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Abstract
Cryptocurrencies are in the center of attention of investors, public authorities and researchers, but the interest has shifted from 
purely financial aspects regarding the way of trading, lack of regulation and supervision of transactions, volatility, correlation 
with other assets to aspects related to sustainability taking in account the high energy consumption generated by the mining 
process and the impact on environmental pollution. Bitcoin was chosen for the research considering the dominance that this 
financial asset has on the cryptocurrency market and its position as alpha currency.The article focuses on the relationship 
between Bitcoin transactions and energy consumption, for period 1st January 2019—31st of May 2022, this interval hav-
ing significant price movements. The authors made a prediction of the Bitcoin price using a complex meta-model and SQL 
analytical functions. The analysis is based on 15 fundamental variables in order to forecast the price: Bitcoin data (prices and 
volume), electricity price and traded quantity on day-ahead market (DAM), gas price and traded quantity on DAM, inflation 
in EU, EU-ETS emissions certificates and oil prices. The study reveals the importance of the relationship Bitcoin—energy—
carbon emissions, elements that capture the impact of the mining process on the environment from the perspective of energy 
consumption. Investors on the Bitcoin market must be aware not only of the importance of financial aspects on the price of 
cryptocurrencies (inflation, demand, offer), but also of other elements related to the evolution of energy prices (electricity, 
oil, gas, renewable energy) and the evolution of emissions certificates prices. Considering the promotion of the principles 
of sustainable development on the capital market, portfolio investors have become increasingly attentive to the social and 
environmental performance of financial assets. This study aims to make financial market players aware of the non-financial 
implications of their transactions. In addition, the energy transition and the reconfiguration of the energy mix are elements 
of impact on the cryptocurrency market through the technical levers involved in the mining process.
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  Close price of BTC – target for prediction
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  Number of trades
Oh−24

BTC
  Open price of BTC

Ph−24
EUETS

  EU-ETS emissions certificates prices
Ph−24
El

  Electricity price on DAM
Ph−24
Gas

  Gas price on DAM
Ph−24
Oil

  Oil price
QAVh−24

BTC
  Quote Asset Volume

Qh−24
El

  Electricity traded quantity on DAM
Qh−24

Gas
  Gas traded quantity on DAM

TBVh−24
BTC

  Taker base volume
TQVh−24

BTC
  Taker quote volume

 * Simona-Vasilica Oprea 
 simona.oprea@csie.ase.ro

 Adela Bâra 
 bara.adela@ie.ase.ro

 Mirela Panait 
 mirela.matei@upg-ploiesti.ro

1 Bucharest University of Economic Studies, Department 
of Economic Informatics and Cybernetics, no. 6 Piaţa 
Romană, Bucharest, Romania

2 Petroleum-Gas University of Ploiești, Department 
of Cybernetics, Economic Informatics, Finance 
and Accountancy, no. 39 Bucureşti Blvd, Ploiești, Romania

3 Institute of National Economy, Romanian Academy, 
Calea Victoriei, Romania

http://crossmark.crossref.org/dialog/?doi=10.1007/s10489-024-05474-2&domain=pdf


 A. Bâra et al.

Vh−24
BTC

  Total volume
h  Hour
k  Iterator of the time series
n  Number of rows
p  Stacking predictions
q  Window size
T  Training interval
t  Last price of the time series set to h − 24

wd  Weekday
y  Year
F1 ÷ F15  Analytical features
m  Month
h-24  Denotes the shifted values by 24 h from the 

target

Acronyms
R2  Coefficient of determination
BA  Base Asset
BTC  Bitcoin
DAM  Day-Ahead Market
ETS  Emissions Trading System
HGB  Histogram-based Gradient Boosting
LGB  Light Gradient Boosting
MAE  Mean Absolute Error
MAPE  Mean Absolute Percentage Error
ML  Machine Learning
QA   Quote Asset
RF  Random Forest
RMSE  Root-Mean Squared Error
VR  Voting Regressor
XGB  EXtreme Gradient Boosting

1 Introduction

The financial market is in a complex process of metamor-
phosis after the appearance of cryptocurrencies. These 
financial assets have aroused the interest of portfolio inves-
tors both from the perspective of the speculative oppor-
tunities they offer but also due to the possibilities of use 
for hedging strategies and diversification of portfolios of 
classic financial instruments Salisu and Obiora, [38]). The 
scale of cryptocurrency transactions, the decentralized 
trading mechanism, the dramatic fluctuations recorded over 
time but also the lack of regulation have determined the 
increase in attention for this market from portfolio inves-
tors, public authorities, researchers and other categories 
of stakeholders Bouriet al. [10]; Fang et al. [19]; García-
Corral et al. [21]; Rao et al. [37].

Investors' interest in this financial asset has gradually 
made cryptocurrencies, and in particular Bitcoin, acquire the 
classic functions of money, namely currency of exchange, 
standard of value, currency of payment and Bitcoin as a 

medium of exchange, a unit of account and a store of value. 
Researchers' interest in cryptocurrencies has increased over 
time, being addressed specific aspects such as the relation-
ship between financial assets—cryptocurrencies, market 
efficiency of the crypto market, financing risks, market effi-
ciency Tiwari et al. [49]; Șcheau et al. [44]; Wu et al. [59]; 
Aivaz et al. [5], investors herding behavior, cryptocurrency 
as safe haven, blockchain technologies, need to regulate 
transactions, money laundry and financing terrorism Alex-
andros, [3]; Dzidzikashvili and Kheladze, [16]; Șcheau and 
Achim, [43]; Wang et al. [57].

The emergence of cryptocurrencies was generated by two 
major trends recorded in the international economy, namely 
the digital revolution and the scandals and different crises 
that shook the international financial system and that weak-
ened the confidence of investors and financial consumers in 
banking institutions in particular (central banks and com-
mercial and investment banks). Cryptocurrency is a digi-
tal currency that is not issued by a central bank and is not 
based on users' trust in a certain financial entity, because 
it uses a decentralized ledger system (blockchain technol-
ogy) and involves a mining process based on solving some 
hash problems by the computer. This specific Bitcoin min-
ing process is similar to the process of gold extraction Bjerg 
[8]; Zimmer, [56]; Bibi, [9]; Sapra, N., and Shaikh [39] and 
investors’ interest in this financial asset is reminiscent of 
the nineteenth century gold rush. The parallel between gold 
and cryptocurrencies is not limited only to the impact on 
the financial market, but also to the externalities generated 
on the labor market and the environment Maurushat and 
Halpin, [34]; Dennin, [13]. People’s greed and the desire to 
obtain spectacular gains in very short periods of time have 
generated the intensification of the cryptocurrency produc-
tion process and the ignoring of the negative externalities 
generated by the mining process (high energy consumption, 
carbon emissions, electronic waste and consistent frauds). 
In order to reduce the negative impact on the environment 
and society, however, concerted actions on the part of the 
authorities, private companies and portfolio investors are 
necessary. Crypto-culture encouraged by technical progress 
that allows novice investors to make transactions with the 
help of a mobile phone generates fraud among the popula-
tion with a low level of financial education, and the social 
repercussions are dramatic Savona, [42]; Dulisse et al. [17]; 
Biju and Thomas, [7].

The mining is to excavation of cryptocurrencies “through 
the mathematical operations of a mining machine in the net-
work (i.e., “hash rate”)” Yuan et al. [53]. The mining pro-
cess requires considerable computational effort, specifically 
electricity and CPU time and the miners receive a fee as 
cryptocurrency. Validation of transactions is decentralized, 
and blockchain technology also offers the advantage of ano-
nymity of the cryptocurrency owners and their transactions.
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Launched in 2009, after the international financial crisis, 
Bitcoin was received with interest considering the failure of 
public financial policies and the activity of banks that led 
to the international financial crisis of 2008–2009. Its evolu-
tion started to become more and more interesting as certain 
psychological thresholds were reached, namely the threshold 
of 1000 USD in 2017, so that by the end of this year it would 
reach a value of 14,000. Another event of the black swan 
type, namely the COVID-19 crisis has generated an increas-
ing interest of investors in cryptocurrencies Akbulaev and 
Abdulhasanov, [2]; Bibi, [9] and digital payments. Despite 
the reluctance and warnings issued by some central banks 
such as the Bank of England that drew attention to the risks 
involved in the use of cryptocurrencies to the detriment of 
official currencies, some countries, such as El Salvador and 
South Africa, have adopted Bitcoin as a legal tender and 
payment instrument. Among all cryptocurrencies, Bitcoin 
is by far the most used financial asset of this type, maintains 
the lion’s share of market (Symitsi and Chalvatzis, [46]; 
Mohsin et al. [33]), which is why this currency was chosen 
to carry out this study.

In addition to the purely financial aspects that cryptocur-
rency transactions entail, namely the risks generated by the 
lack of regulation and supervision, the safe haven status, 
speculative operations, researchers have also begun to ana-
lyze the relationship between Bitcoin and sustainable devel-
opment and the implications that the mining process has on 
the environment from the perspective of energy consumption 
and electronic waste De Vries, [12]; Erdogan et al. [18]. The 
topics addressed are related to aspects such as Environment, 
Social and Governance (ESG) aspects, and energy transi-
tion Sundaram, [45]; Toumi et al. [50]. There are opinions 
regarding the positive impact of cryptocurrency transac-
tions on accelerating the improvement of the energy mix 
by increasing the share of renewable energy Bastian-Pinto 
et al. [6]; Kumar, [28]; Yüksel et al. [54]; Miśkiewicz et al. 
[32]; Zheng et al. [55]. The problem of energy consumption 
generated by cryptocurrency transactions is also of interest 
from the perspective of central banks that are looking for 
technical solutions regarding future payment systems. The 
banking authorities are committed to promoting the prin-
ciples of digital development, which is why reducing the 
energy consumption generated by payment systems is a chal-
lenge and future digital currencies can use certain technical 
elements specific to cryptocurrencies Derbali, et al. [14]; 
Agur et al. [1].

