
Applied Intelligence
https://doi.org/10.1007/s10489-024-05493-z

A rehearsal framework for computational efficiency in online continual
learning

Charalampos Davalas1 · Dimitrios Michail1 · Christos Diou1 · Iraklis Varlamis1 · Konstantinos Tserpes1

Accepted: 29 April 2024
© The Author(s) 2024

Abstract
In the realm of online continual learning, models are expected to adapt to an ever-changing environment. One of the most
persistent hurdles in this adaptation is the mitigation of a phenomenon called "Catastrophic Forgetting" (CF). This critical
condition occurs when models trained on non-identically distributed data lose performance in previously learned tasks.
Rehearsal methods, leveraging the ability to replay older samples, aim to address this challenge by incorporating a buffer of
past training samples. However, the absence of known task boundaries complicates the adaptation of current CF mitigation
methods. This paper proposes a method attuned to data stream characteristics and online model performance in a resource-
constrained environment. The number of training iterations and learning rate emerges as crucial hyperparameters, impacting
the efficacy and efficiency of online continual learning. Up to this point, we propose a combination of Experience Replay
methodologies, a Drift Detector, and various training convergence policies, specially tailored for scenarios with unknown
task boundaries. Experimental results demonstrate the effectiveness of our approach, maintaining or enhancing performance
compared to baseline methods, while significantly improving computational efficiency.

Keywords Catastrophic forgetting · Continual learning · Online learning · Image classification experience replay · Rehearsal
methods

1 Introduction

Continual learning is a rapidly evolving field of machine-
learning research, with several applications such as lifelong
learning for robotic vision [1] and multi-task model learning
[2, 3].

Continual learning methods aim to mitigate catastrophic
forgetting [4] which occurs when training data drawn from
different distributions are incrementally presented to the
model , essentially violating the i.i.d. assumption [5]. Its
immediate effect is the decrease of model effectiveness on
previously learned tasks, as the model learns with the newly
presented training data. The same issue has also been known
as the “stability-plasticity dilemma” [6] for machine learning
models [7], which refers to the trade-off between adapting a
model’s parameters to new information and maintaining its
effectiveness on previously seen samples.

B Charalampos Davalas
cdavalas@hua.gr

1 Department of Informatics and Telematics, Harokopio
University of Athens, Athens 17778, Greece

Continual learning remains a challenging problem for
deep neural networks and has attracted significant research
interest recently [7], with methods addressing several vari-
ations of learning scenarios, depending on the information
available to the learning algorithm. Someof themethods have
been proposed to address these issues under the assumption
that (i) the model learns a sequence of well-defined, dis-
joint tasks and (ii) the task boundaries are known [8]. This is
usually simulated by splitting a dataset into smaller, disjoint
subsets (e.g., corresponding to different classes, or differ-
ent appearances of the same classes) [3]. Other methods aim
to address the more challenging online continual learning
problem [9], where training data arrive as a stream, without
well-defined tasks or with unknown task boundaries.

Online continual learning introduces additional chal-
lenges. For a specific task, the model does not have access
to all the task data before training and cannot plan the train-
ing process. In the case of a continuum of data, the types
of tasks and the task boundaries are unknown. Furthermore,
when operating in constrained resource setups (e.g. in edge
computing and critical application environments) there is a
need to keep the computational complexity low,which in turn

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10489-024-05493-z&domain=pdf
http://orcid.org/0000-0003-4445-4314

D. Charalampos et al.

imposes significant memory and computational constraints
[10].

In this work, as a part of recent advances such as [11],
we propose a set of training strategies for rehearsal-based
online continual learning, aiming to improve computational
efficiencywithout compromisingmodel effectiveness. These
strategies involve decisions on when to train, as stream train-
ing data become available, as well as on how to train, in terms
of the number of required training iterations and learning rate.

This work expands significantly our initial work in the
field [11] by testing all baselines and method combinations
with additional datasets such as the permutations of the
MNIST digits dataset [12]. In this work, also the CIFAR10
dataset [13] is used with different buffer sizes as an extension
of the experiments. Additionally, extended hyperparameter
and heuristic rules testing are included in the Ablation Study
(Section 6). These additions provide a more transparent view
of each component and its contribution to the final results.

Experiments on image classification tasks demonstrate
the importance of selecting an appropriate training strat-
egy in online continual learning scenarios. Results show that
the proposed methods achieve higher classification accuracy
with lower computational complexity compared to simpler
baseline rehearsal strategies, such as fixed-iteration training.

The structure of the paper is as follows: Section 2describes
the online continual learning setting and the implications that
may arise when samples arrive at a stream with unknown
boundaries between tasks. It surveys the main rehearsal
methods and their computational limitations and summa-
rizes the contributions of our work. Section 3 describes
the online continual learning setting used in this work and
gives an algorithmic description of our suggested framework.
Section 4 details the heuristics that help our method to
determine how to train the model when rehearsal is needed.
Section 5 illustrates the experimental setup and our results,
whereas Section 6 performs an ablation study demonstrating
the value of individual heuristics and strategies described in
Section 4. Finally, Section 7 summarizes the main findings
and discusses the future steps of our work.

2 Related work

Continual learning approaches can be broadly categorized
into regularization, rehearsal (or replay), and parameter
isolation methods [7]. Regularization methods, use a cus-
tom loss function with a regularization term that helps avoid
catastrophic forgetting when learning with new data. Replay
methods store examples or generate synthetic ones in order
to train the model using a mixture of old and new samples,
or use them to constrain the optimization. Finally, parameter

isolation methods dedicate different parts of the neural net-
work to different tasks. Consequently, they try to support all
tasks by either dynamically adjusting the architecture or by
re-adjusting the per-task parameters [2].

Rehearsal methods might require memory for buffer
storage unlike other methods, such as ElasticWeight Consol-
idation (EWC) [14] or Learning-Without-Forgetting (LwF).
The work of [15] summarizes and tests all known Rehearsal-
Free methods in that area. An issue with EWC is that
recomputing the Fisher InformationMatrix can become com-
putationally demanding. Calculation of the Fisher Diagonal
requires all the model weights and in an online training setup
this can become prohibitive. Another important issue is
that the model distillation proposed in the baselines of [15]
requires additional methods for providing a decent result [7].
In most works such as [16] Rehearsal-Free methods are best
used as additional components for increasing classification
accuracy. These additions often result in more computations
and memory. In the case of model distillation, an extra copy
of the model will be stored and used for additional model
inferences in each training step.

Rehearsal methods are promising candidates for real-
life incremental learning scenarios, such as online continual
learning, since they have relatively simple implementations
[7, 17, 18] which can be adapted in terms of computa-
tional and memory demands. Their effectiveness, however,
is largely affected by two distinguishing factors: i) the size of
the buffer that stores training samples from previous tasks,
and ii) the strategy ofmixing old and new task samples during
rehearsal.

One of the most popular replay-based methods is iCaRL
by Rebuffi et al. [19]. iCaRL is a class incremental method
for image classification without forgetting. It is based on the
use of a set of image samples that is dynamically updated to
include the samples nearest to the class mean in the learned
representation space. This set is used both for rehearsal and
classification via the Nearest Class Mean (NCM) method.
This dynamic buffer is updated via a combination of herding
selection of new exemplars and priority-list-based removal
of less representative exemplars. iCaRL has been created for
solving the class incremental learning problem, where the
task identities are unknown, but is not specifically designed
for online learning.

Experience Replay (ER) [20] is another approach that is
based on the concept of mixing old and new task samples
in order to mitigate catastrophic forgetting. ER, which has
been successfully employed in reinforcement learning and
supervised learning tasks [21], maintains a dynamic buffer
that is updated at every time step. Samples are randomly
picked by the buffer and mixed with the new samples that
arrive in a stream to create a synthetic batch, which is then

123

A rehearsal framework for computational...

used for training in the next iteration. Experiments show that
even a small number of samples from the buffer can make a
significant difference to mitigate forgetting.

The Greedy Sampler and Dumb Learner GDUMB [17]
method is the online equivalent of experience replay, mean-
ing that it can be adapted on a more stream-based approach
a simple rehearsal strategy and buffer update that focuses on
the greedy sampling of new knowledge and is a proof of the
simplicity of memory-based approaches. The methods pro-
posed in this paper, follow a similar principle in terms of
adapting to stream-based learning of new data.

Similarly, the Gradient Episodic Memory (GEM) method
[22] regularizes the gradients employed for back-propagation
with the use of buffer samples, which are called episodic
memory. A common setting for testing the rehearsal approaches
is by streaming samples in small batches, each one containing
complete sets of samples for new tasks, with known tasks and
clear task boundaries [7, 19]. This task-incremental setting is
a simplification of the general continual online learning set-
ting, in which the tasks and their boundaries are completely
unknown.

