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Abstract
In the development of a task-oriented dialogue system, defining the dialogue structure is a time-consuming task. Hence, several
works have looked into automatically inferring it from data, e.g., actual conversations between a customer and a support agent.
To recover such dialogue structure, recent methods based on discrete variational models learn to jointly encode and cluster
utterances in dialogue states, but (i) represent utterances by only considering preceding dialogue context, and (ii) are slow to
train since they are optimized with a compute-expensive decoding objective. We revisit and improve upon an existing efficient
pipeline approach, commonly adopted as a baseline, that first encodes utterances and then clusters them with k-means to
induce the dialogue structure. However, the existing approach represents utterances as bag-of-words or skip-thought vectors,
which have been shown to perform poorly in semantic similarity tasks, andwithout considering dialogue context.We therefore
first investigate the use of more powerful transformer-based encoders for encoding utterances. Next, we propose ellodar,
a method for learning representations that capture both preceding and subsequent dialogue context, inspired by word-to-vec
training strategies. ellodar is efficient since representations are learned directly in the encoding space by finetuning just
a single linear layer on top of a frozen sentence encoder with a vector-to-vector regression training objective. Extensive
experiments on representative datasets for dialogue structure induction (SimDial, Schema Guided Dialogues, DSTC2, and
CamRest676) demonstrate that in terms of effectiveness to induce the correct dialogue structure, (i) clustering utterances
represented by transformed-based encoders improves recent joint models by 13%–32% on standard cluster metrics, and
(ii) clustering ellodar’s representations yields additional improvements ranging from +20% to +26%, with speedups of
×10–104 compared to the recent joint models.

Keywords Information extraction · Dialogue structure induction · Efficient NLP · Sentence representation learning ·
Text clustering

1 Introduction

Recently, systems for conversational modeling have enjoyed
a lot of attention, including intent classification [1–3],
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dialogue state tracking [4–6], and slot filling [3, 7, 8]. Such
systems have been used to automate customer service in the
insurance and public transportation industries [9], to provide
information in healthcare [10], and to perform tasks such as
legal case retrieval [11] and conversational recommendation
[12].

Designing conversational agents, however, requires read-
ily available annotated data. While companies often have
access to an abundance of unlabeled dialogues, such as
those exchanged between their customers and support agents,
annotating them to develop conversational agents remains
costly. Consequently, dialogue structure induction (DSI),
aims to unsupervisedly recover the latent conversational
structure from a set of task-oriented user-agent dialogues.
Figure 1 shows an example of such a graph in which the
nodes represent the distinct user and agent (system) dialogue

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10489-024-05455-5&domain=pdf
http://orcid.org/0000-0002-9661-1206


M.D. Raedt et al.

Fig. 1 Dialogue Structure
Induction (DSI): the structure
(right) is induced from the set of
N user-system dialogues (left),
with the distinct user and system
states as nodes, and transition
probabilities as edges.
Illustration based on SimDial
[27]

[sys]: Weather bot is here. What do you need?
[usr]: Hi. What will the weather be?
[sys]: Which place?
[usr]: I am at Boston.
[sys]: What date are you interested?
[usr]: I am interested in tomorrow.
[sys]: Your weather report 2 is here. Anything else?
[usr]: One more thing. What's the temperature?
[sys]: The temperature that time will be 20. What else?
[usr]: All good. Thats all

[sys]: Weather bot is here. What do you need?
[usr]: Whats up? Whats the weather?
[sys]: Which city are you interested in?
[usr]: Weather at Philadelphia
[sys]: What date are you interested?
[usr]: Weather tomorrow
[sys]: Your weather report 2 is here. Anything else?
[usr]: All good. Thats all
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states, and the possible transitions and corresponding proba-
bilities between successive states are denoted by the edges. A
dialogue structure can compactly summarize an entire collec-
tion of dialogues, providing companies with relevant insights
about their customers and agents and they thus give a solid
starting point for designing conversational models.

In unsupervised DSI, utterances with similar conversa-
tional goals are first clustered into the same dialogue state,
and the structure (transition probabilities from one state
to another) can then be recovered either directly from the
model’s weights or by counting the number of transitions
between successive states. Earlier work extended hidden
Markovmodels to infer conversational graphs [13–15].More
recently, neural end-to-end models, e.g., DVRNN [16] and
SVRNN [17], jointly learn to encode utterances and assign
them to dialogue states. Yet, such neural models, (i) repre-
sent utterances by only considering the preceding dialogue
context, (ii) require GPUs and tend to be slow at inducing
dialogue structures as they are trained on a computationally
expensive next turn decoding objective. Since DSI models
embed the number of dialogue states in their architecture,
they must be re-trained every time that number changes. It is
thus important to induce dialogue structures efficiently, since
in practice, usersmay need to experimentwith different num-
bers of states to recover the optimal structure.

To address the weaknesses above, our work revisits and
further builds upon the method of Gunasekara et al. [18,
19] that comprises two efficient steps in which utterances
are first encoded into vectors and subsequently clustered.
However, Gunasekara et al. [18, 19] represent utterances as
bag-of-words or skip-thought [20] vectors, which have been
shown to perform poorly in semantic similarity tasks [21,
22], and without considering dialogue context. In this work,
we first demonstrate that encoding utterances by powerful
transformer-based sentence encoders instead, already leads

to improvements over recent joint models, in terms of both
cluster metrics and being orders of magnitude faster at induc-
ing the dialogue structure.

Next, we propose a highly efficient strategy to embed
both preceding and subsequent dialogue context into utter-
ance vector representations, called ellodar (for “Efficiently
Learnt Locally Dialogue Aware Representations”), which
further boosts performance in terms of cluster metrics. We
cluster ellodar’s representations to induce dialogue struc-
ture, and refer to the complete procedure as cellodar.
Regarding the aforementioned limitations of existing works,
cellodar (i) uses both preceding and subsequent context,
(ii) can be trained on CPU within seconds, and thus (iii)
makes determining the number of dialogue states up to four
orders of magnitude faster than recent joint models.

To obtain dialogue-aware embeddings before clustering,
ellodar draws inspiration from the CBOW and skip-gram
(so-called ‘word-to-vec’) models for learning word embed-
dings [23]: utterances with similar context windows, and
context windows enclosing similar utterances, are repre-
sented closer to each other in the embedding space. ellodar
is efficient (trainswithin seconds onCPU) as it learns a linear
transformation with a vector-to-vector regression training
objective in the encoding space of a frozen pretrained encoder
by exploiting a local, yet bidirectional, context window. By
casting representation learning as vector-to-vector regres-
sion, ellodar avoids the computational overhead incurred
by decoding objectives, such as those used for training the
joint DVRNN and SVRNN models.

Extensive experiments on 10 task-oriented domains span-
ning across the DSTC2 [24], CamRest676 [25, 26], SimDial
[27] and Schema Guided dialogue [5] datasets, show that
cellodar, yields absolute improvements over recently pro-
posed joint methods of 7%–74% in standard cluster metrics
while being 10 to 104 times faster.
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1.1 Research objective and contributions

Our objective is not to outperform existing approaches
by merely developing increasingly more complex models.
Rather, our goal is to attain state-of-the-art performance
while being highly efficient compute-wise, thereby making
it feasible to induce dialogue structures in practice. More
specifically, we aim to obtain amodel that (i) outperforms the
more complex joint models, i.e., DVRNN [16] and SVRNN
[17], as measured by standard cluster metrics, and (ii) is
sufficiently lightweight for inducing dialogue structures on
accessible and cheap computing resources such as CPUs
(rather than requiring GPUs like such joint models).

We summarize our contributions as follows:

(1) We revisit the cluster baseline proposed in [18, 19],
and demonstrate that clustering utterances encoded by
transformer-based sentence encoders [22, 28] rather than
by bag-of-words or skip-thoughts vectors, already out-
performs the recent jointmodels forDSI [16, 17] in terms
of inducing the correct dialogue structure, while being
orders of magnitude faster.

(2) We contribute ellodar, a highly efficient utterance rep-
resentation learning approach that exploits local dialogue
context to train linear transformations in the encoding
space of a frozen sentence encoder using a vector-
to-vector regression training objective. Clustering the
ellodar representations (referred to as cellodar) is
shown to outperform — by a large margin — the joint
DVRNN and SVRNN models [16, 17] (while being
orders of magnitude faster) as well as the improved
transformer-based cluster baselines, on representative
DSI datasets.

(3) Since there exists no common benchmark for DSI, we
release1 our modified datasets, evaluation, and models,
which we hope will spur future research in the unex-
plored DSI task.

2 Related work

Wesummarize previous research on the relatively unexplored
task of unsupervised dialogue structure induction. There are
many variations to this task, including both supervised and
unsupervised statistical methods that learn structures based
on dialogue acts, as discussed in Section 2.1. However,
we specifically focus on unsupervised dialogue structure
induction for task-oriented dialogues, for which Section 2.2
reviews recent joint models based on neural and variational
approaches, and compares them to our proposed approach.

1 https://github.com/maarten-deraedt/efficient-unsupervised-
dialogue-structure-induction

In addition, we discuss methods for structure learning based
on unsupervised slot extraction in Section 2.3, which is a
related but distinct task. Finally, Section 2.4 outlines the var-
ious applications for which dialogue structures have been
used.

2.1 Unsupervised dialogue act modeling

Earlywork focused on structuremodeling of dialogues based
on categorizing utterances into high-level dialogue acts (e.g.,
question, statement, request, and acknowledgment) and then
learning the structure (transitions) among these acts (states).
In [29], utterances are manually annotated with dialogue
acts, and the general discourse structure is then inferred
using stochastic grammars. Since labeling dialogue text thus
requires expensive annotation, focus shifted to unsupervised
dialogue act learning. Crook et al. [30] use Dirichlet Process
Mixtures to cluster utterances into dialogue acts, but their
approach does not model structural information that cap-
tures transitions between different acts. Therefore, to both
model acts and learning the structure among them, Ritter
et al. [14] combine hidden Markov and topic models to
identify general discourse structure (i.e., dialogue acts) and
dialogue-specific topics in non-task-oriented conversations.
Joty et al. [31] further improve the approach of [14] by
expanding the set of sentence features used to estimate the
hidden Markov model’s act emission distribution to include
the speaker, relative position, and sentence length in addi-
tion to unigrams. Similarly, the method of [32] uses hidden
Markov models to model structural dependencies between
dialogue acts, but instead estimate the act emission probabil-
ities usingGaussianmixtures, enabling the use of real-valued
sentence embeddings such as bag-of-words GloVe vectors to
represent utterances, as opposed to discrete features [14, 31]
such as, e.g., unigrams, and utterance length.