Our research reflects a shifting focus in cryptocurrency 
research from primarily financial to environmental sustain-
ability concerns. Recent technological advancements like 
the multi-attention fusion residual convolutional neural 
network (MAR-CNN) and the deep variational autoencoder 
(DVAE) are relevant to this type of research. MAR-CNN is 
an advanced form of CNN that integrates multiple attention 

mechanisms with residual learning. The attention mecha-
nisms help the network focus on specific features within the 
data that are most relevant for the task at hand, potentially 
improving accuracy and efficiency in pattern recognition. In 
residual learning, the network also learns from the modifica-
tion of inputs through layers, which helps in combating the 
problem of vanishing gradients in deep neural networks. As 
for its applications in cryptocurrency research, MAR-CNN 
could be used to more accurately model the complex rela-
tionships and patterns between various inputs affecting Bit-
coin mining energy consumption, such as electricity price, 
hardware efficiency and transaction volume. Further, it may 
enhance price prediction models by identifying and focus-
ing on the most impactful variables from historical data, 
potentially leading to more accurate and robust predictive 
outcomes.

A DVAE is a type of generative model that learns to rep-
resent high-dimensional data in a lower-dimensional latent 
space. It is used to generate new data instances similar to 
those on which the model was trained. Variational autoen-
coders are particularly known for their ability to handle 
complex distributions and to generate new instances while 
controlling for specific factors in the data. Its applications in 
cryptocurrency research are in simulation and forecasting, 
and anomaly detection. By learning the distribution of vari-
ables affecting Bitcoin’s energy consumption, a DVAE may 
simulate various future scenarios under different conditions, 
aiding in forecasting and strategic planning. DVAEs could 
be deployed to detect unusual patterns in energy usage that 
might indicate inefficiencies or changes in mining technol-
ogy or strategy.

Given the complex interplay between Bitcoin transac-
tions, energy consumption and carbon emissions, leveraging 
MAR-CNN and DVAE may significantly enhance the accu-
racy and depth of analysis. For instance, MAR-CNN could 
refine the analysis of how specific market variables (like 
gas prices or inflation) directly impact Bitcoin’s energy con-
sumption by focusing attention on the most relevant features 
during periods of significant price movement, while DVAE 
could generate potential future scenarios based on past data, 
helping to understand how changes in energy prices or regu-
lation might impact Bitcoin mining.

This article focuses on the relationship between Bitcoin 
transactions and energy consumption. The authors propose 
a prediction method of the Bitcoin price using a complex 
Meta-Model (MM) and SQL analytical functions. Build-
ing a MM that stacks several ML models regressors as its 
sub-models brings the following advantages: i) diversity of 
models—combining different types of models can capture a 
wide range of patterns in the data and leads to better perfor-
mance than any single model; ii) error reduction—the MM 
can learn to correct the errors of the individual sub-models, 
leading to improved accuracy; iii) robustness—the MM is 
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more robust to overfitting, especially if the sub-models are 
diverse. Predicting Bitcoin prices is a complex task due to 
the high volatility and unpredictability of the cryptocurrency 
market. By using a stacked model, the current approach lev-
erages the strengths of each individual model. For instance, 
RF captures non-linear relationships, XGB handles outliers 
well and LGB works efficiently with large datasets.

One contribution of this paper consists of building a 
dataset that consists of Bitcoin data, energy data and other 
macroeconomics indicators (the realization of this data set 
is to be appreciated considering that the data have been col-
lected from several sources, pre-processed and stored into a 
relational database, which will later allow their use within 
specific statistical models). Taking in account the plethora 
of scientific methods like MAR-CNN Yan et al. [51] and 
the DVAE Yan et al. [52] as potential price predictive or 
detection model, which can be used as an interdisciplinary 
application, in this paper we propose a prediction method 
that embeds the first three categories of the ensemble tech-
niques: bagging (RF), boosting (HGB, LGB, XGB) and vot-
ing (VR). The fourth category—stacking is included to use 
the predictions of the five models as input to another model 
(that is known as meta-model) that learns from the results of 
the base models. Another contribution of this paper consists 
of building features using SQL analytic functions.

This article is structured on specific sections that ensure 
the presentation of international concerns regarding cryp-
tocurrencies from a financial perspective, but also from a 
sustainable development view, the authors presenting the 
results of the main studies from the international scientific 
literature that allow identifying the research gap.

2  Literature review

The scale of cryptocurrency transactions and the interest of 
portfolio investors for both speculative and hedging opera-
tions were accompanied by the publication of scientific 
studies that focused on certain aspects related (Fig. 1) to 
the need to regulate transactions, the status of safe haven 

for these financial assets or the impact of the Covid-19 cri-
sis on this segment of the financial market Al-Shboul et al. 
[4]; Wen et al. [58]; Wang et al. [57]. In addition to the 
strictly financial and legal aspects of these cryptocurrencies, 
certain studies are focused on the impact that transactions 
with cryptocurrencies have on sustainable development (by 
energy consumption, energy transition and electronic waste 
perspectives), considering the mining process specific to 
these financial assets. Based on these considerations, certain 
studies focused the analysis of related risks of conduction 
mechanism between energy and Bitcoin markets Küfeoğlu 
and Özkuran, [27]; Li et al. [29]; Gurrib et al. [23]; Yuan 
et al. [53]. The lack of regulation and supervision accom-
panied by people’s greed have generated numerous frauds 
that have mainly affected incipient investors, lacking a solid 
financial culture Maurushat and Halpin, [34]; Savona, [42]; 
Thakur, [48].

Cryptocurrency transactions have become a challenge for 
the energy transition process considering the high energy 
consumption generated by the mining process Goodkind 
et al. [22]; Náñez Alonso et al. [35]. In addition, in order 
to face the increasingly intense competition on this market, 
players need more and more powerful computers, and giv-
ing up old computers fuels the waste process and generates 
new problems related to e-waste management. Having the 
goal of achieving carbon neutralization assumed by coun-
tries through various international treaties, some economies 
such as China have declared cryptocurrency transactions 
illegal Yuan et al. [53] because carbon footprints are con-
siderable, the mining process being based on fossil fuels 
Foteinis, [20], Sarkodie and Owusu, [41], Long et al. [30]; 
Pagone et al. [36].

Using the quantile connectedness method, Yuan et al. 
[53] focused on their study on spillover effects among Bit-
coin price, hash rate, electricity demand and energy con-
sumption. The researchers draw the conclusions that there 
is strong relationship between energy consumption and the 
Bitcoin market, and the risk infection mechanism makes its 
presence felt. Certain studies have focused on evaluating 
the energy consumption generated by the mining process 

Fig. 1  Main issues
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specific to cryptocurrencies, with alarming results. Thus, 
the study carried out by Kohli et al. [26] energy consump-
tion generated by Bitcoin is similar with Sweden and by 
Ethereum is nearly identical as Romania.

Using a VAR-AGARCH model, Symitsi and Chalvatzis, 
[46] studied the spillover effects of Bitcoin on clean energy, 
fossil fuel energy companies and technology companies. The 
results of this research suggested that there are long-run vol-
atility effects of Bitcoin on energy companies and significant 
return spillovers from energy to this cryptocurrency. Maiti 
[31], using a discrete threshold regression mode, focused 
the research on Bitcoin prices and Bitcoin energy consump-
tion relationship in the interval November 2010 and October 
2021. This scholar demonstrated that the impact of energy 
consumption on cryptocurrency prices is not uniform for the 
analyzed period.

Corbet et al. [11] focused their study on Bitcoin-energy 
markets relationship taking in account the growing inter-
est of portfolio investors for cryptocurrencies and difficul-
ties noticed in the mining of these assets. The conclusion 
of the study is that Bitcoin transactions have an impact on 
large electricity and utilities markets. So, the demand for 
energy and emissions of carbon dioxide are rising, these 
results being registered also by Dogan et al. [15]. Based on 
bootstrap Granger causal relationship tests, Su et al. [47] 
investigate the influences between Bitcoin and oil markets. 
The main conclusions of the study are that investors specu-
late on the relationship between these two markets in order 
to build diversified portfolios that ensure risk reduction. 
Similar results were obtained by Huynh et al. [25], using 
transferring entropy method for US and European crude oil 
indices and cryptocurrencies. In addition, the blockchain 
technology used by Bitcoin, as an essential component of 
the Fourth Industrial Revolution, can be solution for new 
technological strategies to promote the cut of international 
transaction fees.

Using a time-varying Granger causality test for period 
Sept 17, 2014, to October 12, 2021, Dogan et  al. [15] 
explored the relationship between Bitcoin, energy and car-
bon emissions in order to analyze the impact of this cryp-
tocurrency on energy transition and the environment. The 
causal relationship identified between Bitcoin, energy and 
carbon emissions is essential for tailoring public policies not 
only on the financial market but also on other components 
related to the twin transition. This study highlights the need 
to decarbonize cryptocurrencies using clean energy in min-
ing process, but also to accelerate the digitalization of the 
energy sector, which can be based on blockchain technol-
ogy. Sarker et al. [40] used nonlinear ARDL method and the 
Granger causality test for period 2013–2021 to analyze the 
asymmetric effects of climate policy uncertainty and energy 
prices on Bitcoin prices. Researchers draw attention to the 
impact that price fluctuations on the energy market have on 

Bitcoin, that is an energy intensive asset. Investors in the 
cryptocurrency market should be much more attentive to 
developments on the energy market to better anticipate the 
trend of these financial assets price.

So, taking in account the results of these scientific studies, 
the analysis of the Bitcoin-energy relationship is of particular 
interest not only from the perspective of the connections that 
exist between these strategic assets, but also from the point 
of view of the impact that cryptocurrency transactions have 
on the energy market (on the price of certain assets and on 
the price of shares issued by energy companies) and energy 
transition process (Fig. 2). The high consumption generated 
by the mining process brings challenges that can determine 
the attraction of new sources of energy, especially renewables, 
considering that it is desired to reduce the negative externali-
ties on the environment. In addition, the price prediction for 
Bitcoin is important to reduce the herd behavior of investors. 
Considering the energy-Bitcoin relationship, investors can 
better base their trading decisions on the energy market to 
obtain certain effects on Bitcoin and to optimize the compo-
sition of portfolios that can contain both classic assets (such 
as oil) and financial assets such as cryptocurrencies Su et al. 
[47]. Besides the negative externalities on the environment, 
specialists also analyze the social impact of cryptocurrency 
mining, considering that the pollution generated has direct 
repercussions on the health of the population. In this line, 
Goodkind et al. [22] had launched the concept of crypto dam-
ages—as the impact cryptocurrencies has on human health 
and climate. In conclusion, the blockchain technology used 

Fig. 2  Main implications of cryptocurrencies transactions on energy 
sector
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to create bitcoin is considered "primary fuel for the global 
network of money transmission" Hashemi Joo et al. [24]. The 
paradox is that "while blockchain can serve us, Bitcoin threat-
ens our survival" Sapra and Shaikh [39].