Between the two ends, the relaxation approach proposed
in [23] employs a Bayesian method to infer the task con-
text. Similarly, an algorithm that uses the Shannon entropy
as a measure to select representative samples from previ-
ously seen classes, without being affected by the fact that
task boundaries are unknown is presented in [24]. However,
the applicability of these solutions in resource-constrained
applications may be limited by their computational complex-
ity.

Another prominent approach for continual online learn-
ing is based on a combination of model distillation and
iCaRL [9]. This method proposes the use of a custom dis-
tillation loss with an offline baseline model for retraining
and the customization of the iCaRL method for online learn-
ing. This combination of proven methods shows promising
results although its implementation is multi-faceted and can
be resource-intensive. In its base, the Incremental Learn-
ing Online Scenario adopts the iCaRL principles in terms of
exemplar use and NCM classification, and LwF-based dis-
tillation. However, it improves some intermediate steps and
categorizes the training itself into various phases in a com-
bination of online and offline training.

In all the above-mentioned methods, little emphasis is
placed on the evaluation of their performance in terms of
memory requirements and timeliness (i.e. the time to embody
new knowledge once it arrives) [25]. A rather small body of
literature is dealing with these issues. A representative case
is Latent Replay [10], which emphasizes storing and using
the output of intermediate layers for optimizing computa-
tional complexity and memory usage. As in the previously

reported cases, this approach also assumes a priori known
task boundaries.

Another case that investigates the computational cost of
the training procedure is [26]. In this work, the authors
propose the replacement of the Softmax activation func-
tion with a Balanced Softmax, which reduces the need for
an additional fine-tuning step during training. Although this
approach results in a bias towards new tasks, it tackles the
important, real-world, problem of memory size limitations.

Recent works on rehearsal-based methods such as [27],
suggest a prototype-based selection of samples to update the
buffer. The buffer update is based on the cosine distance of the
prototypes to achieve a balance between samples that are eas-
ier to classify correctly before training and samples that are
further from a model’s knowledge. This method is best used
in the scenario where a model is updated frequently to incor-
porate new knowledge, which is not always optimal due to
possible hardware restrictions. Also, on some occasions, the
data stream might contain samples that can be classified cor-
rectly without training, therefore some training cycles might
be unnecessary.

Another recent work is [28] where repeated data augmen-
tation is used, for rehearsal training to maintain variety and
bias-resistance during training. This method makes use of
data augmentation which adds extra memory requirements
for the newsamples.Also, the constant requirement of repeat-
ing this process adds significant memory and computational
overhead, thus requiring more resources.

The work of [16] is a stronger alternative to experience
replay tested on task-incremental and domain-incremental
experimental conditions. This alternative maintains two
models formodel distillation. This work ismostly focused on
incremental learning in the same manner as the majority of
the continual learning literature, excluding the stream-based,
task-agnostic scenarios that often occur in real events.

All the aforementionedmethods do not consider amodel’s
ability to classify without errors at any given time step.
This means that a model is unnecessarily over-trained thus
adding to the time complexity, which can be proven crit-
ical in a resource-constrained setup. Also, in practice, the
changes between tasks and the distribution of data within the
stream may be unknown. Most of the aforementioned meth-
ods assume that we are able to have a beforehand knowledge
of when a task will be altered. This task agnosticism can be
an additional cause of the degradation of the model perfor-
mance, due to possible i.i.d corruption.

This work is targeting the general online continual learn-
ing setting, where input samples are provided by a stream
and correspond to tasks with unknown boundaries, while
timeliness and memory efficiency are of equal importance
to complexity, plasticity, scalability and accuracy. Those

123

D. Charalampos et al.

characteristics allow our work to move ahead of previous
research and deliver the following important contributions:

• The introduction of a Drift Decision Mechanism for
determining when training is needed. This mechanism
offers a significant advantage since it avoids unnecessary
training and reduces the overall training time. Another
advantage is that this mechanism is suitable for detect-
ing any transitions between classification tasks (i.e. task
boundaries), and therefore dealing with the issue of task
agnosticism.

• The proposition of an Adaptive Rehearsal Tuning mech-
anism as a solution for customizing the rehearsal correc-
tion to the current model status, in a setup on which the
model status is ever-changing in unforeseen ways. Our
approach solves the problem of fine-tuning the rehearsal
training at very precisemoments in time, in an online data
stream, where the distribution of data in terms of classes
and tasks is unknown. Another important feature is the
additional dynamic heuristics which allow for higher-
level adaptation in different datasets and resources.

3 Online continual learning

3.1 Scenario

The working scenario considers a constant stream S of anno-
tated data that is used for model training in an online fashion
(Fig. 1). The stream of data is not i.i.d. (independent and
identically distributed), but it is sampled in each period from
different tasks. The task boundaries and the task identities
are not known in advance. This adds difficulty compared to a
scenario where batch training takes place with all data avail-
able from each task.We focus on classification problems and
therefore each task is a sequence of annotated samples from
a set of classes.

For simplicity, we assume that the data stream comes in
batches of constant size (e.g., 32) comprising samples of any
task. This setup is general enough to accommodate various
scenarios, such as a stream composed of large and few tasks,
or a stream with a fast succession of multiple small tasks. In
all cases the stream is seen as a sequence of batches, each
one comprising a set of samples Bt = (Xt ,Yt), where t ≥ 1
represents the batch at time step t . The task corresponds to
a subset of batches that are observed sequentially. When the
task changes, batches of samples that belong to new classes
appear in the stream.

Our objective in this scenario is to continuously train a
model, where the model snapshot ht+1 results from training
ht with the corresponding batch Bt of time step t . As the
model learns using data from new tasks through this pro-
cedure, the final goal is to mitigate forgetting of old tasks,
while at the same avoiding unnecessary training iterations
(i.e., rehearsals), to keep computational complexity minimal.

3.2 An online rehearsal framework

In this section, we describe a general rehearsal framework,
which is shown in Fig. 2 and is more formally defined in
Algorithm 1.

Assume we are at time step t . Let Bt = (Xt ,Yt) be the
batch of newly acquired samples from the stream and Ht be
the model from the previous time step. We denote as St a
possible collection of local state variables that the algorithm
needs to maintain during its execution (e.g. counters, etc.) in
order to make informed decisions.

During training, we maintain two buffers, a postponed
buffer Pt that keeps samples that have arrived since the
last rehearsal, and a rehearsal buffer Rt that stores a mix
of samples used for rehearsal. The postponed buffer is ini-
tially empty and the rehearsal buffer initially contains a
user-selected fixed number of q samples per class where
q =| Rt | /n with n the number of classes. The samples

Fig. 1 Online continual
learning scenario. Each batch
B1 . . . Bt , Bt+1, . . . belongs to a
specific classification task
T1, T2, . . . and
H1 . . . Ht , Ht+1 . . . is the
sequence of produced models
after each step

123

A rehearsal framework for computational...

Fig. 2 Proposed strategy
outline. If there is no change
between tasks (Left), the drift
detection mechanism stays idle
and the new batch Bt is added to
Pt , Rt . When training is needed
(Right) the next batch Bt+1 is
used together with both the new
rehearsal buffer Rt+1 and the
new postponed buffer Pt+1. All
the aforementioned data are
mixed for rehearsal training

of Rt are initially selected uniformly at random, while the
size remains constant.

At each time step, the algorithm first applies a change
detection mechanism to decide whether to train with the
new batch of samples or not. If not, the new batch is sim-
ply appended to the postponed buffer Pt and the algorithm
returns. Assume now that a change is detected and the algo-
rithm decides to train the model at the current time step. The
postponed buffer may be empty if training took place in the
previous time step, or it may contain multiple batches in case
the last training took place in previous time steps. The algo-
rithm then employs a rehearsal strategy (see Section 4 for the
supported options). Part of the strategy is to create training
batches by combining the newly collected samples Pt ∪ Bt

with samples from the rehearsal buffer Rt .
After each training step, the rehearsal buffer Rt is updated

by deciding which samples to replace with samples from
Pt or Bt , while the whole postponed buffer is cleared. In
the proposed framework the update of the rehearsal buffer
is performed using the method proposed by He et al. [9].
This method is a simplified variant of the prioritized example
selection algorithm [19] that is based on herding ,also known
as Herding Selection. The main difference between the two,
which is in linewith our performance requirements, is that the
latter maintains a running average estimation for each class,
instead of recalculating the sample average at each time step.

Herding Selection updates a buffer based on a model’s
representation average to ensure a more consistent set of rep-
resentatives from each class. An extra feature is the ability to
limit the number of the aforementioned representatives, thus
controlling the buffer size whilst maintaining class balance
during training cycles.

Based on the above, at each time t the rehearsal buffer
contains a set of q samples (Ey

1 , . . . , Ey
q), y ∈ [1, . . . , n],

wheren is the number of classes seen so far. The set is updated
at each time step to always contain q = |R|/n samples per
class. When classes are encountered for the first time, the
number of samples per class is dynamically updated to keep
the total memory requirements constant.

