickettsia 1 0.3 Am. variegatum (1m), white rhinoceros
Coxiella+ Francisella 1 0.3 Rh. praetextatus (1f), white rhinoceros
Midichloria + Rickettsia 1 0.3 Hy. rufipes (1m), cow
Midichloria+ Francisella 1 0.3 Hy. rufipes (1f), cow
Triple infection 5 1.5
Midichloria+ Francisella + Rickettsia 4 1.2 Hy. rufipes (2f, 2 m), cow
Babesia + Francisella+ Rickettsia 1 0.3 Hy. rufipes (1m), cow
Total 21 6.2

clades identified by Duron and colleagues through multilocus sequence typing (MLST)
(Duron et al. 2015). Accordingly, whereas a great diversity exists within the genus, our
results confirm the overall co-cladogenesis of Coxiella symbionts with their hosts, but, at
the same time, presence of highly related Coxiella in unrelated ticks suggest relatively fre-
quent host species shifts (Duron et al. 2015). These features likely reflect a long mutualistic
coevolution, conferring significant advantages to both organisms, and with a certain degree
of flexibility with respect to host/symbiont species.

The second most widespread symbiont is Francisella. Consistently with previous stud-
ies (Ivanov et al. 2011; Szigeti et al. 2014; Azagi et al. 2017; Duron et al. 2017), Franci-
sella resulted highly prevalent among the Hyalomma species tested, but we additionally
detected this bacterium in species in which it was never reported before (Hy. impeltatum
and Hy. albiparmatum). The nutritional mutualism of Francisella can explain the negative
correlation we found with Coxiella endosymbionts, since they provide the same benefit for
the host (Duron et al. 2017, 2018). Indeed, in recent studies Francisella was defined as an
alternative obligate symbiont to Coxiella, which appeared to be replaced by Francisella in
multiple tick species (Duron et al. 2017). In our dataset Francisella was found to signifi-
cantly co-occur with Rickettsia, as frequently reported previously across tick taxa (Scoles
2004; Ahantarig et al. 2013; Budachetri et al. 2015; Azagi et al. 2017), whereas Coxiella
endosymbionts were often reported as single infections. Taken together, these data allow to
hypothesize that Francisella is less competitive than the Coxiella primary symbiont, or that
multiple co-occurring symbionts can act in conjunction or even synergistically.

Noteworthy, Midichloria is the most prevalent (33%) symbiont in Rh. sanguineus s.l.
with Coxiella as second (11%). This finding is interesting when compared with a recent
study on the microbial communities of various Rh. sanguineus s.l. populations in France,
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Fig.2 Bipartite ecological network showing the relation among tick-borne microorganism, tick species and
its vertebrate host. The vertebrate host and the tick species, the nodes of the network, are represented in the
form of squares and circles, respectively; whereas edges represent the associations between the tick spe-
cies and their vertebrate host. For each tick species, the relative abundance (expressed as percentage) of
microorganisms detected through the PCR screening of individuals is reported in pie charts. A.co, Ambly-
omma cohaerens; A.eb, Amblyomma eburneum; A.ge, Amblyomma gemma; A.le, Amblyomma lepidum;
A.nu, Amblyomma nuttalli; A.pe, Amblyomma personatum; A.th, Amblyomma tholloni; A.va, Amblyomma
variegatum; D.rh, Dermacentor rhinocerinus; Ha.sp, Haemaphysalis sp; Hy.al, Hyalomma albiparmatum;
Hy.dr, Hyalomma dromedarii; Hy.im, Hyalomma impeltatum; Hy.ru, Hyalomma rufipes; Hy.tr, Hyalomma
truncatum;, 1.sp, Ixodes sp.; R.ap, Rhipicephalus appendiculatus; R.cam, Rhipicephalus camicasi; R.car,
Rhipicephalus carnivoralis; R.com, Rhipicephalus compositus; R.de, Rhipicephalus decoloratus; R.ev,
Rhipicephalus evertsievertsi; R.hu, Rhipicephalus humeralis; R.mu, Rhipicephalus muelensi; R.prae, Rhipi-
cephalus praetextatus; R.prav, Rhipicephalus pravus; R.pu, Rhipicephalus pulchellus; R.sa, Rhipicephalus
sanguineus; R.sp., Rhipicephalus sp

Arizona (USA) and Senegal, which indicated Coxiella and Rickettsia as the predomi-
nant endosymbionts, with strong geographical clustering (René-Martellet et al. 2017). In
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particular, René-Martellet and colleagues concluded that the relative abundance of these
endosymbionts varies depending on the geographical origin and the lineage of the tick,
with Coxiella strongly associated with Senegal ticks. We can add to the complex landscape
of the symbionts of Rh. sanguineus s.l. the notion that in Egypt the predominant symbiont
is neither Coxiella, nor Rickettsia, but Midichloria. These results confirm the lability of the
bacterial community structure hosted by this tick species, much differently that what seen
in most other species (Duron et al. 2017). There are various possible explanations, such as
the influence of multiple ecological and geographical factors (Lalzar et al. 2014; Abraham
et al. 2017; Bonnet et al. 2017) as well as the host-feeding behavior of the ticks, the host’s
immune system and the direct interaction of protozoan or bacterial pathogens (Adegoke
et al. 2020; Aivelo et al. 2019; Hawley and Altizer 2011). Alternatively, or in conjunc-
tion, the possibility that the analysed individuals belong to different sibling species of the
Rh. sanguineus s.1. group must be considered (Dantas-Torres and Otranto 2015; Coimbra-
Dores et al. 2020).

Despite the low prevalence of Midichloria symbionts in African ticks, the detection of
similar sequences of Midichloria in genetically distant tick species provides additional sup-
port to the hypothesis of frequent horizontal transfers of these bacteria (Skarphédinsson
et al. 2005; Bazzocchi et al. 2013; Cafiso et al. 2018; Di Lecce et al. 2018; Serra et al.
2018). Low genetic variation of Midichloria was commonly reported in surveys based on
phylogenetic analysis of 16S rRNA gene sequences (Cafiso et al. 2016; Duron et al. 2017),
whereas recent MLST-based studies provide evidence of co-evolution of Midichloria in
some tick populations (Buysse and Duron 2018; Al-khafaji et al. 2019).

Additionally, we report a frequent albeit not statistically significant co-occurrence of
Midichloria with Rickettsia in specimens of Hy. rufipes. We can draw a parallel with what
recently reported in the tick A. maculatum, in which R. parkeri infection was found to pro-
mote Midichloria colonization in the midgut, salivary glands, and ovarian tissues of fed
and unfed ticks, indicating a synergistic relationship between them (Budachetri et al. 2018).

Conclusions

This study brings further attention to the complexity of ticks’ microbial communities and
calls for an in-depth analysis of the interactions among the tick-borne microorganisms.
Further multidisciplinary investigations involving metagenomics, genomics, and ecology
are pivotal to better understand these dynamics, with possible important consequences on
human and animal health, economy, and on the preservation of endangered species.
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