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Abstract

This paper presents, for the first time, a distance metric learning algorithm for monotonic classification. Monotonic datasets
arise in many real-world applications, where there exist order relations in the input and output variables, and the outputs
corresponding to ordered pairs of inputs are also expected to be ordered. Monotonic classification can be addressed through
several distance-based classifiers that are able to respect the monotonicity constraints of the data. The performance of distance-
based classifiers can be improved with the use of distance metric learning algorithms, which are able to find the distances
that best represent the similarities among each pair of data samples. However, learning a distance for monotonic data has
an additional drawback: the learned distance may negatively impact the monotonic constraints of the data. In our work, we
propose a new model for learning distances that does not corrupt these constraints. This methodology will also be useful in
identifying and discarding non-monotonic pairs of samples that may be present in the data due to noise. The experimental
analysis conducted, supported by a Bayesian statistical testing, demonstrates that the distances obtained by the proposed

method can enhance the performance of several distance-based classifiers in monotonic problems.

Keywords Distance metric learning - Monotonic classification - Nearest neighbors - Triplet loss - M-Matrix

1 Introduction

Monotonic constraints [ 19] are common in real-world predic-
tion problems where the variables to be predicted are ordinal
and their order depends on the input data. For example, when
predicting house prices, it is expected that—all other things
being equal—a bigger house in the same area will have a
higher price. Similarly, in predicting students’ final grades,
students with consistently higher grades during a course are
also expected to have a higher final grade. These problems
are known as monotonic classification problems [6], and are
relevant in fields such as credit risk modeling [8] and lec-
turer evaluation [5]. Monotonic problems are prevalent in
many heavily-regulated industries, and incorporating reason-
able expectations about consistent application of selection
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constraints into automated decision-making systems [29] is
crucial [9, 20].

When dealing with these problems, accuracy is not the
sole factor to consider. It is equally crucial that the predic-
tions closely follow the monotonic constraints present in the
data. Furthermore, the cost of an incorrect prediction should
increase as the prediction deviates further away from its
actual value. Consequently, there is a need for classifiers that
can handle these constraints and factor them in while making
predictions.

Ordinal regression methods [17] are commonly used in
classification problems where the labels possess an inher-
ent ordering. These methods, which continue to be widely
popular today [10, 39, 40], can be particularly useful for
monotonic data as the labels in such data also have an
inherent ordering. However, ordinal regression methods are
not designed to handle monotonic constraints unless they
are tailored to that purpose. Despite the significance of
monotonicity in several real-world applications, only a few
ordinal regression methods specifically address this prop-
erty. Therefore, further research is necessary to develop
more effective and efficient methods for monotonic classi-
fication. In recent years, there has been a growing effort to
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develop new methods for monotonic classification by adapt-
ing prominent algorithms from nominal classification, such
as decision trees [27] or random forest [42], while also striv-
ing to enhance the explainability of the models [23].

Similarity-based learning methods have been successful in
monotonic classification problems [6]. This type of learning
is inspired by the human ability to recognize objects by their
resemblance to other previously seen objects. This idea can
be extended to fulfill monotonicity constraints by restricting
similar objects or instances to those that comply with these
constraints. The well-known nearest neighbors rule for clas-
sification [11] has been extended following this idea, so that
the nearest neighbors are filtered in order to meet the mono-
tonic constraints [13]. Recently, a new proposal restated the
previous idea using a fuzzy approach [16] aiming to gain
robustness against possible noise in the monotonicity con-
straints.