Algorithm 1Model and buffer update mechanism (time step
t).
1: Input: model Ht , batch Bt = (Xt , Yt) , state St (global variables

from previous time steps), postponed buffer Pt , rehearsal buffer Rt
2:
3: Output: updated Ht+1, St+1, Pt+1, and Rt+1
4:
5: Alarm ← detectChange({Ht , St , Pt ∪ Bt , Rt })
6:
7: if Alarm = False then
8: Pt+1 ← Pt ∪ Bt
9: Update to a new state St+1
10: Ht+1 ← Ht
11: Rt+1 ← Rt
12: else:
13: Ht+1, St+1 ← AdaptiveRehearsalT raining({Ht , St , Pt ∪

Bt , Rt })
14: Update Rt+1 from Rt , Pt ∪ Bt
15: Reset postponed buffer: Pt+1 ← ∅
16: end if
17:
18: return {Ht+1, St+1, Pt+1, Rt+1}

Algorithm 2 describes a generic training and buffer update
mechanism that is applied when training takes place. The
number of training iterations (method i ter) and the learn-
ing rate (method lrs) are being chosen using the methods
described in Section 4. After redefining its hyper-parameters
themodel is ready for the required stochastic gradient descent
steps (method SGD).

123

D. Charalampos et al.

Algorithm 2 AdaptiveRehearsalTraining.
1: Input: model H , postponed buffer P , rehearsal buffer R, state S

(global variables)
2:
3: Output: updated model H ′ and state S′
4:
5: Set Rehearsal Iterations: N = i ter(S, P, R)

6: Set new Learning Rate Schedule: η = lrs(S, P, R)

7:
8: for all i ∈ 1, . . . , N do
9: Create a set of new batches D by mixing: D = mix(i, S, P, R)

10: for all d ∈ D do
11: H ′, S′ = SGD(H , d, eta, lrs)
12: end for
13: end for
14: return Updated model H ′ and state S′

To make this abstract framework applicable in practice,
we need methods that allow us to determine (a) if additional
training is currently required, (b) how samples from the post-
poned and rehearsal buffers should be mixed for training, (c)
how many iterations to use for training the model at the cur-
rent time step, (d) what learning rate to use.We address these
questions, in the section that follows.

4 Rehearsal strategies

This section presents the alternative ways to decide when
(line 5, Alg. 1) and how (line 13, Alg. 1) to perform the
rehearsal during training. Algorithm 2 gives a high-level
overview of the online training process. Note that all sug-
gested methods and heuristics can be tuned and switched in
various independent setups offering an adequate palette of
different online learning setups, thus creating a more flexible
forgetting mitigation plan.

4.1 Continuous rehearsal and experience replay

The baseline strategy on which we make our comparative
study is a variant of Experience Replay [18]. This method is
based on the online application of experience replay similar
to the GDUMB [17]. The only difference is the usage of
herding selection instead of greedy sampling (as proposed by
GDUMB).The herding selection buffer ensures class balance
and is commonly used in the most well-established continual
learning methods. Our baseline does consider recent works
and additions tomake an evenmore challenging testing setup
for our methods.

Thismethod assumes that training takes place in each time
step. At each time step t , training happens for a fixed number
of iterations (epochs) using the latest batch Pt ∪Bt = Bt (for
this strategy the postponed buffer Pt is always empty) and
batches from the rehearsal buffer Rt . In each iteration, the
latest batch Bt is combined with a different batch r j ∈ Rt in

order to produce two new batches containing 50% samples
from Bt and 50% samples from r j each. In order to make use
of the entire rehearsal buffer, the position of the batch used
in each time step is kept in a global variable and the rehearsal
batches (i.e. Rt) are employed in a round-robin fashion. In
the simplest case, only one iteration is used per batch [18].
In what follows we use ER-n to denote this baseline method
with n iterations (ER-1 for a single iteration).

4.2 Drift activated rehearsal

In the general online continual learning scenario defined in
Section 3.1, the task boundaries are unknown. A solution for
deciding when to train (instead of applying a constant train-
ing schedule) is to use a concept drift detector [29]. From the
concept Drift Detectors that are available in the literature, we
choose the ECDD detector [30] which uses exponentially
weighted moving average charts (EWMA) as an indicator
of divergence between samples. It is a single pass method
with O(1) update in each time step, which makes it suitable
for performance-critical, streaming applications. The ECDD
detector is a simple and popular solution [31] for drift detec-
tion, so in the following, we describe the internal mechanism
of this particular Drift Detector and leave as future work the
task of studying different and more sophisticated drift detec-
tion mechanisms.

Samples in the stream are sequentially presented to the
classifier, and at each time step we examine whether the pre-
dicted class label was correct (i.e. Xt = 0), or incorrect (i.e.
Xt = 1). The ECDD detector perceives {Xt } as a sequence
of observations from a Bernoulli distribution. Detecting con-
cept drift becomes the problem of detecting an increase in
the Bernoulli parameter p corresponding to the probability
of misclassification. The ECDD detector maintains an esti-
mate Zt = (1− λ)Zt−1 + λXt of the current mean μt along
with a second estimator p̂0,t = 1

t

∑t
i=1 Xi , which changes

more slowly and better estimates the probability before the
change (event). Given estimates of σ̂Xt and σ̂Zt ECDD first
computes a control limit, Lt based on the methodology pre-
sented in [30]. If Zt > p̂0,t + Lσ̂Zt , then ECDD raises a
concept drift flag.

During time step t all samples of batch Bt are given to the
Drift Detector which updates the estimators. Since new sam-
ples arrive in a batch Bt , {Xt } can be viewed as a sequence of
per-batch observations that contains information about how
many samples from Bt when classified incorrectly. The fol-
lowing heuristic rules are used to decide whether to train:
(i) Zt > p̂t,0 + Lt σ̂Zt , which is the original rule of ECDD,
(ii) Ut > p̂t,0 + 2σ̂Ut i.e., the current batch error Ut must
not be too high (two standard deviations above the estimated
mean), (iii) Zt > ε, the running average of the error must not
exceed a user-defined limit, and (iv) no training during the
last μ time steps, where ε and μ are user-defined thresholds.

123

A rehearsal framework for computational...

Algorithm 3 detectChange.
1: Input: model logits mout , ground truths, y, lambda lam, average

run length ARL
2: Output: Drift Flag value isDri f t
3:
4: isDri f t = False, Z0 = 0, p̂0,0 = 0
5:
6: for all mout , y do
7: Xt = 0 if argmax(mout) = argmax(y) else Xt = 1
8: p̂0,t = t

t+1 p̂0,t−1 + 1
t+1 Xt

9: Compute estimates of σ̂Xt and σ̂Zt

10: Zt = (1 − λ)Zt−1 + λXt
11: Compute Lt (Method precomputed tables)
12: isDri f t = True if Zt > p̂0,t + Lt σ̂Zt

13: end for
14: return isDri f t

Reasonable choices are ε = 0.2 for the error threshold, and
μ = 20 for the no-training time steps threshold. Assuming
a constant number of iterations for training, the main differ-
ence with the ER-n method is that, when it is triggered, the
postponed buffer Pt will likely contain multiple batches. In
each training iteration, we scan over all batches of Pt . For
each batch pi ∈ Pt we read a batch r j ∈ Rt and create two
batches which contain 50% from each. The buffer Rt is used
in a round-robin fashion using the updated position pointer
after each time step. We use DRIFTA-n to name the subset
of methods which performs a constant number of n iterations
when the Drift Detector is triggered.

4.3 Drift detection with buffer samples (double drift
detector strategy)

Depending on the size of the rehearsal buffer and the aver-
age length of the tasks, a possible adaptation to the previous
strategy is to include a second Drift Detector. This additional
detector monitors the classification failure rate from sam-
ples of the rehearsal buffer. Thus, the detection happens on
an artificially created stream of samples, which are drawn
uniformly at random from the rehearsal buffer, in each time
step. Training takes place when any of the two detectors are
triggered, based on the previously mentioned heuristics. The
only difference is that two versions of each estimate are kept,
for example, Zt for the new samples and Ẑt for the rehearsal
samples. The number of random elements which are used for
drift detection can change as a hyper-parameter. This mode is
more sensitive in terms of corruption detection at the cost of
a slightly more computationally expensive implementation.
We denote this strategy which uses a constant number of n
iterations for training as 2DRIFTA-n.

4.4 Setting the number of iterations dynamically

Instead of a fixed number of training iterations in each step,
we can dynamically adapt the number of iterations based on

the misclassification rate Zt . We use the following heuristic
rule where n is a hyperparameter.

nt = �2 ∗ n ∗ log2(1 + Zt)
 (1)

The heuristic rule behind dynamic iterations is a simple
binary logarithm equation that shifts between zero and 2 ∗ n
iterations based on the misclassification rate Zt . We used the
binary logarithm to achieve smoother adaptations when Zt

rate is close to zero or one. We denote this strategy that asso-
ciates the estimator Zt values with the number of iterations
as DRIFTA-DYN-n. Similarly, 2DRIFTA-DYN-n do the
same getting the output of both Drift Detectors and using
max(Zt , Ẑt) for the final decision.

