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Abstract Density, diversity and assemblage structure of Mesostigmata (cohorts Gamasina

and Uropodina) were investigated in Scots pine forests differing in forest age (young:

9–40 years and mature: 83–101 years) in which wildfire occurred. This animal group

belongs to the dominant acarine predators playing a crucial role in soil food webs and

being important as biological control agents. In total, six forests (three within young and

three within mature stands) were inspected in Puszcza Knyszyńska Forest Complex in May

2015. At each forest area, sampling was done from burned and adjacent control sites with

steel cylinders for heat extraction of soil fauna. Data were analyzed statistically with nested

ANOVA. We found a significant effect on mite density of both fire and forest age, with

more mites in mature forests and control plots. In total, 36 mite taxa were identified. Mite

diversity differed significantly between forest ages but not between burned versus control.

Our study indicated that all studied forests are characterized by unique mite species and

that the mite communities are dominated by different mite species depending on age forest

and surface wildfire occurrence. Finally, canonical correspondence analysis ranked the

mite assemblages from control mature, through burned young and burned mature, away

from the control young.
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Introduction

Fire is a dominant large-scale disturbance factor in many of the world’s terrestrial

ecosystems including forests (Malmström 2012). It can affect both the above ground part

of the forest ecosystems by burning the shrubs and trees and also the soil environment

(Buhk et al. 2007; Certini 2005). The impact of fire on soil depends on many factors such

as forest characteristics (amount, nature and moisture of life and dead fuel), climatic

conditions (air temperature and humidity, wind spread), topography of the site and also fire

type and severity (intensity and duration) (Lóšková et al. 2013). Recent studies have

indicated that the climatic changes (i.e. rising temperatures and water stress) are expected

to have a great impact on fire risk around the globe (Moriondo et al. 2006). This

assumption applies to temperate forests in Southern and Central Europe (Allen et al. 2010)

as climatic changes will lead to a more pronounced continental climate characterised by a

higher occurrence of droughts and fire danger (Gerstengabe et al. 1999). Currently, forests

in Europe are annually influenced by hundreds of thousands of fires which cover hundreds

hectares of forests area (ECJRC 2016). Although the average area burned per fire is rather

low, due to the availability and efficiency of fire-fighting resources and infrastructures

(Gerth 2001), recent reports of the European Commission Joint Research Centre on Forests

(ECJRC 2016) concluded that the area burned by forest fires in the European Union could

double by the end of the century as a consequence of climate change.

Temperate forests in Europe are mostly formed by Scots pine (Pinus sylvestris L.) trees.

This tree species has an immense distribution that extends the breadth and width of Europe

and Asia (Rehfeldt et al. 2002; Bernhardsson et al. 2016), has a broad ecological tolerance

and is growing on a wide range of soils under varying climatic regimes (Bradshaw and

Browne 1987). In general, Scots pine is growing in cultivations characterized by similar

age. Young and mature forests have different characteristics, such as the amount of

combustible plant material (e.g. tree density, number of dead and decaying trees, litter

input). Those differences can determine the risk of transformation of a fire from surface fire

into crown fire due to the high stem density and high ladder fuel connectivity between the

ground and canopy in young forests (Kobziar Leda et al. 2009).

Fire can indirectly affect the soil animal communities by changes in habitat conditions

and removal of food sources reflected by organic matter, water-holding capacity and

structural complexity of soil. However, it can also have a direct effect on the mortality of

soil animals due to heat exposure (Camann et al. 2012). Previously published studies

connecting fire and soil animal communities (Table 1) have focused on two aspects: the

recovery process and the effect of various types of fires on soil fauna communities. The

recovery process after the fire was investigated in short (until 1 year) (Badejo 1994;

Camann et al. 2007) versus long (for years) periods of time (Kudryasheva and Laskova

2002; Bogorodskaya et al. 2010; Kim and Jung 2013), both after wildfire (Hylander 2011;

Kim and Jung 2013; Lóšková et al. 2013; Zaitsev et al. 2014) or experimental burning

(Bogorodskaya et al. 2010; Camann et al. 2012; Malmström 2012). There is also some

research focusing on biodiversity as the effect of various types of fire (Michalik et al. 2004;

Jung et al. 2010; Zaitsev et al. 2014). The latest research has pointed towards changes

within abundance and species richness in relation with fire severity (Kim and Jung 2008;

