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Abstract Tuckerella japonica Ehara (Acari: Tuckerellidae) feeds on predigested plant

cells beneath exposed periderm tissue of 1- to 3?-year-old stems of Camellia sinensis (L.)

O. Kuntze (Theaceae) where longitudinal bark splitting occurs. Control samples from these

tissues were compared with areas fed upon by T. japonica adults and immatures to

characterize types of cellular injury. Stylet diameters ranged from 1.6 to 2.3 lm and were

consistent with observed stylet punctures in the stems. Mite saliva was injected along tracts

within the cortical tissue and resulted in cell wall disruption, collapsed cells and, in older

tissue, hyperplasia. The range of potential stylet penetration into plant tissues was from 92

to 150 lm. Tuckerella japonica injects saliva in the cortical tissues. The paired stylet

lengths would allow for possible injection of saliva into the upper areas of phloem tissue

but not in the cambium area of wood exposed by splitting of the outer epidermis.
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Introduction

The Tetranychidae, Tenuipalpidae and Eriophyoidea comprise a large group of mite

species that feed mainly on higher plants and numerous species are of economic impor-

tance (Banerjee and Cranham 1985; Childers and Derrick 2003; de Lillo and Skoracka

2010; Leigh 1985; McMurtry 1985). Some species of Tenuipalpidae and Eriophyidae are

vectors of a number of viral diseases many of which cause significant economic losses to

cultivated plants (Oldfield and Proeseler 1996; Childers and Derrick 2003; Rodrigues et al.

2016; Malagnini et al. 2016). Several eriophyoid mites are capable of producing galls or

other abnormal growth on plants from their feeding (Westphal and Manson 1996; de Lillo

and Monfreda 2004). A third group of eriophyoid mites can directly cause serious injury

and damage to various plants from their feeding with the citrus rust mite, Phyllocoptruta

oleivora (Ashmead), the pink citrus rust mite, Aculops pelekassi (Keifer), the grape rust

mite, Calepitimerus vitis (Nalepa) and the apple rust mite, Aculus schlectendali (Nalepa) as

examples (Childers 1994; Oldfield 1996; Khederi et al. 2014).

The Tetranychoidea and Eriophyoidea have piercing, paired stylets for their mouthparts

but their morphology as well as feeding mechanisms and injuries differ (de Lillo et al.

2002). The citrus rust mite has shorter stylets (about 30 lm) with feeding injury confined

to the epidermis of citrus fruit or leaves (Albrigo and McCoy 1974; McCoy and Albrigo

1975; Achor et al. 1990). Citrus rust mite feeding injury on citrus leaves and fruit resulted

in evacuated epidermal cells or cell injury that led to necrosis of cellular contents. In

contrast, stylet lengths of Tetranychidae have been reported to be about 100 lm in

(Jeppson et al. 1975) and in an adult female of Panonychus ulmi (Koch), were recorded to

be 118 lm (Avery and Briggs 1968). Their longer stylets permit penetrating into the

mesophyll of the leaf and cortical layers of the fruit. Injury by P. citri (McGregor) to citrus

leaves or fruit consisted of evacuated cells, sometimes leaving starch grains, or collapsed

cells that were totally evacuated (Albrigo et al. 1981). In one study, feeding resulted in the

collapse of the phloem in vascular bundles near stylet paths of the six-spotted spider mite,

Eotetranychus sexmaculatus (Riley). The collapse was speculated to be caused by the

extent of stylet penetration and mite saliva to the nearby photosynthate producing cells

supporting the phloem rather than direct feeding in the phloem tissue (Albrigo et al. 1981).

Recovery has been observed in both types of feeding injury to leaves and fruit. In the

case of the deeper feeding injury to leaves or fruit by the citrus red mite, P. citri, mesophyll

cells surrounding the injured cells divided (hyperplasia) and replaced the cells that had

been evacuated or collapsed due to feeding (Albrigo et al. 1981). In rust mite feeding,

wound periderm has been observed to form due to injury to the epidermis (Achor et al.

1990).

Brevipalpus californicus (Banks), B. phoenicis (Geijskes) and B. yothersi Baker have

been shown to be vectors of one or more viruses in plants (Chagas et al. 2003; Kondo et al.

2003; Kitajima et al. 2003; Rodrigues et al. 2003, 2016). In many instances, virus lesions

from these non-systemic diseases occurred on stems as well as leaves and fruit, thus

indicating that these mites fed on stems too. The diversity within this species complex is

only beginning to be recognized (Sanchez-Velazquez et al. 2015).

