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Abstract Tomato plants have their leaves, petioles and stems covered with glandular

trichomes that protect the plant against two-spotted spider mites and many other herbiv-

orous arthropods, but also hinder searching by phytoseiid mites and other natural enemies

of these herbivores. This trichome cover creates competitor-free and enemy-free space for

the tomato russet mite (TRM) Aculops lycopersici (Acari: Eriophyidae), being so minute

that it can seek refuge and feed inbetween the glandular trichomes on tomato cultivars

currently used in practice. Indeed, several species of predatory mites tested for biological

control of TRM have been reported to feed and reproduce when offered TRM as prey in

laboratory experiments, yet in practice these predator species appeared to be unable to

prevent TRM outbreaks. Using the phytoseiid mite, Amblydromalus limonicus, we found

exactly the same, but also obtained evidence for successful establishment of a population

of this predatory mite on whole plants that had been previously infested with TRM. This

successful establishment may be explained by our observation that the defensive barrier of

glandular plant trichomes is literally dropped some time after TRM infestation of the

tomato plants: the glandular trichome heads first rapidly develop a brownish discoloration

after which they dry out and fall over onto the plant surface. Wherever TRM triggered this

response, predatory mites were able to successfully establish a population. Nevertheless,

biological control was still unsuccessful because trichome deterioration in TRM-infested
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areas takes a couple of days to take effect and because it is not a systemic response in the

plant, thereby enabling TRM to seek temporary refuge from predation in pest-free tri-

chome-dense areas which continue to be formed while the plant grows. We formulate a

hypothesis unifying these observations into one framework with an explicit set of

assumptions and predictions to be tested in future experiments.

Keywords Aculops lycopersici � Tomato russet mite � Glandular trichomes �
Plant defense � Predatory mites � Amblydromalus limonicus � Enemy-free space

Introduction

Eriophyoid mites are among the smallest arthropods on earth (Lindquist et al. 1996). Their

worm-like body has a cross-section diameter of c. 50 lm, at least five times smaller than

that of phytoseiid mites, several species of which are their most significant predators

(Sabelis 1996). The minute size of the eriophyoid mite is the key to their ecological

success, enabling them to reach places small enough to be free of predators and still

suitable to get access to food resources in the plant (Sabelis and Bruin 1996). Moreover, it

allows many of them to develop a plant-parasitic life-style (Lindquist et al. 1996). Many

eriophyoids live in plant galls they induce, and others have a vagrant life-style, frequently

changing feeding sites that vary in the degree of protection against predators (Sabelis and

Bruin 1996; Conijn et al. 1996; Lesna et al. 2005). In agricultural crops, such mites may

easily reach pest status when predators are lacking. Chemical control is often ineffective

because the eriophyoids may feed under protective structures of the plant (Lindquist et al.

1996). Although such structures can also hamper predators, biological control with pred-

atory mites appeared a promising solution (e.g. Lesna et al. 2005).

Dense covers of (glandular) hairs are known to protect vital plant parts against many her-

bivorous arthropods (Wagner et al. 2004; Peiffer et al. 2009; Kang et al. 2010). On tomato,

glandular trichomes on leaves and stems protect the plant constitutively against two-spotted

spider mites (Chatzivasileiadis and Sabelis 1997, 1998; Chatzivasileiadis et al. 1999, 2001; Alba

et al. 2009), but they may also hinder predatory mites (Van Haren et al. 1987) and other natural

enemies (Simmons and Gurr 2005). In theory, this would create competitor-free and enemy-free

space for eriophyoid mites being so minute that they can seek refuge and feed between the

glandular hairs. A pest outbreak of such mites would then be inevitable unless tomato plants can

readjust their constitutive defenses to prevent them from backfiring (Eisner et al. 1998).

The tomato russet mite Aculops lycopersici (Tryon) represents such a case. On tomato,

this mite uses its c. 10 lm long stylets to feed on epidermal cells between the glandular

trichomes that are present on leaves, but even more so on those of the petioles and stems of

tomato. In absence of control measures, this eriophyoid mite becomes a pest (Perring

1996). Efforts to find natural enemies for control of tomato russet mites have resulted in a

long list of candidate predators, especially among the Phytoseiidae (e.g. Park et al. 2010).