2.2 Unsupervised task-oriented dialogue structure
induction

Rather than the aforementioned works on identifying high-
level dialogue acts, another line of work focuses on the
modeling of dialogue structures in task-oriented domains,
with the aim of categorizing utterances into more fine-
grained, task-specific intents. Early approaches, such as those
of [13, 15], adopt hidden Markov models (HMMs) to cluster
text spans in task-oriented dialogues into states and learn the
dependencies between them. Zhai et al. [15] follow a similar
approach to the above cited [14], but consider task-oriented
dialogues, assuming that utterance words are generated from
a mixture of topic models shared across all states rather than
having a single model per state.

To better capture the highly non-linear dynamics in dia-
logues [33], recent solutions have shifted away from simple
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HMMs towards neural end-to-end models that jointly learn
to encode and cluster utterances to induce task-oriented dia-
logue structures. Shi et al. [16] propose the use of Discrete
Variational Recurrent Neural Networks (DVRNNs) to assign
turns to discrete latent states, decoding the current turn from
its predicted state and the preceding turns. Qiu et al. [17]
extend DVRNNs to SVRNNs by adding structured attention
[34] over its hidden states, enforcing a structural inductive
bias that is more aligned with DSI. In [35], a modification
of the DVRNN model that separates user and system utter-
ances instead of treating them jointly is proposed, leading to
more accurate assignment of system actions to states. How-
ever, the approach of [35] relies on weak supervision from
database queries performed by a human at some point in the
dialogue, whereas the unsupervised DVRNN and SVRNN
models do not require such (weak) supervision. Rather than
inducing dialogue structures in task-oriented domains, Xu
et al. [36] induce them in an open-domain setting, using a
combination of discrete variational models with graph neu-
ral networks to hierarchically discover different domains and
then learning the structure within each domain. To obtain
more easily interpretable structures, Sun et al. [37] propose
an Edge-Enhanced Graph Auto-Encoder that induces deter-
ministic dialogue structures.

Our work focuses on unsupervised induction of non-
deterministic dialogue structures in task-oriented domains,
given that transitions between dialogue states are inherently
probabilistic. We thus focus on the same task as the DVRNN
[16] and SVRNN [17]models that jointly learn to encode and
cluster utterances. However, both those models (i) only con-
sider preceding dialogue context and, because they are based
on Variational Auto-Encoders optimized with a next turn
decoding objective, they (ii) are slow to train, and (iii) are sus-
ceptible to the posterior collapse [38–40]. Posterior collapse
occurs when the model relies solely on the decoder’s auto-
regressive properties to reconstruct inputs, thus bypassing the
latent states altogether, which may result in utterances with
the distinct conversational goal being erroneously assigned
to the same state.

To address these limitations (i)–(iii), our work builds on
the method of [18, 19] that comprises two efficient steps:
utterances are first (1) encoded as vectors and then (2) clus-
tered into dialogue states (e.g., using k-means). Clustering
assigns utterances to states based on vector similarities rather
than on an indirect decoding objective. However, themethods
used in [18, 19] for representing utterances as vectors, such as
bag-of-words and skip-thought vectors, are sub-optimal for
semantic similarity tasks [21, 22]. Furthermore, since these
bag-of-words or skip-thought vectors are not fine-tuned on
task-specific dialogues, the approach of [18, 19] does not uti-
lize dialogue context. Here, we first experiment with using
more powerful transformer-based encoders like SBERT [22]
and TOD-BERT [28] that are better suited for semantic

similarity tasks. Then, we propose ellodar as a method
for obtaining task-specific contextual utterance representa-
tions by building upon an already pretrained transformer
encoder, which is kept frozen, and subsequently learning
a linear transformation on top of it with a vector-to-vector
regression objective, using both preceding and subsequent
context.

2.3 Unsupervised dialogue slot extraction

Similar to our current work, the methods discussed in
Sections 2.1 and 2.2 induce dialogue structures by mapping
utterances to states. In the related but different slot-based
dialogue structure induction task, words or subphrases
rather than utterances are mapped to states in task-oriented
domains. To this end, Hudeček et al. [41] use weak super-
vision from rule-based parsers to identify potential slot
candidates, which are then clustered into task-specific slots.
Qiu et al. [42] employ transfer learning instead, using super-
vision from domains with available slot annotations to first
train a model that detects slot boundaries. The obtained slot
boundary detection model is then applied to unseen domains
to identify slot candidates, which are subsequently clustered
into states. Vukovic et al. [43] extend the transfer learning
method of [42] by starting from the same slot boundary detec-
tion model, but using topological data analysis methods to
increase the recall of the candidate slot extraction step.Rather
than extracting slots through weak-supervision or transfer
learning, the method of [44] extracts slots completely unsu-
pervised by using self-supervised language models trained
on the task-specific dialogues and unsupervised parsers to
identify slot candidates, after which these are similarly clus-
tered to obtain slot states.

2.4 Applications of dialogue structures

While in our current paper, we solely focus on structure
induction as an information extraction task, the inferred dia-
logue structure may be further used for other applications. In
particular, it can be used for (i) accelerating dialogue policy
learning [16, 45, 46], (ii) more controllable and coherent dia-
logue agents, in open domain [36, 47] and domain-specific
settings [48], (iii) response generation in multi-party dia-
logues [49], (iv) low-resource dialogue state tracking [37],
and (v) zero-shot policy learning generalizing beyond a sin-
gle domain [50].

3 Methodology

In Section 3.1, the DSI task is formalized. We specifically
focus on recovering dialogue structures from task-oriented
dialogues (Section 2.2), in which there are typically two par-
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ties who exchange utterances consecutively [5, 24–27, 51].
We will refer to the two parties in the dialogues as ‘users’
and ‘systems’ respectively, with the ‘system’ utterances gen-
erated by, e.g., a support agent in response to requests from
a client (‘user’). We describe the cluster-based approach of
[18, 19] in Section 3.2, followed by our proposed ellodar
strategy to obtain utterance representations in Section 3.3.

3.1 Task formulation

We are given a set D containing N dialogues between users
and system. Each dialogue d ∈ D is a sequence of n utter-
ances, alternating between user utterances xu and system
utterances xs (or vice versa):

[
xu1 , xs2, x

u
3 , . . . , xsn

]
. Unsuper-

vised dialogue structure induction aims to infer from D the
conversational graph (V , E) with vertices V and edges E .
To this end, those utterances that have a common conver-
sational goal (‘intent’) are mapped onto a common dialogue
state v ∈ V across the corpus. User utterances xu aremapped
to a user dialogue state v ∈ V u, and system utterances xs

onto a system dialogue state v ∈ V s, whereby V = V u ∪V s

and V u ∩ V s = ∅. Assigning utterances to the correct state
depends on the conversational context such that two utter-
ances with the same wording but in a different dialogue may
refer to different dialogue states. The edges ei j ∈ E repre-
sent the probability pi, j of transitioning from state vi to v j

when following the conversation. Given the alternating user
and system utterances in a dialogue, it is assumed that state
transitions happen from a user to a system state or vice versa:
∀(vi , v j ) ∈ V u × V u : pvi ,v j = 0 (similar for V s).

3.2 Cluster-based dialogue structure induction

We consider the cluster-based method of [18, 19], frequently
adopted as a baseline for DSI, which encodes utterances as
vectors and then clusters them into the |V u| user and |V s|
system states. The transition probabilities pi, j between states
vi , v j ∈ V are computed by counting the number of utter-
ances in vi for which the utterance that follows is in v j and
then normalize by dividing by the total number of utterances
in vi :

pi, j = #(vi → v j )

#vi

Works that compare against this cluster-based method (i)
use sub-optimal embeddings and (ii) do not use dialogue
context. In particular, only the current utterance is encoded
as a bag-of-words using GloVe [32, 52], word2vec [16,
23] or BERT [17, 37, 53]. Yet, such methods have been
shown to produce sentence embeddings of low quality [21,
22]. Thus, we propose ellodar, to efficiently learn locally
dialogue-aware representations, by using (i) more powerful

transformer-based sentence encoders such as SBERT [22]
and TOD-BERT [28], and (ii) the local context window (i.e.,
preceding and next utterances) around the current utterance.

3.3 Efficiently learning locally dialogue-aware
representations

ellodar increases training efficiency by using the pre-
vious and next utterances as only context (yet considers
both directions) based on the observation that utterances in
task-oriented dialogues surrounded by similar context win-
dows often have the same conversational goals. Additionally,
ellodar does not train an encoder from scratch as thatwould
require significant computational efforts, and we envision
a competitive but computationally efficient method. Rather,
ellodar exploits the rich semantics captured in the embed-
dings produced by pretrained transformer-based sentence
encoders.

3.3.1 Model description

ellodar combines two distinct strategies. In each strategy, a
linear transformation is learned to transform an utterance x ,
as first encoded by a frozen pretrained sentence encoderφ(x),
to a context-aware representation f (φ(x)). We train differ-
ent such transformations respectively for user and system
representations ( f u resp. f s). The first strategy is designed
to learn representations that are similar for utterances that
(can) appear in the same context of preceding and following
utterances. In practice, we only consider adjacent utterances
as the context window, and the linear maps are learned
by extrapolating the considered utterance x’s representation
φ(x) onto those of the adjacent utterances.

More formally, the representation f ∗
ext,i ∈ R

2h for
utterance xi is obtained from the pretrained encoder represen-
tation φ(xi ) ∈ R

h (with the superscript ∗ ∈ {u, s} indicating
the system or user), as

f ∗
ext,i � f ∗

ext (φ (xi )) = W ∗
ext φ(xi ) + b∗

ext

The parametersW ∗
ext ∈ R

2h×h and b∗
ext ∈ R

2h are trained
by minimizing a vector similarity loss L∗

ext,i , i.e., ordinary
least squares (OLS):

L∗
ext,i = OLS

(
f ∗
ext,i , φ(xi−1) ⊕ φ(xi+1)

)

with ⊕ denoting concatenation. This is illustrated by the
right-hand part of Fig. 2.

The second strategy interpolates the current user (sys-
tem) embedding from the adjacent system (user) context
embeddings, reflecting the assumption that context windows
enclosing similar utterances should be represented close to
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Fig. 2 Training strategies of ellodar, where xi are dialogue utter-
ances, and Encoder is a pretrained sentence encoder. Left: f ∗

int, which
predicts the embedding for the current utterance from local context
embedding (i.e., the preceding and following utterances in a dialogue).
Right: f ∗

ext, which predicts the context embedding from the current one

each other in the utterance representation space. The cor-
responding representation f ∗

int,i ∈ R
h for utterance xi

is constructed from the pretrained encoder representations
φ(xi−1) and φ(xi+1) of its adjacent2 utterances as

f ∗
int,i � f ∗

int

(
φ(xi )

) = W ∗
int

(
φ(xi−1) ⊕ φ(xi+1)

) + b∗
int

with W ∗
int ∈ R

h×2h and b∗
int ∈ R

h . The corresponding loss
is given by:

L∗
int,i = OLS

(
f ∗
int,i , φ(xi )

)

A visual summary is given on the left part of Fig. 2. Dur-
ing training, the introduced loss terms are calculated and
minimized over all utterances across all dialogues. After
training, cellodar clusters the user utterances xui repre-
sented as f uext,i , f uint,i or f uext,i ⊕ f uint,i (similarly for the
system utterances).

