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Abstract
The reverse osmosis (RO) process is a well-established desalination technology, wherein energy-efficient techniques and
advanced process controlmethods significantly reduce production costs. This study proposes an optimal real-timemanagement
method tominimize the total daily operation cost of an RO desalination plant, integrating a storage tank system tomeet varying
daily freshwater demand. Utilizing the dynamic model of the RO process, a cascade structure with two reinforcement learning
(RL) agents, namely the deep deterministic policy gradient (DDPG) and deep Q-Network (DQN), is developed to optimize the
operation of the RO plant. The DDPG agent, manipulating the high-pressure pump, controls the permeate flow rate to track a
reference setpoint value. Simultaneously, the DQN agent selects the optimal setpoint value and communicates it to the DDPG
controller to minimize the plant’s operation cost. Monitoring storage tanks, permeate flow rates, and water demand enables
the DQN agent to determine the required amount of permeate water, optimizing water quality and energy consumption.
Additionally, the DQN agent monitors the storage tank’s water level to prevent overflow or underflow of permeate water.
Simulation results demonstrate the effectiveness and practicality of the designed RL agents.
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1 Introduction

One of the well-established and widely used desalination
processes for brackish and salty water is reverse osmo-
sis (RO). RO aims to reduce the production costs of clean
water through energy-efficient techniques and advanced con-
trol methods [1–3]. Representing 65% of the total installed
capacity of desalination technologies globally, RO plays a
significant role in the world’s water desalination industry [4].

In the RO process, energy consumption significantly con-
tributes to the cost of freshwater production. Optimizing
the operation of the RO process to enhance performance
and reduce energy consumption has recently garnered con-
siderable attention [5–7]. Employing methodologies from
process systems engineering, researchers have developed
technologies to improve membrane processes, implement
optimal designs, and reduce power consumption in seawa-
ter desalination systems [8, 9]. In a comprehensive review
[10], the impact of RO membrane element performance on
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specific energy consumption in the RO process is thoroughly
investigated. Other studies, such as [11, 12], focus on reduc-
ing energy costs in seawater RO, adjusting the relationship
between water production and demand according to load and
electricity price fluctuations. In [13], a fuzzy logic-based
control systemoptimizesROoperational costs based on feed-
water electrical conductivity, temperature as input values,
and the RO recovery setpoint as a control action. Similarly,
[14] designs and operates an RO system according to daily
water demands, adjusting to changes in seawater temperature
to achieve an optimal operational policy. Experimental exam-
ination of an RO desalination plant under different working
conditions is presented in [15], focusing on specific energy
consumption and water production costs. Additionally, [16]
introduces an optimal control objective for energy manage-
ment in the RO process using a hybrid energy system and
a deep reinforcement learning algorithm. Finally, [17] pro-
poses a modeling and optimization strategy for achieving
optimal operation in an industrial RO plant.

For the purpose of energy optimization, understanding
the RO process is crucial, and developing an RO model is
essential to facilitate optimization and reduce energy con-
sumption [18]. Creating an RO model involves establishing
correlations between key operational conditions and perfor-
mance indicators to comprehend themechanism and evaluate
RO membrane performance. With the developed RO pro-
cess model as a foundation, simulation and optimization
can be performed. There are three methods for obtaining an
RO process model: membrane transport, lumped parameters,
and data-driven models [19]. The solution-diffusion trans-
port mechanism is widely accepted as a mathematical model
for solute and solvent transport in the RO process [20] and
can be employed to construct the RO model. In recent years,
several studies have utilized transport membrane modeling
for the optimization and performance assessment of the RO
process [21–23]. In [24], mathematical models are explained
to describe the steady-state and transient behavior of the RO
desalination process.

Linear and nonlinear modeling of the RO process pro-
vides the foundation for developing an efficient controller
to maintain freshwater production while minimizing operat-
ing costs. Both linear and nonlinear dynamic models for RO
processes have been introduced in previous studies [25]. The
design of a dynamic model for RO desalination, focusing
on spiral-wound membrane modules and the corresponding
controller, is detailed in [26]. Using a simplified functional
decomposition method, [27] investigates the servo and reg-
ulatory performance of different PID loops for controlling
the permeate flow rate in the RO desalination process. The
literature features various contributions to RO system pro-
cess control. In [28], for instance, a control system based
on optimization is designed and implemented to optimize
energy efficiency in an experimental RO membrane water

desalination process. Two PID controllers are proposed in
[29] for controlling the flux and conductivity of an RO plant
using controllers based on the whale optimization algorithm.
In [18], control strategies such as internal multi-loop model
control and proportional-integral control are implemented to
simulate the RO desalination process for both servo and reg-
ulatory purposes.

Data-driven methods, based on machine learning (ML)
techniques, are increasingly becoming flexible tools in RO
process systems [30]. In [22, 31], a review focuses on recent
trends and developments, primarily emphasizing the mod-
eling and simulation of RO plants using Artificial Neural
Networks (ANN) to address challenges in membrane-based
desalination systems. Another study, [32], employs an ANN
to predict and forecast water resource variables. The review
in [33] elucidates various membrane-based water treatment
designs, along with plant performances, utilizing Artifi-
cial Intelligence (AI) methods to reduce waste generation
and enable cleaner production. [34] explores an NN-based
method to predict the dynamic water permeability constant
for an RO desalination plant under fouling conditions. For
small-scale prototype operation in a seawater RO desalina-
tion plant with fluctuating power input, [35] incorporates
ANN models into the control system.

In RO desalination systems, dynamics are highly non-
linear, constrained, and subject to uncertainties such as
membrane fouling and varying feed water parameters. These
factors contribute to the complexity of creating a mathemat-
ical model for an RO system. Consequently, designing an
optimal controller for managing RO desalination systems
poses a significant challenge [36]. Considering this, a data-
driven approach for control and optimal management of an
RO process based on the available data emerges as a promis-
ing solution. Reinforcement Learning (RL) offers a unique
approach, as it leverages the concept of learning controllers
and can acquire high-quality control behavior by learning
from scratch through interactions with the process [37]. The
application of RL, which uses data to learn optimum control
policies, holds potential for addressing the complexities of
ROsystems [38]. InRL, agents undergo training as they inter-
act with their environment, performing different actions that
lead to positive or negative rewards based on the states they
reach. This principle can be applied to complex processes
like the RO process, allowing the system to learn intricate
behaviors and optimal control policies through experience.
RL has gained significant attention for its effectiveness and
widespread use in solving problemswith discrete and contin-
uous states and action spaces, including real-world scenarios
like chemical process control problems [39–42].

The methods proposed in [7, 12, 43, 44] focus on opti-
mizing the daily operation of the RO plant. They employ a
nonlinear solver to address the discretized large-scale nonlin-
ear programming. However, when faced with new situations,
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such as uncertain water demand, these methods need to
resolve nonlinear problems, making them less suitable for
real-timemanagement and control issues. It’s crucial to high-
light that fully discretizing both differential and algebraic
variables results in a large-scale problem, posing a significant
challenge [7]. Additionally, these studies rely on the steady-
state model of the RO process and overlook the controller’s
impact during the transition regime from one steady-state to
another.