Jung et al. 2010) and differences in species richness and soil fauna abundances between

forests in different age classes (Johansson et al. 2016). However, there is still lack of

information about the relation of forests age classes and surface wildfires, which are very

common in Central Europe. Nevertheless, the published studies that have been conducted
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rö
m

(2
0

1
2
)

T
F
:

sp
ru

ce
fo

re
st

(w
in

d
th

ro
w

in
2

0
0

4
)

A
:

m
at

u
re

(1
2

0
y

ea
r-

o
ld

)
L
:

H
ig

h
T

at
ra

N
at

io
n

al
P

ar
k

,
S

lo
v

ak
ia

F
:

w
il

d
fi

re
af

te
r

w
in

d
st

o
rm

F
O
:

2
0

0
5

T
S
:

A
p

ri
l

an
d

S
ep

te
m

b
er

2
0

0
7

O
ri

b
at

id
a

L
ó
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in young (Jung et al. 2010; Kim and Jung 2013) and mature forests (Kudryasheva and

Laskova 2002; Camann et al. 2007; Malmström 2008; Hylander 2011; Camann et al. 2012;

Malmström 2012; Lóšková et al. 2013; Zaitsev et al. 2014) did not show any pattern of the

relationship between forest age and fire. This may result from studies done on different tree

species (e.g. Huebner et al. 2012; Camann et al. 2007) or even types of forest ecosystems

from rainforests (Badejo 1994), through boreal forests (Hylander 2011) to temperate for-

ests (Jacobs et al. 2015).

Recent studies on rove beetles (Johansson et al. 2016) suggest that older forests are

characterized by a higher abundance and species richness; however, no studies have

assessed the reaction of soil fauna to surface wildfire in young and mature Scots pine

forests. One soil fauna group is free-living soil mites (Acari, Mesostigmata). Mesostigmata

are important regulators of decomposition processes in forest soil ecosystems and they also

occupy a high trophic level in the soil decomposition food web (Schneider and Maraun

2009). Many mesostigmatid mite species are predators on: nematodes, other mite groups,

collembolans and also enchytraeids as well as small insect larvae (Karg 1993). Therefore,

the presence/absence of those mites can reflect the microflora (fungi and bacteria),

microfauna (nematodes), mesofauna (other mites and collembolans) and physicochemical

conditions of soil such as organic matter (Jung et al. 2010).

The objective of our research was to study the effect of surface wildfire on mesostig-

matid mites communities in young and mature Scots pine forests. We addressed the

following hypotheses: (1) abundance and species richness of mites is reduced by surface

wildfire regardless forest class age, and (2) surface wildfire reduces the population den-

sities of large and mobile predators living in the upper layers of the litter.

Materials and methods

Study sites and sampling

The study was conducted in the complex of the Puszcza Knyszyńska Forest (PKF), which

is located close to the state border with Belarus (North-east Poland). This forest is

situated in the coldest regions of Poland (Chrzanowski 1991) and its climate has con-

tinental character with a high difference between the mean temperature of the coldest and

warmest month which reaches 22 �C (Sasinowski 1995). The mean annual precipitation

oscillates around 610 mm, snow covers the ground for 85–90 days and its maximum

thickness fluctuates from 8 to 80 cm. The growing season in the Puszcza Knyszyńska

Forest is short, begins in the first half of April and lasts about 200 days (Sasinowski

1995). The soils of the Puszcza Knyszyńska Forest are generally rather poor. Large areas

are covered with loose, slightly clayey podzols formed in sand (Czerwiński 1995).

Forests, which cover 70% of the total area, are dominated by Scots pine (Pinus sylvestris)

and Norway spruce (Picea abies).

