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Abstract
Image Super-Resolution (ISR) is utilised to generate a high-resolution image from a low-resolution one. However, most
current techniques for ISR confront three main constraints: i) the assumption that there is sufficient data available for training,
ii) the presumption that areas of the images concerned do not involve missing data, and iii) the development of a compu-
tationally efficient model that does not compromise performance. In addressing these issues, this study proposes a novel
lightweight approach termed Fuzzy Rough Feature Selection-based ANFIS Interpolation (FRFS-ANFISI) for ISR. Popular
feature extraction algorithms are employed to extract the potentially significant features from images, and population-based
search mechanisms are utilised to implement effective FRFS methods that assist in selecting the most important features
among them. Subsequently, the processed data is entered into the ANFIS interpolation model to execute the ISR operation. To
tackle the sparse data challenge, two adjacent ANFIS models are trained with sufficient data where appropriate, intending to
position the ANFISmodel of sparse data in the middle. This enables the two neighbouring ANFISmodels to be interpolated to
produce the otherwise missing knowledge or rules for the model in between, thereby estimating the corresponding outcomes.
Conducted on standard ISR benchmark datasets while considering both sufficient and sparse data scenarios, the experimental
studies demonstrate the efficacy of the proposed approach in helping deal with the aforementioned challenges facing ISR.

Keywords ANFIS · Sparse data · ANFIS interpolation · Image super resolution · Fuzzy rough feature selection

1 Introduction

Image super-resolution (ISR) is a subfield of computer vision
and image processing that transforms low-resolution (LR)
images into high-resolution (HR) images through enhancing
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the resolution of the former. HR images contain more pix-
els and hence, show more detailed information, whereas LR
images show less detail and may involve considerable miss-
ing information due to a lower pixel count or lower pixel
density. In certain situations, images obtained from different
cameras may not be clear, and detailed information may be
difficult to extract due to blurring or noise effects. Besides,
high-quality cameras can be expensive, making it difficult
for everyone to afford them and hence to gain direct access
to HR images. Indeed, LR images or images with areas of
sparse data are common problems encountered when captur-
ing images with conventional cameras.

The problem of ISR has garnered significant attention
from the image processing and computer vision commu-
nity [1]. Given its importance, ISR is widely exploited in
various application areas, such as medical diagnosis [2],
security surveillance [3], remote sensing for earth obser-
vation [4, 5], astronomical observation [6], face recogni-
tion [7–9], reconstruction [10], vehicle identification [11],
andMartian rock type classification [12] amongothers.High-
quality HR images are simply desired in daily life with
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almost every application problem. Fortunately, companies
and organisations can acquire such images without always
needing to purchase expensive image-capturing equipment,
as ISR techniques can be used to enhance images from a
software perspective.

Previously, the main focus of ISR techniques was on
the frequency domain, with wavelet or Fourier transform
being the major techniques used to convert LR images
into HR ones. However, such techniques typically ignored
both the degradation process and the prior spatial infor-
mation about the images concerned [1], restricting their
ability to cope with complex situations. To address these
limitations, contemporary ISR techniques based on the spa-
tial domain have been developed, including learning-based
and reconstruction-based methods [13]. The working mech-
anism of learning-based approaches is similar to data-driven
machine learning. For instance, fuzzy rules learning-based
techniques have been used to solve ISR problems, wherein
the learned fuzzy rules are exploited to derive non-linear
relationship mappings between LR and corresponding HR
images [14]. On the other hand, reconstruction-based ISR
methods utilise appropriately designed priors, such as edges,
to recover missed details during the image reconstruction
process [15, 16].

To aid in the successful addressing of challenging ISR
problems, this paper proposes a novel lightweight FRFS-
based ANFIS [17] interpolation approach that substantially
extends the most recently developed ANFIS interpolation
technique [13]. A pre-processing step is introduced that con-
sists of feature extraction (FE) and fuzzy rough set-based
feature selection (FRFS) mechanisms [18–20]. In particu-
lar, FRFS is adopted to facilitate the overall ISR system to
work in uncertain and imprecise domains while maintaining
interpretability. It offers an overall computationally efficient
technique without compromising performance, inspired by
the observation that many algorithms work on meta-level
features of the images rather than their pixels, as pixel-based
processing generally consumes more time. The existing
ANFIS interpolation solution forms the core to deal with
problemswhere certain images or regions of images aremiss-
ing and hence, there are insufficient training data to develop
a functioning ANFIS with existing ANFIS-learning-based
techniques. This tackles a common yet important problem in
data-driven ISR.

Following such an approach, in implementation, two adja-
cent ANFIS models are trained with sufficient data if and
when such data is available, with the aim of placing a
developing ANFIS model that addresses a certain region of
sparse data in between them. As a result, a novel FRFS-
ANFISI approach is established here, which works with
features instead of pixels and employs the most important
features extracted from the images,making the learnedmodel
lightweight. To evaluate the working efficacy of the proposed

approach, a number of performance metrics are employed,
including PSNR and SSIM, assessing the results on the
following SR benchmark datasets: Set5 [21], Set14 [22],
BSD100 [23], and Urban100 [24]. Promising experimental
outcomes are achieved, reflecting the performance of FRFS-
ANFISI both quantitatively and qualitatively

The remainder of the paper is organised as follows. Sec-
tion 2 discusses the system architecture of the proposed
approach. Section 3 contains the implementation specifi-
cations in principle. Section 4 presents an experimental
evaluation of the proposed techniques. Finally, section 5 con-
cludes the paper with interesting further work pointed out.