3  Methodology

The proposed methodology consists of three stages as shown 
in Fig. 3:

• Stage 1 – the datasets consisting in resources prices 
and traded quantities, macroeconomics and Bitcoin 
data are collected from several sources, pre-processed 
and stored into a relational database.

• Stage 2 – an extensive feature engineering stage is per-
formed to extend the initial input with more features 
and enhance the model with new analytical and statis-
tical variables that lead to the increase of the forecast 
accuracy.

Fig. 3  Stages of the proposed methodology
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• Stage 3 – a set of five ML models are trained and tested, 
and their predictions are stacked using a meta-model. 
This model adjusts these predictions with a set of weights 
to provide the final prediction of the Bitcoin price.

3.1  Stage 1—Input data pre‑processing

The data sample interval spans from 1st of January 2019 to 
31st of May 2022. In this interval, significant price move-
ments took place. Bull and bear markets explain price trends 
and are associated with significant price movements. Bull 
markets are intervals in which the price goes upwards, while 
the opposite is true for bear markets. To forecast the Bitcoin 
close price (BTC_USD - Ch

BTC
 ), as the relationship between 

energy, Bitcoin prices and their volatility became notorious, 
three main categories of features or variables are considered: 
1) Bitcoin data (prices and traded volumes), 2) electricity, 
gas, oil prices and quantities and 3) macroeconomics (such 
as: inflation, EUETS price). They were collected from vari-
ous sources like databases, files and online sources. For 
transparency and replicability, the input data was stored 
on the GitHub platform.1 These categories consist of 15 
fundamental variables that are known in the previous day 
of forecasting ( h − 24 ) and are used by the ML algorithms 
to provide the forecast of the Bitcoin close price for the 
next day ( Ch

BTC
 ). Therefore, the initial dataset is composed 

of: Open-High-Low prices ( Oh−24
BTC

, Lh−24
BTC

 ), Total volume 
( Vh−24

BTC
 ), Quote Asset Volume ( QAVh−24

BTC
 ), Number of trades 

( Nh−24
BTC

 ), Taker base volume ( TBVh−24
BTC

 ), Taker quote volume 
( TQVh−24

BTC
 ), Electricity price on DAM ( Ph−24

El
 ), Gas price on 

DAM ( Ph−24
Gas

 ), Inflation in EU ( Ih−24
EU

 ), EU-ETS emissions 
certificates prices ( Ph−24

EUETS
 ), Oil price ( Ph−24

Oil
 ), Electricity 

traded quantity on DAM ( Qh−24
El

 ), Gas traded quantity on 
DAM ( Qh−24

Gas
 ). Quote volume is used in sell orders when a 

trader knows beforehand how much quote coin, he/she will 
sell. Base volume is used in buy orders when a trader is not 
aware of how much quote coin, he/she can buy considering 
the available funds. On a trading exchange, assets are traded 
in pairs. One asset (Base Asset—BA) is traded against the 
other (Quote Asset QA). The price indicates how much of 
the QA is required to buy 1 unit of the BA. A taker BA 
volume represents how much of the total BA volume is con-
tributed by the taker orders. The total volume is equal to the 
taker buy plus taker sell.

For pre-processing, we perform the following steps: a) 
Data cleaning addresses any issues that could compro-
mise the quality of the data analysis. It involves identify-
ing and correcting errors like typographical mistakes, and 
inconsistencies of the data entries. This step also includes 
the treatment of missing values through methods like 

interpolation, where gaps are filled based on surrounding 
data values. Furthermore, this stage covers the removal of 
duplicate records that may skew the results of the analy-
sis; b) Data transformation includes changing the data 
types—for instance, converting timestamps from strings 
to datetime objects—or aggregating data points, such as 
summing up hourly transactions to obtain totals, to better 
suit the analysis needs; c) Data merging and integration 
combines the datasets from the following sources: Bit-
coin trading prices,2 Romanian electricity market volumes 
and prices,3 gas volumes and prices,4 inflation rates,5 oil 
prices6 and EU-ETS emissions certificates prices.7 All 
variables were recorded at hourly resolution and merged 
into a single, comprehensive dataset based on timestamp, 
facilitating coherent analysis across all variables; d) Data 
partitioning divides the dataset into yearly subsets for con-
ducting time-based analyses and for setting up training 
and testing sets in ML algorithms. Partitioning helps in 
evaluating the performance of predictive models under 
unbiased conditions by training them on one subset of 
the data and testing them on another; e) Data normaliza-
tion and standardization involve scaling numerical data 
to ensure that it falls within a particular range, such as 
between 0 and 1 (normalization) or having a mean of 0 and 
a standard deviation of 1 (standardization). Such scaling is 
critical for ML models that are sensitive to the magnitude 
of data, ensuring that no variable unduly influences the 
model due to its scale; f) Data encoding converts categori-
cal data into a numerical format since ML models handle 
numeric inputs. Techniques like one-hot encoding or label 
encoding are employed depending on the nature of the 
categorical data; g) Error checking and validation involves 
rigorously checking the dataset for errors and validating 
its accuracy to ensure that the data is fit for ML models. 
This includes applying specific data validation rules, such 
as constraints on data values and relationships, to prevent 
logical inconsistencies in the dataset.

By following these detailed preprocessing steps, the data-
set is effectively prepared to be used in Step 2 and enhanced 
with more derived features. A data sample is showcased in 
Table A1 in Appendix A.

1 https:// github. com/ simon avopr ea/ Bitco in- Energy- Nexus

2 https:// www. inves ting. com/ crypto/ bitco in/ btc- usd
3 https:// www. opcom. ro/ pp/ grafi ce_ ip/ rapor tPIPs iVolu mTran zacti 
onat. php? lang= ro
4 https:// www. brm. ro/ piata- spot- gn/
5 https:// www. ratei nflat ion. com/ infla tion- rate/ euro- area- histo rical- 
infla tion- rate/
6 https:// www. macro trends. net/ 2480/ brent- crude- oil- prices- 10- year- 
daily- chart
7 https:// www. inves ting. com/ commo dities/ carbon- emiss ions- histo 
rical- data

https://github.com/simonavoprea/Bitcoin-Energy-Nexus
https://www.investing.com/crypto/bitcoin/btc-usd
https://www.opcom.ro/pp/grafice_ip/raportPIPsiVolumTranzactionat.php?lang=ro
https://www.opcom.ro/pp/grafice_ip/raportPIPsiVolumTranzactionat.php?lang=ro
https://www.brm.ro/piata-spot-gn/
https://www.rateinflation.com/inflation-rate/euro-area-historical-inflation-rate/
https://www.rateinflation.com/inflation-rate/euro-area-historical-inflation-rate/
https://www.macrotrends.net/2480/brent-crude-oil-prices-10-year-daily-chart
https://www.macrotrends.net/2480/brent-crude-oil-prices-10-year-daily-chart
https://www.investing.com/commodities/carbon-emissions-historical-data
https://www.investing.com/commodities/carbon-emissions-historical-data
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3.2  Stage 2—Features engineering

The input of the ML algorithms Xh is initially composed 
of the 15 raw or fundamental features described and pre-
processed in Step 1 that represent the recorded hourly 

values of the previous day. The hour ( h ), month (m), 
weekday (wd) and year (y) are also extracted from the 
timestamp and added to the input variables to capture the 
time variations. For day d of prediction, the fundamental 
features are lagged by 24 h (h-24).

(1)
Xh =

[
Ph−24
El

,Qh−24
El

,Ph−24
Gas

,Qh−24
Gas

,Ph−24
Oil

,Ph−24
EUETS

, Ih−24
EU

,Oh−24
BTC

,Hh−24
BTC

, Lh−24
BTC

,

Nh−24
BTC

,Vh−24
BTC

,QAVh−24
BTC

, TBVh−24
BTC

, TQVh−24
BTC

,m, h,wd, y
]

Feature engineering focuses on the Bitcoin price mov-
ing average, 24, 48, 72-shifted vectors, their mean value 
and SQL Analytical functions.

3.2.1  Statistical variables

The input is filled with 11 statistical features. Previous 
hourly prices ( Ch−Δt

BTC
 ) with a lag ( Δt ) of 24 to 72 h are 

calculated by shifting the prices. The averages of the 
previous hourly prices for 3 consecutive days ( CΔt

BTC
 ) are 

calculated using Eq. (2):

The hourly variations of the previous Bitcoin prices for 
the last 3 consecutive days ( �Δt

BTC
 ) are determined using 

Eq. (3):

Moving average refers to a series of averages of fixed 
size subsets of the total set of observations. It is also 
known as rolling average with a specified window size 
(q).

where:

– t represent the last price of the time series and it is set 
to h − 24

– Ck
BTC

 represent the values of time series,k =
−

t − q + 1, t

– q ∈ {3, 7, 10, 20, 50} represents the window size.

3.2.2  SQL analytical functions

SQL provides analytical functions like RANK, ROW_NUM-
BER, LEAD, LAG, and window functions that enable 

(2)CΔt
BTC

=

∑
Δt∈{24,48,72} C

h−Δt
BTC

3

(3)�Δt
BTC

= 100 −
Ch−Δt
BTC

Ch−Δt−24
BTC

× 100

(4)MAt
q
=

1

q

t∑

k=t−q+1

Ck
BTC

advanced analytical calculations. SQL analytical functions, 
also known as window functions, perform calculations 
across a set of rows related to the current row in a dataset. 
These functions enable calculations beyond simple aggrega-
tion and grouping. They are particularly useful for tasks like 
ranking, cumulative sums, moving averages, etc. Analyti-
cal functions are usually used in extracting and reporting 
on data stored in relational databases and data warehouses. 
They process data based on groups of records but differ from 
aggregate or group functions by returning multiple results 
for each individual group. The group of records to which the 
analysis is applied is called a window and is defined using an 
analysis clause. The window determines the range of records 
to be analyzed for each current record. The size of the win-
dow can be determined either physically, by specifying the 
number of records in the group, or logically, by conditions 
on the field values. Analytic operations are the last processed 
in an SQL query before the ORDER BY clause.