In this study, we propose the development of a data-driven
framework using RL methods to control and optimize the
daily operation of an RO desalination plant in real-time. The
main objectives of the proposed framework include con-
trolling permeate flow rate, improving energy efficiency,
ensuring permeate water quality, and maximizing plant
availability during real-time management of the RO plant.
Initially, a data-driven controller based on DDPG is designed
to regulate the permeate flow rate of the RO plant. Notably,
the DDPG controller developed in this study adopts a multi-
step tracking approach for controlling the permeate flow rate
in a dynamic model of an RO plant, distinguishing it from
[40]. In the subsequent step, a deep Q-Network (DQN) is
designed tomonitor and optimize theROplant in real-time by
providing setpoints for the controller. Specifically, the DQN
agent is structured to complement existing control systems
without substantial modification, generating optimized con-
trol setpoints. Consequently, the proposed approach offers a
flexible and practical solution that can effectively enhance
the performance of existing RO plants. Moreover, the per-
formance of the DDPG controller is compared with that of a
PID controller, and the performance of the DQN is assessed
against various RL algorithms in the simulation and discus-
sion section.

The main objective of this work is to develop an inte-
grated framework for real-time control, management, and
optimization using RL methods to minimize the total daily
operation cost of a simulated RO desalination plant with a
water storage tank system, meeting daily variable freshwater
demand. Two RL agents, based on DDPG and DQN algo-
rithms, are designed to optimize the RO plant’s real-time
operation. The DDPG method controls the permeate flow
rate by adjusting a high-pressure pump to reach a reference
setpoint determined by a decision-maker. Trained through a
reward function that minimizes the error between the ref-
erence value and output permeate water, the DDPG agent
regulates the flow rate effectively. In the cascade structure,
the DQN agent selects optimal setpoint values, minimizing
operational costs by determining the permeate water amount
while considering water quality in terms of permeate con-
centration and monitoring the storage tank’s water level to
prevent overflowor underflow.The reward function, focusing
on minimizing daily operating costs, preventing underflow
or overflow, and maintaining water quality, guides the DQN

agent in learning an optimal policy during training. Signifi-
cantly, the flexibility of the DQN agent and its compatibility
with existing control systems make it a practical solution to
enhance the performance of established RO plants without
requiring substantial modifications.

The remainder of the article is structured as follows. In
Section 2, the desalination process and problem descrip-
tion are presented. The modeling discussion is provided in
Section 3, where the mathematical model of desalination
process components is explained. Section 4 discusses the
optimal operation of the desalination plant and the design of
the RL agents. Simulation and discussion are elaborated in
Section 5, where the daily operation of the RO plant with the
designed RL agents has been investigated. In Section 6, the
concluding remarks are provided. A summary of the abbre-
viations and the mathematical symbols used in this paper is
presented in Table A1 in Appendix A.

2 Desalination Process and problem
description

This section explores the model structure of the RO desali-
nation process, addressing the efficient operation of the RO
plant to meet water demand and optimize energy consump-
tion.

The schematic diagram of the considered RO plant is
depicted in Fig. 1, illustrating the desalination process. The
system comprises an RO system, a high-pressure pump with
a controller regulating feed pressure for the RO system, a
storage tank system, and an energy recovery device.

The RO system utilizes high-pressure pumps to con-
vert saline water into freshwater by overcoming osmotic
pressure through a semi-permeable membrane [45]. The
high-pressure pump generates the necessary pressure to force
saline water against the membrane, separating freshwater
from dissolved materials like salt. The resulting desalinated
water, known as permeate or product water, is demineralized.
Meanwhile, the brinewater, containing concentrated contam-
inants, remains after the filtration process. Energy recovery
devices (ERDs) play a crucial role in recovering energy from
the brine stream and transferring it to a high-pressure pump,
leading to significantly reduced energy consumption.

One of the key components of the RO plant is the con-
troller. It should be meticulously designed to regulate the
permeate flow rate of the RO system and adjust system
pressure for optimal permeate water production. While a tra-
ditional controller like a PID controller can be employed for
permeate water regulation [1], a data-driven controller holds
promise due to the highly nonlinear and complex nature of the
RO process, coupled with uncertainties such as membrane
fouling. Moreover, the controller often struggles to handle
significant variations in water demand, especially when the
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Fig. 1 Schematic diagram of
RO desalination system
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demand exceeds the desalination plant’s capacity. To address
this issue, a storage tank system is incorporated into the
system layout, enabling the system to manage substantial
variations in water demand effectively [44].

On the other hand, the control part can maintain a con-
stant permeate production rate based on a reference tracking
value. However, the controller itself cannot directly optimize
the operation cost and energy usage of the RO process. The
controllermodule is specifically designed to track commands
for generating permeate flow rates issued by a designated
command controller. However, it lacks autonomy in gener-
ating setpoints independently. Therefore, a supervisory tool
is needed for efficiently monitoring the operation of the RO
system by utilizing observational data and facilitating the
provision of setpoints to the controller. To this goal, a dis-
tinct optimizer or intelligent agent based on AI algorithms
has been developed to manage the RO plant using real-time
information for determining permeate flow rates. The design
of this agent considers not only energy consumption but
also addresses significant variations in freshwater demand
to prevent overflow or underflow in the storage tank system.
The optimal management of the daily operation of the RO
plant is structured according to the hierarchical framework
depicted in Fig. 2. To achieve this, both the controller and
the AI-based optimizer are meticulously designed and tuned
to meet the specified demands. The cascade structure of the
proposed framework shown in Fig. 2 gives the flexibility
to develop the AI-based optimizer and the controller inde-
pendently. By designing the optimizer itself, it is possible
to provide optimal setpoints for existing controllers, mak-
ing it an effective solution for improving the performance of
existing RO plants.Moreover, by changing the storage tank
system or water demand data, the controller does not need to
be altered or redesigned as they only require observations of
the current system state, not explicit dependencies on system
parameters.

3 Mathematical model of desalination
process components

Establishing a model for the RO plant is essential for design-
ing the controller and optimizer. This section outlines the
mathematical models for the components of the RO desali-

nation process. Initially, a mathematical model for the RO
membrane is presented, followedbydata on the daily demand
for freshwater. Then, a mathematical model for the storage
tank system is explained.

3.1 ROmembranemodel

Amodel that adequately describes the operation of ROmem-
branes is an essential step in designing the controller and
optimizer for the RO process. In the following, the equations
for describing the RO membrane are provided.

Balance equations for dynamic variable brine mass, brine
concentration, and permeate concentration are obtained as
follows [46]:

dMb

dt
= Qf − Qb − Qm

dCb

dt
= 1

Mb
[Qf (Qf − Qb) − Qm (Cm − Cb)]

RO system

Storage tank

AI based 
op�mizer

Controller

Water demand

Compute 
energy 

consump�on

Water level

Permeate water 
flow rate

Fig. 2 Hierarchical structure of RO desalination systemwith controller
and optimizer
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dCp

dt
= 1

Mp

[QmCm − QpCp
]

(1)

where Mb[kg] and Mp[kg] are brine and permeate mass,
Q f [kg/s], Qb[kg/s] and Qm[kg/s] are feed, brine and
membrane mass flow rate. Cb[kg/m3],Cp[kg/m3] and
Cm[kg/m3] are brine, permeate and membrane concentra-
tion and mass flow rate at permeate side is Qp = Qm . With
a reject valve, the brine mass flow rate can be computed by
the following equation [25].