2 System architecture

The proposed FRFS-supported ANFIS interpolation approach
for addressing the ISRproblem is depicted inFig. 1. Its imple-
mentation process consists of three phases: feature selection,
training, and testing.

2.1 Selection of extracted features

In computer vision, one of the popular techniques of image
processing is to break down an image into local regions of
interest and then, describe the image using certain charac-
teristics or features regarding the individual regions. Such
a technique helps to reduce the complexity of actual image
data while using their existing characteristics for further pro-
cessing. Typically, Keypoint detector is used to detect salient
regions of an image consistently irrespective of various trans-
formations (e.g., scale, rotation) applied to the image, while
Keypoint descriptor is used to extract the most distinctive
and useful information from the already identified salient
regions of that image [25]. There aremanymature techniques
for building feature detectors and descriptors in the litera-
ture (e.g., [25–30]). In this paper,BRISK [25] andKAZE [28]
are adopted for the proposed approach owing to their popular-
ity and observed suitability. As these methods are standard
in the literature, only a brief introduction is provided here
for completion; more details about them can be found in the
literature (as referenced).

BRISK features: Extraction of binary robust invariant
scalable keypoints (BRISK) is a technique to detect (typ-
ically corner) point objects from a given image. It is
both scale-invariant and rotation-invariant, different from
many other (corner) feature detection techniques (e.g.,
FAST [31] and ORB [32]). A comprehensive evalua-
tion of benchmark datasets reveals its adaptiveness and
high-quality performance as with state-of-the-art feature
extraction algorithms such as SURF [33] and SIFT [29].
KAZE features: The extraction of this type of features is
aimed to reduce noise, retain object boundaries, and ulti-
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Fig. 1 Framework of proposed approach, involving three phases of feature selection, training and testing

mately achieve superior localisation accuracy [28]. It is a
two dimensional multi-scale technique used to automat-
ically detect features of interest at different scale levels
or resolutions. KAZE outperforms state-of-the-art tech-
niques such as SURF and SIFT, although it may be less
computationally efficient.

Not all features extracted from a given image are important,
and somemay even be irrelevant or contain noise and bemis-
leading, which will adversely affect the results of subsequent
processing. Thus, it is crucial to identify unnecessary features
and remove them from the input data. Various feature selec-
tion (FS) techniques have been proposed [34], but in many
cases, it is not feasible to acquire an optimal feature subset
through the required exhaustive search. When dealing with
uncertain and ambiguous information, fuzzy rough-set (FR)
theory has been shown to be a suitable approach [35]. There-
fore, in the proposed approach, FR feature selection (FRFS)
techniques [18] are employed, having recognised that fuzzy
sets can handle vagueness, while rough sets can handle indis-
cernibility.

FRFS analyses only the patterns hidden in the data and
requires no additional information, such as external expert
knowledge or threshold value, for analysis. It works relying
upon minimal knowledge representation for the underlying
data.While there aremanynature-inspired optimisation algo-

rithms that work as subset search mechanisms in FRFS, the
approach proposed herein uses particle swarm optimisation
(PSO) and genetic algorithm (GA) due to their demonstrated
effectiveness [19, 20]. Details on both algorithms and their
corresponding encoding in FRFS are summarised in the fol-
lowing.

2.1.1 PSO-based fuzzy rough feature selection (PSO-FRFS)

Being a stochastic algorithm, PSO is commonly used in
resolving optimisation problems [36], where a group of par-
ticles (representing potential solutions with each having a
position and a velocity) move through the search space to
seek the optimal solution. Themovement is influenced by the
particle’s own experience and the experience of the group.
At each iteration, the position of each particle is updated
with respect to its velocity and the best position visited so
far. The velocity of each particle is updated on the basis of:
the velocity itself, the difference between its position and the
best position it has visited, and the difference between its
position and the best position of the group. The process con-
tinues until a stopping criterion is met or a maximum number
of iterations is reached.

The PSO can be employed in FRFS to optimise the search
for the optimal subset of features from the given feature
space [19]. Without losing generality, consider the feature
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space derivable from a given image described in the form
of a set of feature subsets. Then, each feature subset can be
regarded as a position or a point in this space. There can be
2N possible types of subsets for N features, and each type
may be different in terms of both the subset size (number
of elements) and the elements contained. The ideal feature
subset would be the one with the lowest number of features
without compromising the performance of subsequent pro-
cessing with the selected subset.

Introducing the particle swarm into the feature space with
each particle occupying one position, each particle moves in
the space having the aim of exploring and finding the opti-
mal position. To do so, each particle tries to find its best
local and global position by iteratively changing its current
position and communicating with others. During the iterative
process, it is directed to reach the desired optimal solution,
thereby identifying the best subset of features within the
given feature space [19]. This ability of particles exploring
the problem space significantly enhances computational effi-
ciency, on required time and memory, for implementing the
process of selecting an optimal subset of features in FRFS.
Of course, the underlying fuzzy-rough feature dependency-
measures are not altered, retaining the mathematical rigour
of the generic FRFS approach.