The structure of an analytic function is as follows: ANA-
LYTIC FUNCTION () OVER (analytical clause). The 
analytical clause can have the following subclauses: PAR-
TITION BY (expression1, expression2, etc.) ORDER BY 
expression/position/alias [ASC/DESC] [null first/last] win-
dow clause, where window clause can be: ROWS/RANGE 
[BETWEEN] {UNBOUNDED PRECEDING}/{CURRENT 
ROW}/{expression PRECEDING/FOLLOWING} [AND] 
{UNBOUNDED PRECEDING}/{CURRENT ROW}/
{expression PRECEDING/FOLLOWING}.

If the window clause is omitted, then by default it applies 
RANGE BETWEEN UNBOUNDED PRECEDING AND 
CURRENT ROW. Using the ROWS BETWEEN 1 PRE-
CEDING AND 1 FOLLOWING clause determines the 
analysis of the previous and immediately following value of 
the current record. A list sample of analytical functions is 
showcased in Table 1.

Thus, the first three analytical functions ( F1 ÷ F3 ) – the 
mean BTC prices from the same year (y) and month (m) 
(columns in ORDER BY) with the current value from the 
same hour (column in PARTITION BY) considering the 
preceding and following n values are depicted in Eq. (5).
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(5)
F1 ÷ F3 ∶ AVG(Ch

BTC
)OVER (PARTITION BY h

ORDER BY y, m ROWS BETWEEN n PRECEDING AND n FOLLOWING)

Table 1  Examples of analytical functions

Analytical
Feature

Depiction

RANK(), 
DENSE_
RANK(), 
NTILE()

These functions rank rows based on specified criteria. RANK assigns the same rank to rows with equal values and leaves 
gaps, DENSE_RANK assigns the same rank to equal values without gaps, and NTILE divides the result set into a specified 
number of roughly equal parts

LEAD(), LAG() These functions access data from subsequent (LEAD) or preceding (LAG) rows in a dataset based on a specified ordering. 
They are used to calculate differences or trends in data

SUM(), AVG() While SUM() and AVG() can be used as aggregate functions, they can also be used as window functions to calculate running 
totals and averages over a set of rows

PERCEN-
TILE_CONT(), 
PERCEN-
TILE_DISC()

These functions calculate the specified percentile: PERCENTILE_CONT calculates the continuous percentile, while PER-
CENTILE_DISC calculates the discrete percentile

CUME_DIST() This function calculates the cumulative distribution returning the fraction of rows that are less than or equal to the current 
value

where n ∈ {1, 3, 5}. The fourth analytical function ( F4 ) – the mean BTC prices 
of previous values relative to the current value from the same 
year, month, at the same hour—is described in Eq. (6). 

(6)F4 ∶ AVG(Ch
BTC

)OVER (PARTITION BY h

ORDER BY y, m ROWS BETWEEN unbounded preceding AND current row)

The mean BTC prices of next values relative to the current 
value from the same year, month, at the same hour represent 

the fifth feature showcased in Eq. (7). 

The sixth feature consists of the mean of BTC price from 
the same month between which there is a ± 5 difference rela-
tive to the current value. It is illustrated in Eq. (8).

The sixth feature consists of the mean of BTC price from 
the same month between which there is a ± 10 difference rela-
tive to the current values in Eq. (9).

(7)
F5 ∶ AVG(Ch

BTC
)OVER (PARTITION BY h

ORDER BY y, m ROWS BETWEEN current row AND unbounded following

(8)

F6 ∶ AVG(Ch
BTC

)OVER (PARTITION BY y, m, h

ORDER BY m RANGE BETWEEN 5 preceding AND 5 following

The eighth and nineth features represent the minimum Bit-
coin value and the maximum Bitcoin value from the same 
hour, with less or equal values relative to the current value as 
in Eq. (10) and Eq. (11).

(9)

F7 ∶ AVG(Ch
BTC

)OVER (PARTITION BY y, m, h

ORDER BY m RANGE BETWEEN 10 preceding AND 10 following
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(10)F8 ∶ MIN(Ch
BTC

) OVER (PARTITION BY h

ORDER BY y, m, h ROWS BETWEEN unbounded preceding AND current row)

 The minimum Bitcoin value and the maximum Bitcoin 
value from the same year, month, hour, with equal or greater 

(11)
F9 ∶ MIN(Ch

BTC
) OVER (PARTITION BY h

ORDER BY y, m, h ROWS BETWEEN unbounded preceding AND current row)

values relative to the current value are shown in Eq. (12) and 
Eq. (13) and represent features F10 and F11. 

  

(12)
F10 ∶ MIN(Ch

BTC
) OVER (PARTITION BY h

ORDER BY y, m, h ROWS BETWEEN unbounded preceding AND current row)

(13)
F11 ∶ MIN(Ch

BTC
) OVER (PARTITION BY h

ORDER BY y, m , h ROWS BETWEEN current row AND unbounded following)

The standard deviation of the Bitcoin price from the same 
year and month (column in ORDER BY) with the current 
value from the same hour (column in PARTITION BY) rep-
resents the twelfth feature and it is given in Eq. (14).

(14)

F12 ∶ STDDEV(Ch
BTC

) OVER (PARTITION BY h

ORDER BY y, m ROWS BETWEEN 1 preceding AND 1 following)

F13 calculates the Bitcoin price percentile and returns a 
value that represents the percent of values that are less or 
equal than the current value as in Eq. (15). F14 calculates 
the percent rank of the current value within a specific hour 
as in Eq. (16).

 (15)
F13 ∶ CUME_DIST() OVER (PARTITION BY h ORDER BY Ch

BTC
)

F15 computes the ratio of a value to the sum of a set of 
values as in Eq. (17).

Finally, the input of the ML algorithms is completed with 
the above-calculated features:

The closing hourly BTC prices represent the target feature 
( yh = Ch

BTC
 ) of the ML algorithms.

3.3  Stage 3—Forecasting ML models

A stochastic forecasting method that combines four ensem-
ble ML algorithms: Random Forest (RF), eXtreme Gradi-
ent Boosting (XGB), Histogram-based Gradient Boosting 
(HGB) and Light Gradient Boosting (LGB) Machine using 

(16)F14 ∶ PERCENT_RANK() OVER (PARTITION BY h ORDER BY C
h

BTC
)

(17)
F15 ∶ RATIO_TO_REPORT(Ch

BTC
) OVER (PARTITION BY y, m, h)

(18)
Xh = [Xh,Ch−24

BTC
,Ch−48

BTC
,Ch−72

BTC
,CΔt

BTC
, �Δt

BTC
,MAt

q
,F1 ÷ F15]

a Voting Regressor (VR) model is proposed in this paper. 
The proposed model combines the predictions of multiple 
individual models to make a final prediction, resulting in 
improved performance and generalization. Therefore, VR 
combines the predictions of multiple models to make a more 
accurate prediction than any single model. The idea behind 
using VR is that different models might capture different 
aspects of the underlying data patterns, and combining their 
predictions can lead to a more accurate overall prediction.

The main four steps of implementing a VR are as follows 
(as in Fig. 4):

• Step 1—Choose a set of individual regression models 
to include them in the ensemble. These models can be 
trained using different algorithms or hyperparameters. 
The effectiveness of a Voting Regressor depends on the 
diversity and quality of the individual models included in 
the ensemble. Experiments with different combinations 
of models and assessment of the ensemble's performance 
on a validation dataset are performed.
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• Step 2 – We create an instance of the VR class from 
the ML library (e.g., scikit-learn in Python) and pro-
vide the list of individual models to the VR. When 
choosing the models, the most accurate models were 
selected.

• Steps 3 and 4—Fit the VR on the training dataset (80%), 
which trains all the individual models. Use the trained 
VR to make predictions on new data. Test the models for 
20% of the dataset.

Ensemble ML algorithms combine the predictions of 
multiple individual models to create a stronger, more 
accurate model. They reduce overfitting and increase 
the robustness of ML models. There are four main cat-
egories of ensemble techniques brief ly described in 
Fig. 5.

Light Gradient Boosting Machine (LGB) like other 
gradient boosting frameworks, builds an ensemble of 
weak learners (usually decision trees) in a sequential 
manner and incorporates several optimizations to make 
it faster and more scalable. Each new tree corrects the 
errors made by the previous ones, leading to improved 

predictive performance. It is known for its speed, mem-
ory efficiency, and high performance on a wide range of 
datasets. It uses a histogram-based approach to bucket 
the data, which reduces memory usage and speeds up 
training. This approach discretizes the feature values 
into bins, reducing the number of unique values to con-
sider during the split finding process. LGB utilizes mul-
tiple CPU cores for parallel training and supports GPU 
acceleration to speed up the training process.

Histogram-based Gradient Boosting (HGB) is a tech-
nique used in gradient boosting algorithms to improve 
their efficiency and speed. As mentioned, this technique is 
a core component of LGB. Traditional gradient boosting 
algorithms build trees using a depth-wise approach. They 
iteratively split data points at each level of the tree based 
on a specific feature’s values. However, this approach can 
be computationally expensive and memory-intensive, espe-
cially with large datasets. HGB as in LGB bins feature val-
ues in discrete bins or histograms during the data preproc-
essing step. Then, during the tree-building process, instead 
of searching for optimal splits for individual feature values, 
the algorithm works with the pre-binned histograms.

Fig. 4  Steps in setting VR

Fig. 5  Four main categories of 
ensemble methods
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eXtreme Gradient Boosting (XGB) proved high pre-
dictive capabilities and feature-rich implementation. 
Like LGB, XGB is based on the gradient boosting as it 
iteratively builds an ensemble of weak learners, and it 
introduces a regularized learning objective that combines 
the loss function with penalties that prevent overfitting 
and improves the generalization of the model. Further-
more, XGB, similarly to LGB, utilizes multiple CPU 
cores and even distributed computing environments, 
making it highly scalable and efficient for large datasets 
and accelerates using GPUs, which significantly speeds 
up the training process. XGB allows customization of 
the criteria for finding optimal split points during tree 
construction.