Tuckerella japonica has been observed feeding on exposed green periderm tissues in the

crevasses created by splitting bark on 1- to 3?-year-old woody stems of tea [Camellia

sinensis (L.) O. Kuntze] (Childers et al. 2016). With the descriptions of typical injury and

recovery patterns caused by the above groups of mites in mind, this study was designed to

examine the crevasses in which T. japonica was found to define the type of injuries to

underlying tissues. The following steps were taken to describe these injuries: (1) examine
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the crevasse tissues with scanning electron microscopy (SEM) to document punctures

caused by penetration of the paired stylets, (2) use light and SEM to determine the length

and diameter of the stylets and compare these measurements with punctures, (3) examine

and describe the control tissues from crevasse areas of stems of C. sinensis extending from

the inner vascular cambium layer to the outer developing cork periderm layer, (4) char-

acterize cellular injury by T. japonica to those tissues, (5) examine the stylet track areas

with a definitive stain, safranin, to determine if feeding tracks were from lignification or

saliva, and (6) determine by comparison of stylet lengths to depth of discernible injury,

whether stylet penetration by T. japonica in C. sinensis stems extended into the vascular

cambium as suggested by Charles (2009).

Studies that show the locations and types of cellular injury to a host plant by a Tuck-

erella species are lacking. This paper reports on the injury incurred within 2-year-old stems

of C. sinensis by stylet penetration and injection of saliva by T. japonica. The sampled

varieties were not available for release as they are considered proprietary by the owner.

Materials and methods

Scanning electron microscopy (SEM) of mite feeding punctures

All 1- to 3-year-old stems for this study were taken between 2014 and 2016 from the

Charleston Tea Plantation on Wadmalaw Island in Charleston, SC, USA. Approximately

30 to 100 cm lengths of 2-year-old stems of C. sinensis between 0.5 and 1.0 m and with

longitudinal splitting of the bark were cut in the field with pruning shears, returned to the

laboratory in Charleston, SC and examined using a stereomicroscope. Twenty 2 to 3 cm

lengths of these stems showing evidence of T. japonica resting or feeding were cut using

pruning shears. A second series of twenty 2 to 3 cm lengths of the same stems with no

evidence of mite presence were taken each time for comparison.

Each piece was subsequently cut down the middle of the stem with a razor blade so that

the rounded area where the mite(s) were located was evident. Each piece was immediately

transferred into one of two vials (mites either present or absent) containing 3% glu-

taraldehyde in 0.1 M Sorenson’s buffer, pH 7.2 and kept on ice in transit from Charleston

until further processing 24 h later in the laboratory at the Citrus Research and Education

Center (CREC) in Lake Alfred, FL, USA. There the samples were washed 3 times in

Sorenson’s buffer, post fixed in 2% osmium tetroxide in the same buffer and kept overnight

at 4 �C. The following morning the samples were rinsed again in buffer, dehydrated in

ethanol (10% steps, 10 min for each step) and dried using a Ladd Critical Point Dryer

(Ladd Research Industries, Burlington, VT, USA). The dried samples were mounted on

stubs, coated with gold/palladium using a Ladd Sputter Coater (Ladd Research Industries)

studied and photographed with a Hitachi S530 Scanning Electron Microscope (Hitachi

High-Technologies, Japan).

Light microscopy (LM) and transmission electron microscopy (TEM) of plant
tissues and mite injury from stylet penetration and injection of saliva

Two to 3 mm squared pieces of the above samples were prepared for TEM by placing them

in 3% glutaraldehyde fixative and further processing them in the laboratory. The samples

were rinsed in buffer, post-fixed in osmium as above, and rinsed again in buffer before
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dehydration in acetone (10% steps, 10 min for each step). Subsequently the samples were

infiltrated in Spurr’s resin (Spurr 1969) over a 3 day period, placed in molds and hardened

in an oven at 70 �C. One micrometer thick sections were prepared with a glass knife on a

LKB Huxley Ultramicrotome (LKB Instruments, Sweden), stained with methylene blue/

azure A and counter stained with basic fuchsin (Humphrey and Pittman 1974) for light

microscopy. Sections were observed under an Olympus BX61 compound microscope

(Cambridge Scientific Products, Watertown, MA, USA) and photographed using an

OMAX CMOS 14mp digital camera. Ultrathin sections for TEM were prepared with a

diamond knife on the same ultramicrotome, stained with 2% aqueous uranyl acetate, post-

stained with Reynolds lead citrate (Reynolds 1963), and photographed using a Morgagni

268 transmission electron microscope (FEI Company, The Netherlands).