2.1.2 GA search-based fuzzy rough feature selection
(GA-FRFS)

Genetic Algorithm (GA) is another commonly used populat-
ion-based computational method for solving search and opti-
misation problems. It implements a meta-heuristic process
inspired by natural selection, following biological operators
such as chromosome representation, selection, crossover,
mutation, and fitness evaluation [20, 37]. More specifically,
the GA algorithm begins with the random generation of an
initial population P0, where each individual I represents a
potential solution to the problem at hand. A fitness func-
tion f is defined to quantify the quality of each individual.
Parents are selected from the previous generation based on
a selection probability P(I ), usually proportional to f (I ).
The crossover operator C is then applied to pairs of par-
ents, producing offsprings that inherit genetic information.
A mutation operator M introduces small, random changes to
some individuals. The resulting offsprings, along with sur-
viving individuals from the previous generation, form the
new generation Pt . This process iterates for a predetermined
number of generations T . The algorithm concludes by iden-
tifying the best individual(s) in the final population PT based
on the fitness function.

The utilisation of GA to aid in implementing FRFS
involves the random initialisation of the chromosome pop-
ulation, followed by the calculation of the fitness of each
chromosome (which encodes a feature subset) and the

selection of the best solution, regarding both individual chro-
mosomes and on the entire population, based on their fitness
values. Then, a crossover probability is applied to these local
and global bests to generate offspring, which are subject to a
mutation probability. The resulting offspring are stored as a
new population, and this process iterates until a termination
criterion is reached [37]. Once again, this application of aGA
does not change the underlying measurements of features or
feature subsets, but help accelerate the optimal feature subset
search process.

2.2 ANFIS interpolation

Recall Fig. 1, the proposed FRFS-ANFISI approach involves
a development process consisting of three learning phases:
feature selection, training, and testing. The feature selection
phase is performed first, followed by the training and testing
phases. Algorithms 1 and 2 provide step-by-step instructions
for the training and testing phases, respectively. The common
techniques facilitating these two phases are detailed below.

Algorithm 1 Training phase of proposed approach.
Input:

1. Dlr features from LR training images {Zl };
2. Dhr features from HR training images {Zh};
3. Scale factor s;

Training
1. Create feature vector pairs Q = (x, z) by combining LR-HR

feature
pairs of {Xl ,Zh} images;

2. Employ K-Means clustering algorithm to divide feature pairs Q
into

K subsets: {Qi | ∑i i = K };

3. Calculate each cluster centre Ci for each subset Q;
4. For those subsets Qi having sufficient data:

a) Employ standard learning method of ANFIS to train ANFIS
Ai;

5. For those Qi having sparse data:
a) For source ANFISs, take two closest neighbouring ANFISs;
b) For target or Interpolated ANFIS Am, apply ANFIS

interpolation;
c) Fine tune intermediate ANFIS Am;

Output:
Trained ANFIS models {Ai } and their cluster centres {Ci }.

The ANFIS interpolation technique, whose original ideas
are described in [15], aims to overcome the issue of sparse
data in the target domain (where less familiar image regions
lie). It facilitates the construction of an effective targetANFIS
model using rule interpolation, based on two neighbouring
source ANFIS models that represent nearby regions to the
target domainwhose nature is substantially better known. For
completeness, a brief introduction to the underlying ANFIS
system is first given in the following. The general ANFIS
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Algorithm 2 Testing phase of proposed approach.
Input:

1. Testing low resolution image Yl;
2. Elr features from LR image Yl;
3. Trained ANFISs {Ai } and their cluster centres {Ci };

Testing phase:
1. Divide Elr features into Qi subsets regarding each Ci cluster;
2. For each feature qi ∈ Qi :

a) Identify and select appropriate ANFIS model Ai ;
b) Perform inference by employing trained ANFISs Ai ;

3. Combine HR features to generate corresponding HR image Y ;
4. Post-processing:

Employ NLM filter to remove noise;
Employ IBP algorithm to refine image further;

Output:
Estimated high resolution image Y.

interpolation process is outlined, which can be divided into
three stages as described subsequently.

2.2.1 Outline of ANFIS

ANFIS [17] stands for a type of fuzzy inference system that is
implemented within the framework of an adaptive network.
The information content of an ANFIS includes the network
structure and the corresponding parameter learning mech-
anism. In general, there are totally five layers in a general
ANFIS structure. An example of two-input and one-output
system is illustrated here, with each input variable of the sys-
tem described by two fuzzy sets. In this case, the system’s
rule base contains 4 fuzzy if-then rules of the so-called TSK
type [38], as expressed below:
Rule1: If x1 is A1 and x2 is A3, then y1 = p1x1 + q1x2 + r1
Rule2: If x1 is A1 and x2 is A4, then y2 = p2x1 + q2x2 + r2
Rule3: If x1 is A2 and x2 is A3, then y3 = p3x1 + q3x2 + r3
Rule4: If x1 is A2 and x2 is A4, then y4 = p4x1 + q4x2 + r4

Structurally, such an ANFIS can be illustrated as shown
in Fig. 2 [15], where square nodes in the first and fourth layer
are the adaptive nodes withmodifiable parameters, and circle
nodes in the remaining layers involve fixed operations with-
out parameters. In the first layer, each square node is defined
with amembership functionμAi (x), where i ∈ {1, · · · , 4}, x
is the input variable and Ai is a fuzzy set defining an imprecise
value of x . The most popularly applied function is triangular
shaped due to its simplicity, which is defined by

μA(x) =
⎧
⎨

⎩

k1x + b1 a0 ≤ x ≤ a1
k2x + b2 a1 ≤ x ≤ a2

0 otherwise
(1)

where k1 = 1/(a1−a0), b1 = −a0/(a1−a0), k2 = 1/(a1 −
a2), and b2 = −a2/(a1−a2) are named premise parameters,
with {a0, a1, a2} being the three vertexes of the triangular
membership function.