3.3.2 Background

ellodar draws inspiration from the CBOW and skip-
gram models [23] for learning word vectors, and especially
f ∗
ext,i bears similarities to the skip-thought model [20] for

learning general purpose sentence embeddings. However,
skip-thought employs two separate decoders to generate the
preceding and following sentences, which (i) necessitates
substantial computational efforts, (ii) produces sub-optimal
sentence embeddings [21, 22] and (iii) requires hyperparam-
eter tuning. In contrast, to specifically obtain dialogue aware
representations for clustering, ellodar exploits pretrained

2 Note that these adjacent utterances will be of the other type: user
utterances are enclosedbetween two system utterances, and system utter-
ances are enclosed between two user utterances.

sentence encoders (i) by efficiently learning linear transfor-
mations entirely in their encoding space (on CPU) with a
vector-to-vector optimization objective, and thus (ii) directly
optimizes the embeddings to capture the dialogue context
necessary for DSI (rather than using an indirect decoding
objective), and (iii) does not require hyperparameter tuning.

Other methods like DialoGPT [54], PLATO [55], and
TOD-BERT [28], pretrain encoders on task-oriented dia-
logues to produce utterance representations that can be
used in various downstream tasks, including clustering. It
is worth noting that ellodar differs in that it does not
(pre)train an encoder from scratch, but rather works com-
plementary and out-of-the-box with such already pretrained
encoders: ellodar adapts their representations to the task-
specific dialogues by learning a linear transformation on
top of them to specifically improve cluster performance.
Therefore,ellodar’s efficient linear vector-to-vector regres-
sion is possible because pre-trained encoders, which already
have undergone substantial computational efforts, enable this
capability.

4 Experimental setup

We describe the datasets, and how they were adapted for
DSI, in Section 4.1. In Section 4.2, we motivate our choices
of three different types of pretrained sentence encoders that
were used to train ellodar, and discuss the recent joint
models and cluster baselines to which ellodar is com-
pared in Section 4.3. We provide training details in Section
4.4, and extensively describe the evaluation methodology in
Section 4.5.

4.1 Datasets

We follow prior works in unsupservised DSI [16, 17, 37] and
conduct experiments on task-oriented dialogues that span 10
domains across four commonly used conversational datasets:
DSTC2 [24], CamRest676 [25, 26], SimDial [27] and The
Schema Guided dialogues (SGD) [5]. Our experiments com-
prise a broader range of datasets compared to prior works:
the DVRNN model of [16] was benchmarked on SimDial
and CamRest676, the SVRNN model of [17] solely on Sim-
Dial, and the model of [37] on SGD, CamRest676, and
DSTC2. Our experiments cover all four datasets, thus mak-
ing it the overall most comprehensive benchmark to date, to
the best of our knowledge. SimDial contains synthetic dia-
logues that were generated using a pre-defined probabilistic
grammar. The DTSC2 and SGD datasets consists of human-
machine dialogues, whereas the human-human dialogues in
CamRest676 were obtained with the Wizard-of-Oz method-
ology [56].
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In the aforementioned datasets, utterances are annotated
with intents, acts and slots. We discard slot values and only
consider their types since we map utterances, rather than
slots, to dialogue states and because a single type can have
potentially many values which would make the number of
dialogue states intractable. Moreover, utterances may have
multiple annotations, in which case we combine them. For
example, the utterance “I want to find a comedy movie.
Search for movies now showing in Oakland” with as intent
find-movies, as act inform, and as slot types genre and loca-
tion, becomes [find-movies, inform.genre, inform.location]
(ignoring the respective values comedy and Oakland). Thus,
we obtain exactly one label for each utterance, allowing us to
compare the induced dialogue states against the gold utter-
ance labels with external cluster metrics, as will be discussed
in Section 4.5. The gold number of |V u| user and |V s| system
dialogue states are respectively set to the number of unique
user and system utterance labels. The statistics of the vari-
ous domains and datasets are shown in Table 1 and samples
of dialogues are given in the Tables 14–16. We release our
modified datasets such that they can be adopted in future
works.

4.2 Pretrained sentence encoders

As discussed in Section 3.3.2, rather than pretraining an
encoder from scratch, ellodar uses such already pretrained
encoders out-of-the-box to produce utterance representations
specifically for clustering. Since ellodar is thus agnostic to
the sentence encoder, it can in principle be used with any
such encoder φ. For our experiments, we used three different
types of models described below.

• MiniLM-L6 [22]:3 a general purpose sentence encoder
that produces 384-dimensional vectors, offering a good
trade-off between encoding speed and quality.

• TOD-BERT-jnt [28]: a BERTbase model, yielding 768-
dimensional embeddings, and pretrained with a next-
sentence prediction and contrastive objective, on 9
task-oriented datasets that include CamRest676 and all
domains in SGD. It was pretrained to encode utter-
ances within dialogues, so that these encodings could
be used in a variety of task-oriented downstream tasks.
Note that while we chose TOD-BERT, other choices of
task-oriented encoders such as, e.g., DialoGPT [54] and
PLATO [55] are also possible.

• GloVe [52]: utterances are represented as bag-of-words,
i.e., their word-averaged GloVe embeddings. It is used
as an ablation for the DVRNN and SVRNN models
(see below) whose sentence encoders are initialized with

3 https://www.sbert.net/docs/pretrained_models.html

Table 1 Dataset statistics

Dataset N |X | |V u| |V s| |V turn|
SimDial

- Weather 2,000 20,080 6 7 11

- Bus 2,000 24,158 7 8 13

- Restaurant 2,000 22,030 7 8 19

- Movies 2,000 26,156 8 9 21

SGD

- Events 572 10,250 100 46 220

- Homes 268 4,128 71 24 113

- Music 331 4,566 28 10 43

- Movies 292 4,130 72 16 113

CamRest676 676 2,401 78 16 −
DSTC2 1,612 21,772 95 49 756

N denotes the total number of dialogues, |X | as the total number of
utterances; and |V u|, |V s| and |V turn| respectively indicating the num-
ber of unique user, system and turn (Section 4.5) states

GloVe, and as a baseline for the sentence encoders
MiniLM and TOD-BERT.

4.3 Baselines

We aim to induce non-deterministic dialogue structures in
task-oriented domains, as mentioned in Section 2.2. This
same task is also considered by the joint DVRNN and
SVRNN models, hence we use different configurations of
these models as baselines for our cellodar approach. In
addition, we compare cellodar to the cluster baselines
of [18, 19] based on the used sentence encoders without
ellodar training. Specifically, the baselines we will bench-
mark our own approaches against are:

• DVRNN [16]: a discrete and recurrent extension of the
Variational Auto-Encoder that learns to reconstruct the
current turn from its discrete latent states and the preced-
ing dialogue context. Turns are clustered into the discrete
states.

• SVRNN [17]: shares the same architecture as DVRNN
but extends it with a structured attention mechanism over
its hidden states.

• Cluster baselines: utterances are clustered by using as
input features their context window embeddings, repre-
sented as the concatenation of the embeddings of the
utterances in the window. The utterance embeddings
are obtained using the encoders of Section 4.2 and we
consider as context windows (i) only the current utter-
ance (indicated as c), as in prior works [16–19], (ii) the
previous and current utterances, (pc), (iii) the full context
window of previous, current, and next utterances (pcn).
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In contrast to existing works [16, 17] that compare only
with cluster baseline (i), we additionally benchmark against
(ii) and (iii), which serve as stronger baselines as they
use additional dialogue context, similar to our cellodar
approach.

4.4 Training details

As explained in Section 3.3, we use ordinary least squares
to estimate the weights of the linear regression functions of
ellodar (to obtain the representations f uext,, f

u
int,, f

s
ext, and

f sint,) and thus do not require hyperparameter tuning. For

both cellodar and the cluster baselines, we use k-means
to separately cluster the user utterances xu and the system
utterances xs into respectively the gold number of user and
system dialogue states, |V u| and |V s|. We use 10 random
seeds to initialize k-means and report the average scores over
these 10 runs for CamRest676 and DSTC2. For SimDial,
the results presented in the main body are further averaged
over the 4 domains Weather, Bus, Restaurant, and Movies.
Similarly, for SGD, we further average over the 4 domains
Events,Homes,Music, andMovies. Scores for the individual
domains, as well as mean (± standard deviation) over the
domains are given in Appendix A.

4.5 Evaluation

Shi et al. [16] opted for a qualitative evaluation in which
humans rated induced conversational graphs. Qiu et al. [17]
presented two automatic metrics to quantitatively assess the
quality of such graphs. They introduced Structure Euclidean
Distance and Structure Cross-Entropy, which both estimate
a probabilistic mapping between the induced and the gold
states. However, the authors later deemed them unstable4

because of their high variance and recommended instead to
employ external cluster metrics for evaluating induced con-
versational graphs based on slot clusters [42].

In Section 4.1, we described how to obtain labels for utter-
ance-based DSI, enabling us to also adopt such metrics, and
more in particular: (i) the adjusted rand index (ARI) [57],
(ii) the adjusted mutual information (AMI) [58] and (iii) the
Fowlkes-Mallows score (FM) [59]. ARI and AMI extend
respectively the rand index [60] and the mutual information
to adjust for chance: random clusters obtain a score of 0.0
whereas perfect ones obtain 1.0. The rand index measures,
out of all pairs of samples, the percentage of correct ones.
A pair is correct when either (i) both samples have the same
gold label and they are assigned to the same cluster, or (ii)

4 https://github.com/Liang-Qiu/SVRNN-dialogues

both samples have a different gold label and they are mapped
to a different cluster Mutual information, on the other hand,
relates to purity and assigns a high score to clusters if the
majority of their samples have the same label.

DVRNN and SVRNN cluster turns (xui , xsi+1) of con-

secutive (user, system) utterances into turn states vturn ∈
V turn ⊆ V u × V s (or vice versa). The number of turn
states |V turn| corresponds to the unique number of turn
labels, i.e., the combination of labels of the turn’s utterances.
Turn clustering becomes challenging when states contain
few utterances because the turn states will become even
sparser, e.g., in Table 1 with for DSTC2: |V turn| = 756 �
|V u| + |V s|. To allow for a fair comparison with DVRNN
and SVRNN, we report turn state cluster results on SGD and
SimDial, for cellodar and the cluster baselines. These are
automatically inferred by combining the separately induced
cluster identifiers of the system and user utterances that com-
prise a turn.5 In addition, we report utterance-based results
for cellodar and the cluster baselines on CamRest676 and
DSTC2. Note that CamRest676 lacks annotations for many
system utterances, and the gold turn-based states for DSTC2
become very sparse (|V turn| = 756). Therefore, obtain-
ing turn-based results for CamRest676 and DSTC2 appeared
not feasible, preventing the comparison of our models with
DVRRN and SVRNN on these datasets (see Table 3).