Paraffin embedded samples for light microscopy (LM)

Samples of 1- and 2-year-old stems with visible splitting of the bark, containing tuckerellid

mites or free of mites were collected in the Charleston Tea Plantation and placed in moist

bags and kept on ice. The samples were then transported to CREC and the following day

they were processed for light microscopy. Areas of obvious bark splitting were excised

from the stems using razor blades and placed in FAA fixative (Formalin-Alcohol-Acetic

Acid) overnight at 4 �C. The following day the samples were rinsed in 50% ethanol and

dehydrated up to 100% ethanol (20% steps, 1 h for each step). The tissue was then cleared

by infiltration with tert-Butanol (TBA) in 3 steps: 100% ethanol; TBA 3:1 1 h, 1:1 1 h, 1:3

1 h to overnight at room temperature. The tissue was subsequently infiltrated with liquid

paraffin at 60 �C as follows: 3:1 TBA:liquid paraffin 6 h to overnight, 1:1 TBA:liquid

paraffin overnight, followed by 3 changes in liquid paraffin each overnight at 60 �C. The
samples were placed in molds, covered with liquid paraffin and placed in a refrigerator at

4 �C to solidify. Serial 10 lm sections of stem samples were prepared using a Leica RM

2155 rotary microtome (Leica Microsystems, Germany). The sections were mounted in

water on glass slides and cured at 30 �C on a warming tray. The slides were stained with

safranin/fast green (Sass 1958). With this staining, lignin, chromatin, cutin and saliva stain

red, chloroplasts stain pink to red; and cellulose walls and cytoplasm stain green.

Control tissues were punctured with a 000 insect pin (0.25 mm diam) to rule out results

due to mere mechanical injury by feeding. They were prepared from stem pieces of 1- or

2-year growth as above. Three separate samplings were made: five samples punctured and

processed for microscopy at the time of collection, 5 punctured then processed 48 h later,

and 5 more processed 3 days after the stem pieces were punctured. These were all pro-

cessed for paraffin embedding using the above method. Light micrographs were prepared

using the Olympus BX61 compound microscope as described above.

Measurements of Tuckerella japonica stylets with LM and SEM

For LM measurements, the mites were collected and stored in 80% ethanol and slide-

mounted later in Hoyer’s medium (Walter and Krantz 2009). Micrographs were taken

using the Olympus BX61 compound microscope. The stylets were measured using Figi

measurement software (Schindelin et al. 2012).

For SEM measurements, mites that were observed feeding were sprayed with chloro-

form to attempt to quickly kill them while the stylets were protracted and then transferred

into 80% ethanol to preserve them. In the laboratory, the mites were dehydrated further

through 3 changes of 100% ethanol then critical point dried as above. Each mite was then
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carefully mounted on a stub, sputter coated and observed as above. The stylet images were

measured using Figi measurement software (Schindelin et al. 2012).

Results and discussion

Nine puncture measurements in the plant tissues ranged from 0.85 to 2.3 lm in diameter

(Table 1). Stylet punctures by motile stages of T. japonica are shown in Fig. 1. The

locations of these punctures were in green periderm tissues exposed by longitudinally split

bark on 1- to 3?-year-old woody stems. As 1-year-old stems increased in size, there was

increased longitudinal splitting of the periderm with 2-year-old stems having the most bark

splitting (Bond 1942; Childers et al. 2016). Stylet lengths and diameters are presented in

Table 1. Only 4 mites had stylet lengths greater than 70 lm when chloroform was applied.

Measurements of these stylets from SEM photos were: 76.1, 81.6, 100.2, and 110 lm and

partial retraction was believed to have occurred in each instance. The width of T. japonica

stylets was consistent with the width of the SEM photos shown in Fig. 1. The entire stylets

could be viewed through the transparent body of the mite with LM and these were the

measurements for comparison.

Figure 2 shows cross sections of healthy bark from young (1 year woody stems) and

older (2–3 year woody stems) extending from the inner vascular cambium layer (VCa) to

the outer developing cork periderm layer (CP). Figure 2a shows the edge of a crevasse with

the outer cork layer and sloughed epidermal layer (Ep) creating a sheltered area in which T.

japonica were frequently found (asterisks). In this young stem, the cork periderm is only 3

cell layers thick and overlays a cortical region (C) of 5–6 cell layers thick. Below the

Table 1 Measurements of one (single) or two (double) stylet diameter (lm) of immature and mature
Tuckerella japonica and puncture width (lm) using scanning electron microscopy (SEM) and stylet section
lengths (lm) of slide-mounted mites using light microscopy (LM) and SEM images