All of the above algorithms require a distance metric
to function, and standard distances such as the Euclidean
distance have become the go-to choice. However, using a
distance metric that is better suited to the data can improve
classifier performance. Distance metric learning [33] accom-
plishes this task and has been successful in several advanced
learning problems, such as multi-output learning [21] or
multi-dimensional classification [22], as well as ordinal prob-
lems with no monotonic constraints [25, 32]. However, its
application when monotonicity constraints are present adds
asignificant hurdle. Distance metrics have the ability to trans-
form the space [14] and, while this can reduce the number
of instances that may break the monotonicity of the dataset,
it is difficult to ensure that no new false monotonic con-
straints are introduced in the process—which may worsen
the quality of the data. Although preprocessing techniques
such as feature selection methods [28, 44] are effective in
monotonic classification problems, the same cannot be said
for preprocessing techniques that have the potential to mod-
ify the interdependence among features. Consequently, the
application of distance metric learning algorithms becomes
challenging, making it hard to enhance distance-based clas-
sifiers.

Our research presents a novel distance metric learning
algorithm for monotonic classification. This algorithm aims
to transform the input space in such a way that no new
monotonic constraints are introduced, thus resolving the ear-
lier issue. We accomplish this objective through monotonic
matrices and M-matrices [4], which possess unique charac-
teristics for defining distances that are highly advantageous
for monotonic datasets. As we proceed further into this paper,
we will delve deeper into these properties.

This paper represents an extension of our previous work
on distance metric learning for monotonic classification [34].
While our earlier paper focused on the development of the
basic algorithm and its initial evaluation, this paper presents
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a comprehensive analysis of the method that includes an
expanded description of the method, a further analysis of the
background and a theoretical justification of our approach.
Our work also provides an extensive experimental evaluation
of the method. Specifically, we have conducted a Bayesian
statistical analysis of the results and performed a hyperpa-
rameter analysis to explore the impact of different parameter
settings on the performance of the algorithm. We consider
the most relevant metrics in monotonic classification to mea-
sure classification performance and test constraint fulfillment
after applying our proposed transformations.

The paper is organized as follows. Section 2 describes
the current state of distance metric learning and mono-
tonic classification from a similarity-based learning per-
spective. Section 3 outlines our proposal of distance metric
learning for monotonic classification. Section 4 describes
the experiments conducted to evaluate the performance
of our algorithm, and the results obtained, including the
Bayesian statistical analysis and the hyperparameter discus-
sion. Finally, Section 5 ends with the concluding remarks.

2 Background

In this section we will discuss the main problems we
have tackled in this paper: distance metric learning, mono-
tonic classification and how similarity-based methods are
employed to address monotonic classification nowadays.

2.1 Distance metric learning

Distance metric learning [33] arose with the purpose of
improving similarity-based (or, equivalently, distance-based)
learning methods such as the k-nearest neighbors classifier,
or k-NN. For this purpose, distance metric learning aims
at learning distances that facilitate the detection of hidden
properties in the data that a standard distance, such as the
Euclidean distance, would fail to discover. Here, we will
define distance as any map d: X x X — R, where & is
a non-empty set, satisfying the following conditions:

1. Coincidence: d(x,y) = 0 <= x =y, for every
x,yeX.

2. Symmetry: d(x,y) =d(y, x), forevery x,y € X.

3. Triangle inequality: d(x,z) < d(x,y) + d(y, z), for
every x,y,z € X.

We will also consider as distances the so-called pseudo-
distances, which are those maps that verify (2) and (3), and
where d(x, x) = 0 instead of (1).

Linear distance metric learning is the most common
approach to learning distances between numerical data. It
consists in learning Mahalanobis distances, which are param-
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eterized by positive semidefinite matrices. Given a positive
semidefinite matrix M € My(R){, and x,y € RY, the
Mahalanobis distance between x and y defined by M is given
as

dy(x,y) = = )T M(x = ).

Since every positive semidefinite matrix M can be decom-
posed as M = LT L with L € My (R) it follows that

du(, ) =@ —NMx-y) =@ —-yTLTL(x—y)
= (Lx— ) (Lx—y) = IL&x — 3.