Several species of these predatory mites were found in natural association with tomato

russet mites and all of them showed a capacity to feed and reproduce on a diet of tomato

russet mites alone. The latter tests were carried out on small tomato leaf discs under

laboratory conditions. However, the candidate predators tested for their control capacity on

whole plants failed to suppress the pest (Trottin-Caudal et al. 2003; Fischer et al. 2005) or

required more generations to adapt to tomato as a host plant (Van Haren et al. 1987) and

have an impact on the pest (Castagnoli et al. 2003).

In this article we present similar bioassays for another predatory mite, Amblydromalus
limonicus (Garman and McGregor), but go further in assessing the underlying causes for
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success or failure (1) to feed on tomato russet mites (2) to establish a population on a whole

plant infested with tomato russet mites and (3) to control TRM on whole plants. Finally (4),

we present data showing how TRM modifies plant morphology (in particular that of tomato

trichomes) and formulate a testable hypothesis to explain the results on (1)–(3).

Materials and methods

Origin of the predator strain and tomato plants

The strain of A. limonicus used in our experiments was collected in New Zealand by Peter

Workman (Crop and Food Research, Auckland) on beans and tomatoes in 2007. After col-

lection, he predatory mites were reared on a diet of Typha latifolia pollen for 1.5 years. The

mites for the oviposition test were taken directly from this culture; the mites for the estab-

lishment test were reared on tomato plants heavily infested with TRM for 10 weeks before the

start of the experiment. The A. limonicus used for the population test were reared on astigmatid

mites for at least 3 months. All experiments were carried out on tomato (Solanum lycopersi-
cum) cv Elanto, with the exception of the direct (microscopical) observations on changes in

trichome morphology which were done on tomato (S. lycopersicum) cv Castlemart.

Oviposition test

To assess the ability of A. limonicus to reproduce on TRM, we introduced a young gravid

female on a tomato leaf disc (7 cm2) with[300 TRM (mixed stages). Over a period of 4 days

the predatory mites were transferred each day to fresh leaf disks with TRM, thereby ensuring

an ample supply of prey and enabling assessment of the number of predatory mite eggs

produced per day. The leaf disc was placed upside down on a layer of agar at the bottom of a

small plastic cup. The cup was closed by a lid with a gauze-covered hole to allow air exchange

and it was placed in a climate room at 25 �C and 75 % RH under a L16:D8 light regime. To

avoid effects of the rearing diet to which the predatory mites had been exposed prior to the

experiment, egg production during the first day was excluded from analysis and that during

the other 3 days was taken into account. We also repeated exactly the same test with young

(\1 day old) whitefly eggs (Trialeurodes vaporariorum (Westwood)) as prey because

predatory mites produce the same amount of offspring eating these eggs as when eating TRM

(see ‘‘Results’’ section: ‘Oviposition test’). This allowed us to uncouple the indirect effect of

TRM on the predatory mite via alterations in the host plant and the direct effect of TRM on the

predatory mite, being its prey. The data of both experiments were statistically analyzed by a

Student t test to compare two means from unequal samples and with homogeneous variance.

Establishment tests on TRM-infested tomato plants

To test predatory mite establishment on whole plants infested with TRM, preliminary

experiments were carried out in a greenhouse (mean temperature 21 �C, range 16–35 �C;

mean relative humidity 60 %, range 24–85 %) in spring 2009. A cucumber leaf disc

(4.5 cm2) with 10 young females of A. limonicus was introduced on the bottom (=oldest)

leaf from each of 6 young (4-leaf stage) tomato plants, each of which had been infested