Fig. 2 Example of ANFIS encoding four rules

The second layer, Layer 2 multiplies the incoming mem-
bership value of each variable and outputs the product:
wi = μAi (x1) × μA j (x2) (i ∈ {1, 2}, j ∈ {3, 4}). The
output of this layer wi stands for the firing strength of
a certain rule. Then Layer 3 normalises each rule’s firing
strength by computing the relative proportion of a given
rule’s firing strength to the total of N rules’ firing strengths
w̄i = wi/

∑N
j=1 w j (here N = 4, i ∈ {1, · · · , 4}). In the

fourth layer, each node is a square node with a linear func-
tion w̄i yi = w̄i (pi x1+qi x2+ri ), where pi , qi , ri are referred
to as consequent parameters. Finally, Layer 5 is the output
layer, computing the overall output in response to the current
input, i.e., y = ∑

i w̄i yi .

2.2.2 Rule dictionary construction

Suppose that for a given cluster of data, the two source
domain ANFIS models and the target domain model are
denoted as As1, As2, and At , respectively. The two source
ANFISs each contain fuzzy rules which are learned by fol-
lowing the conventional ANFIS training process, given the
relevant regions are well known (or with sufficient training
data). The task of constructing a rule dictionary is to store rule
antecedent parts and rule consequent parts of the correspond-
ing fuzzy rules. Then, the interpolation process is applied to
exploit such information of the rule dictionary to learnAt in
the target domain.

LR images can be represented by the features extracted
from them,which can be used to represent the rule antecedent
parts with multiple attributes that correspond to specific fea-
tures of the image. For the present ISR application fuzzy rules
Ri , i ∈ {1, 2, . . . , N }, are of the first-order TSK form [38],
such that

Ri : i f y is Ai then zi = pi y + ri (2)

where y is an input feature selected by FRFS (using either
PSOorGA to optimise the search), representing anLR image
element at a particular location, and its fuzzy set value is rep-
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resented by Ai ; zi is the consequent of this rule (signifying
the corresponding HR element), which is calculated as a lin-
ear combination of two parameters pi and ri togetherwith the
fuzzy value of y. Thus, ISR is a regression problem, and pi

and ri are regression coefficients which enable the regression
operation by transforming an LR image into an HR one.

To construct a rule dictionary, the antecedent and conse-
quent parts are extracted from the fuzzy rules retrieved from
As1 andAs2. The resulting antecedents and consequent parts
are then separated and arranged for easy indexing, such that

D = {Da, Dc} (3)

where Da and Dc represent the antecedent parts and the con-
sequent parts within the rule dictionary, respectively. More
specifically, Da containing all antecedents of the fuzzy rules
is represented by

Da = {A1 A2 · · · AN } (4)

and Dc containing consequent parts of the fuzzy rules is rep-
resented by:

Dc =
[

p1 p2 · · · pN

r1 r2 · · · rN

]

(5)

where each column represents the linear coefficients in the
consequent part of a certain rule.

2.2.3 Intermediate ANFIS creation

After constructing the rule dictionary, the second stage
involves creating an intermediate ANFIS. The initial step
in this stage involves the use of the K-means algorithm
(although a more advanced clustering method, e.g., one of
those described in [39, 40],maybe used if preferred) to divide
the sparse training data into C clusters.

Generally, let the set of training data (sparse or not) be
denoted as (x, z). By generating clusters in the initial stage,
it becomes possible to create fuzzy rules that are interpo-
lated from the centre of distinct clusters. The intermediate
rules are aggregated to construct an intermediate ANFIS,
following the conventional interpretation of a set of TSK
rules as an ANFIS. During implementation, the first proce-
dure is to calculate the centre c(k) of each cluster Ck , where
k ∈ {1, . . . , C}. To construct an intermediate ANFIS, the L
nearest rule antecedents Ai ∈ Da, i = 1, . . . , L are selected,
on the basis of their proximity to c(k). These rule antecedents
are extracted from Da of the rule dictionary generated in the
previous stage. To achieve this, a distancemetric is employed,
which for the sake of simplicity, may be implemented with
di = d(Ai , c(k)) = |Rep(Ai ) − c(k)|. Here, Rep(Ai ) repre-
sents the representative value of the fuzzy set Ai [41]. The

antecedents Ai of those L rules with the smallest distance di

are chosen. To simplify the computational process, the value
of L can be set to the minimum, namely two [42], unless
specified otherwise.

The next step of intermediateANFIS generation is to iden-
tify the best reconstruction weights for the closest rules that
were selected in the previous step. This is an optimisation
problem, which can be solved by running the following:

w(k) = min
w(k)

||c(k) −
∑

i∈L
Rep(Ai )w

(k)
i ||2, s.t .

∑

i∈L
w

(k)
i = 1

(6)

where w
(k)
i implies the relative weighting of Ri . Such an

optimisation problem is subject to the constraint that the sum
of all weights is equal to one. It can be shown that the solution
to this problem is as follows:

w(k) = G−11
1T G−11

(7)

where 1 indicates a column vector of ones, G = (c(k)1T −
Y )T (c(k)1T − Y ) denotes the well-defined Gram matrix, and
the chosen rule antecedents are shown in the columns of Y .