In total six study sites were selected on the territory of the PKF (Fig. 1). One site (no. 6)

was located on the protected areas of the Puszcza Knyszyńska Promotional Forest Com-

plex (PFC) as no other burned forests in the PFK suited to the studied forests. The total

area of the study sites varies between 5.44 and 24.58 ha. All study sites were classified as

fresh mixed coniferous forests growing on rusty soil. The understory species were repre-

sented by several species e.g. Sorbus aucuparia, Picea abies, Quercus robur and Betula

pendula, and the forest floor was covered by mosses and blueberries (Table 2). On each
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study site the fire impact was classified as light (C2) after Jung et al. (2010) described as

surface fire with high recovery and light ecosystem impact. The litter layer was burned up

to the depth of ca. 3 cm and the trunks of the standing trees were affected up to the height

of ca. 0.7 m. The sampled forests were divided into two groups (each group was repre-

sented by three forests): young (9–40 years) and mature (83–101 years). In each forest,

two subplots (burning and a control area) were selected. Overall, 60 samples (2 groups of

forest age 9 3 replication 9 2 subplots [burning and control] 9 5 samples from each plot)

were randomly collected in using steel core (40 cm2) to the depth of 10 cm, placed in

plastic bags and stored in a portable cooler for transport to the laboratory (Poznań

Fig. 1 Location of the study sites on the territory of Puszcza Knyszyńska Forest
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University of Life Sciences, Poland). The sampling was conducted in late spring (May

2015) to coincide with high invertebrate abundance.

Mite extraction and identification

Mites were extracted from samples using Tullgren type funnels (20 cm diameter) with a

mesh size of approx. 2 mm. Tullgren extraction is recommended for species inventory in

highly organic soils such as those in the Scots pine forest floors in this study (Crossley and

Blair 1991; Edwards 1991). The extraction efficiency of this method reaches over 80%

(van Straalen and Rijninks 1982). The temperature and moisture gradient in the Tullgren

funnels forced active soil fauna to move down the core into 70% ethanol over a period of

7 days. Mesostigmatid mites were separated from the samples and sorted under a stere-

omicroscope at 10–25 9 magnification, cleared in 85% lactic acid for a minimum of

3 days, depending on the degree of transparency required for each specimen, slide-

mounted using Hoyer’s medium and finally dried at 45 �C for minimum 7 days using a

slide warmer. The total number of mesostigmatid mites was determined using a micro-

scope. The mites were determined by species (adults and juvenile when possible) or genus

using a stereomicroscope, with keys (Micherdziński 1969; Giljarov and Bregetova 1977;

Karg 1993).

Data analysis

Each soil/litter core provided an independent estimate of local diversity and abundance. To

avoid pseudoreplications, five sampling points sampled within each group obtained from

study site were used to determine average mean. Abundance data were transformed into

square meter scale (m-2) per plot for easy comparison with published data. The normality

of data distribution was tested using the Shapiro–Wilk W Test. Data describing mite

abundance were log-transformed to reduce skewness. ANOVA was conducted with group

(control, burned) nested within forest age (young, mature). Tukey’s HSD was employed to

compare differences between means. Results were considered significant when P\ 0.05.

Statistics were performed with the software package JPM (SAS Institute).

Diversity for each sample was measured using the Shannon’s diversity index (H0) and

Eveness index (E = H0/ln[Richness]). The Shannon index was calculated using the for-

mula H0 = –Rpi ln[pi], where H0 is Shannon’s index and pi is the proportion of individuals

found in the i-th species. Species richness was examined by counting the species in each

sample. The species rank graph was restricted to the most dominant species (Dominance,

D C 0.03%). Data of density and diversity were calculated per square meter. To determine

the gradient of faunistic variation we used detrended correspondence analysis (DCA),

down-weighting of rare species using MVSP 3.0. The DCA was carried out for four

microhabitats (two control and two burned forests) and 12 mite species. Each species was

represented by at least 10 individuals.

Results

Our study revealed the impact of the fire and the forests age on mite abundance. Higher

mite abundances were observed in control forests when compared to burned plots both in

young (2167 vs. 1383 individuals; t = 3.14, df = 1, P = 0.014) and mature forests (3817
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vs. 2150 ind.; t = 4.09, df = 1, P = 0.0035). Moreover, mite abundance was significantly

higher in the control mature forest compared to other groups and decreased as follows:

young control, mature burned and finally young burned (Q = 3.202, P = 0.003).