Qb = Qmax
b −

(
Qmax

b − Qmin
b

amax
v − amin

v

)

amax
v +

(
Qmax

b − Qmin
b

amax
v − amin

v

)

av

(2)

whereav is the valve opening,amin
v andamax

v are theminimum
and maximum percentage of the reject valve opening and:

Qmin
b = Q f − Qmax

p , Qmax
b = Q f − Qmin

p

Qmax
p = amax

rec

100
Q f , Qmin

p = amin
rec

100
Q f

with amax
rec and amin

rec as the maximum and minimum recovery
rate, respectively. The brine pressure Pb[kPa] is calculated
with valve reject valve rangeability R based on the following
equation [25]:

Pb = R2(1−( av
100 ))Q2

b + Pbo (3)

The permeate flow rate Qp[kg/s] is a function of the dif-
ference between trans-membrane pressure and net osmotic
pressure and is computed as follows:

Qp = AwAemTcp(�P − β��),

Qs = Bs AemTcs
(
βC̄ − Cp

)
(4)

where Aw is permeability of membrane and Bs is the mem-
brane salt permeability, Aem = nvne Am with nv as pressure
vessel number, ne elements number in a pressure vessel,
Am[m2] as membrane active surface area and β is con-
centration polarization factor. Tcp and Tcs are temperature
correction factor. Trans-membrane pressure and Osmotic
pressure are obtained by the following equation [45]:

�P = Pf + Pb
2

− Pp,

�� = � f + �b

2
− �p, (5)

with�i = 75.84Ci for i ∈ { f , b, p}. C̄[kg/m3] is average of
feedwater and brine concentration obtained by the following

equation [45]:

C̄ = Cf + Cb

2
(6)

The temperature coefficient factors Tcp and Tcs are obtained
as below:

Tcp = exp

(
aT

Tf − Tref
Tf

)
,

Tcs = exp

(
bT

Tf − Tref
Tf

)
(7)

where Tref is the reference temperature, aT and bT is mem-
branewater passage temperature constant andmembrane salt
passage temperature constant. Membrane surface concentra-
tion Cm is obtained by the following equation:

Cm − Cp

C̄ − Cp
= exp

(
Jw
Km

)
(8)

where Jw = Qp/Aem and Km is mass transfer coefficient
and is given by the following equations [47]:

Km = 0.065

(
Db

dh

)
(N 0.875

Re )(N 0.25
Sc ) (9)

where ρb ≈ 103(kg/m3)

NRe = ρbdhQb

d f Wηb
, NSc = ηb

ρbDb

Db = 6.725 × 10−6 exp

(
0.1546 × Cb − 2513

T f

)

ηb = 1.234 × 10−6
(
0.0212 × Cb + 1965

T f

)
.

Note that 1 Kg (water mass) per second is 3.6 cubic meters
per hour. Therefore, we use Fi [m3/h] = 3.6Qi [kg/s] for
i ∈ { f , p} to show the feed and permeate flow rate based
on the cubic meters per hour. In the long run, membrane
decay and fouling are unavoidable. To determine long-term
RO plant performance accurately, fouling effects should be
considered. Fouling in membrane systems can be evaluated
using mathematical predictive models [48–50]. These mod-
els can estimate the fouling effect by calculating the permeate
flux decline over time due to long-term variation of the water
permeability coefficient. Although, the membrane module
parameter can be assumed to remain constant when consid-
ering the operation and optimization of the RO process over
a short period. However, the fouling effect can be used to
check the robustness of the long-term performance of the
controller. The following mathematical model is considered
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for the fouling [50]:

Aw = Aw0e
(− t1

τw1
)
,

Bs = Bs0e
(

t1
τw2

)
. (10)

where τw1 and τw2 denotemembrane performance decay con-
stants and t1 and t2 are the time spent since the last cleaning
and the last replacement, respectively. Aw0 and Bs0 are the
initial membrane coefficients.

The energy consumption in the RO system in Kwh can
be computed by the following equation:

Ec = 0.036Q f P f

ξHP
− 0.036Qb PbξE (11)

where ξE is efficiency of ERD, and ξHP = ξMξP with ξP
shows the efficiency of pump and ξM denotes the efficiency
of motor.

3.2 Demand of daily freshwater

A daily demand for freshwater needs to be calculated so that
an optimal RO system operation can be conducted based on
the information provided. In this study, the information about
the demand for daily freshwater in studies [51, 52] is utilized
to create the following equation for water demand Fd [m3/h]:

Fd(t) =
⎧
⎨

⎩

41.60 − 2.54t − 3.22t2 + 0.86t3 t < 7.5
829.9 − 150.43t + 9.87t2 − 0.203t3 t > 7.5
& t < 23

(12)

It’s important to highlight that the demand curve can be
adjusted based on the size of the RO plant and the freshwa-
ter requirements, allowing for scaling up or down. Figure 3
illustrates the assumed daily demand for freshwater.

0 5 10 15 20
0

50

100

150 real data
estimated

Fig. 3 The data for the demand of water

Water 

demand

Water level

Permeate 

water

Tank surface 

area

Fig. 4 Storage tank system schematic

3.3 Storage tank system

The mathematical model for a storage tank system whose
schematic is shown in Fig. 4 can be expressed in terms of
water level and the output flow rate determinedby the demand
and the concentration of output water.

dHst

dt
= Fp − Fd

Ast
,

dCst

dt
= Fp

(
Cp − Cst

)

Ast Hst
, (13)

Here, Ast [m2] and Hst [m] represent the area and water
level of the storage tank system, respectively. Fp[m3/h] and
Cp[kg/m3] are the permeate water flow rate and salt con-
centration of the RO process. Cst is the concentration of
outlet water of the storage tank system, Fd [m3/h] is the
flow rate of output fresh water to guarantee the request of
freshwater user demand which is scheduled one day earlier
and can be obtained from a field data regression. To ensure
the system operational safety, the reservoir level should be
H (min)
st ≤ Hst ≤ H (max)

st .

4 Optimal operation of desalination plant

In this section, two RL agents are designed for control and
optimal management of the desalination process with math-
ematical models described in Section 3. First, a DDPG agent
is designed to regulate permeate water flow rate based on
a given setpoint in the RO desalination process by manipu-
lating a high-pressure pump. Then, a DQN is trained and
employed to determine the setpoint for the controller by
considering the demand for fresh water and optimizing the
energy usage for producing freshwater.
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Fig. 5 The interaction between environment and agent [38]

The following notations and definitions have been utilized
during the design of two RL agents, as illustrated in Fig. 5.
The state space is shown with S and state s is s ∈ S. The
action space is determined by A and the action a is a ∈ A.
TheQ-function Q(s, a) determines the action-value function
for the action a and the state s. The actor function is shown
by π(s) for s ∈ S, which deterministically maps states to
a specific action. A reward function provides feedback to
the agent about what is correct and wrong with rewards and
penalties and is shown with r(.). Moreover, usually, several
episodes are needed to train the RL agents. An episode is a
groupof states, actions, and rewards culminating in a terminal
state.