4 days earlier by placing 5 leaf discs, each with c. 300 TRM (mixed stages), randomly on

the 4 leaves of the plant. The plants were together in a screen cage (3 9 1 9 2 m) to

reduce the risk of pest infestation from elsewhere. During the subsequent experimental
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period plants were allowed to develop from 4 to 9 leaves, but thereafter the plant apices

were removed thereby maintaining a constant plant size. After 4 weeks 1 leaflet was taken

randomly per compound leaf of each plant. The leaflets collected from each plant were put

together in a plastic box and next they were inspected one by one under a binocular

microscope to count the total number of predators. The same experiment was carried out

with tomato plants of the same age infested by greenhouse whiteflies (T. vaporariorum) in

order to compare the ability of A. limonicus to establish itself on plants infested with russet

mites with that on plants infested with an unrelated but also suitable herbivore as prey. To

establish the whitefly infestation, 90 adult whiteflies were released in a screen cage with 6

tomato plants (thus c. 15 whiteflies per plant), 2 days prior to the introduction of the

predatory mites at the bottom leaves. To ensure favourable food conditions for the pre-

dators at the moment of their introduction, these tomato plants were also ‘dusted’ with

cattail pollen (T. latifolia), a suitable alternative food source for many phytoseiid mites,

including A. limonicus. Data were statistically analysed by a Games-Howell test to com-

pare means derived from groups with unequal sample sizes and with unequal variances.

Based on the information obtained from the first preliminary trial, we repeated the

experiment with TRM and A. limonicus early in the summer of 2009 (mean temperature

23 �C, range 19–34 �C; mean relative humidity 60 %, range 25–99 %), but now the

leaflets sampled from three strata (three leaves at the bottom, three at the middle and three

at the top) of each plant were stored in separate boxes. Moreover, not only predatory mites

were counted, but also TRM. Finally, the experiments differed in having a larger TRM

inoculum (c. 2,500 instead of c. 1,500), a larger number of tomato plants (10 instead of 6)

and two sample dates (3 and 4 weeks after predator introduction) instead of only one. To

correct for the effect of differences in absolute densities across replications (see large

standard errors in the results section: Establishment tests on TRM-infested plants), we

expressed the population sizes in each stratum as a proportion of the total population found

in all samples from a given plant (at the same sampling date).

Small-scale biocontrol tests

To test for the impact of A. limonicus on biological control of TRM, we carried out exper-

iments in 6 screen cages (12 m2 ground surface), each with 10 tomato plants, in an exper-

imental greenhouse during the summer of 2009 (mean temperature 23 �C, range 19–35 �C;

mean relative humidity 70 %, range 24–99 %). At the start of the experiments the tomato

plants, each with 10 fully expanded leaves, received a leaf disc with TRM on the 3rd to the

7th leaf from the oldest one (bottom leaf). These discs had been cut from leaflets picked from

a well-infested tomato plant and, based on a sample of thirty leaf discs taken at random, we

estimated that each disc harboured on average c. 280 mobile stages of TRM. Each plant

received five of these leaf discs (and thus a total of 1,400 TRM). Six days after the intro-

duction of the TRM-discs, c. 140 predators (all mobile stages of A. limonicus) per tomato

plant were introduced onto leaves 3–7 in 3 randomly selected cages. During the subsequent

experimental period plants were allowed to grow until they had 16 leaves, but thereafter plant

apices and side-shoots were removed, thereby maintaining a constant plant size and leaf area.

To monitor the temporal population dynamics of TRM and of A. limonicus in three

strata of the plant, 3 leaflets were taken from each plant (30 leaflets/cage), once a week

from day 8 (since TRM introduction) onwards: one leaflet from the lower part (stratum 1:

leaf 2–6), one from the middle (stratum 2: leaf 7–11) and one from the top of the plant

(Stratum 3: 12–16). The leaflets on which the predatory mites and the TRM had been

released were excluded from sampling since we wanted to assess arthropod mobility across
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strata during the course of the experiment. First, only the predatory mites on each leaflet

sampled per stratum were counted under a stereomicroscope, because they are relatively

agile. Next, the number of TRM was assessed by counting their mobile stages in a rep-

resentative subsample, i.e. small leaf discs (3.5 cm2), each cut from an additional leaflet

obtained from the same strata from which we had assessed the predatory mite densities.