5 Results

As the joint models DVRRN and SVRNN are initialized
with GloVe embeddings, we first report results for the cluster
baselines and cellodar also based on GloVe, and thereby
eliminating the advantage that could be attributed to the use
of pretrained transformers in our most competitive mod-
els. Table 2 shows that the cluster baselines outperform the
joint models in almost all cases. Only for SimDial does the
bag-of-words model of [18, 19] (GloVec) perform worse in
terms of ARI and FM. Most notably, the strongest base-
line (pcn) surpasses SVRNN on SimDial (SGD) by +49.4
(+10) percentage points in ARI, +34.9 (+27.3) in AMI, and
+60.8 (+7.6) in FM. Moreover, the best cellodar model
consistently outperforms the best cluster baseline, with fur-
ther improvements on SimDial (SGD) of +23.3 (+3.8) in
ARI, +13.1 (+1.2) in AMI, and +19.3 (+4.1) in FM. The
key observations from this GloVe-based comparison are: (i)
all cluster baselines, except the bag-of-words model of [18,
19] (GloVec), outperform the joint models, and (ii) the best

5 As a reference, the corresponding utterance-based evaluation of the
cluster baselines and cellodar on SimDial and SGD are given in
Appendix A.
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Table 2 Main results with GloVe

SimDial SGD
Model ARI AMI FM ARI AMI FM

Joint models

DVRNN [16] 40.5 61.3 50.9 14.3 25.3 22.7

SVRNN [17] 25.7 50.9 37.9 16.3 28.4 24.2

Cluster baselines

- GloVec [18, 19] 48.0 71.5 57.7 14.2 42.4 19.8

- GloVepc 65.8 81.6 72.2 22.2 52.7 28.0

- GloVepcn 75.1 85.8 79.4 26.3 55.7 31.8

cellodar

- GloVeint 98.1 98.5 98.4 25.4 50.9 31.4

- GloVeext 90.9 94.1 92.6 26.4 52.5 33.0

- GloVeint+ext 98.4 98.9 98.7 30.1 56.9 35.9

Turn-based evaluation. SimDial (SGD) results are averaged over:
Weather, Bus, Restaurant and Movies (Events, Homes, Music and
Movies). The best model is typeset in bold and the runner-up is under-
lined

cellodar-model consistently outperforms the best cluster
baseline.

Table 3 shows that these observations also hold for the sen-
tence encoders MiniLM and TOD-BERT, with cellodar
and the cluster baselines outperforming their counterparts
based on the bag-of-words GloVe encoder. Note that the
models of [18, 19] (subscripted byc)withMiniLMandTOD-
BERT consistently outperform the joint models, which was
not always the case for GloVe.

Table 4 reports the training times of cellodar, and
the joint DVRNN and SVRNN models. First, we discuss
the computational resources required to train each model.
DVRNN and SVRNN are built on the same code base.6

We adopt the hyperparameters from [17] with: (i) dropout
set to 0.5, (ii) Adam as optimizer, (iii) a learning rate of
0.001, and (iv) 60 epochs. DVRNN is trained on a single
GTX 1080 Ti GPU, using 40 dialogues per batch for all
SimDial and all SGD domains. SVRNN uses a single Tesla
V100 with batch size 40 for all SimDial domains and size
10 for all SGD domains (we could not fit more in mem-
ory). In contrast, cellodar uses a single 2.6 GHz Intel
Core i7 to first learn its representations with ordinary least
squares, and then cluster themwith k-means [61], with 1,000
as the maximum iterations, and its k centroids initialized
by k++means [62]. On a Tesla V100 GPU, MiniLM and
TOD-BERT have encodings speeds7 of respectively 14,200

6 https://github.com/Liang-Qiu/SVRNN-dialogues
7 https://www.sbert.net/docs/pretrained_models.html. Since we did
not benchmark TOD-BERT, we report the speed of another BERTbase
encoder: msmarco-bert-base.

and 2,800 utterances/second. Encoding the largest consid-
ered dataset then takes respectively 1.84 and 9.34 seconds
for MiniLM and TOD-BERT.When adding 9.34 seconds for
the worst case encoding speed to the average of 15.2 seconds
to both learn and cluster representations, our slowest model,
TOD-BERTint+ext, achieves a speedup of 89× compared
to DVRNN and 4,909× compared to SVRNN, as shown in
Table 4. Encoding sentences with MiniLM rather than with
TOD-BERT, results in further speedups, making it 279× and
15,894× faster than DVRNN and SVRNN, respectively.

6 Discussion

In Section 6.1, we compare the recent joint models to the
cluster-based methods, i.e., cluster baselines and cellodar.
Next, we compare the performance between ellodar’s two
encoding strategies int and ext in Section 6.2. The effect
of including local context by vector concatenation on the
cluster baselines’ performance is analyzed in Section 6.3.We
discuss the impact of using a bag-of-words, general purpose,
or task-oriented sentence encoder on the cluster performance
in Section 6.4. Then, in Section 6.5, we vary the gold number
of dialogue states used as input for the clustering algorithm,
to analyze cellodar’s effectiveness if that gold number of
states is unknown. We compare in Section 6.6 the training
time performance of the joint models to that of cellodar,
and conclude in Section 6.9 by discussing the limitations of
this work.

6.1 Joint methods versus cluster-based approaches

Tables 2 and 3 show that the joint methods are outperformed
consistently by the cluster baselines and cellodar. Also evi-
denced by the low AMI, ARI, and FM scores, we observed
that the joint models frequently clustered utterances with dif-
ferent ground-truth labels into the same state. As the joint
models are based on variational auto-encoders, optimized
with a next turn decoding objective, we hypothesize that their
poor performance is caused by the posterior collapse [38–
40]. The latter occurs when the model solely relies on the
decoder’s auto-regressive properties rather than on the latent
states to decode the next turn. That is, even if the joint mod-
els ignore the latent states entirely, they may still attain a
small decoding loss. Hence explaining why utterances with
different ground-truth states are often incorrectly assigned
to the same state. The cluster baselines and cellodar, on
the other hand, do not rely on such decoding objectives, but
instead induce dialogue states with k-means and thus directly
exploit similarities between vector representations of utter-
ances.
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Table 3 Main results with sentence encoders

SimDial SGD CamRest676 DSTC2
Model ARI AMI FM ARI AMI FM ARI AMI FM ARI AMI FM

Joint models

DVRNN [16] 40.5 61.3 50.9 14.3 25.3 22.7 − − − − − −
SVRNN [17] 25.7 50.9 37.9 16.3 28.4 24.2 − − − − − −
Cluster baselines

- MiniLM-L6c [18, 19] 64.0 80.1 69.2 23.3 53.6 30.2 15.7 39.1 26.0 56.9 66.0 62.7

- MiniLM-L6pc 75.0 87.0 78.2 31.5 63.6 37.3 14.6 34.9 24.9 37.5 57.1 44.8

- MiniLM-L6pcn 85.3 90.0 87.2 34.3 64.2 40.2 14.2 36.7 24.4 24.5 51.0 32.2

cellodar

- MiniLM-L6int 99.9 99.8 99.9 37.7 64.7 42.9 16.3 40.9 26.7 26.2 42.2 32.3

- MiniLM-L6ext 99.5 99.6 99.5 39.0 63.3 45.3 19.9 38.1 30.2 65.2 73.9 69.3

- MiniLM-L6int+ext 99.6 99.7 99.6 40.4 66.2 46.0 19.9 43.0 30.5 48.0 67.1 54.7

Cluster baselines

- TOD-BERTc [18, 19] 73.4 84.9 78.7 29.4 56.9 36.6 13.6 30.7 24.0 56.9 66.5 62.6

- TOD-BERTpc 79.0 88.2 83.1 32.9 62.7 38.8 9.8 26.6 19.6 36.2 56.5 43.3

- TOD-BERTpcn 88.2 93.2 90.4 40.1 65.8 45.0 11.6 30.5 21.6 21.8 49.1 29.5

cellodar

- TOD-BERTint 99.8 99.7 99.8 39.7 63.2 44.7 13.3 30.5 23.3 26.7 45.0 33.0

- TOD-BERText 97.8 98.6 98.2 48.1 66.4 53.1 13.2 31.0 23.7 62.9 70.9 67.6

- TOD-BERTint+ext 97.9 98.7 98.3 49.8 68.6 54.2 14.6 34.4 25.2 48.6 65.1 55.3

Turn-based evaluation for SimDial and SGD, utterance-based evaluation for CamRest676 and DSTC2. SimDial (SGD) results are averaged over:
Weather, Bus, Restaurant and Movies (Events, Homes, Music and Movies). The best model is typeset in bold and the runner-up is underlined

Moreover, the results in Section 5demonstrate that the best
cellodar models consistently outperform the best cluster
baselines. Unlike ellodar, the cluster baselines do not learn
to incorporate local dialogue context into utterance repre-
sentations, instead they simply concatenate representations.

This indicates that learning how to include local context into
representations is beneficial for DSI, and that ellodar’s
learning schemes are successful at doing so. We consider
ellodar the main technical contribution of this work.

Table 4 Training times Epoch Time (s) Cluster Time (s) Total (s)
Model CPU |θ | Ne Avg. Min. Max. Avg. Min. Max. Avg.