4.1 Design the RL-DDPG controller

Here, the primary objective is to design a data-driven con-
troller using the DDPG method to regulate the permeate
water from theROprocess bymanipulating the high-pressure
pump. DDPG is adept at handling a wide range of control
problems and represents amodel-free reinforcement learning
strategy that integrates DQN and Deterministic Policy Gra-
dients (DPGs), enabling an actor-critical RL agent to find the
optimal policy andmaximize expected cumulative long-term
returns [53].

In this approach, the actor predicts an action based on
the state input, while the critic predicts the value of the cur-
rent state-action. As illustrated in Fig. 6, the state inputs are
the reference tracking error and permeate water flow rate
of the RO system, the action is the feed flow pressure, and

the reward function is a function of the reference tracking
error. To estimate the Q-function for the critic network, DQN
employs a deep neural network, following an ε-greedy policy
in a discrete action space. For an actor-network, DPG maps
the state to a specific action deterministically. DPG achieves
this by parameterizing the actor function and updating its
parameters based on the policy’s performance gradient [38].

Following the DDPG algorithm in [53], the subsequent
steps can be taken to train the DDPG agent for one episode.

1. The parameterized critic function Q(s, a | φQ) with
wights φQ , and actor function π(s | φπ) with weights
φπ is randomly initialized

2. The target networks Q′(s, a | φQ′) and π ′(s | φπ ′) with
φπ ′ ← φπ and φQ′ ← φQ are initialized

3. To explore the action space, a random process N is ini-
tialized and then an initial state s1 is observed

4. For each training time step t = 1 : T , the following steps
are taken

(a) Based on the current state st , the action at is selected
as at = π(st | φπ) + Nt

(b) Upon the execution action at , the reward rt and next
state st+1 is received

(c) The experience (st , at , rt , st+1) is stored in experi-
ence buffer R

(d) A random minibatch with size N from experiences
(si , ai , ri , si+1) are selected from experience buffer
R

(e) yi = ri + γ1Q′ (si+1, π
′ (si+1 | φπ ′) | φQ′

)
is com-

puted with t factor γ1
(f) The critic network weights is updated byminimizing

the loss function L f = 1
N

∑N
i=1

(
yi −Q(si , ai | φQ)

)2

(g) Using a sampled policy gradient, the actor network
is updated to maximize the discounted expected
rewards ∇φπ J ≈ 1

N

∑N
i=1 GQiGπi with

GQi = ∇aQ
(
s, a | φQ

) |s=si ,a=π(si )

Gπi = ∇φπ π (s | φπ) |s=si

Fig. 6 Interaction between
environment including RO
system and agent as a controller
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(h) Now the parameters target networks with smoothing
factor α are update as follows:

φQ′ ← αφQ + (1 − α)φQ′

φπ ′ ← αφπ + (1 − α)φπ ′

ADDPGagentwill undergo training based on the outlined
steps,with its primary goal being to control the permeate flow
rate by manipulating a high-pressure pump. In this context,
it’s crucial to define the observations and actions within the
environment. Figure 6 illustrates how the agent sends actions
to the environment and observes the next state and rewards
from the environment in the structure of agent-environment
interaction depicted in Fig. 5. At time t , the DDPG agent
takes the action at to set the value for feed pressure (Pf ) in
(5) as follows:

Pf ← at (14)

Then, it receives the reward rt as well as the observation st+1

as follows:

st+1 =
[∫

edτ, e, Fp

]�
, (15)

where Fp[m3/h] is permeate flow rate obtained by (4) and
the error is defined e = Fref − Fp with Fref as a reference
value for the permeate flow rate of the RO process.

Remark 1 The DDPG agent training uses a reset function to
randomize the reference signal for the controller at the begin-
ning of each episode. Therefore, the agent is trained to follow
the setpoint F̃ref where F̃ref is drawn from a uniform distri-
bution interval (Fmin

ref , Fmax
ref ). So, it assures that the agent can

track a range of values for the reference signal.

4.1.1 The reward function design for DDPG

The reward function for training the DDPG agent has a
remarkable impact on the controller performance and is

defined as follows:

rt =
{

β1 |e| < η1
−β2 |e| ≥ η1

(16)

where β1 and β2 are the positive values that determine the
reward (if |e| < η1) or penalty (if |e| ≥ η1) that agent receives
during the training phase. All the values β1, β2 and η1 are
specified before the training of the agent. This assure that the
agent during the training try to keep the error in boundary
region |e| < η1 to maximize the cumulative rewards. It is
important to note that η1 determines the threshold for the
absolute error |e|. If the absolute error is less than η1, the
agent receives a reward of β1; otherwise, it incurs a penalty
of −β2. In this work, the main goal of agent is to track the
reference setpoints between values of 12 and 30 as it will
be shown in the simulation results. An absolute error of 0.2
corresponds to a percentage error between 0.67% and 2%,
which is acceptable for our purposes.

4.2 Design optimizer agent based RL-DQN algorithm

The primary goal is to design a DQN agent tasked with
determining the required amount of permeate water to be
produced by the RO plant based on specified demands and a
cost function related to energy efficiency, as shown in Fig. 7.
Essentially, the DQN sends the reference value for the per-
meate flow rate to the controller. The controller’s primary
function is tomanipulate the feed pressure to produce the per-
meate water as requested by the reference value. As depicted
in Fig. 8, the input states for the DQN agent are derived from
the water demand, the water level in the storage tank system,
and the permeate flow rate of theROsystem.The action of the
DQN agent serves as the setpoint for the DDPG controller.
The reward function, explained subsequently, is a function of
energy consumption, water quality, and preventing overflow
and underflow in the storage tank system.

TheDQN algorithm, amodel-free, off-policy RLmethod-
ology in discrete action space, is a variant of Q-learning.
Unlike standard Q-learning, which is inefficient for large
Markov Decision Processes (MDPs) with numerous states
and actions, DQN can handle high-dimensional observation

Fig. 7 Schematic of RO
desalination system with an
optimizer and controller for
daily management of water
demand
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Fig. 8 Interaction between
environment and DQN agent

and action spaces by using a neural network to estimate the
Q-value function [54]. Based on the DQN algorithm in [54,
55], the following steps are employed for one episode during
the training of a DQN agent.

1. The action-value function Q(s, a | φQ) with random
weights φQ is initialized

2. The target action-value function Q′(s, a | φQ′) is initial-
ized with φQ′ ← φQ

3. To explore the action space, a random process N is ini-
tialized and then an initial state s1 is observed

4. For each training time step t = 1 : T , the following steps
are taken

(a) An action is selected based on the following rule:

at =
{
random action probability of ε

argmaxa Q(st , a | φQ) probability of 1 − ε

(17)

(b) Upon implementing the action at , the reward rt and
next state st+1 are received

(c) The experience (st , at , rt , st+1) is stored in experi-
ence buffer R

(d) A random minibatch with size N from experiences
(si , ai , ri , si+1) are selected from experience buffer
R

(e) The value function target yi is computed with a dis-
count factor γ2 by following equation:

yi =
{
ri if si+1 is terminal state
r ′
i otherwise

(18)

with r ′
i = ri + γ2 maxa′ Q′ (si+1, a′ | φQ′

)

(f) The action-value function parameters φQ is updated
by minimizing the following loss function

L f = 1

N

N∑

i=1

(
yi − Q(si , ai | φQ)

)2

(g) Now the parameters of the target action-value func-
tion with smoothing factor α are update as follows:

φQ′ ← αφQ + (1 − α)φQ′

Interaction between environment and DQN agent has been
shown in Fig. 8.