4.5 Rehearsal based on convergence

Adifferent approach is to determine the number of necessary
rehearsal iterations based on the model convergence. In this
approach, we monitor the model’s loss L by keeping two
exponential moving averages, one short where:

EMAshort = (1 − αshort)EMAshort + αshortL (2)

and one long, where:

EMAlong = (1 − αl)EMAlong + αlongL, (3)

with αshort = 0.5 and αlong = 0.05 respectively. We stop
training when the two values converge, i.e. ‖(EMAlong −
EMAshort)‖ < ε for some hyper-parameter value ε. Note
that this approach can be used for any rehearsal strategy.
We denote this strategy as ER-CONV, DRIFTA-CONV and
2DRIFTA-CONV for a constant, drift-activated and two-
Drift Detector setup respectively.

4.6 Adjusting the learning rate

A last action that can affect the efficiency of the rehearsal
strategy is a learning rate schedule across iterations based on
a model’s state. This is more important in the drift-activated
methods, where multiple batches are collected before initiat-
ing the training. The simplest approach is to keep the learning
rate η constant, however as in regular training with i.i.d. data,
this is often suboptimal. Another approach is to initialize the
learning rate with a user-defined value at the beginning of
each time step and use a decay mechanism that modifies the
learning rate through training iterations. Finally, the drift-
activated methods can also use Zt and a predefined η value
to dynamically adjust the initial learning rate. A combina-
tion of the aforementioned approaches can help to further
improve the performance. Zt is used as an exponent to a
variation of the exponential function. The reason behind this

123

D. Charalampos et al.

is a fast adaptation of the learning rate if Zt is high. For the
initialization of the learning rate (LR) we use a simple rule
that sets it to LRnew = LR0 ∗min(100, 5∗ e3Zt)where LR0

is a pre-defined learning rate. For the decay of LR a simple
used-defined constant is enough as shown in our experiments.

5 Experiments

In this section, we define a robust experimental benchmark,
for testing both our propositions alongside the standard
rehearsal in an online setup based on Experience Replay.
The purpose of the experiments is to provide insight into how
ER-based methods can be improved and test the limitations
and benefits of each algorithmic setup. The methods will be
tested with an improved version of the Experience Replay
algorithm based on GDUMB [17], which can be viewed as
an online application of Experience Replay.

5.1 Experimental setup

5.1.1 Datasets

We use the CIFAR-10 image classification dataset [13] and
the MNIST digits dataset [8, 32] to evaluate the online con-
tinual learning strategies of Section 4. CIFAR-10 consists
of 60,000 images (50,000 training, 10,000 testing), sampled
uniformly from ten classes {0, · · · , 9} and MNIST consists
of 70,000 images (60,000 training, 10,000 testing), also sam-
pled uniformly from digits {0, · · · , 9}. Following the online
continual learning scenario described in Section 3.2, we split
the training data into five tasks, each one containing images
from two classes, i.e.,

Ti = [(x, y), y ∈ [2i, 2i + 1], i = 0, 1, 2, 3, 4] (4)

An online annotated image stream, S, is generated by first
sampling multiple images from the first task, then the second
task and so on

S = (T (0)
0 , T (0)

1 , T (0)
2 , T (0)

3 , T (0)
4 , T (1)

0 , T (1)
1 , · · ·) (5)

Each set T (j)
i has a fixed size of 3,200 images, grouped into

batches of 32 images, for a total of 100 batches per task.
Images in each batch are sampled uniformly at random from
the classes of the current task, Ti . For each experiment, each
task appears three times (i.e., j = 0, 1, 2). All experiments
use the same random seed for sampling and formodel param-
eter initialization, to ensure that experiments are comparable.

5.1.2 Model and pre-training

The base model in our experiments is the adaptation of
ResNet32 for the CIFAR dataset, as described in [33]. The
model is first trained offline for 100 epochs with a sub-
set of the CIFAR dataset consisting of 1500 images for
each of the 10 classes. As a result, the model used in the
experiments has gone through a "warm-up" training stage
but has not been fully trained. It achieves accuracies of
[0.805, 0.602, 0.732, 0.844, 0.854] for tasks T0-T4 respec-
tively. This model is used at the start of online training in
all experiments. In most occasions, in the continual learning
literature, a method keeps either one or two model weight
copies (two, in the case of model distillation techniques). In
this setup we only keep and update one copy of the model
weights.

5.1.3 Metrics

Each training strategy is evaluated using the following met-
rics, computed at each time step t . We denote as Ht (x) the
output of the model at time step t when the input is sample
x . The ground truth is denoted as ŷ

• Accuracy (At): Accuracy of the model evaluated in the
held-out test set D, averaged across all tasks, this metric
ismeasured on each time step For time step t the accuracy
is:

At = 1

‖D‖
∑

∀x∈D

{
0, Ht (x) = ŷ

1, Ht (x) = ŷ

• Current task accuracy (Ct): Accuracy of the model eval-
uated in the held-out test set, but only for the images
belonging to classes of the current task, Tt . For time step
t the Current accuracy for Tt is:

Ct = 1

‖DTt ‖
∑

∀x∈DTt

{
0, Ht (x) = ŷ

1, Ht (x) = ŷ

• Online accuracy (Ot): Accuracy in each batch Bt of
stream S at time step t, evaluated right before it is used
for training. This approach was also used in [9]. For time
step t the Online accuracy at time step t is:

Ot = 1

‖Bt‖
∑

∀x∈Bt

{
0, Ht (x) = ŷ

1, Ht (x) = ŷ

• Training iterations (Nt): Cumulative number of iterations
performed during stochastic gradient descent optimiza-
tion for every time step t . Less training iterations show

123

A rehearsal framework for computational...

a more efficient approach, although classification accu-
racy needs to be taken into account as well. Given that
the model and the batch size are the same across all
experiments, this metric can be used to compare the
computational complexity of different training strate-
gies. The tables below will include this metric as a ratio
Nt/max(Nt) where max(Nt) is the training iterations
count of the most computationally intensive method.
Unlike the rest of the aforementioned metrics, we aim
to reduce the amount of training within all experiments.

Each metric evaluates a different aspect of the model’s
effectiveness. Ct and Ot evaluate the effectiveness of the
model in the current task and data, respectively, while At

evaluates the overall effectiveness of the model (including
previous tasks). In addition to metrics computed at each t ,
we also report averages across t , such as Āt .

5.2 Experiment 1: motivation

This experiment demonstrates the benefits of an adaptive
training strategy in an online environment, as discussed
in Section 4. We compare three training strategies, which
include (i) online training without any further action, (ii)
experience replay with 1 training iteration [20] (ER-1), and
(iii) experience replay with 50 training iterations (ER-50).
In all cases, the learning rate was fixed to η = 0.01. Results
are visually illustrated in Fig. 3 and show the limitations of
training with continuous rehearsal methods in an online set-
ting.

It is clear that a static strategy of dealing with online learn-
ing is either subpar in terms of accuracy when iterations are
a few and in the case of (ER-50) the accuracy is achieved
by adding a very high cost in terms of computation, therefore
rendering this implementation insufficient

These results show that ER-1 is similar to not performing
any training at all. Performing several iterations per time step
(ER-50 in this case) leads to amodel that performswell only
for the current task, at the expense of the overall accuracy
(due to forgetting previous tasks).

It is apparent that between task changes,weoften see sharp
drops in the Current Accuracy metric, as shown in Fig. 3.
These fluctuations are caused by overfitting the model with
a specific task. The more per-step iterations a method uses
the harder is to recover between task training, the ER-50
method is the more prone to this trend due to the fact that it
trains the model at every step and every training step iterates
constantly 50 times, causing overfitting as a result.

All the experiments conducted, actually introduce tasks
that are occasionally radically different, in order to provide
a better insight of the limitations per method.

5.3 Experiment 2: comparison of training strategies

The goal of the second experiment is to assess the improve-
ment of the proposed training strategies in terms of both
effectiveness and efficiency. Figures 4 and 5 illustrate the
results for the MNIST and CIFAR-10 datasets respectively.
One can observe that DRIFTA-DYN-50 manages to main-
tain high accuracy in the current task, Ct , while requiring
significantly lower computation compared to ER-50.

Tables 1 and 2 show the average metrics and the 95%
confidence intervals of various ER-n methods, for n =
1, 10, 25, 50, the proposed methods as well as the computa-
tional requirements of each method (in terms of the number
of iterations). All methods are compared in terms of the num-
ber of training iterations, Nt , aswell as in terms of the average
accuracy metrics Āt , C̄t and Ōt .