Stylet width (SEM) Immatures Matures

Single tip lateral 0.5–0.6 1.0–1.3

Single tip dorsal 0.4–0.8 1.3–1.7

Single lateral 0.6–0.8

Double lateral 1.2 2.3

Double dorsal/ventral 0.7–1.3 2.2

Measurements of punctures (SEM)

Average 0.98 1.9

Range 0.85–1.1 1.6–2.3

N 5 4

Stylet lengths (LM and SEM)

(A) From pharynx to tip of infracapitulum (n = 16) 42.7 (39.3–46.8)

From tip of infracapitulum to stylet tip (n = 16) 86.7 (60–120)

(B) Entire stylet outside of infracapitulum (n = 8) 168.5 (135–193)

Working stylet (= B - A) 92–150

Stylet length (SEM) (n = 4) 76.1–110.7
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cortex is the area of active phloem (P) (Fig. 2b) consisting of thick walled sieve elements

(SE), companion cells (CC) and phloem parenchyma (PP). Below the phloem layers is the

vascular cambium (VCa) which, in this example, is 2–4 cells thick. Two points are to be

noted: the orderliness of the arrangement of the cortical cells and the vascular rays (VR)

and relative emptiness of the cortical cells and phloem parenchyma. The cells are not

actually empty, the cytoplasm is simply pushed against the walls by a large central vacuole

(asterisks) as shown by TEM in Fig. 3b, c. Because of this characteristic of the cortical

cells and phloem parenchyma, finding evacuated cells caused by feeding injury was dif-

ficult with both LM and TEM. Figures 2b and 3a, b show the normal appearance of phloem

sieve elements (SE) in these young stems.

Figure 2c, d show the normal arrangement of tissues in the bark of 2–3 year old stems.

Note that the cork periderm and cortical layers look very much like the younger stems but

with the exception of some thickening of the walls of the inner cortical cells (red asterisks)

and the normal compression of the protophloem (PrP) sieve elements (the outer, original

Fig. 1 Scanning electron
micrographs of Tuckerella
japonica stylet punctures (white
arrows) on exposed periderm
cells in fissures revealed by the
splitting of the outer cork
periderm layers
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phloem elements laid down in the developing stem) caused by compression from the

expansion of the active phloem layers (Fig. 3c). Note in Fig. 2c the persistent regularity of

arrangement of the vascular rays (VR) and cortical cells.

LM sections were examined for evidence of punctures or stylet tracks of collapsed cell

walls in the tissue. Figure 4a, b (arrows) show some of the few areas of what appear to be

disrupted cell walls caused by stylet punctures. In Fig. 4c, the arrows show what appears to

be evidence of disruption of cells caused by a stylet-saliva path. The paraffin embedded

tissue stained with Safranin and fast green (Fig. 4b, d, e) show conspicuously stained areas

of what appear to be stylet-saliva tracks in the cortical layers. Safranin stains for the

presence of lignin, suberin or saliva (Sass 1958). Specifically, safranin has been used to

identify salivary tracks and sheaths produced by aphid and adelgid species (Pollard 1973;

Young et al. 1995). In our case, we used it to distinguish between staining caused by

salivary tracks and subsequent lignifications of affected tissues.

To determine whether the stylet tracks thus stained were from lignification or by-

products of saliva injection, we punctured live stems with a 000-sized insect pin and

looked for lignification. Figure 4f of a 3 day old puncture shows that our punctures did not

result in the formation of lignin and suberin in the walls of the bordering disrupted cells.

Fig. 2 Light micrographs taken at 1 lm sections stained with methylene blue/azure A/basic fuchsin of
control 1- and 2-year-old stems. a Cross section of part of 1-year-old stem under a fissure (asterisk). Ep
epidermal layer, CP cork periderm, C cortex, P phloem, VR vascular ray, VCa vascular cambium. b Higher
magnification of 1-year-old-stem showing. SE sieve elements, PP phloem parenchyma, CC companion cells.
c Cross section of 2-year-old-stem in middle of fissure. Area labels as above. d Higher magnification of
2-year-old stem. SG starch grains, PrP collapsing protophloem sieve elements, red asterisks—areas of
normal thickening of cortical primary cell walls
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Fig. 3 Transmission electron
micrographs of control phloem in
1-year-old-stems. a SE sieve
elements b Higher magnification
of sieve elements showing
thickened cell walls and lateral
sieve plate filled with callose (C).
c Lower magnification showing
collapse of protophloem sieve
elements. Asterisks in a, b, &
c point to large central vacuoles
of parenchyma cells
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Fig. 4 Light micrographs of stylet probing injury in Camellia sinensis cortical tissues. a 1-lm section with
methylene blue/azure A/basic fuchsin. Arrow points to break in walls of cortical cells indicating passage of
stylets. b 10-lm section stained with safranin/fast green. Dark red staining indicates lignification or presence
of mite-injected saliva. Arrow points to break in wall from paired stylet passage. c 1-lm section stained as in
a. Arrows point to possible path of stylets through cortical tissues. d, e 10-lm sections stained as in b. Red
stain indicates presence of mite saliva. Arrows point to new cell walls, indication of cell division
(hyperplasia) occurring with recovery from cell injury. f 10-lm section stained as in b of control puncture
made with size 000 insect pin 3 days before sample was processed for microscopy injected along the stylet
salivary tracks. Note lack of red staining in walls along the sides of the extensive puncture indicating lack of
lignification from physical injury injected along the stylet salivary tracks
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We concluded that the staining in the tissue was due to saliva proteins injected along the