ADQN agent will undergo training following the outlined
steps, with its primary goal being to provide setpoints for
the controller. To accomplish this, it is crucial to identify
observations and actions within the environment. Figure 7
shows how the agent sends actions to the environment and
observes the rewards from the environment. The DQN agent
in time t takes the action at to set the reference value (Fref)
for the DQN agent as follows:

Fref ← at (19)

Then, it receives the reward rt as well as the observation st+1

as follows:

st+1 = [
Hst , Fd ,�Fd , Fp,�Fp

]�
, (20)

where Hst [m] is tank water level, Fd [m3/h] is demand of
water and Fp[m3/h] is permeate flow rate obtained by (4)
and�Fd and�Fp are�Fd = Fd(t)−Fd(t−1) and�Fp =
Fp(t) − Fp(t − 1) respectively.

Remark 2 The initial water level value for the episode is
an essential factor. DQN issues different setpoints for the
DDPG controller based on the initial water level value. A
reset function has been used to accommodate the random-
ized initial value of water level in the storage tank system,
with the value of H̃0 drawn from a uniform distribution inter-
val (Hmin

0 , Hmax
0 ), thereby ensuring that the DQN agent can

manage the desalinization process with different values of
initial water level in the tank system.

Remark 3 The water demand data provided in (12) is con-
stant for a specific time ts . To consider a more realistic
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scenario and to make the smart optimizer agent able to han-
dle the variation in water demand in each time instant, at the
beginning of each episode, a reset function sets the demand
of water in each time instant ts as F̃d(ts) with the following
equation:

F̃d(ts) = Fd(ts) + f̃ (ts), (21)

where f̃ (ts) is drawn fromanormal distributionN (0,αFd(ts))
for ts ∈ (0, 24). Here, α is a parameter that determines the
standard deviation of the normal distribution from which
f̃ (ts) is drawn. The larger the value ofα, the wider the spread
of the distribution, indicating higher uncertainty or variabil-
ity in water demand.

4.2.1 Reward function design for the DQN agent

In the training phase, the reward function acts as an essen-
tial mechanism, influencing the agent’s behavior for optimal
performance in RO operations. Training the DQN agent with
this reward function aims to derive an optimal policy that
selects setpoints for the DDPG controller, minimizing the
total operation cost of freshwater production and satisfy-
ing specified constraints. The primary cost consideration
involves the energy consumption of the high-pressure pump,
with some ERDs mitigating this consumption. Operational
constraints includemaintaining the desired permeate concen-
tration, avoiding tank overflowor underflow, and ensuring the
water quality aligns with defined standards.

The main objective of the RO plant is to supply fresh-
water with a suitable permeate concentration, stored in a
tank to meet varying user demand. Selection of setpoint val-
ues must carefully consider the permeate water flow rate to
prevent tank overflow or underflow.Additionally, water qual-
ity, measured in terms of concentration, becomes a decision
variable for optimal setpoint selection. Therefore, optimiz-
ing the daily operation of the RO plant involves training the
DQNagent tominimize operation costs ormaximize profit in
delivering freshwater while upholdingwater quality, meeting
demand, and preventing tank overflow or underflow.

To achieve this, the reward function comprises three inte-
gral parts, as follows:

r1(t) = F̄d × Pfw
(
C̄st

) × Ts
hs

,

r2(t) = −Ts ×
∫ Ts

0

EcPec

hs
dt,

r3(t) = −F̄p × (Tfinal − t) × υeb

hs
. (22)

where Ts is the sample time for the DQN agent, Pfw(.) is
the price based on the quality of the water (concentration of
freshwater from the tank system C̄st ), Pec is the price for 1
Kwh, hs is the time unit for one hour for example if unit time
is second hs = 3600, Ec[kwh] is the energy consumption by
the RO system. υeb is 1 when the level of water exceeds the
predefined bounds (overflow or underflow) and 0 otherwise.
Suppose there is an overflow or underflow in the operation of
the RO plant. In that case, the training of the agent is stopped,
and there is a penalty proportional to (Tfinal − t), which is
the remaining time to complete the daily operation of the
RO plant. F̄d , C̄st and F̄p are the moving average with time
windows length Ts of water demand, output concentration of
tank system, and permeate water flow rate, respectively. The
total reward function is defined as follows:

rt = λ1r1(t) + λ2r2(t) + λ3r3(t). (23)

where the λ1, λ2 and λ3 are the scaling weights to determine
the importance r1(t), r2(t) and r3(t). The DQN agent, during
the training, learn the optimal policy to transmit the optimal
setpoint values for the RO plant by maximizing the reward

Table 1 Membrane specification of element-FilmTec SW30HR-380
and feedwater parameter values [25]

Feed parameters Value Unit

feed flow rate Q f 50 kg/s

feed temperature T f 303 K

feed concentration C f 42 kg/m3

RO Parameters Value Unit

Am 35.3 m2

nv 6

ne 56

Aw 2.05 × 10−6 m/(s, kPa)

Bs 2.03 × 10−5 m/s

amax
rec 10 %

amin
rec 40 %

aT 9

bT 8.08

R 50

ρw 1000 kg/m3

b f 7986 (kPa.s)/m4

d f 7 × 10−3 m

dh 1 m

Tank Parameters Value Unit

Ast 100 m2

HT 6 m
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Fig. 9 The topology of critic
network for the DDPG
controller

function in (23). Therefore, maximizing the reward function
means that the optimal policy by the agent is implemented
to keep the quality of freshwater from the tanks system at an
appropriate value (with a reward term of r1(t)), reduce the
cost of permeate water or in other words, reduce the energy
consumption by the high-pressure pump (with penalty term
of r2(t)) and satisfy the water demand and avoid the under-
flow and overflow of permeate water in the storage tank
system (with penalty term of r3(t)).

5 Simulation and discussion

DDPG and DQN agents are trained to provide daily opera-
tional support for an RO desalination plant with membrane
specifications outlined in Table 1 and incorporating a stor-
age tank system based on water demand data. In the initial
step, a DDPG controller is trained for the RO process to reg-
ulate the permeate water flow rate based on a reference value
issued by the higher-level optimizer, namely the DQN agent.
Subsequently, the DQN agent is designed using information
related to energy consumption cost, storage tank water level,
and freshwater price. The DQN agent communicates the set-
point value as an action to the controller, determining the
required water production for the desalination process sys-
tem. The schematic of the discussed RO desalination process
with the controller and optimizer is illustrated in Fig. 7.

5.1 RL-DDPG controller training

In the initial stage, a data-driven controller, utilizing the
DDPGmethod discussed in Section 4.1, is developed to regu-
late the permeate water flow rate. The observations comprise
the integrator error, the error between the reference value
and the output value of the permeate flow rate, and the actual
permeate flow rate of the RO process. The action involves
setting the feed pressure for the high-pressure pump.