Results demonstrate the benefit of using the proposed
drift-activated, dynamic and convergence-based rehearsal
strategies especially 2DRIFTA-DYN-n and 2DRIFTA-CO
NV. In the MNIST dataset, DRIFTA-DYN-n and 2DRIFTA
-DYN-n achieve approximately the same average accuracy
metrics as the best experience replay methods, for a signifi-
cantly smaller number of iterations (i.e., computational cost).
Similar observations can be made for the CIFAR-10 dataset,
and especially for convergence-based methods.

5.4 Evaluation of the permutedMNIST digits
problem

In previous experiments, the experiments involved model
training with a sequence of tasks that included disjoint
classes. In this section, we evaluate our model on a different
scenario, where each class may have different appearances
which are presented to our model sequentially. In practice,
we use the Permuted MNIST dataset [12]. Permuted MNIST
expands over the MNIST by creating tasks via fixed pixel
permutations. The first task is classifying all original digit
images, and each new task is a pixel-wise permutation of
the first task. Note that every permutation is constant for all
images of a task. The model has to classify correctly each
digit in the {0, · · · , 9} classes without any known correspon-
dence between images and tasks.

The ResNet32 model of previous experiments is also used
in this case. The model is first trained offline for 50 epochs
only with the original MNIST dataset, using only 500 sam-
ples per MNIST class. This model is then used for online
training in all experiments. Note that the model is originally
effective only for non-permuted digits. The buffer contains
samples from the 10 classes and 50 images per class. Each
task is created with 100 batches of 32 elements (i.e., not all
permuted MNIST digits are presented to the model during a
task).

123

D. Charalampos et al.

Fig. 3 Results from the
CIFAR-10 test on accuracy (At)
and current task accuracy (Ct)
with (a) 50 samples per class in
the buffer, and (b) 500 samples
per class. Continuous rehearsal
with 1 iteration (ER-1)
performs similarly to having no
rehearsal at all. ER-50
iterations perform better for 500
samples per class but require 50
times higher computational cost.
It also does not perform well for
50 samples per class. None of
these methods seems to be
satisfactory in a continuous
online learning setting

Fig. 4 Experiment on the
MNIST dataset measuring: (a)
average task accuracy At , (b)
current task accuracy Ct on the
range of t = 1000, · · · , 1500,
and (c) number of batches Nt
for t = 0, · · · , 1500 of the
stream for a rehearsal buffer
with 50 samples per class.
DRIFTA-DYN-50 is as
effective as ER-50 with a
fraction of the computational
requirements

123

A rehearsal framework for computational...

Fig. 5 Experiment on the
CIFAR-10 dataset measuring:
(a) average task accuracy At , (b)
current task accuracy Ct on the
range of t = 1000, · · · , 1500,
and (c) number of batches Nt
for t = 0, · · · , 1500 of the
stream for a rehearsal buffer
with 500 samples per class.
2DRIFTA-CONV is
consistently more effective and
efficient in this experimental
setup

The stream is built as:

S = (T0, T1, T2, T3, T4, T5, T6, T7, T8, T9, T0) (6)

with T0 corresponding to the classification of the original
dataset and each Ti , i = 1, · · · , 9, corresponding to a per-
mutation (9 permutations of the original dataset in total).

Figure 6 illustrates the results in terms of effectiveness,
comparing the ER-1 , ER-50 , DRIFTA-DYN-50 and
2DRIFTA-CONV rehearsal strategies. Furthermore, Table 3
shows average accuracy values, as well as the number of
iterations required by each method. Results indicate that for

a stream constructed using the permuted MNIST scenario,
the proposed methodology improves effectiveness in terms
of At , Ct as well as Ot , while at the same time significantly
reducing the required number of training iterations.

6 Ablation study

The proposed methodology addresses various aspects of
online continual learning with rehearsal, including the use
of a Drift Detector to determine when to train, as well as
strategies for determining the number of training iterations

Table 1 Comparison of the
different online training
strategies for the MNIST digit
dataset by using average values
of the metrics are shown across
the entire stream (bold indicates
the best and underline indicates
the second best result for each
metric)

MNIST (50/class)
Strategy Nt/max(Nt) Āt C̄t Ōt

NO REHEARSAL 0.01 ± 0.0 0.741 ± 0.083 0.904 ± 0.028 0.905 ± 0.027

ER-1 0.02 ± 0.0 0.912 ± 0.037 0.948 ± 0.011 0.947 ± 0.01

ER-10 0.2 ± 0.0 0.942 ± 0.009 0.981 ± 0.004 0.979 ± 0.003

ER-25 0.5 ± 0.0 0.947 ± 0.004 0.984 ± 0.002 0.983 ± 0.002

ER-50 1.0 ± 0.0 0.949 ± 0.002 0.985 ± 0.001 0.985 ± 0.002

DRIFTA-DYN-50 0.061 ± 0.003 0.936 ± 0.009 0.985 ± 0.001 0.985 ± 0.001

2DRIFTA-DYN-50 0.066 ± 0.004 0.943 ± 0.006 0.985 ± 0.002 0.985 ± 0.001

DRIFTA-CONV 0.025 ± 0.001 0.899 ± 0.025 0.977 ± 0.004 0.979 ± 0.002

2DRIFTA-CONV 0.03 ± 0.001 0.92 ± 0.015 0.979 ± 0.003 0.98 ± 0.002

Each class is represented by 50 samples per class within the rehearsal buffer. The proposed training strategies
achieve similar accuracy to the best experience replay methods at a fraction of the training cost

123

D. Charalampos et al.

Table 2 Comparison of the
different online training
strategies in terms of average
values of the metrics across the
entire stream (bold indicates the
best and underline indicates the
second best result for each
metric)

CIFAR-10
Strategy Nt/max(Nt) Āt C̄t Ōt

(50 samples per class)

NO REHEARSAL 0.01 ± 0.0 0.789 ± 0.013 0.82 ± 0.012 0.866 ± 0.007

ER-1 0.02 ± 0.0 0.808 ± 0.011 0.813 ± 0.013 0.865 ± 0.007

ER-10 0.2 ± 0.0 0.783 ± 0.01 0.893 ± 0.005 0.926 ± 0.002

ER-25 0.5 ± 0.0 0.768 ± 0.01 0.911 ± 0.005 0.939 ± 0.002

ER-50 1.0 ± 0.0 0.756 ± 0.01 0.917 ± 0.005 0.944 ± 0.002

DRIFTA-DYN-50 0.172 ± 0.003 0.742 ± 0.006 0.921 ± 0.005 0.947 ± 0.002

2DRIFTA-DYN-50 0.169 ± 0.006 0.749 ± 0.015 0.921 ± 0.005 0.947 ± 0.002

DRIFTA-CONV 0.038 ± 0.004 0.768 ± 0.01 0.916 ± 0.005 0.942 ± 0.003

2DRIFTA-CONV 0.04 ± 0.004 0.767 ± 0.01 0.916 ± 0.006 0.942 ± 0.003

(500 samples per class)

NO REHEARSAL 0.01 ± 0.0 0.789 ± 0.013 0.82 ± 0.012 0.866 ± 0.007

ER-1 0.02 ± 0.0 0.81 ± 0.011 0.816 ± 0.013 0.868 ± 0.007

ER-10 0.2 ± 0.0 0.806 ± 0.009 0.89 ± 0.006 0.925 ± 0.003

ER-25 0.5 ± 0.0 0.805 ± 0.01 0.902 ± 0.005 0.936 ± 0.002

ER-50 1.0 ± 0.0 0.803 ± 0.01 0.905 ± 0.006 0.939 ± 0.003

DRIFTA-DYN-50 0.195 ± 0.008 0.804 ± 0.01 0.898 ± 0.005 0.938 ± 0.003

2DRIFTA-DYN-50 0.196 ± 0.011 0.805 ± 0.01 0.899 ± 0.007 0.937 ± 0.004

DRIFTA-CONV 0.034 ± 0.003 0.796 ± 0.009 0.909 ± 0.006 0.94 ± 0.004

2DRIFTA-CONV 0.047 ± 0.004 0.801 ± 0.01 0.907 ± 0.006 0.939 ± 0.002

Results are provided for the CIFAR-10 with a rehearsal buffer of 50 and 500 samples. The statistics of the
proposed training strategies are as high as those of the baselinemethods but at a fraction of their computational
cost

and the learning rate. In this section, we progressively eval-
uate the added value of these different components of the
proposed training framework. Experiments use the CIFAR-
10 dataset and the ResNet32 pre-trained model, as described
in Section 5.1.1.

6.1 Dynamic choice of iterations

In this experiment, we only use the option of dynamic iter-
ations parameter, as described in Section 4.4, to assess the
value of adaptive vs constant number of training iterations per

Fig. 6 (a) Average accuracy At , and (b) current task accuracy Ct for the MNIST digits dataset and nine permutations, for ER-1 , ER-50 ,
DRIFTA-DYN-50 and 2DRIFTA-CONV rehearsal strategies

123

A rehearsal framework for computational...