In order to emphasise on the information contained within
the kth cluster, the corresponding weightw(k) is employed to
modify both the antecedent and consequent parts concerned.
This approach follows the general methodology adopted by
typical FRI methods (e.g., [41, 43]), and can be expressed
as follows:

Rk : i f y is Ak, then zk = pk y + rk (8)

where k = 1, 2, · · · , C , with the parameters that describe the
intermediate interpolated ANFIS being computed by

Ak =
∑

i∈L
w

(k)
i Ai , pk =

∑

i∈L
w

(k)
i pi , rk =

∑

i∈L
w

(k)
i ri (9)

2.2.4 ANFIS fine-tuning

The final stage of the ANFIS generation process involves
fine-tuning the intermediate ANFIS that was generated
through interpolation. At this stage, the interpolated ANFIS
is used as the initial input for the fine-tuning process, which
ultimately produces the final ANFIS on the target domain.
The process is implemented by utilising the standard ANFIS
training technique [17]. This approach has an important
advantage over directly learning an ANFIS model from data,
helping overcome the challenge of obtaining an working
ANFIS with limited training data. This is because the inter-
polated intermediateANFIS is exploited to serve as the initial
setup for the expected network.
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3 Implementational specifications

This section specifies the implementation of the proposed
approach, for each of the feature selection, training, and test-
ing phases.

3.1 Feature selection phase

To enable informative feature selection, supervised learn-
ing strategy is adopted here. A given HR image dataset
I = {1, 2, 3, ..., n} is first resized to a consistent standard
size of say, m × m resolution. Then, scale down those HR
images with a scale factor s, using bicubic interpolation to
generate their corresponding LR images. After this, resize
the LR image back to the size of m ×m, which will make the
LR image in its enlarged version containing missing detailed
information due to low resolution. As such, two pairs of
image datasets result, one for LR images and the other for
HR images. Following the common practice in ISR, in prepa-
ration for subsequent processing, the resulting LR and HR
images are transformed from the RG B space to Y CbCr . In
the resultant Y CbCr space, each image now involves three
components of Y , Cb and Cr .

Once the data are prepared as above, BRISK and KAZE
features are extracted from the Y components of each image.
Based on these features two different implementations can
be made depending on which optimisation procedure is
preferred to support the FRFS process. Nevertheless, inde-
pendent of whether PSO-FRFS orGA-FRFS is utilised, there
are a number of parameters that must be initialised with
respect to the ISR application. The generic ones are spec-
ified as follows:

– T-Norm: Łukasiewicz (max(x + y − 1, 0));
– Implicator: Łukasiewicz (min(1 − x + y, 1));
– Dependency measure: Weak Gamma.

Further detailed parameters required in order to run the PSO-
FRFS and GA-FRFS algorithms are specified below. These
are set by following common practice in the literature, that
is, through empirical studies, while considering the practical
applications of the algorithms.

Parameters for PSO-FRFS: These include the individual
optimal solution c1 = 1, and the global optimal solution
that is shared amongst all particles c2 = 2. The maxi-
mum number of generations to evaluate is set such that
Maxgeneration = 50, and the number of particles in
the swarm is set to 100. The report frequency is set to
Maxgeneration which means that the results will be
generated after every 50 generations.
Parameters for GA-FRFS: In this algorithm, the popu-
lation size which indicates the number of attribute sets

is set to 20 and the maximum generation is also set to
20. The crossover probability C is set to 0.6, whereas
the mutation probability M is set to 0.033. The report
frequency is set to 20.

3.2 Training phase

The important features selected by FRFS are denoted as
Dlr and Dhr , respectively for those extracted from the LR
and HR images. They act as input in the training phase.
Suppose that the K-means algorithm is employed on the
pre-processed dataset ‘Dlr ’ to divide it into Q clusters. For
instance, consider Q = 3, thus Dlr is divided into three cat-
egories of feature values, say, ‘Small’ (Ds

lr ), ‘Large’ (Dl
lr )

and ‘Medium’ (Dm
lr ) for source domain 1, source domain 2

and target domain, respectively. From these, the source mod-
els AN F I S1 and AN F I S2 can then be trained with Ds

lr and
Dl

lr datasets, assuming that sufficient training data is avail-
able to enable the use of the conventional ANFIS learning
procedure.

Given the source models, the target model AN F I St can
subsequently be interpolated using these two source ones,
guided by the information containedwithin (Dm

lr ). Of course,
an implicit assumption is herein made such that there is no
sufficient data to perform conventional training of AN F I St

directly, unlike the situations for the learning of AN F I S1
and AN F I S2. The step by step training process has been
provided in Alg. 1. Otherwise, the ANFIS interpolation pro-
cedure is unnecessary.

3.3 Test phase

In this final phase of the proposed F RF S_AN F I SI approach,
a test image (Y t ) is taken as an input to be converted into
its corresponding HR image (Y ). There are several steps to
implement this phase as follows. First, following the common
practice of the ISR literature, transform the given target RGB
image Y t into its counterpart in the Y CbCr space. Then, its
illuminance form, namely, theY component is extracted from
the Y CbCr space. Next, transform Y into its corresponding
LR image Y l using a specified scale factor s (with the origi-
nal serving as the standard for comparison in the test). From
this, apply either PSO-FRFS or GA-FRFS to the resulting
LR image to yield selected features, using the same specifi-
cation as performed during the training phase. Finally, load
all trained ANFIS models {Ai } together with their corre-
sponding cluster centres {Ci } that have been returned by the
training phase.

Continuing with the illustration of the training phase, sup-
pose that source domain 1 is for small-valued features, the
target domain is for medium-valued features, and source
domain 2 is for large-valued features. Then, in the test phase,
‘Small’, ‘Medium’ and ‘Large’ feature values of the test
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image (Y t ) are fed to the source domain 1, target domain,
and source domain 3, respectively. Before reconstructing the
eventual output image, post-processing is performed. For
this purpose, non-local means filter (NLM) is employed to
remove certain noise effects whereas the iterative back prop-
agation (IBP) algorithm is utilised to refine the fine details of
the image. After that, the final HR image is reconstructed for
qualitative and quantitative analyses. Details about the above
steps of the test phase are summarised in Alg. 2.