The reward function in (16) is calculated by taking the
values η1 = 0.2, β1 = 10 and β2 = 1. By maximizing the
reward function during training, the agent learns to map the
observation in (15) to the action in (14) to keep themagnitude
of the error less than the value of η1. The critic and actor-
network typologies for the DDPG agent are illustrated in
Figs. 9 and 10.

The discount factor and sampling time for the DDPG
agent are set as γ1 = 1 and Ts = 4 seconds, respectively,
with a learning rate of 0.001 for neural network training. A
discount factor γ1 = 1 implies that the RL controller treats
immediate and future rewards equally. This is advantageous
in tracking problems where maintaining consistent perfor-
mance over time is crucial. A discount factor of 1 helps
balance short-term accuracy with long-term stability, ensur-
ing the DDPG agent considers the entire future trajectory and
makes informeddecisions for the reference trackingproblem.

During agent training, the setpoint for the permeate flow
rate of the RO plant is randomly selected from a uniform
distribution interval of (40, 108) in terms of m3/h to ensure
that the agent can effectively manage the pressure, allowing
the permeate flow rate to follow the setpoints for regulation.
The training process spans 15000 episodes, each consisting
of 25 steps, with a total duration of 100 seconds. If the track-
ing error magnitude is within the specified bound, the agent
receives a reward of 10. Consequently, the maximum reward
with a discount factor of 1 is 250. The average reward of 200
in Fig. 11 indicates that, on average, the controller maintains
the error between the reference signal value and the output
permeate flow rate within the requested bound for 20 out of
the total 25 steps. The variance in episode rewards in Fig. 11
arises from tracking the reference point within the range of
40 to 110m3/h for permeate flow rate. The DDPG RL agent
is trained to follow the reference point within this range,
leading to varying cumulative reference tracking errors and,
consequently, different episode rewards. Figure 12 illustrates
how the permeate flow rate tracks various reference setpoints
by employing the DDPG agent.

Fig. 10 The topology of actor
network for the DDPG
controller
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Fig. 11 Average of episode reward

Now the ROmodel is run for 100 days to check the perfor-
mance of the DDPG controller in control of permeate flow
rate by considering the fouling effect shown in (10). Because
the permeate flow rate declines over time due to a long-term
decrease in the water permeability coefficient, the controller
increases the pressure to keep the permeate flow rate around
the requested reference value. As it is shown in Fig. 13, the
RL controller increases the feed pressure by almost 10% to
keep the permeate flow rate around 60 [m3/h].

To compare the performance of the presented DDPG con-
troller with a PID controller, a PID controller is fine-tuned
usingMATLABwith frequency-based approaches, targeting
a setpoint of 50 (m3/h). A PID controller with following
structure is considered:

u(t) = Kpe(t) + Ki

∫ t

0
e(τ )dτ + Kd

de(t)

dt
(24)

where the error e is defined in (15). The gains of the PID
controller are obtained as Kp = 2.23, Ki = 40.12, and
Kd = 1.58. Subsequently, the cumulative reference track-
ing error of the PID controller is compared with that of the
DDPG controller for a range of setpoints between 43 − 108
(m3/h). The results are presented in Fig. 14. The PID con-
troller demonstrates adequate reference tracking between

Fig. 12 Permeate flow rate tracking of multi step setpoints

Fig. 13 The performance of controller with the fouling

40−65 (m3/h), aligning with its tuning range. However, for
higher setpoints ranging from 65 − 110 (m3/h), the DDPG
controller consistently outperforms PID control. This under-
scores the advantage ofDDPG in learning complex nonlinear
policies compared to traditional linear controllers like PID.
This distinction arises because PID controllers, effective in
systems with linear dynamics, may struggle to maintain opti-
mal performance in highly nonlinear environments such as
the RO system. PID controllers rely on linearizedmodels and
tuning procedures, which do not generalize well to nonlin-
ear systems. In contrast, DDPG controllers can continuously
learn and refine their control policy throughout training by
interacting with the true nonlinear system dynamics. How-
ever, it is important to note that It is important to note that,
DDPG requires more computational resources than PID con-
trollers due to the use of neural networks and the need for
training data. PID controllers are computationally simpler
and can be implemented more easily in real-time applica-
tions.

Fig. 14 Comparison of cumulative reference tracking error for PID and
DDPG controllers
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Fig. 15 The topology of critic
network for the DQN agent

5.2 RL-DQN optimizer training

In the second step, an RL agent, utilizing the DQN approach
as discussed in Section 4.2, is devised for the optimal oper-
ation and management of the RO desalination plant. The
observations are derived from the tank water level, water
demand flow rate, and permeate flow rate, as depicted in
(20). The action involves setting the setpoints for the per-
meate flow rate, which are then transmitted to the DDPG
controller. The reward function in (23) relies on price data
for permeate water, contingent on the concentration of per-
meate water and the electricity price.

To incorporate the quality of stored freshwater in the
tank into the reward function, we assume that freshwater is
delivered from the storage tank system to the end-user at a
price proportional to the concentration of the permeate water.
Specifically, lower concentrations are delivered to the end-
user at a higher price. Assuming prices ρ2 and ρ1 for one
cubic meter of freshwater with concentrations Cp1 and Cp2 ,
the following equation determines the value of freshwater in
terms of water for a given concentration Cpx :

Pfw(Cpx ) = ρ2 − ρ1

Cp2 − Cp1
× (

Cpx − Cp1

) + ρ1 (25)

Therefore based on the operational cost and maintenance
cost of a RO desalination plant [56], Pfw(Cpx ) is obtained
as follows:

Pfw(Cpx ) = −10.4651
(
Cpx − 0.17

) + 5 (26)

The price of electricity is assumed as Pec = 0.08$ per kWh
[14].

By maximizing the reward function during training, the
agent learns to map the observation in (20) to the action in
(19) to satisfy the designed requirements for optimal manag-

Fig. 16 The reward function for the DQN agent

ing of the RO plant. The critic network topology of the DQN
agent is illustrated in Fig. 15.

The discount factor and sampling time for the DQN agent
are selected as γ1 = 0.9 and Ts = 15 minutes with the
learning rate for the neural network training as 0.0001. In
this section, three scenarios are explored for the training of
the DQN agent. In the first scenario, a constant initial value
is assumed for the storage tank water level. Subsequently,
a DQN agent is trained to regulate permeate water produc-
tion, taking into account a randomized initial value for the
tank level. Finally, the DQN agent undergoes training while
considering stochastic water demand in addition to the ran-
domized initial water level.

5.2.1 DQN agent training with a constant level tank initial
value

In this section, the DQN agent is trained to operate the desali-
nation RO process in real-time with a constant initial value
for the water level in the tank storage system. Therefore,
the agent for a predefined initial value for the water level in
the storage tank and demand water data tries to maximize the
reward function defined in (23). The agent is trained for 1000
episodes, and the reward for each episode and average reward
with a time window length of 20 is shown in Fig. 16. At the
end of the training, the average reward is about 3454.9. The
negative and small episode reward values in Fig. 16 show the
early stages of training in which the agent fails to complete
thewatermanagement to fulfill thewater demand, so an over-
flow or underflow happens. By training the agent, it learns to
select the optimal setpoint by maximizing the reward func-
tion in (23) for the optimal usage of the energy consumption
by the high-pressure pump, satisfy the water demand, and
maintain the freshwater quality in the tank system.