Joint models

DVRNN [16] ✗ 6.60M 60 35.3 18.2 77.6 − − − 2,118

SVRNN [17] ✗ 7.23M 60 2,008 555 5,158 − − − 120,480

cellodar

- MiniLM-L6int ✓ 590K 1 1.28 0.59 2.33 1.50 0.75 3.79 2.78

- MiniLM-L6ext ✓ 591K 1 0.59 0.26 1.10 4.05 2.00 11.24 4.65

- MiniLM-L6int+ext ✓ 1.18M 1 1.80 0.85 3.11 3.94 1.63 9.50 5.74

- TOD-BERTint ✓ 2.36M 1 5.16 3.56 6.34 2.79 1.39 8.29 7.95

- TOD-BERText ✓ 2.36M 1 2.03 1.00 3.23 8.56 3.84 25.32 10.59

- TOD-BERTint+ext ✓ 4.72M 1 7.19 4.57 9.64 8.01 3.06 21.57 15.20

The number of learnable parameters, |θ |, is averaged over all SGD and SimDial domains, and Ne as the
number of epochs. The total runtime is the sum of the average epoch and average cluster times. All runtimes
are in seconds. For each model the average, minimum and maximum epoch (cluster) times are calculated over
all SGD and SimDial domains
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6.2 Comparing ellodar’s encoding schemes

We note that int and ext encodings of the utterance take dif-
ferent views: while ext aims to reconstruct a representation
of the context from an utterance φ(x) itself, int rather aims
to reconstruct the utterance representation φ(x). Given this
complementary mechanism, we a priori expect their combi-
nation (int+ext) to perform best, while superiority of one
over the other cannot be intuitively anticipated. The results in
Tables 2 and 3 reveal that for SimDial all 3 encodings perform
nearly perfectly,8 which prevents us fromdistinguishing their
performance. Still, for both SGD and CamRest676, int+ext
performs notably better than int, and slightly better than ext,
thus confirming our a priori expectation. Somewhat surpris-
ingly, on DSTC2 int+ext clearly performs worse than ext.
We can however attribute this to the fact that DSTC2 com-
prises human-to-chatbot dialogues where the bot frequently
misinterprets the user, thus leading to contexts that are some-
times disconnected from an enclosed utterance: as a result
(erroneous) context information from int is not as useful, as
also reflected in low int scores.

6.3 Impact of local context on the performance
of the cluster baselines

We investigate the effect on structure quality of using the two
straightforward vector concatenation approaches for incor-
porating preceding (pc), and both preceding and subsequent
(pcn) context. This contrasts with the model of [18, 19] that
uses no context and which was later adopted as a baseline
in [16, 17]. Intuitively, we expect the cluster baselines that
leverage full context (pcn) to perform better than those using
only the preceding (pc) or no context at all (c). Tables 2
and 3 reveal that on SimDial and SGD, the cluster metrics
indeed consistently improve as the context window expands:
c<pc<pcn. Conversely, the results for CamRest676 and
DSTC2 get worse as the context window grows larger. The
CamRest676 results indicate that naively including context
does not always improve structure quality, emphasizing the
benefits of using more advances strategies like ext and
int+ext. On DSTC2, the difference is even more apparent,
with the cluster baselines of c clearly outperforming those of
pcn, which is consistent with the previously discussed results
of int and ext and thus attributed to the erroneous context
from the human-to-chatbot dialogues. Still, we recommend
adopting pc and pcn as baselines, since they significantly

8 cellodar seems to almost perfectly reconstruct the underlying syn-
thetic structure of SimDial, rendering the dataset less useful for future
research on DSI.

improve the average structure quality on all 4 SimDial and
SGD domains.

6.4 Impact of the sentence encoder on the structure
quality

First, as Tables 2 and 3 show, both the cluster baselines and
thecellodarmodels based onbag-of-words representations
(GloVe) perform consistently worse than their counter-
parts based on powerful sentence encoders (MiniLM and
TOD-BERT), supporting our claim that transformer-based
encoders are better for DSI.

Second, we investigate whether TOD-BERT, specifically
trained to encode utterances in dialogues, outperforms the
general purpose encoder MiniLM. The results in Table 3
are mixed. Since TOD-BERT was trained on all 16 SGD
domains, including the 4 that we consider, we indeed find
that on SGD, TOD-BERT models consistently outperform
those based onMiniLM, notably for int+ext (improvements
of +9.4, +2.4, and +12.4 for the ARI, AMI, and FM metrics
respectively). Since TOD-BERT is also trained on all Cam-
Rest676 dialogues, it is surprising that MiniLM outperforms
it.We hypothesize that this is due to the fact that the CamRest
dialogues (i) comprise only 0.67% of the total dialogues used
to train TOD-BERT (rather than the SGD dialogues account-
ing for 22.66%), and (ii) are dissimilar to those of SGD, such
that little transfer occurs. Furthermore, the results on SimDial
and DSTC2 (which were not used to train TOD-BERT) vary,
with TOD-BERT outperforming MiniLM for some models
but not for others, making it difficult to draw conclusions
about the transferability to unseen domains.

In summary, the preliminary evidence on SGD suggests
that it may be beneficial to pretrain sentence encoders specif-
ically on the dialogues from which the structure is induced.
The advantages of transferring to dialogues from unseen
datasets (SimDial, DSTC2), however, remain unclear.

6.5 Overestimating the number of dialogue states

We assumed the gold number of the |V u| user and |V s| sys-
tem states to be known and used them to initialize k-means.
In practice, |V u| and |V s| can be estimated by inspecting a
subset of dialogues, but determining them exactly, however,
is challenging. To this end, we investigate the effect of over-
estimating the number of states by initializing k-means with
twice the gold number of user and system states: k = 2 · |V u|
and k = 2 · |V s|.

We present MiniLM results for the best cluster baseline
(pcn) and the best cellodarmodel (int+ext), bothwith the
overestimated number of clusters, and compare them to their

123



M.D. Raedt et al.

counterparts, as well as the DVRNN and SVRNN models
with the gold number of states.

First, Table 5 shows that the overestimated cluster base-
line and int+ext still outperform DVRNN and SVRNN in
all metrics and on all datasets, with notable improvements
for MiniLMpcn (MiniLMint+ext) in AMI: +14.9 (+16.3) on
SimDial, and +27.4 (+29.4) on SGD.

Second, when comparing the overestimated models to
their counterparts initialized with the gold number, we find
that theoverestimatedmodels (i) drop inARI andFM, and (ii)
drop in AMI butMiniLMpcn (MiniLMint+ext) still attain rel-
atively high values of 76.2 (77.6) on SimDial and 52.7 (54.7)
on SGD. Since the number of clusters increased twofold,
utterances of the same gold state can be partitioned further
into different clusters. Therefore, the decrease in ARI and
FM is expected since these metrics penalize utterances of the
same gold state if they are mapped to different clusters. AMI,
on the other hand, measures cluster purity, with a high score
indicating that most utterances in a cluster belong to the same
gold state.

Thus, even when the number of clusters is overestimated
by a factor of two, the cluster baseline and cellodar induce
relatively pure clusters, with the latter outperforming the for-
mer, and both still considerably better than the DVRNN and
SVRNN with the gold number of states.

6.6 Training time performance

In Section 5, we reported that our slowest cellodar model
achieved a speedup of 89× over DVRNN and 4,909× over
SVRNN. This efficiency gap can be attributed to the fact
that joint models are optimized with stochastic gradient
descent (SGD), whereas cellodar is trained with more effi-
cient learning schemes. Training neural networks with SGD

Table 5 Overestimating the number of dialogue states

SimDial SGD
Model ARI AMI FM ARI AMI FM

Gold number

- DVRNN[16] 40.5 61.3 50.9 14.3 25.3 22.7

- SVRNN[17] 25.7 50.9 37.9 16.3 28.4 24.2

- MiniLM-L6pcn 85.3 90.0 87.2 34.3 64.2 40.2

- MiniLM-L6int+ext 99.6 99.7 99.6 40.4 66.2 46.0

Overestimated

- MiniLM-L6pcn 46.2 76.2 58.3 18.9 52.7 28.6

- MiniLM-L6int+ext 61.8 77.6 70.3 22.7 54.7 32.7

Turn-based evaluation for SimDial and SGD. SimDial (SGD) results are
averaged over: Weather, Bus, Restaurant and Movies (Events, Homes,
Music and Movies)

requires multiple epochs of forward and backward passes
through all training samples before converging to a local
minimum, and thus, as per [16, 17], we used 60 epochs to
train the joint models. Although cellodar relies on neu-
ral networks (MiniLM and TOD-BERT) to obtain sentence
representations, encoding all training samples requires just
a single forward pass. Similarly, ellodar’s linear transfor-
mations are cast as vector-to-vector regression and thus can
be learned with ordinary least squares in a single pass. As
[61]’s algorithm for k-means has efficient implementations
[63], clustering the ellodar representations is fast.

The training time difference between cellodar based on
TOD-BERT and on MiniLM is twofold. With 3M parame-
ters compared to 110M, MiniLM encodes sentences much
faster than TOD-BERT. Additionally, MiniLM produces
384-dimensional vectors, while TOD-BERT produces vec-
tors with twice the number of dimensions (i.e., 768). As
k-means runtime depends on the number of input features,
clustering MiniLM’s representations is thus faster than clus-
tering TOD-BERT’s.

6.7 Ablation study

We provide ablations to assess the impact of ellodar’s dif-
ferent components. First, we examine if training ellodar
with bidirectional context, i.e., both preceding and sub-
sequent dialogue, improves structure quality compared to
training ellodar with only preceding or subsequent con-
text. Second, since ellodar uses a local context window
(the preceding and subsequent utterance) for efficient rep-
resentation learning, we explore whether training on larger
context windows is useful.

Impact of bidirectional context on structure quality To
assess the impact of bidirectional context on cluster per-
formance, we compare ellodar’s strategies: int, ext, and
int+ext, trainedwith only thepreceding (P) or next (N) utter-
ance as context, against ellodar’s standard bidirectional
(PN) context. For int, we transform the preceding (respec-
tively next) utterance representation φ(xi−1) (respectively,
φ(xi+1)) into the representation of the current utterance
φ(xi ). The training scheme and loss for ‘interpolating’ from
the preceding utterance are:

f ∗
int,p,i � f ∗

int,p

(
φ(xi )

) = W ∗
int,p φ(xi−1) + b∗

int,p,

and loss L∗
int,p,i = OLS

(
f ∗
int,p,i , φ(xi )

)
.

Similarly, for extwith the preceding (next) utterance as con-
text, we extrapolate from xi to xi−1 (xi+1) using:

f ∗
ext,p,i � f ∗

ext,p

(
φ(xi )

) = W ∗
ext,p φ(xi ) + b∗

ext,p,
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and loss L∗
ext,p,i = OLS

(
f ∗
ext,p,i , φ(xi−1)

)
.

Note: the representations for int+ext with the preced-
ing utterance as only context is given by the concatenation
f ∗
ext,p

(
φ(xi )

)⊕ f ∗
int,p

(
φ(xi )

)
(and similarly for the next utter-

ance as context).
Except for ext and DSTC2, the results presented in

Table 6 clearly underscore the importance of using bidirec-
tional context for learning representations to induce dialogue
structures: across all datasets and strategies, using both pre-
ceding and subsequent dialogue context (PN) consistently
yields higher structure quality compared to using either pre-
ceding (P) or subsequent (N) context alone.