4 Experimental evaluation

The above specification has been realised in the following
experimental investigations, in an effort to assess and reflect
on the potential of the present approach.

4.1 Datasets

The experimental studies are divided into training and test
phases. As with the common practice that existing research
involves, the datasets employed for training in this study con-
tain the standard set of images regarding people, animals,
flowers, and other natural objects [13]. In addition, the stan-
dard ISR benchmark BSD200 [23, 44] images are also used
together with natural images to create a variety of training
datasets to train theANFISmodels, as done in themost recent
work [13]. In total, the training data for the experimental
analysis contains 275 images. Amongst them, 200 are from
the BSD200 benchmark dataset, whilst the remaining 75 are
natural images. For illustrative purposes, examples of the
training images are shown in Fig. 3a.

To evaluate the performance of the proposed approach,
standard benchmark datasets for ISR such as Set5 [21],
Set14 [22], BSD100 [23] and Urban100 [24] are employed
and visually depicted in Fig. 3b-e. As can be seen, the test
images are generally rather different from those used for
training.

4.2 Experimental setup

The experiments were performed on a Dell laptop having
Intel(R) Core(TM) i5-10300H CPU @ 2.5GHz (8 CPUs)
and memory (RAM) of 8 GB, running theWindows 10 oper-
ating system. Other tools and software used throughout the
experiments include MATLAB version R2020a and WEKA
version 3.7.2.

In the experimental investigation, for comparative eval-
uation, three different models are implemented and run.
Particularly,Model 1 (referencemodel) is trained by employ-
ing ANFIS with sufficient target data (Dm

lr ). To trainModel 2
(ablation model), ANFIS without interpolation is employed
on sparse data. For Model 3 (proposed model), the ANFIS

interpolation is employed on the sparse data. To examine the
impact of sparseness in the target domain, training data in
the target domain are created by randomly deleting 95% of
those from Dm

lr .

4.3 Performance evaluationmetrics

The popular performance evaluationmetrics used for the ISR
problems are the peak signal to noise (PSNR) and the struc-
ture similarity (SSIM). These are adopted here, details of
which are summarised below for completeness. Generally,
the larger the values of PSNRand SSIM, the better the perfor-
mance in terms of the reconstructed HR image. Furthermore,
an experimental analysis of computational complexity is also
reported later.

4.3.1 Peak signal to noise ratio (PSNR)

PSNR computes the peak signal to noise ratio between a
given pair of images, derived from mean square error (MSE)
between the ground truth (original HR) image Y and the
reconstructed (or estimated) HR image Ŷ, as follows:

M SE = ‖ Y − Ŷ ‖2F
M N

(10)

where ‖ . ‖F denotes the Frobenius norm [45] of a matrix,
M and N represent respectively the length and width of an
image. The raw values of PSNR can be quite wide-ranging.
To limit its values within a range that facilitates perfor-
mance comparison, the following logarithmic decibel is used
instead:

P SN R = 10 log10(
V 2

max

M SE
) (11)

where Vmax denotes the maximal feature value of any image.

4.3.2 Structure similarity (SSIM)

Thismetric computes the similarity between the ground truth
image Y and the reconstructed HR image Ŷ, as follows:

SSI M = 4μYμŶσYŶ

(μ2
Y + μ2

Ŷ
)(σ 2

Y + σ 2
Ŷ
)

(12)

where μY and μŶ are the mean values; σY and σŶ are the
corresponding standard deviations of the pixel values within
images Y and Ŷ, respectively; and σYŶ is the covariance of

Y and Ŷ. The values of SSIM range between -1 and 1, with
a value of 1 indicating perfect similarity and a value of -1
indicating completely dissimilarity.
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(a) Training dataset [23, 44]

(b) Set5 [21]

(c) Set14 [22]

(d) BSD100 [23] (e) Urban100 [24]

Fig. 3 Visualisation of benchmark super-resolution datasets for training and test phases

4.4 Experimental results

The experimental investigations are focussed on the evalu-
ation of model performance, both quantitatively and qual-
itatively, supported with specific examinations of learning
epoch variation and computational complexity.

4.4.1 Quantitative evaluation

Table 1 shows the PSNR and SSIM measures. Note that
there are 16 sub-experiments in total, four per dataset.
The naming schemes used are basically self-explanatory.
For example, regarding experiment number 6, the name
‘BRISK_GA_401’ indicates that features are extracted by

BRISK and selected by GA-FRFS algorithm, with the last
3 digits signifying that 401 (out of 1600) most important
features are selected.

Overall, it can be observed from the average PSNR and
SSIM results (in Table 1) that the outcomes achieved by (pro-
posed) Model 3 (which is associated with sparse data but
supported with ANFIS interpolation) are either the same or
almost equivalent to those obtained byModel 1 (which is the
reference model trained with full data). Whilst it is expected
that good performance can be attained using ANFIS inter-
polation. It is a positive surprise and extremely promising
outcome that Model 3 can meet the performance of Model 1.