Assessments of tomato trichome deterioration in response to TRM infestation

Using a stereomicroscope equipped with a photo camera, we inspected (at 30–409 magni-

fication) trichomes of the glandular (Type I and VI) and non-glandular (Type III and V) type

on leaves and stems of TRM-infested tomato plants as well as TRM-free plants (Luckwill

1943). Visible changes in external appearance of the trichomes and the whole plant were

recorded on photograph at least once every 3–4 days. The results of these observations are

summarized in a video providing a slideshow of the morphological and other changes in

trichomes of TRM-infested tomato leaves, petioles and stems (supplementary material).

To quantify the process of trichome deterioration trichomes were counted on three

plants (3 weeks-old) infested with russet mites (c. 1,500 mixed stages) and on three

uninfested control plants at the basis of the main stem. Three stem/petiole sections (6 mm

in length) were studied in detail, one in the middle of the main stem, one on the petiole of

the first true leaf (petiole 1) and one on the petiole of the second leaf (petiole 2) (leaves are

numbered from the bottom of the plant). Photographs (taken against a contrasting back-

ground) were taken of these sections and then used to count intact (=unaffected) and

amber-coloured Type VI trichomes (Luckwill 1943) (to facilitate counting this was done in

each of three consecutive subsections of 2 mm in length). This procedure was carried out

on day 0, 4, 7, 11, 14 and 18 after TRM infestation.

Results

Oviposition test

The oviposition rate of young A. limonicus females fed on a diet of (amply supplied) TRM

(all stages) did not significantly differ from that on a diet of (amply supplied) greenhouse

whitefly eggs. Young adult females of the predatory mite A. limonicus produced on tomato

leaf discs with fresh whitefly eggs as food (n = 13) on average 3.0 ± 0.1 eggs and on discs

with tomato russet mites (all stages; n = 8) as food on average 3.6 ± 0.2 eggs. These

mean oviposition rates are not significantly different according to a t test with unequal

sample sizes, assuming homogeneous variances (t = 1.095; p [ 0.2). Thus, if these two

prey-diets, i.e. their quality and/or quantity, were the only determinants of predator

establishment, we would expect equal establishment success of A. limonicus on tomato

plants infested by TRM and those infested by greenhouse whiteflies.

Establishment tests on TRM-infested plants

In contrast to the above expectation, the first series of preliminary experiments on estab-

lishment after 4 weeks showed a significantly higher number of predators on TRM-infested

plants than on whitefly-infested plants On plants with whiteflies ? Typha pollen numbers

of predatory mites reached up to 75.7 ± 32.1 adult mites per plant while on plants with

TRM it reached levels up to 1,274.0 ± 108.2 adult mites per plant within a time span of
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2 weeks. Mean numbers of predators per plant were significantly different according to a

Games–Howell test with unequal sample sizes and heterogeneous variances (since the

minimum significant difference MSD at the 5 % level equals 47.38 which is much less than

the difference between means).

Although prey densities had not been precisely quantified in the latter experiments, they

can be considered to represent an ample prey supply to achieve maximum reproduction.

Thus, we had no reason to assume that the observed difference in establishment success

was due to the amount of prey (and pollen as alternative food) present on these plants.

We also carried out a second series of experiments on predatory mite establishment,

differing from the first in that samples of predatory mites, as well as TRMs, were taken

from different strata in the plant. The results, given as mean and SE of the percentages per

plant (Table 1), did not require statistical treatment because the variables of interest, i.e.

the proportions of the (TRM and predator) population we recorded in the top stratum,

differed more than 3 times their SE and suggesting that the TRM populations spread much

faster from the lowest stratum (where they were introduced on the plant) to the top stratum,

than do the predatory mites (also released at the bottom of the plant). Direct observations

on the tomato plants showed that progress of the predatory mites to upper parts in the plant

was strongly synchronized with the change in trichome density due to their collapse.