Impact of dialogue context width on structure quality In
the previous paragraph, we highlighted the importance of
training ellodar with the bidirectional rather than either
solely with the preceding or subsequent dialogue context.
However, it is worth noting that ellodar uses only the local
dialogue context, comprising the preceding and subsequent
utterances to efficiently learn representations.Here,we inves-
tigate whether using larger (bidirectional) dialogue contexts
can yield improved ellodar representations. To explore this,
we compare the performance of ellodar’s strategies int,
ext, and int+ext trained on larger dialogue contexts against
training ellodar with the default local context window. We
experiment with two context windows increasingly larger
than ellodar’s default local dialogue context window of
just 1 preceding and next utterance (PN):

(1) The dialogue context consisting of the concatenation
of representations of the 2 preceding and 2 subsequent

utterances (shortly written as P2N2), for which we pro-
vide the training and loss below for the int strategy.

f ∗
int,p2n2,i

� f ∗
int,p2n2

(φ (xi ))

= W ∗
int,p2n2

(
φ(xi−2)⊕φ(xi−1)⊕φ(xi+1)

⊕φ(xi+2)
) + b∗

int,p2n2
,

with as loss L∗
int,p2n2,i

= OLS
(
f ∗
int,p2n2,i

, φ(xi )
)
.

(2) The dialogue context consisting of the concatenation of
the average of all preceding and the average of all sub-
sequent utterance representations (P∗N∗). Note that here
we take the mean instead of concatenating all preced-
ing utterances and the mean of all subsequent utterance
representations to avoid high-dimensional representa-
tions that may prevent efficient clustering. We provide
the training and loss below for the int strategy.

f ∗
int,p∗n∗,i � f ∗

int,p∗n∗
(
φ
(
xi

)) =

W ∗
int,p∗n∗ ( average

j=0,...,i−1
φ(x j )⊕ average

k=i+1,...,N−1
φ(xk))+b∗

int,p∗n∗ ,

with as loss L∗
int,p∗n∗,i = OLS

(
f ∗
int,p∗n∗,i , φ(xi )

)
.

Table 7 reveals that, for SimDial, there is minimal differ-
ence in cluster performance among various dialogue context
sizes. However, across all other datasets (excluding DSTC2
and the int(+ext) strategy), the results indicate that the
overall best structure quality is achieved when ellodar is
trained with the local context window of just a single pre-
ceding and next utterance (PN). It consistently outperforms

Table 6 Impact of bidirectional
context on structure quality

SimDial SGD CamRest676 DSTC2
Model ARI AMI FM ARI AMI FM ARI AMI FM ARI AMI FM

MiniLM-L6int
- P 93.2 89.1 94.1 20.5 48.6 25.3 13.3 31.3 24.8 28.4 31.7 32.9

- N 88.9 88.9 90.4 25.2 48.0 42.9 13.7 34.0 24.3 25.1 32.5 30.3

- PN (ours) 99.9 99.8 99.9 37.7 64.7 42.9 16.3 40.9 26.7 26.2 42.2 32.3

MiniLM-L6ext
- P 94.7 95.9 95.4 25.8 52.9 33.8 11.6 24.0 21.2 61.0 68.1 65.3

- N 94.4 92.2 95.1 27.0 50.8 33.0 16.8 35.0 27.0 60.5 65.8 64.7

- PN (ours) 99.5 99.6 99.5 39.0 63.3 45.3 19.9 38.1 30.2 65.2 73.9 69.3

MiniLM-L6int+ext

- P 95.2 92.7 95.8 24.0 53.4 30.5 13.8 30.2 23.4 37.7 53.7 43.6

- N 93.7 91.8 94.6 29.4 53.6 34.4 15.5 37.2 25.8 36.7 54.1 42.9

- PN (ours) 99.6 99.7 99.6 40.4 66.2 46.0 19.9 43.0 30.5 48.0 67.1 54.7

Turn-based evaluation for SimDial and SGD, utterance-based evaluation for CamRest676 and DSTC2. Sim-
Dial (respectively SGD) results are averaged over:Weather, Bus, Restaurant andMovies (respectively Events,
Homes, Music and Movies)
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Table 7 Impact of dialogue
context width on structure
quality

SimDial SGD CamRest676 DSTC2
Model ARI AMI FM ARI AMI FM ARI AMI FM ARI AMI FM

MiniLM-L6int
- P∗N∗ 100 99.9 100 24.7 51.8 30.6 15.4 40.0 25.7 20.3 39.1 27.0

- P2N2 98.7 98.6 98.9 29.2 59.4 36.1 16.3 40.7 26.6 32.4 44.3 38.9

- PN (ours) 99.9 99.8 99.9 37.7 64.7 42.9 16.3 40.9 26.7 26.2 42.2 32.3

MiniLM-L6ext
- P∗N∗ 94.2 92.2 95.0 18.5 42.3 25.0 11.8 25.5 21.8 58.8 63.2 63.3

- P2N2 97.2 97.3 97.6 39.2 62.3 45.6 19.1 35.7 29.3 60.9 69.2 65.6

- PN (ours) 99.5 99.6 99.5 39.0 63.3 45.3 19.9 38.1 30.2 65.2 73.9 69.3

MiniLM-L6int+ext

- P∗N∗ 99.9 99.8 99.6 26.6 55.7 33.1 16.8 40.4 27.2 27.0 48.7 34.2

- P2N2 98.5 98.3 98.7 35.6 63.9 42.0 18.3 40.5 28.9 52.5 66.2 58.7

- PN (ours) 99.6 99.7 99.6 40.4 66.2 46.0 19.9 43.0 30.5 48.0 67.1 54.7

MiniLM-L6pcn. Turn-based evaluation for SimDial and SGD, utterance-based evaluation for CamRest676
and DSTC2. SimDial (SGD) results are averaged over:Weather, Bus, Restaurant andMovies (Events, Homes,
Music and Movies)

ellodar trained with the full context window P∗N∗, and is
either better or on par with ellodar trained on P∗N∗ as con-
text. This observation is further supported by the fact that
the larger the context window, the poorer the cluster perfor-
mance: the cluster performance for P∗N∗ is inferior to that
of P2N2, with the latter slightly underperforming compared
to the local dialogue context window PN. These results con-
firm that using only the local dialogue context for learning
ellodar’s representations is a good choice. However, it is
worth noting that the capacity of ellodar’s linear vector-to-
vector regression is limited. As a result, ellodarmay be too
constrained to effectively exploit the subtle signals in larger
dialogue context.Nevertheless, the observation that ellodar
can effectively exploit signals in the local dialogue context
alone suggests that there is sufficient signal in this local
context to induce dialogue structures. This is particularly
noteworthy when compared to more complex variational-
based models such as DVRNN and SVRNN, which rely on
the entire preceding dialogue context, yet struggle to induce
representative dialogue structures.

6.8 Qualitative analysis

While ellodar’s representations can be efficiently learned,
its efficiency primarily stems from its linear vector-to-vector
regression objective. Yet, linear transformations may be too
restrictive to handle complex edge cases, as there is a trade-
off between efficiency and the complexity of cases ellodar
can model. Hence, to better understand these limitations,
we conduct a qualitative analysis of common failure modes

of ellodar. We begin by identifying three failure modes,
i.e., instances where ellodar’s utterance representations are
incorrectly assigned to clusters, and provide examples of
each. Next, we present the distribution of these three failure
modes by manually categorizing a randomly selected sub-
set of utterances that were erroneously assigned to clusters
induced by cellodar into these failure modes.

Identification of common failure modes To better under-
stand ellodar’s shortcomings, we reveal and analyze
common failure modes where utterances are incorrectly
assigned to clusters due to ellodar’s learning approach, par-
ticularly due to its reliance on local context.

For this, we conduct a qualitative analysis of cellodar-
induced clusters based on human annotation. By manually
categorizing incorrectly assigned utterances, alongwith their
respective previous and subsequent utterances, we can reveal
themost visible failuremodes inherent to ellodar’s learning
scheme. First, to identify incorrectly assigned utterances, we
use the following heuristic: for each cellodar-induced clus-
ter C, we assign a gold label to C which is the most prevalent
gold label yC,gold among all utterances in C. An utterance
xi is then erroneously assigned to C if its gold label yi dif-
fers from the most frequently occurring gold label in C, i.e.,
yi �= yC,gold. Second, to categorize misassigned utterances
into failure modes intrinsic to ellodar’s learning scheme,
we manually compare each misassigned utterance and its
local context window with those of correctly assigned utter-
ances within the same cluster. We consider the following
failure modes:
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(1) P✗C✓N✗: the misassigned utterance xi shares seman-
tics with correctly assigned utterances x j �=i in cluster
C. However, the preceding utterance xi−1 and subse-
quent utterance xi+1 differ from the dialogue context
of correctly assigned utterances, i.e., xi+1 �≈ x j+1 and
xi−1 �≈ x j−1. The example in the upper row of Table 8,
illustrates this, where the misassigned utterance “Yes,
that sounds great” is equivalent to the correctly assigned
“Sounds great”. Yet, their dialogue states (y j : affirm
for correctly assigned x j ; yi : select for misassigned xi )
differ due to variations in the semantics of both preced-
ing and subsequent utterances. This mode is intrinsic to
ellodar, where: (i) for f ∗

int,i , two distinct context win-
dows transform into the same utterance representation,
i.e., φ(“Sounds great”) ≈ φ(“Yes, that sounds great”),
and (ii) for f ∗

ext,i , the same input utterance representa-
tion φ(“Sounds great”) ≈ φ(“Yes, that sounds great”)

may transformbased into the context representationmost
frequently associatedwith this input (e.g., that of the cor-
rectly assigned utterances).

(2) P✓C✗N✓: the misassigned utterance xi lacks shared
semantics with correctly assigned utterances x j �=i in
C. However, both the preceding and subsequent utter-
ances share semantics among misassigned and correctly

assigned utterances, i.e., xi+1 ≈ x j+1 and xi−1 ≈ x j−1.
In the middle part of Table 8, xi is more specific than
x j as it not only informs about the number of beds but
alsomentions allowing pets. Note that the reverse, where
x j is more specific than xi , can also occur. This mode is
intrinsic to ellodar, where: (i) for f ∗

int,i , two equivalent
context representations may transform into the utterance
representation most frequently surrounded by that con-
text, i.e., φ(x j ), and (ii) for f ∗

ext,i , semantically different
input utterances transform into the same context repre-
sentation.

(3) P✗C✗N✓: the only shared semantics among the correctly
assigned utterances x j �=i and misassigned utterance xi
are those of the subsequent utterances, i.e., xi+1 ≈ x j+1.
Illustrated in the bottompart of Table 8, akin to the exam-
ple for P✓C✗N✓, the semantics of xi and x j are similar,
but x j is more specific as it also requests the event name
aside from the city. This mode is intrinsic to ellodar
for similar reasons as the P✓C✗N✓-mode, with the differ-
ence that the subsequent utterance, whose semantics are
shared among xi and x j , has a more larger effect on the
final representation compared to the previous utterance
that does not share the same semantics.