stylet feeding tracks.

Figure 4d, e (arrows) show evidence of newly divided cells (new cell walls) which is an

indication of hyperplasia, an increase in the number of cells and a healing mechanism

caused by wounded tissue. As previously mentioned, this is a common occurrence in spider

mite damaged plant tissue. This type of recovery was also evident in the more severely

affected tissue in Fig. 5a, b (red arrows).

Figure 5a–c show the disorganization caused by more extensive injection of saliva in a

2-year old stem. Salivary stylet tracts of collapsed cells are evident (yellow arrowheads).

Figure 6a–d are TEM images of those areas (asterisks) showing that they are collapsed

cells rather than just thickened or lignified walls resulting from the aging of the tissue.

Figure 6d shows two new sister cells from a cell division within a collapsed area of cells.

The question arose as to whether stylet penetration was confined to the cortical tissue or

in the phloem or vascular cambium itself as suggested by Charles (2009). To help

determine this, we measured the length of the stylets with both LM and SEM. We were

unable to be certain that just measuring the stylet length that extended beyond the tip of the

infracapitulum represented the full extent of its length. So we measured the entire stylet in

Fig. 5 Light and TEM micrographs of advanced injury to stem. a, b Light micrographs of stem showing
extensive disorganization of the cortical cells caused by mite saliva, resulting in collapsed cells (yellow
arrowheads) and hyperplasia (red arrows). Red and yellow bars show the minimum (red) and maximum
(yellow) range of stylet extension into the cortical cells (C). The maximum range extends into the outer layer
of the phloem (P). CP cork periderm, Ep epidermal layer, F fibers, *crevasse. c Higher magnifications of
a. d TEM micrograph showing extensive collapse of sieve elements (SE) in outer layers of phloem
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those mites in which the stylets were not confined by the infracapitulum and subtracted

from it the measurements that were made of the distance from the base of the infraca-

pitulum to its tip. We felt that this gave us the full potential length available for feeding.

From this we determined that the range of potential stylet penetration was from 92 to

150 lm. The vertical lines in Fig. 5a show that the outer layers of phloem tissue would be

available to the mites stylets but not the vascular cambium. Figure 5d and 6a–c (asterisks)

show evidence of collapsed sieve elements found in young tissue (Fig. 3c), older tissue

(Fig. 5d), and in advanced injury (Fig. 6b) (asterisks). Whether the mites actually pene-

trated these upper sieve elements or the cells merely collapsed due to injection of saliva

into nearby tissues is undetermined.

The stylets of T. japonica were measured with a coverslip pressing on the flattened mite.

The flattened mite has a strong internal fluid pressure that pushes out the stylophore and the

other appendages (de Lillo, pers. comm.). de Lillo suspects that the working range of

stylets could be shorter for these reasons. Future studies should include using pieces of

coverslip placed in the mounting medium to minimize risk of flattening the mite specimens

as well as use of other methods to determine stylet lengths. Tuckerellid species need to be

assessed for their potential to access phloem tissues in their host plants that are of eco-

nomic importance.

Fig. 6 a–c TEM micrographs of high magnifications of Fig. 5a–c showing the collapsed areas are actually
collapsed cortical cells and collapsed sieve elements (white asterisks in a, b) rather than just thickening of
cortical cell walls. d Two new sister cells (hyperplasia) occurring inside collapsed area
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Our conclusion is that T. japonica penetrates and injects saliva into the cortical tissue

and possibly into the outer phloem tissue but not the vascular cambium in areas of bark

exposed by splitting of the outer epidermis of 1- to 3?-year-old stems. Our evidence

includes visible punctures, cellular collapse and cellular hyperplasia (wound healing) along

obvious stylet-saliva tracks of the mites.
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