Table 3 Comparison of the
different online training
strategies in terms of average
values of the metrics across the
entire stream from the MNIST
digits and their permutations

Permuted MNIST digits (50/class)
Strategy Nt/max(Nt) Ā C̄t Ōt

NO REHEARSAL 0.01 ± 0.0 0.21 ± 0.012 0.294 ± 0.009 0.297 ± 0.008

ER-1 0.02 ± 0.0 0.277 ± 0.001 0.352 ± 0.003 0.354 ± 0.002

ER-10 0.2 ± 0.0 0.319 ± 0.012 0.618 ± 0.02 0.629 ± 0.022

ER-25 0.5 ± 0.0 0.328 ± 0.015 0.687 ± 0.01 0.702 ± 0.01

ER-50 1.0 ± 0.0 0.336 ± 0.016 0.708 ± 0.007 0.731 ± 0.006

DRIFTA-DYN-50 0.575 ± 0.014 0.354 ± 0.012 0.76 ± 0.007 0.787 ± 0.005

2DRIFTA-DYN-50 0.574 ± 0.019 0.358 ± 0.017 0.762 ± 0.008 0.788 ± 0.007

DRIFTA-CONV 0.283 ± 0.012 0.347 ± 0.006 0.745 ± 0.004 0.767 ± 0.003

2DRIFTA-CONV 0.292 ± 0.022 0.349 ± 0.012 0.742 ± 0.007 0.763 ± 0.007

Bold indicates the best and underline indicates the second result for each metric

batch. In all experiments, we use the same learning rate, and
there is no learning rate decay. Results are shown in Table 4.

The dynamic choice of iterations reduces the required
number of iterations and consequently decreases computa-
tional complexity. Based on the results, the convergence-
based methods are the most suitable for this purpose.

6.2 Dynamic learning rate schedule

We further evaluate the added value of dynamically selecting
the learning schedule basedon theoutput of theDriftDetector
(as described in Section 4), compared to a constant learning

rate. The experimental results in Fig. 7 show the benefit of
using a dynamic learning rate schedule.

Table 5 shows the average performance of both the static
and the dynamic learning rate schedules.

Experiments show the value of adapting the learning
rate using the strategies described in Section 4.6. They also
demonstrate that convergence-based methods are more sen-
sitive to changes in the learning rate. Furthermore, it seems
that the2DRIFTA-CONV and2DRIFTA-DYN-50methods
require fewer iterations when the learning rate is tuned based
on drift detector statistics. Note that there is both a drop in Nt

and an increase in overall accuracy for both DRIFTA-CONV
and 2DRIFTA-CONV methods.

Table 4 Comparison of
dynamic iteration strategies in
terms of average values of the
metrics across the entire stream

CIFAR-10 (500/class)
Strategy Nt/max(Nt) Āt Ā0−500 Ā1000−1500

NO REHEARSAL 0.01 ± 0.0 0.789 ± 0.013 0.787 ± 0.015 0.788 ± 0.013

ER-1 0.02 ± 0.0 0.81 ± 0.011 0.802 ± 0.013 0.816 ± 0.009

ER-10 0.2 ± 0.0 0.806 ± 0.009 0.8 ± 0.01 0.81 ± 0.009

ER-25 0.5 ± 0.0 0.805 ± 0.01 0.801 ± 0.01 0.807 ± 0.009

ER-50 1.0 ± 0.0 0.803 ± 0.01 0.802 ± 0.011 0.803 ± 0.009

DRIFTA-DYN-50 0.195 ± 0.008 0.804 ± 0.01 0.805 ± 0.011 0.803 ± 0.009

2DRIFTA-DYN-50 0.196 ± 0.011 0.805 ± 0.01 0.805 ± 0.011 0.803 ± 0.009

DRIFTA-CONV 0.034 ± 0.003 0.796 ± 0.009 0.79 ± 0.009 0.8 ± 0.009

2DRIFTA-CONV 0.047 ± 0.004 0.801 ± 0.01 0.796 ± 0.012 0.804 ± 0.009

C̄t C̄0−500 C̄1000−1500 Ōt

NO REHEARSAL 0.82 ± 0.012 0.823 ± ± 0.022 0.817 ± 0.008 0.866 ± 0.007

ER-1 0.816 ± 0.013 0.813 ± 0.019 0.819 ± 0.01 0.868 ± 0.007

ER-10 0.89 ± 0.006 0.886 ± 0.007 0.893 ± 0.006 0.925 ± 0.003

ER-25 0.902 ± 0.005 0.897 ± 0.006 0.906 ± 0.006 0.936 ± 0.002

ER-50 0.905 ± 0.006 0.9 ± 0.005 0.908 ± 0.006 0.939 ± 0.003

DRIFTA-DYN-50 0.898 ± 0.005 0.889 ± 0.005 0.903 ± 0.005 0.938 ± 0.003

2DRIFTA-DYN-50 0.899 ± 0.007 0.891 ± 0.007 0.904 ± 0.009 0.937 ± 0.004

DRIFTA-CONV 0.909 ± 0.006 0.903 ± 0.006 0.913 ± 0.007 0.94 ± 0.004

2DRIFTA-CONV 0.907 ± 0.006 0.902 ± 0.006 0.911 ± 0.006 0.939 ± 0.002

Results are provided for the case of a rehearsal buffer with 500 samples per class. Bold indicates the best and
underline indicates the second result for each metric

123

D. Charalampos et al.

Fig. 7 Current task accuracy Ct for (a) constant learning rate and (b) dynamic learning rate schedule in convergence rehearsal strategies

7 Conclusions and future work

This study presented a framework for utilizing Rehearsal-
based methods into stream-based scenarios in order to
facilitate online continual learning. Our primary objective
is to tackle the constraints of limited computational and
memory resources. The key considerations revolve around
optimizing training cycles and adapt the training procedure
at each step.

To address these challenges, we propose the incorporation
of a drift detection mechanism, which initiates model train-
ing in response to changes in data distribution. Additionally,
we propose several strategies for determining the appropriate
number of training iterations and creating an dynamic learn-
ing rate schedule, based onmodel misclassification statistics.

Our proposed approach, according to our experimen-
tal settings, demonstrates comparable and even increased

effectiveness compared to the conventional rehearsal strate-
gies while utilizing fewer training iterations and balancing
between accuracy and overfitting. Baseline methods, such
as GDUMB, are tested with various iterations per training
step to fix the issues that arise with the original Experi-
enceReplaymethods.Baselinemethodswith fewer iterations
(such as ER-1, ER-10 (Original Experience Replay) do not
overfit, but at the cost of decreased classification accuracy.
More computationally intensive baseline methods such as
ER-50 (50 iterations per batch) are more accurate per task,
but between tasks, they tend to show decreased average accu-
racy and "sharp changes" in between tasks (ER-50 shows
clear signs of overfitting). These observations validate that
our proposed methods keep the balance between accuracy
per task and overfitting. Also, our methods use only the least
necessary training times to achieve these results. The final
result shows a significant advantage in terms of computa-

Table 5 Comparison of dynamic versus constant iteration strategies in terms of average values of the metrics across the entire stream

CIFAR-10 (500/class)
Strategy Nt/max(Nt) C̄t C̄0−500 C̄1000−1500 Ōt

Constant LR

DRIFTA-DYN-50 0.214 ± 0.004 0.894 ± 0.005 0.889 ± 0.007 0.897 ± 0.005 0.929 ± 0.003

2DRIFTA-DYN-50 0.21 ± 0.007 0.895 ± 0.006 0.891 ± 0.008 0.899 ± 0.005 0.93 ± 0.003

DRIFTA-CONV 0.037 ± 0.004 0.842 ± 0.009 0.845 ± 0.015 0.839 ± 0.008 0.887 ± 0.005

2DRIFTA-CONV 0.056 ± 0.005 0.855 ± 0.012 0.846 ± 0.015 0.86 ± 0.013 0.898 ± 0.006

Dynamic LR

DRIFTA-DYN-50 0.195 ± 0.008 0.898 ± 0.005 0.889 ± 0.005 0.903 ± 0.005 0.938 ± 0.003

2DRIFTA-DYN-50 0.196 ± 0.011 0.899 ± 0.007 0.891 ± 0.007 0.904 ± 0.009 0.937 ± 0.004

DRIFTA-CONV 0.034 ± 0.003 0.909 ± 0.006 0.903 ± 0.006 0.913 ± 0.007 0.94 ± 0.004

2DRIFTA-CONV 0.047 ± 0.004 0.907 ± 0.006 0.902 ± 0.006 0.911 ± 0.006 0.939 ± 0.002

The dynamic-iterations-based strategies have a significant benefit in computational complexity. Bold indicates the best and underline indicates the
second best result for each metric

123

A rehearsal framework for computational...

tional complexity. Consequently, this approach emerges as a
viable solution for continual learning in online applications
dealing with stream-based data.