Table 8 Illustration of common failure modes in ellodar

Mode Misassigned xi Reference correctly assigned x j

P✗C✓N✗ xi−1 : No pets are not allowed. xj−1: Please confirm your visit. March 13th at Meadowood
Apartments.

xi : Yes that one sounds good. xj: Sounds great.

(yi :select) (y j :affirm)

xi+1 : Do you want to schedule a visit? xj+1: Your visit is now scheduled.

P✓C✗N✓ xi−1 :Howmany bedrooms are you looking for in the apart-
ment?

xj−1: What amount of bedrooms do you want in your apart-
ment?

xi : I would like three bedrooms.
I also need pets to be allowed.

xj: The apartment should have 2 bedrooms.

(yi :inform.numbeds.petsallowed) (y j :inform.numbeds)

xi+1 : Which area are you looking in? xj+1: Where do you want to look for property?

P✗C✗N✓ xi−1 : I’ve heard that NYCFC vs Union will be a great one. xj−1: I would like dates for certain events.

xi : What city should I check for the event? xj: Is there a specific city and event that you
are interested in today?

(yi :request.city) (y j : request.city.eventname)

xi+1 : I want to find events in NYC. Something like Vertical
Horizon which is supposed to be good.

xj+1: Please look for Spose in the LA area.

Each failure type is exemplified by a pair of utterances, x j and xi , assigned to the same cluster and accompanied by their respective gold states, y j
and yi . Left: a sampled erroneously assigned utterance xi to cluster C, i.e., with yi �= yC,gold. Right: a correctly assigned utterance x j to cluster
C, serving as a representative instance of cluster C, i.e., with y j = yC,gold. Underlined excerpts highlight the (contextual) distinctions causing the
misassignment of xi to C
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Note that our list of three failure modes is non-exhaustive,
i.e., the following failure modes may also occur: P✗C✓N✓,
P✓C✗N✗, and P✓C✓N✗. However, as we found these failure
modes not to occur in our randomly selected subset of 120
erroneously assigned utterances (as described below), we
opted not to include them here. Aside from the presented
failure modes inherent to ellodar, there are also failure
modes not related to ellodar but inherent to k-means clus-
tering itself, such as, e.g., outliers. For the instances where
utterances cannot be categorized into one of the three pre-
sented failure modes, we include an extra “other” mode.

The distribution of common failure modes To better under-
stand the frequency with which each of the three identified
failure modes occur, we randomly sampled and manually
annotated 20 (10 user and 10 system) misassigned utter-
ances of cellodar- induced clusters for each SGD domain
(Events, Homes, Music, and Movies), CamRest676, and
DSTC2 for a total of 120 utterances. Note that SimDial is
excluded from this analysis, as cellodar almost perfectly
recovers its underlying gold structures.

Table 9 illustrates the distribution of error modes in the
SGD, CamRest676, and DSTC2 datasets. Overall, P✓C✗N✓ is
the most frequently occurring failure mode, with other types
of errors occurring less frequently. The results for P✓C✗N✓

suggest that ellodar faces difficulties handling the edge
case inwhich the surrounding local dialogue context is shared
between two utterances that are semantically different (i.e.,
with different underlying gold dialogue states). ellodar
cannot resolve this failure case well due to its sole reliance
on local context and linear transformations. Therefore, future
work could explore trading off efficiency by increasing
complexity, e.g., by using non-linear transformations and/or
more effectively exploiting subtler cues in larger dialogue
contexts.

6.9 Limitations

Application domain First, ellodar is designed specifically
for clustering dialogue utterances, using the context of both

Table 9 The distribution of common failure modes

Mode SGD CamRest676 DSTC2 Average

P✗C✓N✗ 5% 0% 10% 5%

P✓C✗N✓ 65% 40% 75% 60%

P✗C✗N✓ 16.25% 15% 10% 13.75%

Other 13.75% 45% 5% 21.25%

Percentage with which each type of failure mode occurs in
cellodarint+ext induced clusters based on MiniLM-L6. SGD results
are averaged among the Events, Homes, Music and Movies domains

preceding and subsequent utterances to produce contextual
representations by fine-tuning a pretrained encoder. This
means it cannot be used for task-oriented downstream tasks
that only utilize preceding dialogue, such as intent classifi-
cation and response generation.

Second, our work focuses on inducing dialogue structures
at the utterance level (assigning utterances to states) and thus
cannot be straightforwardly applied to the task of recovering
dialogue structures based on slot type induction (assigning
words or subphrases to states) as in [42].

Third, our specific focus was on extracting dialogue
structures from task-oriented dialogues. Task-oriented dia-
logues typically involve two parties who exchange utterances
consecutively. Therefore, we did not conduct experiments
where we recover structures from dialogues with multiple
consecutive user or system utterances, nor on multi-party
dialogues (where more than two actors can appear in a single
dialogue).

Finally, our work focuses on inducing dialogue structures
from text only. However, in order to better recover structures,
an interesting andunexplored direction for futureworkwould
be to consider a multi-modal setting where dialogues are
augmented with other modalities, such as images.

Relianceon theground truthnumberof dialogue states The
main presented results rely on initializing the number of clus-
ters of all consideredmodels with the ground truth number of
dialogue states. In practice, however, the ground truth number
of states is unknown and thus would need to be estimated by
inspecting a subset of the available dialogues. To assess the
impact of not correctly setting the ground truth number of
states, Section 6.5 analyzes the impact of overestimating the
number of ground truth states by a factor of two, demon-
strating that our proposed methods induce relatively pure
clusters and still outperform both joint methods. An inter-
esting direction for future work would thus be to investigate
cluster algorithms that do not require the number of dialogue
states as input such as, e.g., DBSCAN [64], Mean shift [65],
and Affinity propagation [66].

Dialogue context representation strategy To include local
context, we clustered the concatenation of the considered
utterance’s representation and its adjacent utterances’ repre-
sentations, rather than leveraging more advanced techniques
that integrate different views of data such as, e.g.,Multi-View
k-means [67]. We leave the latter for future work.

Training time performance analysis The training time per-
formance discussion Section 6.6 involved comparing the
training times of state-of-the-art joint models to those of our
approaches. Because training time is affected by factors like
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implementation, batch size, etc. the reported times should be
interpreted as an indication rather than as exact numbers.

Pre-training sentence encoders Because our work focuses
on computational efficiency, we did not further experi-
ment with specifically pretraining sentence encoders on each
distinct domain or dataset. However, the preliminary results
of TOD-BERT on SGD, discussed in Section 6.4, suggest
that such specific pretraining might be beneficial. It is fur-
ther worth noting that the effectiveness and efficiency of
ellodar’s linear-to-linear regression is in part attributed
to ellodar building upon an out-of-the-box pre-trained
sentence encoder that already has undergone substantial
computation efforts: training such encoders from scratch is
computationally expensive to obtain.

Generalizability to additional human-humandialogues While
compared to prior DSI works, our experiments cover a
broader range of datasets, i.e., 4 commonly used con-
versational datasets (DSTC2, CamRest676, SimDial, and
SGD), it is worth noting that SimDial comprises synthetic
dialogues, SGD and DSTC2 human-machine dialogues,
and CamRest676 human-human dialogues. As such, there
remains uncertainty about the generalizability of cellodar
to human-human dialogues other than CamRest676. Unfor-
tunately, due to the lack of utterance-level annotated con-
versational datasets (as opposed to slot extraction datasets,
e.g., MultiWOZ [51]), we were unable to cover additional
datasets, and defer exploring this to future work.

7 Implications of the presented research
results

The findings in this work have implications on the relatively
underexplored DSI domain. Our main goal was to design an
efficient DSI model, which we argued to be essential in prac-
tical settings, e.g., when users need to run the DSI model
multiple times with different numbers of dialogue states to
recover the optimal structure. By revisiting and further devel-
oping the cluster-based method of [18, 19], we demonstrated
that simple DSI models can be orders of magnitude faster yet
still outperform more complex existing models. Therefore,
we want to emphasize that pragmatic architectural choices,
which may not necessarily follow the trend of aiming for
performance gains through more complex/advanced (neu-
ral) models, may lead to both efficiency and performance
improvements over more complex models. We hope that this
will encourage the community to pursue model efficiency as
an important design aspect, besides model effectiveness.

Second, as no publicly available framework for bench-
marking DSI models currently exists, we release our modi-
fied datasets and evaluation to accelerate futureDSI research,
for which we hope that our simple cellodar approach will
serve as a strong baseline.

8 Conclusions

Unlike recently proposed DSI models that jointly learn
to encode and cluster utterances, we revisited an effi-
cient cluster-based approach that proceeds in two steps. It
first encodes utterances as vectors, after which it clusters
the obtained representations to induce the dialogue struc-
ture in the second step. However, the previously proposed
cluster-based approach encodes utterances as bag-of-words
or skip-thought vectors without using dialogue context.
Hence, we proposed to adopt more powerful transformer-
based sentence encoders and contributed ellodar, a highly
efficient approach for learning dialogue aware representa-
tions. ellodar trains linear transformations with a vector-
to-vector regression objective in the encoding space of a
frozen sentence encoder using a local contextwindow.Exten-
sive experiments on representative DSI datasets show that:
(i) the cluster-based approach outperforms the recent joint
models when using transformer-based encoders to represent
utterances, (ii) clustering ellodar’s representations further
improves performance consistently, while being orders of
magnitude faster than the joint models. We release our
datasets (which are variants of commonly adopted DSI
datasets), evaluation, and models as a common benchmark
for DSI, which is currently missing.

Appendix A: Additional results

We present the full turn-based results on the individual
domains of SimDial and SGD in Tables 10–11, and the
full utterance-based results of SimDial and SGD are shown
in Tables 12–13. Both the full turn and utterance-based
results follow the same trends as reported in Section 5: (i)
almost all cluster baselines outperform the joint models, (ii)
the best cellodar-model consistently outperforms the best
cluster baseline, and (iii) the results for dedicated sentence
encoders (MiniLM and TOD-BERT) are consistently higher
than those of GloVe. With as exception the Events domain of
SGD for which the cluster baselines are often outperformed
by the joints models. Additionally, on SimDial and SGD,
some of the GloVec baselines perform worse than the joint
models.
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Revisiting clustering for efficient unsupervised dialogue structure induction
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Table 14 Randomly sampled
dialogues from each SimDial
domain with corresponding gold
annotations

SimDial
Utterances Label

Weather

[SYS]: Weather bot is here. What do you need? [greet, request-need]

[USR]: Whats up? Whats the weather? [greet, request-default]

[SYS]: Which city are you interested in? [request-loc]

[USR]: Weather at Philadelphia [inform-loc]

[SYS]: What date are you interested? [request-datetime]

[USR]: Weather tomorrow [inform-datetime]

[SYS]: Your weather report 2 is here. Anything else? [inform-default, request-happy]

[USR]: All good. Thats all. [goodbye, satisfy]

[SYS]: See you next time. [goodbye]

Bus

[SYS]: Ask me about bus information. How can I
help?