Fig. 17 Water level variation in the storage tank system
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Fig. 18 Determining setpoints for the controller

Fig. 19 Concentration of outlet water of storage tank system

Fig. 20 The water level variation in storage tank system

Fig. 21 The outlet water concentration of the storage tank system

Fig. 22 Distribution of water level initial value

Fig. 23 The reward function for the DQN agent

Fig. 24 Water level variation in the storage tank system for different
value of water level initial conditions
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Fig. 25 Determining setpoints for the controller for differentwater level
initial values

The variation in water level in the storage tank system is
shown in Fig. 17. As is demonstrated in this figure, the DQN
agent manages and stores the permeate water produced by
the RO plant in the tank system to meet the required water
demand and avoid the overflow and underflow specified with
the red dashed line in the figure.

The sent optimal setpoints are shown in Fig. 18. As it is
shown in this figure, the duration of the times with a high
demand for freshwater shown in Fig. 3), the sent setpoints
values are higher than other times.

The concentration of outlet permeate water from the stor-
age tank system has been shown in Fig. 19 where the quality
of outlet water keeps improving by just adjusting the pressure
of the high-pressure pump. The concentration’s initial value
is 400[ppm]. Quality of outlet water in terms of concentra-
tion is considered in the reward function defined in (23) in
terms of r1(t). By maximizing the reward function, the DQN
agent learns the optimal policy to improve water quality by
reducing the concentration of outlet water. It is imperative
to note that the concentration of permeate water depends on
the feed pressure, which means that with increasing the feed
pressure, the permeate concentration is decreased.

Fig. 26 The stochastic water demand data

Fig. 27 The reward function for the DQN agent

As mentioned, increasing the feed pressure not only
enhances water quality but also boosts the permeate flow
rate, albeit at the cost of higher energy usage. The agent
must carefully consider the trade-off between improving the
quality of the outlet water in the storage tank system and the
energy consumption of the high-pressure pump. To address
this, the DQN agent undergoes training for two scenarios.

In the first scenario, the reward for water quality in (23) is
replaced with a constant term, meaning only the terms r2(t)
and r3(t) are considered in (23). In this case, the agent aims
to minimize energy consumption by maintaining the water
level in the tank near the defined lower threshold, resulting in
higher permeate water concentration. In the second scenario,
energy consumption is not factored into the reward function,
meaning the terms r1(t) and r3(t) are considered in (23). In
this case, the DQN agent learns an optimal policy that main-
tains a higher feed flow pressure compared to the previous
scenario to improve water quality and keep the tank consis-
tently full. Figures 20 and 21 depict the quality of permeate
water and the water level in the storage tank system, illus-
trating the impact of considering energy consumption and
permeate water quality.

Fig. 28 Water level variation in the storage tank system by considering
randomness in water level initial value and stochastic water demand
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Fig. 29 Setpoints issued by the
RL agent to manage water
demand

5.2.2 DQN agent training with randomized tank level initial
value

In this section, the training process for the DQN agent incor-
porates the variability in the initial value of the tank level.
The fluctuation in the initial tank water level significantly
influences the training of the DQN agent. For instance, when
dealing with a high initial value, the agent needs to reduce
the production of permeate water from the RO plant to pre-
vent tank overflow. To enhance the agent’s ability to adapt to
the randomness in the initial value of the water level in the
storage tank system, the initial value is randomly drawn from
a uniform distribution of (2.5, 3.5) in each training episode,
as depicted in Fig. 22.

The DQN agent is trained for 1000 episodes, and the
rewards for each episode, as well as the average episode
reward, are displayed in Fig. 23. At the conclusion of the
training, the average reward is approximately 3452.62. The
average reward for this scenario is nearly identical to the
average reward for the scenario with a constant initial water
level. However, there is an increased variation around the
average reward. Training the agent with a randomized initial
value for the water level in the storage tank system equips it

Fig. 30 Failing in managing the water by the DQN by increasing α in
(21) for water demand

to handle real-time randomness in the initial water level for
optimal management of the RO plant.

Figure 24 demonstrates the variation of water level during
one day in the storage tank system for different values of
initial water level in the tank. This figure illustrates that the
DQN agent for different initial water levels optimizes the RO
plant to produce enough permeate water to avoid overflow or
underflow.

Figure 25 shows the setpoints sent to determine the pro-
duction of permeate water in the RO plant for two random
initial water levels in the tank system. During the period prior
to the pick-demand for freshwater, the DQN agent increases
the high-pressure pump, so the tank has enough permeate
water to satisfy the end-user’s demand. At other times, it
reduces the pressure of feed water to avoid overflowing and
the energy consumption the high-pressure pump uses.

5.2.3 DQN agent training with stochastic water demand
and randomized water level initial value

Finally, it is assumed that the water demand data is not a
deterministic time-varying function, in addition to the initial
value of the tank water level. The water demand at each time

Fig. 31 Comparative Analysis of Cumulative Average Reward: DQN,
PPO, AC, and PG Algorithms
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Table 2 Hyper-parameter
settings for various RL
algorithms

Hyper-parameters DQN PPO AC PG

Critic network layer structure [200,200,200] [256,256] [128,128] [256,256]

Actor network layer structure − [80,64] [96,64] [80,64]

Learning rate for critic layer 0.001 0.0001 0.001 0.001

Learning rate for actor layer − 0.001 0.001 0.001

Discount factor 0.9 0.9 0.9 0.9

instant is drawn from a normal distribution, as explained in
(21) with α = 0.04. Both variations in the initial tank water
level and demand water are considered during the training
of the DQN agent. The initial value for the water level is
drawn from a uniform distribution (2.5, 3.5), as shown in
Fig. 22. The water demand is provided to the DQN agent
with a stochastic term specified in (21). Figure 26 illustrates
the water demand, where the light blue area indicates the
section where the water demand can change.

The DQN agent is trained for 1000 episodes, and the
reward for each episode, along with the average episode
reward, is depicted in Fig. 27. At the conclusion of the
training, the average reward is approximately 3450.2. In com-
parison with previous scenarios, the agent demonstrates an
ability to manage the randomness in tank water level and
uncertainty in water demand in real-time, with the aver-
age reward showing minimal change. However, there is an
increased variability around the average episode reward com-
pared to previous scenarios.

Figure 28 illustrates the variation in water level within the
storage tank system over the course of one day. As depicted
in this figure, the DQN agent adeptly handles the storage of
permeate water in the tank system, avoiding both overflow
and underflow. Consequently, the DQN agent maintains the
water level at an appropriate range, ensuring an ample supply
of freshwater for delivery to end-users and, consequently,
reducing energy consumption by the high-pressure pump.

Figure 29 shows the setpoints provided by the DQN agent
for the DDPG controller. This figure illustrates how the DQN
agent increases the high-pressure pump during the period
before high water demand, so the tank has enough permeate
water to meet demand. At other times, it reduces the pressure
of feed water to avoid overflowing and the energy consump-
tion the high-pressure pump uses.