Particularly, PSO-FRFS offers more promising results
than GA-FRFS. Indeed, using features extracted by BRISK,
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Table 1 Average PSNR and SSIM results on Set5, Set14, BSD100 and Urban100 datasets

Exp. # Experiment Name Bicubic Model 1 Model 2 Model 3
Dataset PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

Sparse Data in Target Domain ✗ ✗ � � � �
ANFIS Interpolation ✗ ✗ ✗ ✗ � �

1 BRISK_PSO_62 Set5 33.66 0.9299 33.74 0.9301 32.84 0.8970 33.70 0.9291

2 BRISK_GA_401 28.94 0.8737 28.44 0.8293 28.90 0.8718

3 KAZE_PSO_41 35.15 0.9519 33.22 0.9081 35.12 0.9516

4 KAZE_GA_623 35.15 0.9519 33.91 0.9186 35.10 0.9505

5 BRISK_PSO_62 Set14 30.24 0.8688 29.66 0.8797 29.17 0.8497 29.64 0.8793

6 BRISK_GA_401 29.11 0.8798 28.57 0.8402 29.11 0.8793

7 KAZE_PSO_41 30.82 0.9063 29.93 0.8764 30.81 0.9061

8 KAZE_GA_623 30.82 0.9063 30.28 0.8807 30.79 0.9052

9 BRISK_PSO_62 BSD100 26.88 0.8403 30.25 0.8720 29.87 0.8493 30.24 0.8715

10 BRISK_GA_401 27.52 0.8677 27.21 0.8448 27.50 0.8671

11 KAZE_PSO_41 30.86 0.8864 29.99 0.8499 30.84 0.8860

12 KAZE_GA_623 30.86 0.8864 30.33 0.8583 30.84 0.8853

13 BRISK_PSO_62 Urban100 29.56 0.8431 28.28 0.8764 27.87 0.8497 28.27 0.8759

14 BRISK_GA_401 27.51 0.8671 27.04 0.8312 27.49 0.8664

15 KAZE_PSO_41 28.84 0.8932 28.25 0.8644 28.83 0.8930

16 KAZE_GA_623 28.84 0.8932 28.53 0.8731 28.83 0.8924

Red and blue colours indicate corresponding best and second best performance regarding each respective dataset per model

the PSNR and SSIM results of Model 3 (by employing
PSO-FRFS) are equivalent to thoseofModel 1.UsingKAZE-
extracted features, the (PSNR or SSIM) performances of
both PSO-FRFS and GA-FRFS are quite similar on certain
datasets (especially, BSD100 and Urban100), whereas PSO-
FRFS has a slight edge in some of the other datasets (Set5 and
Set14). An additional interesting observation is that, while
the KAZE features seem to be more descriptive in depict-
ing the information contained within the images than BRISK
ones,PSO-FRFSworking with BRISK features can also pro-
duce the second-best results using Model 3 in a number of
experiments (see case numbers 5, 9 and 13) on most datasets
(Set14, BSD100 and Urban100). The collection of the quan-
titative evaluation results shows that the proposed approach is
effective, especially when utilising KAZE-extracted features
with PSO-FRFS.

4.4.2 Qualitative evaluation

As examples, the visual representation of the baboon image
of Set14, the ‘image-002’ image of BSD100 and ‘image-
096’ of Urban100 are presented in Figs. 4, 5 and 6,
respectively. Note that the (P/S) figures under each of the
ISR-returned HR images stand for the PSNR (P) and SSIM
(S) values achieved by the corresponding model concerned.

Looking at Fig. 4 more closely, it can be seen that
results other than that of running the combination of BRISK-
extracted features and GA-FRFS, Model 3 produces visual

images of the baboon with little distortion from those pro-
duced byModel 1, clearly beating those obtainable byModel
2. This shows the potential of applying ANFIS interpola-
tion that is supported by feature selection, conforming to the
quantitative findings discussed above.

In general, Fig. 5 illustrates a similar pattern as Fig. 4.
Interestingly, the results from the combination of BRISK
with PSO-FRFS are very similar to those from that of KAZE
FE with PSO-FRFS. These outcomes once again, reflect the
quantitative performance measures and indicate the signifi-
cance of PSO-FRFS, which appears to be less relying upon
the choice of any specific feature extraction tool.

The achievements reflected by Figs. 4 and 5 are further
reinforced by Fig. 6. In particular, it can be seen from the
visual results that the images returned by Model 2 contain
certainmissing information and noise. Fortunately, the visual
results ofModel 3 are almost the sameas those returnedby the
reference model (which are quantitatively confirmed by their
corresponding PSNR and SSIM measures), demonstrating
the great potential for the present approach.

4.4.3 Computational complexity

Computational complexity is herein investigated empirically.
For instance, Fig. 7 shows the time consumed by dealingwith
individual test images from the Set5 dataset. In particular,
Fig. 7a presents the average time (in seconds) spent by PSO-
FRFS via the use of BRISK or KAZE features and Fig. 7b
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Fig. 4 Super-resolution results for baboon image of Set14 by running PSO-FRFS or GA-FRFS with BRISK and KAZE features

does that by GA-FRFS. It is evident from these figures that
using features extracted by KAZE consumes less time than
that by BRISK irrespective of how FRFS is implemented.
Interestingly, the time consumption is almost the same for
both FRFS implementations. Very importantly, either way,
the time consumption is practically light-weighted, consid-
ering the processing machine used is of rather low capacity,
not specifically devised for complicated image analysis tasks.