In total 571 mites were recorded and classified into 36 species. Our study indicated that

nine species occurred in all microhabitats (control and experimental as well as in young

and mature) and play a role of core species. The core species group was represented by

Rhodacarus coronatus, Zercon triangularis, Veigaia nemorensis, Paragamasus sp., Hy-

poaspis aculeifer, Paragamasus misellus, Asca aphidioides, Hypoaspis procera and Ga-

masellodes bicolor. Moreover, this study indicated that some species are characteristic for

burned and unburned sites, both in young and mature forests, and that some species occur

in two types of forests (Fig. 2). Our study revealed differences in mite communities

Fig. 2 Core, exclusive and common mite species in young and mature, burned and unburned coniferous
forests
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between unburned and burned plots. The unburned forests were characterized by 11

exclusive species. They were represented by two common species regardless of a forests

age (Trachytes aegrota and Hypoaspis vacua) and four species specific for young (Arc-

toseius eremitus, Leptogamasus suecicus, Polyaspinus cylindricus, Veigaia kochi) and five

species for mature forests (Alliphis siculus, Dendrolaelaps sp., Prozercon kochi, Veigaia

exigua, V. planicola). The burned forests were characterized by seven exclusive species.

They were represented by common species regardless of a forests age (Vulgarogamasus

kraepelini) and three species in each, young (Asca bicornis, Dendrolaelaps cornutus, D.

foveolatus) and mature forest (Amblyseius sp., Hypoaspis praesternalis, Pachylaelaps

longisetis) (Fig. 2; Supplementary data).

Data analysis revealed that the mean species richness per sample was not affected by

forest age (F = 2.3684; df = 1, P = 0.16) nor by fire (F = 0.0947; df = 2, P = 0.91)

(Tables 3). The Shannon index was not affected by forest age (F = 0.8327; df = 1,

P = 0.39) nor by fire (F = 0.2074; df = 2, P = 0.82). Similarly, forest age (F = 1.1754;

df = 1, P = 0.31) and fire (F = 1.9413; df = 2, P = 0.21) had no effect on evenness

(Tables 3).

Analysis of the species rank graph revealed changes in the mite community, after

the fire, both in young and mature forests, however, changes differed between studied

forests (Fig. 3). The mite community in young control plots was dominated by only

one species Zercon triangularis (29.2% of the total abundance) and the proportional

abundance of the other species (Veigaia nemorensis, Paragamasus sp., Leptogamasus

suecicus, Rhodacarus coronatus, Trachytes aegrota) was similar and ranges from

10.0 to 6.9%. Moreover, the ratio between the two most abundant species, i.e., Zercon

triangularis and Rhodacarus coronatus, was 4:1 (29.2 vs. 6.9%) on control plots

which was changed by wildfire to 1:1 (20.5 vs. 21.7%) on burning plots in young

forests. In the mature forests the mite community was generally dominated by the same

species; however, the ratio between Z. triangularis and R. coronatus was inverted. In the

control plots, the ratio was 1:2 (19.7 vs. 41.1%) and in burned plots 1.5:1 (31.8 vs.

18.6%).

Detrended Correspondence analysis (DCA) was performed to evaluate relationships

between species abundance and sampled forests (Fig. 4). The eigenvalue was neither

significant for axis 1 (k1 = 0.223) nor for axis 2 (k2 = 0.017); however, over 74.1% of the

variance was explained by the first 2 axes and the microhabitats were well separated.

Table 3 Least square mean and SEM for analyzed parameters in control and burned, young and mature
Scots pine forests

Parameter Forest SEM

Young Mature

Control Burned Control Burned

Abundance (m2) 2167bx 1383by 3817ax 2150by 280.25

Species number 3.33 3.13 4.33 4.13 0.459

Shannon index (H0) 0.94 0.98 1.01 1.17 0.150

Evenness 0.863 0.9 0.75 0.85 0.037

Superscripts a,b indicate statistical differences among rows, superscripts x,y indicate statistical differences
between groups (control vs. burned) within forest age
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Ordination axes are considered as significant when their eigenvalue is higher than 0.3

(Dekkers et al. 1994). The axis 1 ranked the microhabitats from control mature (CM),

through burned young (BY) and mature (BM) away from the control young (CY).