[greet, request-need]

[USR]: Hello robot. Recommend me a bus to take. [greet, request-default]

[SYS]: Where are you leaving from? [request-fromloc]

[USR]: Leaving from Downtown. [inform-fromloc]

[SYS]: Where do you want to take off? [request-toloc]

[USR]: Destination is Lawrance. [inform-toloc]

[SYS]: What time do you need the bus? [request-datetime]

[USR]: I am leaving on 23. [inform-datetime]

[SYS]: Bus 50 can take you there. What else can I
do?

[inform-default, request-happy]

[USR]: I have more requests. How long do I need to
wait?

[morerequest, request-arrivein]

[SYS]: The bus will arrive in 25 minutes. What else
can I do?

[inform-arrivein, request-happy]

[USR]: I have all I need. See you. [goodbye, satisfy]

[SYS]: Goodbye. [goodbye]

Restaurant

[SYS]: Welcome to restaurant recommendation sys-
tem. How can I help?

[greet, request-need]

[USR]: Hello robot. I need a restaurant. [greet, request-default]

[SYS]: Which place? [request-loc]

[USR]: At Philadelphia. [inform-loc]

[SYS]: What type of restaurant? [request-foodpref]

[USR]: I like Indian food. [inform-foodpref]

[SYS]: Restaurant 44 is a good choice.What else can
I do?

[inform-default, request-happy]

[USR]: I have more requests. What kind of parking
does it have?.

[morerequest, request-parking]

[SYS]: This place has street parking. What else can
I do?

[inform-parking, request-happy]

[USR]: I have all I need. See you. [goodbye, satisfy]

[SYS]: See you next time. [goodbye]

Movie

[USR]: Hello robot. Give me some good suggestions
about movies.

[greet, request-default]

[SYS]: What genre do you like? [request-genre]
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Table 14 continued SimDial
Utterances Label

[USR]: I love Drama ones. [inform-genre]

[SYS]: Whats the time period? [request-years]

[USR]: In 2010-present. [inform-years]

[SYS]: Movie from what country? [request-country]

[USR]: Germany. [inform-country]

[SYS]: Movie 193 is a good choice. Are you happy
about my answer?

[inform-default, request-happy]

[USR]: Not done yet. Which company? [morerequest, request-company]

[SYS]: The movie is from MGM. What else can I
do?

[inform-company, request-happy]

[USR]: One more thing. Whats the rating? [morerequest, request-rating]

[SYS]: The rating is 1. Are you happy about my
answer?

[inform-rating, request-happy]

[USR]: No more questions. See you. [goodbye, satisfy]

[SYS]: Goodbye. [goodbye]

Table 15 Randomly sampled
dialogues from CamRest676
and DSTC2 datasets with
corresponding gold annotations

Utterances Label

CamRest676

[USR]: I am looking for a moderately
priced restaurant in the west part of town.

[inform.area, inform.pricerange]

[SYS]: Meghna is an Indian restaurant, it
is in the moderate price range, and it is in
the west part of town. Would you like the
phone number?

[phone]

[USR]: yes, and the address and postcode
please.

[request.address, request.phone,
request.postcode]

[SYS]: The phone number for meghna is
01223 727410 and they are located at 205
Victoria Road Chesterton. The postcode is
C.B 4, 3 L.F.

[USR]: Perfect. Thanks for the informa-
tion. Goodbye.

[SYS]: Thank you for choosing our sys-
tem. Good bye

DSTC2

[SYS]: Hello , welcome to the Cambridge
restaurant system? You can ask for restau-
rants by area , price range or food type .
How may I help you?

[welcomemsg]

[USR]: uh korean food [informfood]

[SYS]: Im sorry but there is no restaurant
serving creative food

[canthelpfood]

[USR]: korean food [informfood]

[SYS]: Sorry would you like creative or
korean food?

[selectfood]

[USR]: korean [informfood]

[SYS]: little seoul serves korean food [informfood, offername]

Note that there are missing annotations for CamRest676
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Table 15 continued Utterances Label

[USR]: address [requestaddr]

[SYS]: Sure , little seoul is on 108 Regent
Street City Centre

[informaddr, offername]

[USR]: phone number [requestphone]

[SYS]: The phone number of little seoul
is 01223 308681.

[informphone, offername]

[USR]: thank you good bye [bye, thankyou]

Table 16 Randomly sampled
dialogues from the Schema
Guided Dialogues with
corresponding gold annotations

The Schema Guided Dialogues
Utterances Label

Music

[USR]: Can you help? I am trying to locate some
songs.

[informintent.[lookupmusic]]

[SYS]: Yes, be happy to. I have 10 songs to
choose from. I recommend Take Me Away by
Scotty Sire from the Ruin Your Party album.

[informcount.count, offer.album, offer.artist,
offer.songname]

[USR]: That one sounds wonderful [select.]

[SYS]: Shall I play it now for you? [offerintent.[playmedia]]

[USR]: Yes, Id like to hear that one [affirmintent.]

[SYS]: To confirm: youd like to hear Take Me
Away on the TV?

[confirm.playbackdevice, confirm.songname]

[USR]: Id rather hear it on my kitchen please [inform.playbackdevice, negate]

[SYS]: To confirm: You wish to hear Take Me
Away on your kitchen speaker. Is this correct?

[confirm.playbackdevice, confirm.songname]

[USR]: Yes it is, thank you. Whats the genre of
that song?

[affirm, request.genre]

[SYS]: It is a Pop song.Your selection has started. [inform.genre, notifysuccess]

[USR]: Thank you for your help. [thankyou]

[SYS]: Is there anything else I can do? [reqmore]

[USR]: No that will be all for now. [negate, thankyou]

[SYS]: Have a great day. [goodbye]

Homes

[USR]: I am looking for an apartment. [informintent.[findapartment]]

[SYS]: In which area? [request.area]

[USR]: In Gilroy area. [inform.area]

[SYS]: With how many bed rooms? [request.numberofbeds]

[USR]: With 1 bed room. [inform.numberofbeds]

[SYS]: There are 4 matches. Mission Park at 766
1st Street has 1 bed room and 1 bath at a price of
2000 $/month.

[informcount.count, offer.address,
offer.numberofbaths, offer.numberofbeds,
offer.propertyname, offer.rent]

[USR]: Show me other apartments with 1 bath,
please.

[inform.numberofbaths, requestalts]

[SYS]: Another placewould be ParkViewApart-
ments at 181 Pierce Street that has 1 bed room and
1 bath as well, it costs 5050 $/month.

[offer.address, offer.numberofbaths,
offer.numberofbeds, offer.propertyname,
offer.rent]

[USR]: Is it furnished? [request.furnished]

[SYS]: No, it hasnt furniture. [inform.furnished]

[USR]: It sounds good, I would like to schedule
a visit on the 14th.

[inform.visitdate, informintent.[schedulevisit],
select.]
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Table 16 continued The Schema Guided Dialogues
Utterances Label

[SYS]: Please confirm these details: scheduling
of a visit in Park View Apartments onMarch 14th.

[confirm.propertyname, confirm.visitdate]

[USR]: Yes, thank you, whats the phone number
of the property?

[affirm, request.phonenumber]

[SYS]: Visit confirmed. Propertys phone number
is 408-842-6341.

[inform.phonenumber, notifysuccess]

[USR]: Thank you. Thats all. [goodbye, thankyou]

[SYS]: My pleasure. Have a nice day. [goodbye]

Events

[USR]: Im looking for events. [informintent.[findevents]]

[SYS]: What type of events are you looking for?
Music, sports, etc. What city are you looking in?

[request.city, request.eventtype]

[USR]: I want to find music events in NY next
Friday.

[inform.city, inform.date, inform.eventtype]

[SYS]: There are 10 events that match your
request. Amber Run Brooklyn plays at Warsaw.

[informcount.count, offer.eventname, offer.venue]

[USR]: Sounds good, I want to find more events. [informintent.[geteventdates], select.]

[SYS]: I found 1 events next Friday. Amber Run
Brooklyn is at Warsaw.

[informcount.count, offer.date, offer.eventname,
offer.venue]

[USR]: When does it start? [request.time]

[SYS]: It starts at 5 pm. [inform.time]

[USR]: Where is it located? [request.venueaddress]

[SYS]: It is located at 261DriggsAvenue, Brook-
lyn.

[inform.venueaddress]

[USR]: Sounds good to me. [select.]

[SYS]: Do you want to purchase tickets? [offerintent.[buyeventtickets]]

[USR]: Yes, I want to buy tickets. [affirmintent.]

[SYS]: How many tickets do you want to buy? [request.numberoftickets]

[USR]: I need 1 ticket. [inform.numberoftickets]

[SYS]: Please confirm: 1 ticket for Amber Run
Brooklyn next Friday in New York.

[confirm.city, confirm.date, confirm.eventname,
confirm.numberoftickets]

[USR]: No, I want to buy three tickets. [inform.numberoftickets, negate]

[SYS]: Please confirm: 3 tickets for the event next
Friday.

[confirm.date, confirm.numberoftickets]

[USR]: Yes, sounds good. [affirm]

[SYS]: Your reservation was successfully made. [notifysuccess]

[USR]: Thanks, a lot. [thankyou]

[SYS]: Anything else I can help with? [reqmore]

[USR]: No, thats all. Thanks. [negate, thankyou]

[SYS]: Have a good day. [goodbye]

Movie

[USR]: I want to find a comedymovie. Search for
movies now showing in Oakland.

[inform.genre, inform.location,
informintent.[findmovies]]

[SYS]: Dr. Strangelove, Gloria Bell, and Little
are playing. Do any of these interest you?

[offer.moviename]

[USR]: Lets try something else. I want a regular
show. Something like a Biographical movie.

[inform.genre, inform.showtype, requestalts]

[SYS]: Heres 1. It is called Breakthrough. [informcount.count, offer.moviename]

[USR]: Breakthrough is great. [select.moviename]

[SYS]: Do you want to purchase tickets now? [offerintent.[buymovietickets]]
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Table 16 continued The Schema Guided Dialogues
Utterances Label

[USR]: No, not right now.What time does it play?
I also want to watch Regal Jack London next Fri-
day.

[inform.showdate, inform.theatername,
informintent.[gettimesformovie], negateintent.]

[SYS]: I have found 1 showtime. It is at 9:30 pm,
playing at Regal Cinemas Jack London 9.

[informcount.count, offer.showtime,
offer.theatername]

[USR]: What is the theater address? [request.streetaddress]

[SYS]: The address is 100 Washington Street. [inform.streetaddress]

[USR]: Great, thats all I need. [goodbye, select.]

[SYS]: Have a great day [goodbye]
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