Small-scale biocontrol test

As a final test, replicated experiments on biocontrol of TRM with the predatory mite A.
limonicus and on TRM dynamics without predators showed that the bottom stratum of the

plant harbours very few TRM and that the predator population stabilizes rapidly, but is much

smaller than originally released (c. 2 %) (Fig. 1; lower panel). The middle stratum shows an

initial increase of the TRM population during the last week and this is slightly stronger in

absence than in presence of the predators (Fig. 1; middle panel). The predators were hardly

found in the middle stratum until in the last week of the experiment. In the top stratum the

TRM population increased strongly during the last 3 weeks and this was clearly strongest in

absence of the predators (Fig. 1; top panel). Predators were rarely ever found in the top

Table 1 Percentage of total population of predatory mites (all stages of Amblydromalus limonicus)
(mean ± SE) per tomato plant in one of three strata (bottom, middle, top), 3 and 4 weeks since 10 females
were released on the leaves at the bottom of a tomato plant that received c. 2,500 tomato russet mites, 4 days
before predator introduction

Period Stratum Establishment success (%)

Tomato russet mites Predatory mites

3 weeks

Top 13.3 ± 2.5 0.0 ± 0.0

Middle 53.8 ± 3.5 14.8 ± 9.1

Bottom 32.9 ± 4.8 85.2 ± 9.1

4 weeks

Top 58.4 ± 5.1 11.5 ± 2.8

Middle 35.3 ± 4.6 43.6 ± 7.3

Bottom 6.2 ± 1.6 44.8 ± 8.2

Number of plants is 10 (=replicates). Data are not statistically analyzed because the differences between
mean % TRM and predators in the top stratum (after 3 and 4 weeks) are much larger than 3 times their SE
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stratum and only very few individuals appeared in the last week of the experiment. We

conclude that, even though there was little or no prey at the bottom of the plant, we had not

recorded any predators that had moved up to the higher strata until the last week of the

experiment, whereas the TRM population readily spread to the top of the plant where their

populations build up starting from 3 weeks before the end of the experiment. Overall, there is

reason to think that the predator population had some suppressive effect on the growth rate of

the TRM population, but biocontrol was clearly ineffective. Differences in TRM population

at the last sampling date between plants with and without predators were not significant [two-

sample-test: p = 0.38 (top), p = 0.26 (middle), p = 0.12 (bottom), p = 0.27 (overall)].

Assessments of trichome deterioration in response to TRM infestation

A possible explanation for the differential establishment success emerged from direct

observations on the plants in this experiment. We noticed a striking response of tomato

Fig. 1 Population dynamics of tomato russet mites (grey diamonds) and predatory mites (Amblydromalus
limonicus; black squares) and of tomato russet mites (Aculops lycopersici; open grey triangles) in absence
of predators in three different strata (top, middle, bottom) of tomato plants over a period of 7 week. 5 leaf
discs, each with 280 tomato russet mites, were placed on leaf 3–7 on day 0. Six days later, 140 predatory
mites (all mobile stages) were randomly distributed over leaf 3–7. Means are shown as points (triangles,
diamonds, squares) and associated vertical bars represent SE. Each of the two treatments was replicated
three times. The vertical arrows indicate the approximate time period in which glandular hair fall-over takes
place on the stems. Differences in TRM population at the last sampling date between plants with and
without predators did not test significantly different using the two-sample-test (see ‘‘Results’’ section)
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plants to TRM but not to whiteflies: during TRM-infestation first the colour in the glan-

dular heads changed from oblique to amber-coloured, followed by drying out of the stalk

and finally rapid deterioration of both glandular and non-glandular trichomes altogether.

Massive trichome collapse could be observed wherever TRM numbers increased beyond a

threshold of c. 50 mobiles per cm2 which is a density easily reached within days after a

moderate starting infection. Trichome collapse, especially that of the glandular trichomes,

may remove a barrier critical to the establishment of predatory mites. Detailed observa-

tions on changes in the trichomes (see supplementary material with video providing

slideshow) showed that (1) trichome collapse only occurs on plant parts with TRM but not

systemically, that (2) non-glandular trichomes deteriorate within 3 days, that (3) glandular

trichomes turn amber-coloured after 3 days and that (4) they collapse within a week,

depending on the density of TRM. Thus, the sampling time intervals selected in the

experiments to follow (3–4 weeks in the establishment test; 7 weeks in the biocontrol test)

are long enough to get severe trichome deterioration.