Figure 30 explains that by selecting α = 0.08, the DQN
agent fails to succeed inmanaging theROplant, and anunder-
flow happens.

5.2.4 Comparative analysis of RL algorithms for optimal RO
operation

This section compares DQN with several other prominent
RL algorithms, namely Proximal PolicyOptimization (PPO),
Policy Gradient (PG), and Actor-Critic (AC), regarding their
performance for the optimal operation of RO, using the
parameters defined in Table 2. For brevity, we primarily com-
pare the average cumulative reward for each algorithm, as
shown in Fig. 31, while Table 3 presents a detailed discus-
sion on max reward, min reward, and average reward values.

DQN is specifically designed for environments featur-
ing high-dimensional state spaces, making it well-suited for
complex tasks. Its success in handling large state spaces and
demonstrating stability in learning has made it a popular
choice across various applications. PPO, as a policy opti-
mization algorithm, aims to maximize expected rewards
while preventing large policy updates to maintain stabil-
ity during training. Commonly used for continuous action
spaces, PPO is recognized for its sample efficiency. PGmeth-
ods directly parameterize the policy and optimize it through
gradient ascent, proving to be model-free and suitable for
both discrete and continuous action spaces. AC methods
exhibit higher sample efficiency than DQN, particularly in
continuous action spaces. Both DQN and AC methods typi-
cally demand fewer samples for training in continuous action
spaces. DQN is renowned for its stability, especially in tasks
with discrete action spaces. Based on the average cumulative
reward shown in Fig. 31 and the results presented in Table 3,
it is shown that the performance of DQN, PPO, and AC is

Table 3 Performance metrics of
RL algorithms

Metric DQN PPO AC PG

Average Cumulative Reward 3452.38 3459.23 3454.71 2406.02

Max Reward 3624.85 3640.27 3590.13 2505.70

Min Reward -2435.01 -2549.03 -2422.31 952.59
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comparable, whereas the performance of PG is notably infe-
rior compared to the other approaches. Furthermore, it should
be noted that while DQN agents require tuning for the critic
layer, PPO, AC, and PG agents also demand tuning for both
the actor and critic layers to achieve optimal performance.
Therefore, retraining of DQN is likely to take less time com-
pared to other approaches.

6 Conclusion

This study aims to minimize the total daily operation cost
of an RO desalination plant, meeting the variable daily
freshwater demand through the implementation of an optimal
real-time management method using RL techniques. Utiliz-
ing DDPG and DQN, a hierarchical structure with two RL
agents was developed to optimize the RO plant, taking into
account the dynamic model of the RO process. The primary
role of the DDPG agent is to control the permeate flow rate
by adjusting the high-pressure pump’s pressure. Consider-
ing factors such as the water level in the storage tank system,
permeate flow rate, and water demand, the DQN agent cal-
culates the required amount of permeate water, aiming to
maintain water quality in terms of permeate concentration.

The simulation results for the DDPG agent demonstrate
its capability to control the permeate flow rate by manipulat-
ing the high-pressure pump within the complex RO system.
However, it is noteworthy that trainingDDPGagents requires
nearly 48 hours on a PC with an Intel Core i7-3770 and 8GB
RAM. Additionally, the DDPG agent undergoes testing for
the long-term operation of the RO plant to observe the impact
of fouling. The DDPG controller adjusts the pressure for the
extended operation of theRO system,maintaining the perme-
ate flow rate at the required level to compensate for fouling
effects. Comparing the performance of DDPG controllers
with PID controllers in the nonlinear dynamics of a RO sys-
tem showcases the superior adaptability of DDPG across a
broad spectrum of reference setpoints.

Concerning DQN simulation results, three scenarios
were examined: one with no initial water level random-
ness in the tank system, another with randomness in the
storage tank system’s initial value, and the third with
stochastic water demand and initial water level random-
ness. With increased uncertainty in the environment and
RO system parameters, the average episode reward for the
DQN agent remains relatively consistent. However, height-
ened system uncertainty leads to greater variability in the
episode reward for DQN agents. Also, comparing DQN
with PPO and AC shows comparable performance, while
PG performs notably worse; it’s important to note that tun-
ing is necessary for both actor and critic layers in PPO,
AC, and PG, making DQN retraining likely less time-
consuming.

The agent effectively oversees daily RO plant operations,
optimizing energy use and improving delivered freshwater
quality using a well-structured DQN critic network. It bal-
ances the trade-off between enhancing outlet water quality
and reducing the high-pressure pump’s energy consumption.
While not prioritizing permeate water quality, the focus on
energy efficiency includes maintaining the tank water level
near the specified lower threshold.

The future research direction is to develop the RL agents
to manage the energy consumption in an RO plant with solar
panels and a battery storage system.

Appendix A: Description of most frequent
symbols

Table 4 Summary of abbreviations and mathematical notation

Abbreviations Description

RO Reverse osmosis

DDPG Deep Deterministic Policy Gradient

DQN Deep Q-Network

DPG Deterministic Policy Gradient

RL Reinforcement Learning

ANN Artificial Neural Network

PID Proportional Integral Derivative

ML Machine Learning

AI Artificial Intelligence

ERD Energy Recovery Device

MDP Markov Decision Process

NN Neural Network

Parameters Description

M Mass[Kg]
C Concentration[Kg/m3]
Q Mass Flow rate[Kg/s]
P Pressure[kPa]
� Osmotic Pressure[kPa]
R Reject valve rangeability

Aw Water Permeability[m/(s, kPa)]
Bs Salt Permeability[m/(s)]
Tcp Temperature Coefficient Factor[K ]
Tcs Temperature Coefficient Factor[K ]
Tref Reference temperature [K ]
β Concentration polarization factor

�P Trans-Membrane Pressure[kPa]
�� Net osmotic pressure [kPa]
aT Membrane water passage temperature constant

bT Membrane salt passage temperature constant
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Table 4 continued

Abbreviations Description

Km Mass transfer coefficient [m/s]
Jw Water flux [Kg/(m2, s)]
NRe Reynolds number

NSc Schmidt number

ρb Water density [Kg/m3]
Db Diffusivity of the brine

Fd Water demand [m3/h]
Hst Tank water level [m]
Ast Tank cross sectional area [m2]
Cst Tank outlet water concentration [Kg/m3]
C̄ feedwater and brine concentration average [Kg/m3]
df is feed spacer thickness [m]
dh brine channel’s spacer thickens

ηb viscosity of the brine

nv Pressure vessel number

ne Elements number in a pressure vessel

Am Membrane active surface area [m2]
τw Membrane performance decay constants

Ec Energy consumption [Kwh]
ξP Pump efficiency

ξM Motor efficiency

ξE ERD efficiency

Pec Price of electricity [$/Kwh]
Pfw(.) Price of freshwater based on water quality [$/m3]
F̃d Stochastic Water demand [m3/h]
N (., .) Normal distribution

Q(., .) Q function

π(.) Actor function

S State space

A Action space

r(.) Reward function

Fref Reference value for permeate water [m3/h]
Subscripts Description

b Brine side

f Feed side

m Membrane side

p Permeate side
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