Random Forest (RF) is an extension of decision tree 
algorithms that aims to improve their predictive perfor-
mance and reduce overfitting. It consists of a collection of 
individual decision trees. Each tree is trained on a random 
subset of the training data and independently makes predic-
tions. During the construction of each tree, a random subset 
of features is considered for splitting at each node, reducing 
overfitting. For each tree, a random subset of the training 
data is sampled with replacement. This process is known 
as bagging. The combination of random feature selection 
and bagging contributes to the diversity of the trees in the 
ensemble. For classification, the predictions of each indi-
vidual tree are combined through a majority vote, while for 
regression tasks, the predictions are usually averaged. It is 
less sensitive to outliers and noise in the data compared to 
single decision trees. The training of individual trees can 
be parallelized, making Random Forests computationally 
efficient.

Thus, the proposed model embeds the first three cat-
egories of the ensemble techniques: bagging (RF), boost-
ing (HGB, LGB, XGM) and voting (VR). The fourth 
category—stacking is included in order to use the predic-
tions of the five models as input to another model (that is 
known as Meta-Model MM) that learns from the results 
of the base models.

The first training dataset T spans from 1st of January 
until 30th of April 2021, whereas the first testing dataset 
spans from 1st of May until 7th of May 2021. The ML 
algorithms (RF, LGB, HGB, XGB and VR are trained on 
the T  interval and provide for the next 7 days an individual 
forecast denoted by ŷh+Δt

p
 ,  where Δt =

−

1, 168 and 
p ∈ {RF,LGB,HGB,XGB,VR} . Each individual model pro-
vides an estimation. These estimations are further 
weighted with a set of weights ( �i ) and used as input for 
the stacking ML model. This model is a Meta-Model 
(MM) that mediates the predictions of the sub-models 
using the weights to improve the accuracy of the final pre-
diction. Instead of training the MM on the input set Xh , it 

is trained on the predictions 
(
ŷh
p

)
 of its sub-models using 

the same target ( yh = Ch
BTC

 ) for the same training period 
as the sub-models. Thus, it determines the weights to 
adjust each sub-model and learns how to optimally com-
bine these predictions. The goal is to leverage the strengths 
of each individual model and mitigate their weaknesses, 
thereby enhancing prediction accuracy. After training, the 
predictions 

(
ŷh+Δt
p

)
 of the initial five ML models are 

weighted with the corresponding coefficient to forecast the 
hourly Bitcoin price 

(
̂Ch+Δt
BTC

)
 for the next 7 days:

The stacking ML model can be a simpler ML model 
such as Linear Regression (LR) or Decision Tree (DT) 
regressor or another ensemble model, such as Gradient 
Boosting Regressor (GBR). Therefore, the individual 
estimations are used as input features in order to obtain 
a final prediction using a stacking model, such as LR 
or DT. In the stacking approach, each sub- model’s pre-
diction is given a specific weight, which signifies the 
relative importance or trustworthiness of that model’s 
output in the context of the combined prediction. These 
weights are critical as they determine how much influ-
ence each model’s prediction has on the final output. To 
determine the weights, the method of least squares errors 
is a common objective function in regression problems. 
The least squares error function quantifies the difference 
between the observed values and the predicted values. 
Therefore, the weights are obtained by minimizing the 
Sum of the Squared Errors (SSE) between the actual 
target or the Bitcoin prices during the training interval 
and the stacked predictions p. By minimizing this sum, 
the fitting process seeks to find the model parameters 
(weights in this case) that result in the best possible 
predictions, in terms of being closest to the actual data 
(Bitcoin close price).

Using SSE has several advantages: i) it is straightforward 
to implement and computationally efficient to optimize, 
which is particularly valuable when dealing with multi-
ple predictors as in stacking; ii) SSE function is convex in 
terms of the regression coefficients (weights), ensuring that 
the optimization process finds a global minimum, thus the 
optimal set of weights; iii) squaring the errors penalizes 
larger discrepancies more severely, focusing the model on 
avoiding large mistakes in prediction. By optimizing these 

(19)

̂Ch+Δt
BTC

=
∑

p

�p × ŷh+Δt
p

,∀p ∈ {RF, LGB,HGB,XGB,VR},Δt =
−

1, 168

(20)�p = argmin
�p

∑

h∈T

(

Ch
BTC

−
∑

p

�p × ŷh
p

)2
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weights to minimize SSE, the stacking model effectively 
learns the best way to combine the sub-models’ outputs to 
replicate the actual Bitcoin prices as closely as possible. 
This results in a robust model that improves upon the per-
formance of its constituent models, leading to more reliable 
and accurate forecasts.

Ensemble methods, like RF, XGB, LGB, HGB and 
VR, are advanced ML techniques known for their high 
accuracy and robustness. They have different param-
eters and structures. RF consists of a collection of 
decision trees. Each tree is built from a random subset 
of the training data. The key parameters are: number 
of trees, max depth of trees, min samples split, min 
samples leaf. Each tree makes a prediction, and the 
final output is typically the average of these predic-
tions. XGB is a gradient boosting framework that uses 
a collection of decision trees. Its key parameters are: 
number of boosting rounds, max depth of trees, learn-
ing rate, subsample ratio of the training instance. It 
uses a more regularized model formalization to control 
over-fitting, which gives it better performance. LGB 
structure is similar to XGB, but uses a histogram-
based algorithm for faster training and reduced memory 
usage. Its main parameters are: number of leaves, max 
depth, learning rate, feature fraction. HGB is a gradi-
ent boosting approach that uses histograms to repre-
sent the continuous feature values in each split. Its key 
parameters are: max iter (number of boosting stages), 
max depth, learning rate. HGB is designed to be faster 
than traditional gradient boosting by using histograms 
to speed up the calculation of potential splits. VR is 
not a tree-based model, but an ensemble that combines 

predictions from multiple different regression models. 
Its key parameter depends on the individual regres-
sors used within the ensemble. The final prediction 
can be either the average or a weighted average of all 
the regressors’ predictions. In ensemble methods, the 
focus is more on how the individual models (like trees 
in RF or boosting rounds in XGB) are combined and 
optimized for the best predictive performance.

3.4  Evaluation of the accuracy of the models

For assessing the accuracy of the stacking model, the 
following well-known metrics are calculated for the 
training and testing intervals: Root-Mean Squared Error 
(RMSE), coefficient of determination ( R2 ), Mean Abso-
lute Percentage Error (MAPE) and Mean Absolute Error 
(MAE):

(21)RMSE =
1

T

T∑

h=1

(
C
h

BTC
− Ĉ

h

BTC

)2

(22)R2 = 1 −

∑T

h=1
(Ch

BTC
− Ĉh

BTC
)
2

∑T

h=1

�
Ch
BTC

− Ch
BTC

�2

(23)MAPE =
1

T

T∑

h=1

|||
|
Ch
BTC

− Ĉh
BTC

|||
|

|
||
Ch
BTC

|
||

× 100%

Fig. 6  Variations of Bitcoin 
price and volume during Janu-
ary 2019-May 2022
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The same metrics are used to evaluate the accu-
racy of the ML models by replacing the Ĉh

BTC
 

with the cor responding predict ions ŷh
p
 ,  where 

p ∈ {RF, LGB,HGB,XGB,VR}.

(24)MAE =
1

T

T∑

h=1

|
|
|
|
Ch
BTC

− Ĉh
BTC

|
|
|
|

4  Results

4.1  Case study description

The input data was collected from various websites. For 
Bitcoin data, energy data and macroeconomics (oil prices 
and inflation) several websites were visited, and the values 
were either downloaded or scraped, as mentioned in sub-
section 3.1. For instance, the electricity data was scraped 
from OPCOM website. The Bitcoin price and traded vol-
ume variations are depicted as boxplots in Fig. 6. Usually, 

Fig. 7  Heatmaps (a) 2019, (b) 
2020, (c) 2021, (d) 2022
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according to the interquartile range, the price varied 
between 1,000 and 40,000 USD. The median price was 
just over 1,000 USD, but it reached almost 70,000 USD 
for short intervals. The variation of the traded volume 
was much less than that of price, but outliers were more 
frequent.

The correlations between Bitcoin price and other 
prices and macroeconomics indicators are analyzed 
in Fig. 7. Even from 2019, when the Bitcoin price was 

much lower, a strong correlation between the price and 
the Price_EUETS was recorded (0.65). Furthermore, a 
strong inverse correlation was noticed between Infla-
tion_EU and the price. There was no correlation between 
the electricity price on DAM and the price (0.03), and the 
correlation between gas price on DAM and the price was 
0.35. The other correlations in 2019 were of medium or 
weak intensity (as in Fig. 7a). In 2020, the correlations 
between the Bitcoin price and electricity (0.39) and gas 

Fig. 7  (continued)
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prices (0.40) on DAM intensified (as in Fig. 7b). The 
strong correlation between the price and Price_EUETS 
maintained (0.68), while the inverse correlation with the 
Inflation decreased from -0.71 in 2019 to -0.55 in 2020. 
The weak correlation with the oil price changed the polar-
ity from -0.20 in 2019 to 0.30 in 2020.

In relation to energy prices, in 2021, the Bitcoin price 
showcased ample swings (Fig. 7c). Most of the correlations 
were of medium intensity (Gas_quantity_DAM switched 
from -0.25 in 2020 to 0.43 in 2021, Inflation_EU switched 
from -0.55 in 2020 to 0.41 in 2021). The stronger corre-
lation with Price_EUETS from 2019 and 2020 weakened 
from 0.68 in 2020 to 0.24 in 2021. In the first five months 
from 2022, the absent correlation between the price and the 

electricity price on DAM returned (-0.09). A medium cor-
relation with Inflation_EU (-0.41) was noticeable, while the 
rest of the correlations were weak (as in Fig. 7d).