Quantitative assessments of Type VI trichomes on stems and petioles of TRM-

infested tomato plants showed a gradual decline in intact trichomes and a gradual

increase in amber-coloured trichomes over a period of 18 days (Fig. 2). Since trichome

collapse is a progressive phenotype and the time points are dependent data we only

Fig. 2 Changes in the number of intact Type VI trichomes (left panels) and amber-coloured Type VI
trichomes (right panels) over a period of 18 days. Data represent means and standard errors of the number of
trichomes per section (6 mm in length) per plant. Upper panels relate to main stem sections, middle panels
to petiole 1 sections and lower panels to petiole 2 sections. For the number of intact type VI trichomes on
stems the lines start to separate significantly on day 4; on petiole 1 on day 11 and on petiole 2 on day 11.
Moreover, trichome ambering became apparent on the stems on day 7; on petiole 1 on day 7 and on petiole 2
on day 10 (t test, a = 0.05)
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determined the time point at which the control and treatment line (Fig 2) numerically

start separating using a t test on the individual time points at a B 0.05. For the number

of intact type VI trichomes on stems the lines start to separate significantly at day 4; on

petiole 1 on day 11 and on petiole 2 on day 11. Moreover, trichome ambering became

apparent on the stems on day 7; on petiole 1 on day 7 and on petiole 2 on day 10.

However, uninfested plants (with or without apex/leaf removal) do not show trichome

deterioration at all. This confirms the visual observations in the experiments on predator

establishment and TRM biocontrol.

Discussion

As reported for several other phytoseiid mites (see introduction), the generalist predatory

mite, A. limonicus, can feed and reproduce on a diet of TRM alone when offered on tomato

leaves with low trichome densities. This explains why our preliminary trials indicated that

the predatory mite was able to establish and rapidly build up a population on whole tomato

plants heavily infested with TRM. However, despite successful establishment this predator

was not able to control TRM on whole plants inoculated with TRM. Possibly releasing

more predatory mites, or more frequently, could improve their capacity to control TRM.

Nevertheless, in the presence of an initially high and expanding population of predatory

mites, the TRM population continued to increase, albeit at a slower pace (probably due to

predation). In the course of the biocontrol experiment we observed that over time there was

a gradual decrease in active glandular trichomes on leaves, petioles and stems because they

dried out and collapsed. This process required days rather than hours and became apparent

only after TRM had developed a population for several days up to a week.

We hypothesize that the ineffective control by the predatory mites arises because the

TRM populations escaped predator control by moving up in the plant at a rate faster than

their predators. The relatively slow upward movement of the predators in the plant cannot

be due to arrestment of the predators in the lowest strata because here the leaves had very

low TRM densities (and no other prey/food) during the last weeks of the experiment.

Hence, there must be another factor impeding their spread over the plant. Although in

general the reasons for residing in a particular stratum of the plant can be many and varied

(e.g. abiotic conditions in the mid-stratum as argued by Shipp and Wang (2003) or in the

apex as argued by Onzo et al. 2010), our experience with A. limonicus (and other phy-

toseiids) on trichome-free plants is that they stay, or now and then move to, wherever the

prey is positioned on the plant (e.g. see also Weintraub et al. 2007; Onzo et al. 2009).

Hence we hypothesize that this delay in predator response to TRM movement in the tomato

plant arises from the time required for TRM to reach densities sufficiently high to give rise

to the collapse of tomato trichomes.

The collapse of glandular and non-glandular trichomes could either be the result of

mites directly feeding on the trichomes or from mite-induced physiological changes in the

plant. Preliminary data suggest that russet mites suppress JA defences in tomato (Glas and

Kant, unpublished data) reminiscent of some spider mite genotypes (Kant et al. 2008;

Sarmento et al. 2011). It is well known that a plant’s jasmonate metabolism can have a

profound impact on trichomes (Pauwels and Goossens 2011), i.e. on their development

(Traw and Bergelson 2003), density (Boughton et al. 2005) and chemistry (Li et al. 2004).