A reasonable future insight is the application of suchmeth-
ods in real-life scenarios where Edge devices are utilized,
such as automotive solutions, search& rescue operations and
the health industry. In all the aforementioned domains, smart
devices have access to an infinite amount of data whilst hav-
ing a limited amount of memory and processing power. Our
methods could provide a decent balance of computational
efficiency and classification accuracy.

Our work does come with some limitations. We have yet
to outperform some of the methods which work with known
task boundaries and some of the batch processing methods.
The decrease of computations and memory usage do play a
significant part in the classification accuracy.Another issue is
the fact that some Edge devices cannot provide even a small
amount of memory or support training computations.

Some practical hurdles might also occur in terms of train-
ing with questionable ground truth, such as driver input in
the case of recommendation systems in driving. Finally safe-
critical applications such as medical diagnosis do not allow
the same margins of misclassification as of our methods,
since medical accuracy is more important than hardware
usage optimizations.

Acknowledgements The publication of the article in OA mode was
financially supported by HEAL-Link.

Author Contributions All authors contributed to the study conception,
design, material preparation, data collection and analysis

Funding Open access funding provided by HEAL-Link Greece.

Data Availability The data that support the findings of this study are
available in: https://www.cs.toronto.edu/ kriz/cifar.html, https://www.te
nsorflow.org/datasets/catalog/cifar10, http://yann.lecun.com/exdb/mni
st,https://www.tensorflow.org/datasets/catalog/mnist with the identi-
fier(s) https://doi.org/10.1109/5.726791 for the MNIST digits dataset.

Declarations

Competing of interest The authors have no competing interests to
declare that are relevant to the content of this article.

Ethical and informed consent for data used All data have been used
with ethical and informed consent

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the

permitted use, youwill need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

References

1. She Q, Feng F, Hao X, Yang Q, Lan C, Lomonaco V, Shi
X, Wang Z, Guo Y, Zhang Y et al (2020) Openloris-object: a
robotic vision dataset and benchmark for lifelong deep learning.
In: 2020 IEEE international conference on robotics and automa-
tion (ICRA), pp 4767–4773. https://doi.org/10.1109/ICRA40945.
2020.9196887. IEEE

2. Fernando C, Banarse D, Blundell C, Zwols Y, Ha D, Rusu AA,
Pritzel A, Wierstra D (2017) Pathnet: evolution channels gradient
descent in super neural networks. https://doi.org/10.48550/arXiv.
1701.08734

3. Li Z, Hoiem D (2017) Learning without forgetting. IEEE Trans
Pattern Anal Mach Intell 40(12):2935–2947. https://doi.org/10.
48550/arXiv.1606.09282

4. McCloskey M, Cohen NJ (1989) Catastrophic interference in
connectionist networks: the sequential learning problem. Psy-
chol Learn Motiv 24:109–165. https://doi.org/10.1016/S0079-
7421(08)60536-8

5. Bottou L, Bousquet O (2011) The tradeoffs of large-scale learning:
optimization for machine learning. The MIT Press. https://doi.org/
10.7551/mitpress/8996.003.0015

6. Grossberg ST (2012) Studies of mind and brain: neural principles
of learning, perception, development, cognition, andmotor control.
Springer. https://doi.org/10.1007/978-94-009-7758-7

7. De Lange M, Aljundi R, Masana M, Parisot S, Jia X, Leonardis
A, Slabaugh G, Tuytelaars T (2021) A continual learning sur-
vey: defying forgetting in classification tasks. IEEE Trans Pat-
tern Anal Mach Intell 44(7):3366–3385. https://doi.org/10.1109/
TPAMI.2021.3057446

8. Van de Ven GM, Tolias AS (2019) Three scenarios for continual
learning. https://doi.org/10.48550/arXiv.1904.07734

9. He J, Mao R, Shao Z, Zhu F (2020) Incremental learning in online
scenario. In: Proceedings of the IEEE/CVF conference on com-
puter vision and pattern recognition, pp 13926–13935 . https://doi.
org/10.1109/CVPR42600.2020.01394

10. Pellegrini L, Graffieti G, Lomonaco V, Maltoni D (2020) Latent
replay for real-time continual learning. In: 2020 IEEE/RSJ
international conference on intelligent robots and systems
(IROS), pp 10203–10209. https://doi.org/10.1109/IROS45743.
2020.9341460. IEEE

11. Davalas C, Michail D, Diou C, Varlamis I, Tserpes K (2022) Com-
putationally efficient rehearsal for online continual learning. In:
International conference on image analysis and processing, pp 39–
49. https://doi.org/10.1007/978-3-031-06433-3_4. Springer

12. Goodfellow I.J, Mirza M, Xiao D, Courville A, Bengio Y (2013)
An empirical investigation of catastrophic forgetting in gradient-
based neural networks. https://doi.org/10.48550/arXiv.1312.6211

13. Krizhevsky A, Hinton G et al (2009) Learning multiple layers of
features from tiny images

14. Kirkpatrick J, Pascanu R, Rabinowitz N, Veness J, Desjardins G,
Rusu AA, Milan K, Quan J, Ramalho T, Grabska-Barwinska A
et al (2017)Overcoming catastrophic forgetting in neural networks.
Proc Natl Acad Sci 114(13):3521–3526. https://doi.org/10.1073/
pnas.1611835114

15. Smith JS, Tian J, Halbe S, Hsu Y-C, Kira Z (2023) A closer look at
rehearsal-free continual learning. In: Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, pp 2409–
2419. https://doi.org/10.1109/CVPRW59228.2023.00239

123

https://www.cs.toronto.edu/\protect \unhbox \voidb@x \penalty \@M \ {}kriz/cifar.html
https://www.tensorflow.org/datasets/catalog/cifar10
https://www.tensorflow.org/datasets/catalog/cifar10
http://yann.lecun.com/exdb/mnist
http://yann.lecun.com/exdb/mnist
https://www.tensorflow.org/datasets/catalog/mnist
https://doi.org/10.1109/5.726791
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1109/ICRA40945.2020.9196887
https://doi.org/10.1109/ICRA40945.2020.9196887
https://doi.org/10.48550/arXiv.1701.08734
https://doi.org/10.48550/arXiv.1701.08734
https://doi.org/10.48550/arXiv.1606.09282
https://doi.org/10.48550/arXiv.1606.09282
https://doi.org/10.1016/S0079-7421(08)60536-8
https://doi.org/10.1016/S0079-7421(08)60536-8
https://doi.org/10.7551/mitpress/8996.003.0015
https://doi.org/10.7551/mitpress/8996.003.0015
https://doi.org/10.1007/978-94-009-7758-7
https://doi.org/10.1109/TPAMI.2021.3057446
https://doi.org/10.1109/TPAMI.2021.3057446
https://doi.org/10.48550/arXiv.1904.07734
https://doi.org/10.1109/CVPR42600.2020.01394
https://doi.org/10.1109/CVPR42600.2020.01394
https://doi.org/10.1109/IROS45743.2020.9341460
https://doi.org/10.1109/IROS45743.2020.9341460
https://doi.org/10.1007/978-3-031-06433-3_4
https://doi.org/10.48550/arXiv.1312.6211
https://doi.org/10.1073/pnas.1611835114
https://doi.org/10.1073/pnas.1611835114
https://doi.org/10.1109/CVPRW59228.2023.00239

D. Charalampos et al.

16. Zhuo T, Cheng Z, Gao Z, Fan H, Kankanhalli M (2023) Continual
learning with strong experience replay. https://doi.org/10.48550/
arXiv.2209.13917

17. Prabhu A, Torr PH, Dokania PK (2020) Gdumb: a simple approach
that questions our progress in continual learning. In: Computer
vision–ECCV 2020: 16th European conference, Glasgow, UK,
August 23–28, 2020, Proceedings, Part II 16, pp 524–540. https://
doi.org/10.1007/978-3-030-58536-5_31. Springer

18. Chaudhry A, Rohrbach M, Elhoseiny M, Ajanthan T, Dokania P,
Torr P, Ranzato M (2019) Continual learning with tiny episodic
memories. In: Workshop on multi-task and lifelong reinforcement
learning. https://doi.org/10.48550/arXiv.1902.10486

19. Rebuffi S-A, Kolesnikov A, Sperl G, Lampert CH (2017) icarl:
incremental classifier and representation learning. In: Proceedings
of the IEEE conference on computer vision and pattern recognition,
pp 2001–2010. https://doi.org/10.1109/CVPR.2017.587

20. RolnickD, Ahuja A, Schwarz J, Lillicrap T,WayneG (2019) Expe-
rience replay for continual learning. Adv Neural Inf Process Syst
32. https://doi.org/10.48550/arXiv.1811.11682

21. Adam S, Busoniu L, Babuska R (2011) Experience replay for
real-time reinforcement learning control. IEEE Trans Syst, Man,
Cybern, PartC (ApplRev) 42(2):201–212. https://doi.org/10.1109/
TSMCC.2011.2106494