The evolution of Bitcoin price and the Price_EUETS 
is showcased in Fig. 8. They both started to increase from 
the end of 2020. The highest values recorded for the Bit-
coin price (the blue curve) in 2021 were followed in 2022 
by the highest values recorded for the Price_EUETS (the 
green curve). The evolution of Bitcoin price and oil price 
is showcased in Fig. 9. While the oil price was much 
higher than the Bitcoin price in 2019, they met in the first 
semester of 2020 when the oil price dropped at the begin-
ning of COVID-19 pandemic, and both started to increase. 
The maximum values recorded by the Bitcoin prices in the 

Fig. 8  Evolution of Bitcoin 
price and Price_EUETS

Fig. 9  Evolution of Bitcoin 
price and oil price
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Table 2  Implementation of the analytical functions

Analytical
Feature

Depiction

F1 Mean BTC price from the same year and month (column in ORDER BY) with the current value from the same hour (column in 
PARTITION BY) considering the preceding and following values

SELECT date_mm, year, month, hour, BTC_USD, 
AVG(BTC_USD) OVER (PARTITION BY hour ORDER BY year, month ROWS BETWEEN 1 PRECEDING AND 1 FOLLOW-

ING) AS F1
FROM bit ORDER BY date_mm, year, month, hour;

F2 Mean BTC price from the same year and month (column in ORDER BY) with the current value from the same hour (column in 
PARTITION BY) considering the preceding and following 3 values

SELECT date_mm, year, month, hour, BTC_USD, 
AVG(BTC_USD) OVER (PARTITION BY hour ORDER BY year, month ROWS BETWEEN 3 PRECEDING AND 3 FOLLOW-

ING) AS F2
FROM bit ORDER BY date_mm, year, month, hour;

F3 Mean BTC price from the same year and month (column in ORDER BY) with the current value from the same hour (column in 
PARTITION BY) considering the preceding and following 5 values

SELECT date_mm, year, month, hour, BTC_USD, 
AVG(BTC_USD) OVER (PARTITION BY hour ORDER BY year, month ROWS BETWEEN 5 PRECEDING AND 5 FOLLOW-

ING) AS F3
FROM bit ORDER BY date_mm, year, month, hour;

F4 Mean BTC price of previous values relative to the current value from the same year, month, at the same hour
SELECT date_mm, year, month, hour, BTC_USD, 
AVG(BTC_USD) OVER (PARTITION BY hour ORDER BY year, month ROWS BETWEEN unbounded preceding AND current 

row) AS F4 FROM bit ORDER BY date_mm, year, month, hour;
F5 Mean BTC price of next values relative to the current value from the same year, month, at the same hour

SELECT date_mm, year, month, hour, BTC_USD, 
AVG(BTC_USD) OVER (PARTITION BY hour ORDER BY year, month ROWS BETWEEN current row AND unbounded fol-

lowing) AS F5 FROM bit ORDER BY date_mm, year, month, hour;
F6 Mean of BTC price from the same month between which there is a ± 5 difference relative to the current value

SELECT date_mm, year, month, hour, BTC_USD,
AVG(BTC_USD) OVER (PARTITION BY year, month, hour ORDER BY month range BETWEEN 5 preceding AND 5 following) 

AS F6 FROM bit ORDER BY date_mm, year, month, hour;
F7 Mean of BTC price from the same month between which there is a ± 10 difference relative to the current value

SELECT date_mm, year, month, hour, BTC_USD,
AVG(BTC_USD) OVER (PARTITION BY year, month, hour ORDER BY month range BETWEEN 10 preceding AND 10 follow-

ing) AS F7 FROM bit ORDER BY date_mm, year, month, hour;
F8, F9 Min BTC_USD value, max BTC_USD value from the same hour, with less or equal values relative to the current value

SELECT date_mm, year, month, hour, BTC_USD,
MIN(BTC_USD) OVER (PARTITION BY hour ORDER BY year, month, hour rows BETWEEN unbounded preceding AND cur-

rent row) AS F8, MAX(BTC_USD) OVER (PARTITION BY hour ORDER BY year, month, hour rows BETWEEN unbounded 
preceding AND current row) AS F9 FROM bit ORDER BY date_mm, year, month, hour;

F10, F11 Min BTC_USD value, max BTC_USD value from the same year, month hour, having equal or greater values relative to the current value
SELECT date_mm, year, month, hour, BTC_USD,
MIN(BTC_USD) OVER (PARTITION BY year, month, hour ORDER BY year, month, hour rows BETWEEN current row AND 

unbounded following) AS F10, MAX(BTC_USD) OVER (PARTITION BY year, month, hour ORDER BY year, month, hour 
rows BETWEEN current row AND unbounded following) AS F11 FROM bit order by date_mm, year, month, hour;

F12 Standard deviation of the BTC price from the same year and month (column in ORDER BY) with the current value from the same 
hour (column in PARTITION BY)

SELECT date_mm, year, month, hour, BTC_USD, 
stddev(BTC_USD) OVER (PARTITION BY hour ORDER BY year, month ROWS BETWEEN 1 PRECEDING AND 1 FOLLOW-

ING) AS F12
FROM bit ORDER BY date_mm, year, month, hour;
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last semester of 2021 were followed at the beginning of 
2022 by the maximum values of the oil price.

The basic statistics applied on the fundamental features 
are presented in Appendix A in Tables A2-A6. The stand-
ard deviation was around 2,643 in 2019, almost doubled 
in 2020 and then was more than double in 2021 when the 
Bitcoin price reached a maximum value. However, the stand-
ard deviation increased 4 times from 2020 to 2021 in the 
case of the electricity price, whereas for the gas price, it 
increased more than 10 times. Impressive increases in stand-
ard deviation occurred for other input variables as illustrated 
in Appendix A.

The first considerable peak price was recorded in March 
2021 – also known as the first bull market, but it was fol-
lowed by the first bear market in May 2021 (as in Fig. 9). 
In August 2021, the Bitcoin price started its second upward 
slope that continued with the third upward slope in October 
2021. However, in November 2021, the price reached the 
highest value and then went back to the average price level 
in September. Therefore, four intervals (entire months) are 
studied in the current paper: May and November—bear 
markets and August and October—bull markets.

4.2  Simulations

The training interval spanned from 1st of January 2019 until 
the day before the prediction horizon that is set for 168 h 
ahead or a week. For simulations, we focus on two upward 
and two downward slopes. Apart from the statistical vari-
ables, the analytical functions are implemented in Oracle 
12c. Their implementation is briefly described in Table 2.

For the input variables selection, we tested SelectKBest 
method from sklearn.feature_selection, but no significant 
improvement was recorded, thus, the entire input vari-
ables set (that consists of 41 variables: 15 fundamental, 
11 statistical and 15 SQL analytical functions) was used 
in simulations. The standard 80:20 split was employed for 
training and testing. Although alternative ratios such as 

60:40, 70:30, 75:25, 85:15, and 90:10 were explored, the 
80:20 ratio demonstrated the most effective results. One of 
the most interesting months in 2021 from the Bitcoin price 
evolution point of view were: May, August, October and 
November. The first significant downward slope (when the 
prices dropped from almost 59,000 USD to 34,000 USD) 
that is assimilated to a bearish market that is analyzed in 
the current paper refers to month May 2021. The first train-
ing interval spanned from January 2019 to 30 April 2021. 
The prediction is tested during the following weeks: 1–7, 
8–14, 15–21, 22–28 May, 29 May – 4 June. The results are 
graphically presented on a weekly basis (Fig. 10). BTC_
USD represents the prices (blue curve), whereas BTC_
price_F represents the average forecast with the results of 
the 5 ML algorithms (orange curve) and BTC_price_PF 
represents the weighted forecast (green curve) as described 
in Eqs. (19, 20).

By the middle of the first week of May, the price 
showed signs of decline. It went from almost 59,000 to 
53,000 USD, but it recovered by the end of the week. In 
the next three weeks, the Bitcoin price continued to go 
down and it stabilized around 37,000 USD at the begin-
ning of June. From the first analyzed month, one can 
notice that most of the time, the real curve is well followed 
by the prediction obtained by averaging the results of the 
five predictors or by stacking the results using the deci-
sion tree regressor (green) curve. However, abrupt slopes 
(drops or peaks) are difficult to predict. For instance, the 
sudden drop from the first day of the last week (29 May 
– 04 June) of almost 2,000 USD is not well predicted or 
the model fails to provide an accurate forecast.

The first upward slope analyzed in the current paper 
was recorded in August 2021. The first training inter-
val spanned from January 2019 to 31 July 2021. The 
prediction is tested during the following weeks: 1–7, 
8–14, 15–21, 22–28 August, 29 August – 4 September. 
The results are graphically presented on a weekly basis 
(Fig. 11).

Table 2  (continued)

Analytical
Feature

Depiction

F13, F14 F13 calculates BTC_USD percentile and returns a value that represents the percent of values that are less or equal than the current 
value. F14 calculates the percent rank of the current value within a specific hour

SELECT date_mm, year, month, hour, BTC_USD, 
CUME_DIST() OVER (PARTITION BY hour ORDER BY BTC_USD)*100 AS F13, PERCENT_RANK() OVER (PARTITION 

BY hour ORDER BY BTC_USD)*100 AS F14 
FROM bit ORDER BY date_mm, year, month, hour;

F15 It computes the ratio of a value to the sum of a set of values
SELECT date_mm, year, month, hour, BTC_USD, 
RATIO_TO_REPORT(BTC_USD) OVER (PARTITION BY year, month, hour)*100 AS F15 FROM bit ORDER BY date_mm, 

year, month, hour;
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Fig. 10  The first downward 
slope – May 2021

(a) Week 1-7 May 2021 

(b) Week 8-14 May 2021 

(c) Week 15-21 May 2021

(d) Week 22-28 May 2021

(e) Week 29 May – 4 June 2021 

During August 2021, the Bitcoin price suffered signifi-
cant oscillations. During the first two weeks it recorded ups 
and downs, but by the end of the third week, it reached again 
the 50,000 USD threshold. The next two weeks were charac-
terized by ups and downs but at the beginning of September, 
the price was again around 50,000 USD. During August, the 

prediction is also good. The green and orange curves most of 
the time followed the real price. Sudden drops like in the first 
day of the second week of almost 2,000 USD or the sudden 
increase in the last week were difficult to predict.

The second upward slope was recorded in Oct 2021. 
The first training interval spanned from January 2019 to 



 A. Bâra et al.

30 September 2021. The prediction is tested during the 
following weeks: 1–7, 8–14, 15–21, 22–28 October, 29 
October – 4 November. The results are graphically pre-
sented on a weekly basis (Fig. 12). In the first week of 
October, the price increased from almost 45,500 to 55,000 
USD clearly indicating a bullish market. After the second 
week, the Bitcoin price went up to more than 59,000 USD 
(reaching the value recorded at the begging of May). The 
prediction in the first two weeks is very good, the real 
price was closely followed by the prediction curves.

In the third week of October, the price continued to 
increase up to almost 67,000 USD. However, the sudden 

increase from 64,000 to 67,000 USD is difficult to predict. 
In the next week (the fourth week in October), only one 
noticeable drop to almost 58,000 USD took place, but the 
price recovered in a day or two and it stabilized at 62,000 
USD at the beginning of November.