The amber discoloration of the glandular trichome heads that precedes their massive

collapse (this paper) was also observed during trichome hyperplasia in Quercus ilex tric-

homes upon attack by Aceria ilicis mites. Here, the discoloration was paralleled by an
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increased accumulation of simple phenolics and flavonoids within these trichomes (Karioti

et al. 2011). Hence, possibly the amber discoloration is due to accumulation of (oxidized)

proanthocyanidins and/or their polymers (Zhao et al. 2010). However, if such changes can

be the cause of both glandular and non-glandular trichome deterioration or whether these

are only symptomatic of it, remains a question to be elucidated.

Trichome collapse, especially that of the glandular trichomes, may remove a barrier

critical to the establishment of predatory mites. This may take effect especially when they

have to move from leaf to leaf because tomato cultivars commonly used in practice exhibit

the highest densities of glandular trichomes on the stems (Van Haren et al. 1987; Sato et al.

2011). However, TRM is too small to be hindered by tomato trichomes and whitefly

nymphs hardly move over the plant surface whereas their adults can fly. Most notably,

trichome collapse did not occur all over the surface of the plant, but only where TRM

reached sufficiently high densities. Thus, these pest arthropods are not hindered by the

glandular trichome ‘forests’ on stems of tomato plants. Moreover, the predatory mites

under study established best and built up a (6 times larger) population where the surface of

the tomato plants was cleared from glandular trichomes. Taken together this may explain

why A. limonicus is able to establish on TRM-infested tomato plants but not on whitefly

infested plants and/or plants supplied with pollen. Based on the experimental results and

direct observations we formulate a hypothesis in an attempt to explain them by one

unifying principle. We propose that (1) forests of glandular trichomes, i.e. where they

occur at high densities on the plant surface, provide a refuge to TRM by protecting them

against predatory mites, that (2) TRM feeding induces the plant to deteriorate trichomes (or

alternatively, TRM directly causes trichomes to fall-over), that (3) this allows predatory

mites to move on the plant surface unhindered by glandular trichomes, thereby enabling

them to find and consume TRM, and that (4) the process of trichome fall-over is local and

proceeds slow enough to provide TRM with enemy-free space elsewhere on the plant,

thereby making biocontrol with predatory mites unsuccessful. The first conjecture is

supported by the observation that the per capita rate of predation on TRM on a plant

surface devoid of glandular trichomes is much higher than that on a plant surface with

these trichomes, and that TRM tends to seek refuge in the trichome forest especially when

there are predatory mites around (Simoni and Sabelis 2010). Note, however, that the very

high densities of glandular trichomes found on wild type tomato can provide resistance

against TRM (Leite et al. 1999), which could explain why natural selection did not favour

TRM genotypes that keep trichomes intact. The second conjecture requires in-depth plant

physiological research. From a functional point of view (sensu Tinbergen 1963), the plant

benefits from trichome deterioration because TRM becomes more exposed to predation

provided these predators are around (whereas it would otherwise be destroyed by TRM).

Moreover, TRM may also experience direct negative effects from glandular secretions (see

e.g. Wagner et al. 2004; Shepherd et al. 2005) or from contact with glandular trichome

heads (Peiffer et al. 2009). If so, TRM may attempt to reduce this by disturbing trichome

functioning and integrity, but we have no observations so far to substantiate this. The third

conjecture is actually the one most strongly supported. Establishment of phytoseiid mites

on TRM-infested tomato has been observed not only in the experiments with A. limonicus
presented in this article, but also in experiments with Amblyseius swirskii (Athias-Henriot)

and with Typhlodromips montdorensis (Schicha) (Van Houten, pers obs.). The fourth

conjecture requires experiments to assess the rate of trichome collapse during the ontogeny

of a tomato plant in response to TRM feeding initiated on leaves of different age. Also, it

would be of interest to find tomato genotypes that exhibit systemic induction of trichome

deterioration in response to TRM attack.
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We emphasize that our hypothesis requires extensive and detailed experiments before it

can be accepted or rejected. Our motivation to formulate this hypothesis is that—by

making it explicit—it may stimulate critical tests and thereby advance our insight into the

underlying mechanisms determining biocontrol successes or failures on plants with glan-

dular trichomes, such as tomato.

Open Access This article is distributed under the terms of the Creative Commons Attribution License
which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the
source are credited.
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