Fig. 4 DCA biplot species data for the different microhabitat of the forest floor. Microhabitat are marked
as: BM burned mature, BY burned young, CM control mature, CY control young. Species abbreviation are as
follows: Asc aph—Asca aphidioides, Gam bic—Gamasellodes bicolor, Hyp acu—Hypoaspis aculeifer,
Hyp pro—Hypoaspis procera, Par mis—Paragamasus misellus, Par sp.—Paragamasus sp., Lep sue—
Leptogamasus suecicus, Par rad—Parazercon radiatus, Rho cor—Rhodacarus coronatus, Tra aeg—
Trachytes aegrota, Vei nem—Veigaia nemorensis and Zer tri—Zercon triangularis

Fig. 3 Species rank graphs in young and control (a), young and burned (b), mature and control (c), mature
and burned (d) forests. See text for full species names
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Discussion

In the present study we investigated the influence of two parameters: surface fire and the

age of the stand on the abundance and species richness of Mesostigmata mites. Our

research revealed that mite abundance is determined by both those parameters – forest age

and fire; whereas, the number of reported species is determined only by the age of the stand

and the fire does not affect it.

Our study is consistent with other observations in terms of effect of the age on species

richness, but contrary in terms of its impact on mite density. Migge et al. (1998) indicated

that average density did not differ among forests in various age classes; however, species

diversity of oribatid mites tended to be higher in old forests. We have noticed that

abundance and species richness are significantly higher in mature forests. This result is in

line with Johansson et al. (2016) who studied rove beetles (Staphylinidae) in pine and

spruce forests. They proofed that both species richness and abundance increased with

forests age, although studies were conducted only in young and middle age stands.

Analysis of the impact of the surface wildfire has confirmed negative influence of the

fire only on mite abundance. We have observed decrease of species richness on burned

plots, although it was not statistically different compared to control groups. Reduction of

mite density due to fire is in line with previous studies on mites (Bogorodskaya et al. 2010),

collembolas (Bogorodskaya et al. 2010; Malmström 2012) and other groups of inverte-

brates (Hylander 2011). Surprisingly, we have not observed a negative effect on species

richness. This result can be explained by the nature of surface wildfire analyzed in our

study. This type of fire is characterized by low severity, short time of burning and its

impact on ecosystem is relatively low (Jung et al. 2010).

We assumed that the surface fire could cause changes in abundance of only those

species that occur in the upper layers of the litter and that the species living deeper in the

soil would not be threatened by the surface wildfire. Interestingly, the surface fire did not

change the proportional abundance of large predators. Furthermore, our studies revealed

differences between young and old forest stands. In young stands proportional abundance

of large predators such as Veigaia nemorensis was similar in burned (15.6%) and unburned

(10.0%) plots. In mature forests proportional abundance of this species was similar and

ranged on burned and unburned plots 6.2 and 5.7%, respectively. This result can be caused

by the buffering of the heat by soil, as was reported by Jung et al. (2010). In that study the

temperature decreases from 150 to 300 �C at 10 cm above the forest floor into only 28 �C
at 2 cm below the ground.

We assumed that surface fire will affect soil mite community in similar way in both type

of forest stands (young and mature). Our hypothesis was not confirmed because the fire

affected mite community differently in spite of their similar species composition. In

younger forests the proportional abundance of all core species was similar, but the dom-

inant species changed. In young stands Zercon triangularis was replaced by Rhodacarus

coronatus after fire. However, in mature stands the opposite was true, and the fire caused

an increase of Zercon triangularis. It should be highlighted that in all cases clear domi-

nation of one species was observed (Fig. 3).

A clear dominance of Zercon triangularis in the controlled young stands can be

explained by a common presence of this species in the young pine forest (Kaczmarek

2000). In addition, a higher abundance of Rhodacarus coronatus after a surface wildfire

may indicate changes in the soil environment and the occurrence of the initial stages of the

succession in soil environment. Rhodacarus coronatus is one of the r-strategists, which
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plays a key role in the succession of primary Gamasida on former wasteland (Madej 2004).

Moreover, it was previously recognized with numerous annual and perennial crops in the

agricultural landscape (Kaczmarek and Ratyńska 1998a, b). This change of dominant

species is not astonishing, thus fire causes loss of above-ground vegetation, destruction of

litter layer, and release of nutrients (Webb 1994) and also reduction of abundance of

oribatids and collembollans (Kim and Jung 2008) which are the food source for some

Gamasida mites.

In conclusion, our study revealed that surface fires in Scots pine stands changed the mite

community, but it did not change species richness. Soil after surface wildfire creates a

favorable environment for species characterized for early succession stages; however,

proportional abundance of large predators will not change. Furthermore, our study indi-

cated that the changes in mesostigmatid mite communities depends also on forest age.
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