The second downward slope was recorded in Novem-
ber 2021 after the second week when the maximum 
value was recorded (around 69,000 USD) and then 
decreased by more than 20,000 USD and at the begin-
ning of December it valued 48,000 USD. The first train-
ing interval spanned from January 2019 to 31 October 
2021. The prediction is tested during the following 
weeks: 1–7, 8–14, 15–21, 22–28 November, 29 Novem-
ber – 5 December. The results are graphically presented 
on a weekly basis (Fig. 13).

The prediction for November is again very good. Only 
several days of sudden ups and downs (very limited inter-
vals) raise prediction issues when price variations were on 
a steep slope. In any case, upon the return from these sud-
den price movements, the prediction continued to maintain 
the trend.

The numerical results are illustrated in Tables 3, 4, 5, 6.
In Table 7, a comparison between the proposed Meta-

Model (MM) and the five individual ML algorithms 
(RF, LGB, HGB, XGB and VR) is provided. The feature 
engineering is identical and on average, MAE improves 
by 7.42% and RMSE improves by 3.25% using the MM. 
However, without the proposed feature engineering (sta-
tistical variables and SQL analytical functions), MAE 
improves by 31.98% and RMSE improves by 35.55% 
using the MM.

The following key parameters were considered in simula-
tions (as in Table 8):

5  Conclusions

This study focuses on the importance of Bitcoin in the 
world economy, from the perspective of the relation-
ship with energy consumption. The interest of investors, 
researchers, public authorities for Bitcoin and in general 
for cryptocurrencies is growing considering the multiple 
values that Bitcoin has and its role as a star on the financial 
market despite its volatility and lack of regulation. The 
innovation process on the financial market is very intense, 
but by far, cryptocurrencies are considered the most sig-
nificant financial innovation that brings together new ele-
ments both from an economic and technical point of view. 
Blockchain technology, which is the basis of cryptocurren-
cies, is of great interest for other fields as well, given its 
potential to transform several industries in the context of 
the twin transition.

(a) Week 1-7 August 2021 

(b) Week 8-14 August 2021 

(c) Week 15-21 August 2021 

(d) Week 22-28 August 2021 

(e) Week 29 August – 04 September 2021 

Fig. 11  The first upward slope – August 2021
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Bitcoin price prediction is essential from the perspective of 
investors who are looking for solutions to optimize the struc-
ture of portfolios, but also to reduce the herd behavior that is 
specific to markets under the sign of the bear. Researchers’ 
attention has gradually shifted from purely financial aspects 

related to Bitcoin trading, namely the growing volatility, 
interdependence with other segments of the financial market, 
the need to regulate the issuance and trading of these assets 
to sustainability issues like energy consumption and carbon 
emissions that generate cryptocurrency mining.

Fig. 12  The second upward—
October 2021

(a) Week 1-7 October 2021 

(b) Week 8-14 October 2021 

(c) Week 15-21 October 2021 

(d) Week 22-28 October 2021 

(e) Week 29 October - 4 November 2021 
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Fig. 13  The second downward 
slope – November 2021

(a) Week 1-7 November 2021 

(b) 8-14 November 2021 

(c) 15-21 November 2021 

(d) Week 22-28 November 2021 

(e) 29 November - 5 December 2021 

Table 3  Metrics for the first 
downward slope (May 2021)

Metric 01–07 May 08–14 May 15–21 May 22–28 May 29 May-04 Jun

MAE 184.11 182.44 175.46 191.48 196.52
MAPE 0.00781 0.00809 0.00735 0.00822 0.00815
RMSE 380.00 348.92 351.55 380.78 366.72
R2 0.9994 0.9995 0.9995 0.9995 0.9995
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The Bitcoin-energy relationship is important both 
from the perspective of investors who, based on the 
evolution of energy prices, can predict the price of this 
cryptocurrency, but also of public authorities who are 
increasingly concerned about twin transition. On the one 
hand, the mining process specific to cryptocurrencies has 
implications on the energy transition through the recon-
sideration of nuclear energy and the orientation towards 
renewable energy to reduce the negative externalities on 
the environment. On the other hand, blockchain technol-
ogy specific to cryptocurrencies can be a solution for the 
digitization of the energy market that faces the problems 
generated by the production of renewable energy that 
comes with specific challenges related to intermittent 
production and the need to store surplus energy.

The proposed prediction using the Meta-Model (MM) 
for Bitcoin prices was rigorously tested during periods of 
high volatility and strong market fluctuations. These test-
ing intervals were chosen based on intervals when Bitcoin 
experienced substantial price shifts. Specifically, the MM 
was assessed during the months when Bitcoin’s value saw 
notable declines, such as in May and November, where 
prices fell from approximately $59,000 to $34,000 and 
from $68,000 to $46,000, respectively. Additionally, peri-
ods of significant price increases were also considered, 
like in August and October, where Bitcoin’s value rose 
from around $38,000 to over $50,000 and from $46,000 to 
$67,000. To ensure the model’s robustness and to mitigate 
the influence of chance, its forecasting ability was evalu-
ated across a 16-week timeframe. Moreover, to compare 
the results of the proposed MM and the individual models 
(RF, LGB, XGB, HGB and VR), the testing interval span 
over the entire year.

By stacking the ensemble ML models and with the 
newly added features, on average, the RMSE improved 
by 35.55% and MAE improved by 31.98% compared to 
the case with individual models and only fundamental 
variables. Nevertheless, when the feature engineer-
ing is identical, MAE improves by 7.42% and RMSE 
improves by 3.25% proving the superiority of the pro-
posed MM.

Table 4  Metrics for the first 
upward slope (August 2021)

Metric 01–07 Aug 08–14 Aug 15–21 Aug 22–28 Aug 29 Aug.-04 Sep

MAE 240.58 259.98 241.62 230.70 230.09
MAPE 0.00854 0.00898 0.00860 0.00828 0.00833
RMSE 448.97 487.33 453.05 432.45 423.49
R2 0.9993 0.9992 0.9993 0.9993 0.9994

Table 5  Metrics for the second upward slope (October 2021)

Metric 01–07 Oct 08–14 Oct 15–21 Oct 22–28 Oct 29 Oct.-04 
Nov

MAE 246.74 259.62 235.98 268.02 240.22
MAPE 0.00870 0.00854 0.00818 0.00878 0.00772
RMSE 440.18 458.10 436.41 471.66 434.85
R2 0.9993 0.9993 0.9994 0.9993 0.9994

Table 6  Metrics for the second 
downward slope (November 
2021)

Metric 01–07 Nov 08–14 Nov 15–21 Nov 22–28 Nov 29 Nov.-05 Dec

MAE 253.73 264.23 260.31 264.597 263.75
MAPE 0.00823 0.00839 0.00837 0.00827 0.00819
RMSE 444.35 467.17 463.62 473.93 473.12
R2 0.9994 0.9994 0.9994 0.9994 0.9994
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Table 7  Comparison between 
MM and the five individual ML 
algorithms

Metrics Models May 2021 August 2021 October 2021 November 2021

MAE RF 201.76 255.32 264.45 272.62
LGB 196.87 251.25 266.89 271.87
HGB 253.53 275.29 278.99 289.23
XGB 192.24 252.43 265.24 270.02
VR 198.29 249.99 263.19 268.76
MM 186.00 240.59 250.12 261.32

MAPE RF 0.009812 0.009888 0.010218 0.010168
LGB 0.009321 0.011982 0.012658 0.011857
HGB 0.015634 0.012753 0.019825 0.018823
XGB 0.008973 0.013932 0.011231 0.010634
VR 0.009832 0.010175 0.009782 0.009989
MM 0.007924 0.008546 0.008384 0.008290

RMSE RF 378.61 462.96 461.82 479.96
LGB 373.92 463.27 462.37 477.27
HGB 380.58 478.89 475.29 486.89
XGB 375.98 461.52 460.36 478.53
VR 371.28 459.29 457.82 479.29
MM 365.59 449.06 448.24 464.44

R2 RF 0.9988 0.9986 0.9982 0.9984
LGB 0.9989 0.9985 0.9981 0.9983
HGB 0.9987 0.9988 0.9979 0.9980
XGB 0.9989 0.9989 0.9982 0.9984
VR 0.9989 0.9988 0.9989 0.9988
MM 0.9994 0.9993 0.9993 0.9994

Table 8  Key parameters Model Parameters

RF - n_estimators: 100 (number of trees in the forest)
- criterion: 'gini' for classification, 'mse' for regression (function to measure the quality of a split)
- max_depth: 10 (maximum depth of a tree)
- min_samples_split: 2 (minimum number of samples required to split an internal node)
- min_samples_leaf: 1 (minimum number of samples required to be at a leaf node)
- max_features: 'auto' (number of features to consider when looking for the best split)

XGB - booster: 'gbtree' (type of booster used, typically tree-based)
- eta: 0.3 (learning rate)
- max_depth: 10 (maximum depth of a tree)
- min_child_weight: 1 (minimum sum of instance weight needed in a child)
- subsample: 1 (subsample ratio of the training instances)
- colsample_bytree: 1 (subsample ratio of columns when constructing each tree)

LGB - boosting_type: 'gbdt' (type of algorithm to use, gradient boosting decision tree)
- num_leaves: 31 (maximum number of leaves in one tree)
- max_depth: 10 (maximum depth of a tree)
- learning_rate: 0.001 (learning rate)
- n_estimators: 100 (number of boosting iterations)
- subsample_for_bin: 200,000 (number of samples for constructing bins)

HGB - loss: 'auto' (loss function to use, auto depends on whether it's a regression or classification task)
- learning_rate: 0.001 (learning rate)
- max_iter: 100 (maximum number of iterations)
- max_depth: 10 (maximum depth of each tree)
- min_samples_leaf: 20 (minimum number of samples per leaf)
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Ensemble models are valuable because they take advantage 
of the diversity of models’ predictions, leading to improved 
generalization and better performance. However, it is impor-
tant to note that while the proposed ensemble model signifi-
cantly enhances accuracy, it further increases complexity and 
requires more computational resources. For instance, RF trains 
multiple trees and storing them can be memory-intensive, and 
thus training large ensembles can require significant computa-
tion. Additionally, finding the right mix of models and hyper-
parameters for an ensemble involves trial and error steps.