Therefore, learning a Mahalanobis distance is equivalent
to learning a linear map L and then measuring the Euclidean
distance after applying that linear map. Thus, the linear dis-
tance metric learning approach comes down to learning a
positive semidefinite matrix (also called metric matrix) M
or a linear map matrix L. Both approaches are equivalent.
Learning M usually facilitates convexity during the opti-
mization, while learning L facilitates other tasks such as
dimensionality reduction [12].

2.2 Monotonic classification

Monotonic classification [6] arises in certain types of prob-
lems of ordinal nature with two particularities: firstly, there
are order relations in both the input data (samples) and the
output data (labels); secondly, for any given pair of instances,
their relative order is also expected to be present in the rel-
ative order of their class labels. This happens, for example,
when the data represent different measures or evaluations
on a particular topic and the label represents a global expert
assessment. It is to be expected that, if the measures of one
instance are better than the measures of another instance, the
global assessment obtained should also be better.

We now formally define what a monotonic dataset is.
Let X = {x1,...,x5} C R? be a numerical dataset. Let
Yi,-.., YN € {1,..., C} be the corresponding labels. The
labels can be ordered using the ordinal relation < among the
natural numbers, since they take values between 1 and C. For
each pair of samples in X, we can also compare their features
element-wise. We may not be interested in making all the fea-
tures comparable, since the monotonic constraints affecting
the data may not be present in all the attributes. Thus, let
di,...,d, € {1,...,d} be the indices of all the features
that have monotonicity constraints. These constraints can be
direct or inverse. Without loss of generality, we can assume
all the constraints are direct, and otherwise we can just flip
the sign of the affected attribute.

Given two pairs of samples x;, x; € X, we define an order
relation between them as the product order, considering only

the features with monotonicity constraints, i. €.,

X <xj & xy <xj, foreveryl € {dy, ..., dn}.

Observe that this order is a partial order, that is, there may
be samples x;, x; such that x; £ x; and x; # x; simulta-
neously. The dataset D = {(x1, y1), ..., (xn, yn)} will be
monotonic if, for every x;, x; € X, then

Xi SXj &= Yi = Yj-

In other words, the dataset D is monotonic if, and only if,
for every comparable pair of samples, it is simultaneously
true that: (i) all the attributes with monotonic constraints of
the first instance are lower or equal than the attributes from
the second instance; and (ii) the label of the first instance is
lower or equal than the label of the second instance.

It is important to remark that, in real scenarios, due to the
subjective nature of the labeling process or to measurement
errors, some datasets may not be fully monotonic and there
may be several pairs of instances for which monotonicity is
broken. In any case, the goal of monotonic classification is to
provide algorithms that, when predicting new labels, are able
to respect the monotonicity constraints of the datasets, and
that are also robust against monotonicity clashes that may
arise when the dataset is not fully monotonic.

2.3 Monotonic classification and similarity-based
learning methods

Similarity-based learning can be seen as closely related to
ordinal classification problems. Typically, it is to be expected
that if two samples are close their labels will also be close, and
the farther apart the samples are the more different their labels
will be as well. The k-NN classifier can be easily adapted
to this setup. A common approach to handle ordinal labels
with this classifier is to modify the aggregation vote function
for the nearest neighbors, using, for example, the median of
the labels instead of the mode. This can also be extended to
handle situations where additional information beyond the
labeled data is available [35]. In general, similarity-based
algorithms are beneficial in other problems related to ordinal
data, including ranking [30].