Examining the results inmore detail leads to the following
observation that the highest consumed time is under 5 sec-
onds for both child and bird images by the combination of

BRISK and GA-FRFS. However, a more varying behaviour
can be observed in terms of the run time cost for GA-FRFS,
whilstPSO-FRFS behavesmore consistently amongst differ-
ent combinations. This is because GA-FRFS has to handle a
larger number of features (25% of the total features) than
PSO-FRFS (which only utilises approximately 5% of the
original features). It is not surprising that Model 2 consumes
less time than the other two because there is no interpolation
employed whilst the data concerned are more restricted and
hence, less pattern-matching based inference is carried out.
Unfortunately,Model 2 is unable to perform sowell asModel
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Fig. 5 Super-resolution results for ‘image002’ of BSD100 by running PSO-FRFS or GA-FRFS with BRISK and KAZE features

3 (which as indicated earlier matches the performance of the
reference model), with respect to either of the performance
indices employed.

To reveal the time performance more explicitly, Table 2
lists the average computational test time of different models
running on the Set5, Set14, BSD100, and Urban100 bench-
mark datasets. It can be seen thatModel 2 outperformsModel
1 and Model 3 (which is again, as expected as stated above),
while Model 3 produces the second-best results from this
viewpoint. Since Model 3 runs over ANFIS interpolation

despite involving sparse data it consumes a bit more time
to perform the required task.

Note that the time consumption by (the proposed) Model
3 is generally less than that by (the reference) Model 1.
Indeed, Model 3 systematically outperforms the reference
model across all experiments except for two specific cases
(namely, numbers 8 and 10, where Model 1 implemented
with the combination of KAZE and GA-FRFS runs a bit
faster than Model 3). This may reflect the exceptional situa-
tions inwhich randombehaviours of the relevantmodels have
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Fig. 6 Super-resolution results for ‘image096’ of Urban100 by running PSO-FRFS or GA-FRFS with BRISK and KAZE features

gone beyond their statistically expected range. Particularly,
the test time for the combination of KAZE and PSO-FRFS
is the lowest for the Set5 and Set14 datasets, whilst that for
GA-FRFS using KAZE features performs faster for com-
plex datasets such as BSD100 and Urban100. These results
imply that GA-FRFS is more suitable for complex datasets
whereas PSO-FRFS is more computationally efficient for
comparatively smaller datasets. While offering flexibility in
developing different usefulmodels, these results also provide
an empirical methodological guideline for implementational
choices of what method to use in practical problem-solving.

5 Conclusion

This paper has presented a novel approach for extending the
recent ANFIS interpolation techniques to helping perform
image super resolution (ISR) tasks. It is supported by effi-
cient fuzzy rough feature selection (FRFS) algorithms to use
just the most important features extracted from a given low
resolution image. The paper has introduced two types of tech-
nique to reinforce the potential of FRFS, one employing PSO
and the other utilising GA to improve the search efficiency of
FRFS. Both can work with different feature extraction meth-
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Fig. 7 Average time cost for ISR on Set5 [21]

ods, as illustrated with the use of two popular mechanisms
in the literature (namely, KAZE and BRISK). Together, they
form a useful set of techniques to handle challenging ISR
problems, with a flexibility of choice on the most appropri-
ate solution when a certain type of image is involved for
ISR. The resulting implementations are particularly helpful
to address the difficult problems where there is insufficient
or missing data for training.

Whilst the results are very promising, the present work
also opens up an avenue for further studies. For instance, an

initial attempt has been made to provide a methodological
guideline for the overall system design, based on the present
experimental investigations. However, a theoretical exami-
nation of why PSO-FRFS is computationally more efficient
than GA-FRFS for smaller datasets and vice versa for com-
plex datasets requires further study. One particular interest
is, in addition to the current computational evaluation, to per-
form more rigorous analysis of the different combinations of
implementation methods, through revealing their underlying
mathematical properties. Also, the proposed FRFS-ANFISI

Table 2 Average time results on
Set5, Set14, BSD100 and
Urban100 by different methods

Exp. # Experiment Name Dataset Model 1 Model 2 Model 3
Time (s)

1 BRISK_PSO_62 Set5 4.291 1.954 4.266

2 BRISK_GA_401 4.475 1.911 4.413

3 KAZE_PSO_41 3.812 1.524 3.810

4 KAZE_GA_623 3.867 1.538 3.866

5 BRISK_PSO_62 Set14 4.317 1.914 4.271

6 BRISK_GA_401 4.237 1.735 4.187

7 KAZE_PSO_41 3.832 1.500 3.798

8 KAZE_GA_623 3.813 1.527 3.823

9 BRISK_PSO_62 BSD100 4.356 1.762 4.190

10 BRISK_GA_401 4.439 1.939 4.486

11 KAZE_PSO_41 3.925 1.532 3.880

12 KAZE_GA_623 3.821 1.528 3.822

13 BRISK_PSO_62 Urban100 4.248 1.851 4.229

14 BRISK_GA_401 4.186 1.636 4.021

15 KAZE_PSO_41 3.956 1.588 3.974

16 KAZE_GA_623 3.830 1.528 3.821

Red and blue colours indicate best and second best performance per dataset
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approach is herein implemented for images of a small to
medium scale. How it may be effectively developed to suit
large-scale application problems, such as Martian image
super resolution [12] remains active research. Another point
to note is that recently, Context-Layered Recurrent Pi-Sigma
Neural Network (CLRPSNN) [46] and Memory Recurrent
Elman Neural Network (MRENN) [47] have been proposed
to perform identification of non-linear systems. These net-
works are powerful; e.g., facilitated with a context layer,
the joint effort of back propagation and Lyapunov-stability
method makes CLRSPNN stable and faster for tuning,
while MRENN contains a self-feedback feature. These sig-
nificant characteristics may offer useful means to provide
an alternative system modelling approach to the present
use of ANFIS. This forms an interesting piece of future
work.
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