Predicting the future price of Bitcoin, the world’s most 
famous cryptocurrency, remains a challenging endeavor, par-
ticularly within a short forecasting horizon of 1 to 7 days. Its 
highly volatile nature, coupled with a multitude of influencing 
factors, poses significant challenges in accurately forecasting its 
trajectory. One of the primary obstacles lies in Bitcoin’s inher-
ent volatility. Its price is prone to sharp swings, often defying 
conventional market patterns. For instance, while the situation 
remained relatively stable for an extended period, from March 
to October 2023, a significant change occurred in November. 
During this month, there was a rapid Bitcoin price escalation, 
leading to the current bullish phase. This unpredictability stems 
from its decentralized nature, lack of regulatory oversight and 
the involvement of various global factors, making it difficult to 
establish a consistent relationship between price and its under-
lying factors. Another challenge is the vast array of factors 
that influence Bitcoin’s price. The complexity of data analysis 
further compounds the difficulty of predicting Bitcoin’s price. 
The sheer volume and diversity of data from various sources 
necessitate sophisticated data collection and pre-processing 
techniques to extract meaningful insights.

Moreover, the dynamic nature of the cryptocurrency mar-
ket introduces additional challenges. As Bitcoin’s adoption 
and usage grow, the market becomes more interconnected, 
with events in one region potentially influencing prices glob-
ally. This interconnectedness can amplify the impact of unex-
pected events, making it difficult to predict their precise effect 
on Bitcoin’s price. Despite these challenges, researchers and 
analysts are constantly exploring new methods and techniques 
to improve Bitcoin price prediction accuracy. ML algorithms, 
with their ability to analyze vast amounts of data and identify 
complex patterns, are gaining traction in this field.

In conclusion, predicting Bitcoin’s price within a 
short forecasting horizon of 1 to 7 days is a challeng-
ing task due to its volatility, the multitude of inf lu-
encing factors and the complexity of data analysis. In 
our upcoming work, we aim to broaden the scope of 
our initial dataset by incorporating additional vari-
ables. These include sentiment analysis of news and 
specialized platforms, along with the identification of 
speculative trends using natural language processing 
techniques, to provide a more comprehensive view of 
Bitcoin’s price dynamics. Ta
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Table 10  Descriptive statistics of the input dataset for 2019

2019 BTC_USD El_price_DAM Gas_price_DAM Inflation_EU Oil_price Price_EUETS El_quantity Gas_quan-
tity_DAM

Mean 7362.522 239.5852 28.43903 1.189089 64.3559 26.09134 2642.024 1,896,357
Standard Error 28.32383 1.073505 0.425821 0.003044 0.047417 0.022064 5.854789 29,995.04
Median 7816.72 229 0.11 1.2 64 26.15 2635.5 890,000
Mode 3962 229 0.1 1 74.39 25.68 2757.1 376,800
Standard Deviation 2642.934 100.1702 39.73387 0.284035 4.42457 2.058852 546.318 2,798,877
Sample Variance 6,985,098 10,034.07 1578.78 0.080676 19.57682 4.23887 298,463.4 7.83E + 12
Kurtosis -1.21493 2.915351 -1.11916 -0.87527 -0.47807 0.313743 -0.35182 12.01878
Skewness -0.08057 1.112342 0.810354 -0.06112 0.294883 -0.09585 0.257978 2.94787
Range 10,594.35 749.9 113.51 1 21.71 11.01 3247.8 19,879,960
Minimum 3366.41 0.1 0.07 0.7 53.23 20.32 1401.7 56
Maximum 13,960.76 750 113.58 1.7 74.94 31.33 4649.5 19,880,016
Sum 64,105,476 2,086,068 247,618.6 10,353.4 560,346.8 227,177.3 23,004,099 1.65E + 10
Count 8707 8707 8707 8707 8707 8707 8707 8707

Table 11  Descriptive statistics of the input dataset for 2020

2020 BTC_USD El_price_DAM Gas_price_DAM Inflation_EU Oil_price Price_EUETS El_quantity Gas_quan-
tity_DAM

Mean 11,100.55 191.3291 55.79414 0.246923 41.80641 25.43888 2837.304 8278.028
Standard Error 45.74536 0.911039 0.125088 0.006084 0.128772 0.038154 6.421505 65.72077
Median 9699.615 183 55.95 0.1 42.35 25.55 2768.05 6740
Mode 11,332 229 67.22 -0.3 21.74 24.02 2686 1404
Standard Deviation 4277.13 85.18096 11.69552 0.568871 12.03996 3.56736 600.4021 6144.804
Sample Variance 18,293,837 7255.796 136.7851 0.323614 144.9607 12.72606 360,482.7 37,758,618
Kurtosis 3.39173 4.080447 -1.32311 -0.58754 0.114655 -0.20201 0.064902 3.164561
Skewness 1.806442 1.274487 -0.13184 0.785001 -0.20441 -0.2676 0.620056 1.716363
Range 25,279.35 730.28 48.47 1.7 61.13 17.54 3482.4 33,474
Minimum 4130.64 0.1 31.61 -0.3 9.12 16.12 1570.5 100
Maximum 29,409.99 730.38 80.08 1.4 70.25 33.66 5052.9 33,574
Sum 97,041,033 1,672,599 487,752.3 2158.6 365,471.6 222,386.7 24,803,711 72,366,520
Count 8742 8742 8742 8742 8742 8742 8742 8742

Table 12  Descriptive statistics of the input dataset for 2021

2021 BTC_USD El_price_DAM Gas_price_DAM Inflation_EU Oil_price Price_EUETS El_quantity Gas_quan-
tity_DAM

Mean 47,374.51 549.7568 219.5546 2.610851 70.7203 53.67466 2952.918 11,432.98
Standard Error 104.8115 4.200483 1.635339 0.014971 0.086748 0.13439 6.148384 93.59948
Median 47,895.5 397.49 148.14 2.2 70.9 53.76 2923.65 8966
Mode 38,700 359 85.15 0.9 61.47 42.81 3055.3 2399
Standard Deviation 9801.977 392.8294 152.937 1.40012 8.112699 12.56819 574.9972 8753.428
Sample Variance 96,078,761 154,314.9 23,389.73 1.960336 65.81588 157.9595 330,621.8 76,622,497
Kurtosis -1.13998 2.783413 0.514849 -1.11513 -0.34408 -0.14 -0.35343 1.234839
Skewness -0.04305 1.620409 1.115896 0.485931 -0.27645 0.384239 0.244697 1.24588
Range 39,633.68 2684.62 788.06 4.1 35.39 57.57 3477.8 46,649.81
Minimum 29,000.01 0.1 60.52 0.9 50.37 31.84 1561.3 47
Maximum 68,633.69 2684.72 848.58 5 85.76 89.41 5039.1 46,696.81
Sum 4.14E + 08 4,808,173 1,920,225 22,834.5 618,519.7 469,438.6 25,826,224 99,992,862
Count 8746 8746 8746 8746 8746 8746 8746 8746
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Table 13  Descriptive statistics of the input dataset for 2022

2022 BTC_USD El_price_DAM Gas_price_DAM Inflation_EU Oil_price Price_EUETS El_quantity Gas_quan-
tity_DAM

Mean 39,402.77 1022.676 494.7669 6.784496 103.823 83.48569 3054.492 23,478.78
Standard Error 81.39496 7.169671 2.036329 0.018511 0.205903 0.112741 10.24772 184.386
Median 40,074.94 1009.26 469.9 7.4 104.94 83.46 3061 21,395
Mode 43,200 599 495.72 7.4 105.49 79.97 3032.1 15,171.29
Standard Devia-

tion
4883.019 430.1205 122.1628 1.110501 12.35248 6.763535 614.7778 11,061.63

Sample Variance 23,843,876 185,003.6 14,923.74 1.233211 152.5838 45.7454 377,951.8 1.22E + 08
Kurtosis -0.12061 2.668024 8.518703 -1.39747 -0.55103 1.10425 -0.13502 0.679328
Skewness -0.7231 0.817834 2.370524 -0.41443 -0.04455 -0.60691 -0.12594 0.916533
Range 20,856.15 3283.76 887.62 3 54.93 38.63 3432.2 56,327.71
Minimum 27,114.84 2.24 295.11 5.1 78.25 58.3 1244.1 3422.24
Maximum 47,970.99 3286 1182.73 8.1 133.18 96.93 4676.3 59,749.95
Sum 1.42E + 08 3,680,612 1,780,666 24,417.4 373,659.1 300,465 10,993,118 84,500,117
Count 3599 3599 3599 3599 3599 3599 3599 3599

Table 14  Descriptive statistics of the input dataset for 2019–2022

2019–2022 BTC_USD El_price_DAM Gas_price_DAM Inflation_EU Oil_price Price_EUETS El_quantity Gas_quan-
tity_DAM

Mean 24,075.13 411.0711 148.8978 2.005904 64.37528 40.92997 2840.409 562,812.7
Standard Error 109.5027 2.215894 1.034248 0.012708 0.120867 0.123995 3.458756 10,073.77
Median 11,605.09 263.35 70.85 1.3 64.31 28.59 2808 10,764
Mode 3962 229 0.1 -0.3 59.46 25.68 2686 376,800
Standard Devia-

tion
18,901.2 382.4842 178.5209 2.193536 20.8627 21.40269 597.0137 1,738,828

Sample Variance 3.57E + 08 146,294.1 31,869.71 4.8116 435.2523 458.0751 356,425.4 3.02E + 12
Kurtosis -1.18936 5.099674 2.200848 0.94547 0.760388 -0.24928 -0.21198 40.24929
Skewness 0.585637 2.108941 1.618773 1.37163 0.400356 1.052557 0.330264 5.44328
Range 65,267.28 3285.9 1182.66 8.4 124.06 80.81 3808.8 19,879,969
Minimum 3366.41 0.1 0.07 -0.3 9.12 16.12 1244.1 47
Maximum 68,633.69 3286 1182.73 8.1 133.18 96.93 5052.9 19,880,016
Sum 7.17E + 08 12,247,452 4,436,262 59,763.9 1,917,997 1,219,468 84,627,152 1.68E + 10
Count 29,794 29,794 29,794 29,794 29,794 29,794 29,794 29,794
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