22. Lopez-Paz D, Ranzato M (2017) Gradient episodic memory for
continual learning. Adv Neural Inf Process Syst 30. https://doi.
org/10.48550/arXiv.1706.08840

23. Milan K, Veness J, Kirkpatrick J, Bowling M, Koop A, Hassabis
D (2016) The forget-me-not process. Adv Neural Inf Process Syst
29. https://doi.org/10.5555/3157382.3157512

24. Wiewel F, Yang B (2021) Entropy-based sample selection for
online continual learning. In: 202028thEuropean signal processing
conference (EUSIPCO), pp 1477–1481. https://doi.org/10.23919/
Eusipco47968.2020.9287846. IEEE

25. BelouadahE, PopescuA,Kanellos I (2021)A comprehensive study
of class incremental learning algorithms for visual tasks. Neural
Netw 135:38–54. https://doi.org/10.1016/j.neunet.2020.12.003

26. Jodelet Q, Liu X,Murata T (2021) Balanced softmax cross-entropy
for incremental learning. In: International conference on artificial
neural networks, pp 385–396. https://doi.org/10.1016/j.cviu.2022.
103582. Springer

27. Harun M.Y, Gallardo J, Kanan C (2023) Grasp: a rehearsal pol-
icy for efficient online continual learning. https://doi.org/10.48550/
arXiv.2308.13646

28. Zhang Y, Pfahringer B, Frank E, Bifet A, Lim NJS, Jia Y (2022) A
simple but strong baseline for online continual learning: repeated
augmented rehearsal. Adv Neural Inf Process Syst 35:14771–
14783. https://doi.org/10.48550/arXiv.2209.13917

29. Widmer G, Kubat M (1996) Learning in the presence of concept
drift and hidden contexts. Mach Learn 23:69–101. https://doi.org/
10.1016/j.cviu.2022.103582

30. Ross GJ, Adams NM, Tasoulis DK, Hand DJ (2012) Exponentially
weighted moving average charts for detecting concept drift. Pat-
tern Recogn Lett 33(2):191–198. https://doi.org/10.1016/j.patrec.
2011.08.019

31. Lu J, LiuA, Dong F, Gu F, Gama J, ZhangG (2018) Learning under
concept drift: a review. IEEE Trans Knowl Data Eng 31(12):2346–
2363. https://doi.org/10.1109/TKDE.2018.2876857

32. LeCun Y, Bottou L, Bengio Y, Haffner P (1998) Gradient-based
learning applied to document recognition. Proc IEEE86(11):2278–
2324. https://doi.org/10.1109/5.726791

33. He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for
image recognition. In: Proceedings of the IEEE conference on com-
puter vision and pattern recognition, pp 770–778. https://doi.org/
10.13140/RG.2.2.33865.52329

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

Charalampos Davalas received
his B.Sc. degree in Mathematics
for the National and Kapodis-
trian University of Athens in
2016 and a M.Sc. degree in Web
Engineering from Department
of Informatics and Telemat-
ics, Harokopio University of
Athens in 2018 He is currently
a PhD Candidate and Research
Associate with the Department
of Informatics and Telematics,
Harokopio University of Athens,
Athens, Greece. His research is
focused in the fields of Deep

Learning and Big Data analysis. Research interests include Social Net-
work de-anonymization testing with Big Data Graph Mining, Online
Continual Learning in Computer Vision and Graph Neural Network
Engineering for fire prediction on a global scale.

Dimitrios Michail is an Associate
Professor at the Department of
Informatics and Telematics at the
Harokopio University of Athens.
He holds a Diploma in Electronics
and Computer Engineering from
the Technical University of Crete,
and an MSc (Computer Science)
and PhD (Algorithms) from the
Max-Planck Institute for Infor-
matics, all with distinction. He
has also conducted post-doctoral
research at the Max- Planck Insti-
tute for Informatics in Germany
as well as at the INRIA research

institute in Sophia-Antipolis, France. His main research focuses on
graph algorithms, graph mining, and graph representation learn-
ing. His expertise extends to machine learning techniques with an
emphasis on computer vision and remote sensing. He has published
numerous articles in top-rank international journals and conferences
and has participated as a researcher in a number of R&D projects at
European and national level.

123

https://doi.org/10.48550/arXiv.2209.13917
https://doi.org/10.48550/arXiv.2209.13917
https://doi.org/10.1007/978-3-030-58536-5_31
https://doi.org/10.1007/978-3-030-58536-5_31
https://doi.org/10.48550/arXiv.1902.10486
https://doi.org/10.1109/CVPR.2017.587
https://doi.org/10.48550/arXiv.1811.11682
https://doi.org/10.1109/TSMCC.2011.2106494
https://doi.org/10.1109/TSMCC.2011.2106494
https://doi.org/10.48550/arXiv.1706.08840
https://doi.org/10.48550/arXiv.1706.08840
https://doi.org/10.5555/3157382.3157512
https://doi.org/10.23919/Eusipco47968.2020.9287846
https://doi.org/10.23919/Eusipco47968.2020.9287846
https://doi.org/10.1016/j.neunet.2020.12.003
https://doi.org/10.1016/j.cviu.2022.103582
https://doi.org/10.1016/j.cviu.2022.103582
https://doi.org/10.48550/arXiv.2308.13646
https://doi.org/10.48550/arXiv.2308.13646
https://doi.org/10.48550/arXiv.2209.13917
https://doi.org/10.1016/j.cviu.2022.103582
https://doi.org/10.1016/j.cviu.2022.103582
https://doi.org/10.1016/j.patrec.2011.08.019
https://doi.org/10.1016/j.patrec.2011.08.019
https://doi.org/10.1109/TKDE.2018.2876857
https://doi.org/10.1109/5.726791
https://doi.org/10.13140/RG.2.2.33865.52329
https://doi.org/10.13140/RG.2.2.33865.52329

A rehearsal framework for computational...

Christos Diou received the
Diploma in Electrical and Com-
puter Engineering and the Ph.D.
degree on the analysis of mul-
timedia with machine learning
from the Aristotle University
of Thessaloniki, Thessaloniki,
Greece. He is currently an Assis-
tant Professor of Artificial Intel-
ligence and Machine Learning
with the Department of Informat-
ics and Telematics, Harokopio
University of Athens. His main
research interests include robust
representation learning capable of

out-of-distribution generalization, methods for fair and interpretable
machine learning, as well as the use of machine learning for the esti-
mation of causal effects from observational data. He has published
over 100 articles in international scientific journals and conferences
and has more than 15 years of experience participating and leading
European and national research projects, focusing on applications of
artificial intelligence in healthcare.

Iraklis Varlamis received an M.Sc.
degree in Information Systems
Engineering from UMIST, U.K.,
and a Ph.D. from the Athens
University of Economics and
Business, Greece. He is a Profes-
sor in data management with the
Department of Informatics and
Telematics, at Harokopio Uni-
versity of Athens (HUA). His
research interests range from data
mining and social network ana-
lytics to recommender systems
for social media and real-world
applications. He has more than

200 articles published in international journals and conferences and
more than 5000 citations on his work. He holds 2 patents from the
Greek Patent Office for systems that crawl the web and thematically
group web documents using content and links. He is the scientific
coordinator for HUA in several EU (H2020, ECSEL, REC) projects
and in national projects.

Konstantinos Tserpes is currently
an Associate Professor with the
Department of Informatics and
Telematics, Harokopio University
of Athens. His research inter-
ests revolve around intelligent
methods for resolving resource
allocation issues. He applies the
findings of this research in design-
ing and implementing software
computing platforms that enable
classes of novel applications with
stringent requirements, such as
ultra-low latency, big data stream
processing, resourceconstrained

execution, real-time performance, resilient and adaptive operation,
etc. He has co-authored more than 100 publications in international
scientific conferences and journals, and his work has been cited more
than 2.5K times according to Google Scholar as of May 2024.He has
been involved in several EU- and nationally-funded projects tack-
ling research challenges in application domains such as multimedia,
e-governance, post-production, finance, e-health, and others.

123

	A rehearsal framework for computational efficiency in online continual learning
	Abstract
	1 Introduction
	2 Related work
	3 Online continual learning
	3.1 Scenario
	3.2 An online rehearsal framework

	4 Rehearsal strategies
	4.1 Continuous rehearsal and experience replay
	4.2 Drift activated rehearsal
	4.3 Drift detection with buffer samples (double drift detector strategy)
	4.4 Setting the number of iterations dynamically
	4.5 Rehearsal based on convergence
	4.6 Adjusting the learning rate

	5 Experiments
	5.1 Experimental setup
	5.1.1 Datasets
	5.1.2 Model and pre-training
	5.1.3 Metrics

	5.2 Experiment 1: motivation
	5.3 Experiment 2: comparison of training strategies
	5.4 Evaluation of the permuted MNIST digits problem

	6 Ablation study
	6.1 Dynamic choice of iterations
	6.2 Dynamic learning rate schedule

	7 Conclusions and future work
	Acknowledgements
	References