‘When our data also have monotonic constraints, additional
caution is necessary, since we want the values predicted by
the classifier to satisfy these constraints as far as possible.
An immediate extension of the nearest neighbors classifier
to monotonic classification problems is the monotonic k-
nearest neighbors classifier (Mon-k-NN), which takes into
account only the nearest neighbors whose labels lie on an
interval that does not violate the monotonicity constraints
[13]. Given a sample x( € R4 we can consider the interval
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[)’min, ymax], Where

Ymin = max{y € {l,...,C}: (x,y) € D and x < x¢}
Ymax = min{y € {1,...,C}: (x,y) € D and x¢g < x}

Two variants of Mon-k-NN can be considered. The in-
range (IR) variant considers the k-nearest neighbors to xq
with labels in the interval [ ymin, Ymax], While the out-range
(OR) variant considers the k-nearest neighbors in D and then
only those neighbors with labels in [ ymin, Ymax] are factored
in for the vote (if no neighbors have labels in this range, then
a random label in the interval will be chosen). Observe that
this algorithm will not work properly if the dataset is not
fully monotonic. In such a case, ynyj, may be greater than
Ymax- Lherefore, it is necessary to apply a relabeling pro-
cess that makes the dataset fully monotonic while disturbing
it as little as possible. A relabeling method that is applied
on the complement of the maximum independent set of the
monotonicity violation graph is proposed in [13].

A more recent proposal [16] relies on the fuzzy k-NN
[18] in an effort to gain robustness against monotonicity con-
straints. The monotonic fuzzy k-nearest neighbors classifier
(Mon-F-k-NN) first uses the in-range monotonic k-nearest
neighbors to compute class membership probabilities for
each sample in the training set. For each x; € & and
c € {1,..., C}, the probability u(x;, c) that the class of x;
will be c is defined as

{RCr + (nne/k)(1 — RCr), if y; = ¢

u(xi, c) =

(nne/k)(1 — RCr),

where nn, is the number of nearest neighbors of the class ¢
and RCr is a real class relevance estimation, between 0 and
1 (typically established as 0.5). From these memberships,
each sample is reassigned to a class whose probability is a
median value within the list of membership probabilities for
the sample. This class reassignment enhances the monotonic-
ity of the dataset. Finally, at the prediction stage, given the
sample x, its k monotonic nearest neighbors x;,, ..., x;, are
found and used to compute the membership probabilities of
X as

k
> u(xi;, 1)

j=1

pORj
—x; . |m—1
llx =i ;

ulx,l) =

i pORj
= llx—x; [T

Again, both in-range and out-range variants are available at
the prediction stage. The out-range variant considers all the
neighbors, even if their labels are not in [ymin, Ymax]. If this
is the case, then pO R; is set to a previously fixed out-range
penalty that decides how much weight these neighbors will
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have in the computation of the membership. In any other
case, pOR; = 1. The parameter m determines the influence
of the distances of the neighbors. Lastly, the final class of
x is taken again using the class associated with the median
membership probability in u(x, -).

2.4 Monotonic classification and distance metric
learning

Learning a Mahalanobis distance for a monotonic classifica-
tion problem has several difficulties to overcome. If we try to
learn the distance using a metric matrix, the distance is mod-
ified while the dataset is not, thus its monotonicity remains
unchanged. This is not entirely positive, since the potential
of distance metric learning gets squandered and, therefore,
also the possibility of reducing the non-monotonicity of the
dataset if it exists. However, if we learn the distance using
a linear transformation, there is no guarantee that new false
monotonic constraints are added. This may happen if we pick
a distance defined by a generic L € M4(R). Consider, for
example, the extreme case of a matrix L defining a 90-degree
rotation in R2. If such a matrix transforms the dataset, all
the monotonic constraints of the original dataset are lost and,
furthermore, all those pairs of instances that were not compa-
rable become false monotonic constraints with this rotation.

These drawbacks have so far prevented the development
of distance metric learning algorithms for monotonic classi-
fication. To the best of our knowledge, there are currently no
proposals in this area.

3 Algorithm description

In this section we will describe our distance metric learning
proposal for monotonic classification. First, we will intro-
duce the concepts needed to apply the algorithm. Then, we
will describe the algorithm and, finally, we will show its opti-
mization procedure. We named this approach Large Margin
Monotonic Metric Learning (LM3L).

3.1 Preliminary definitions

We will focus on the case where all the features in the dataset
are subject to direct monotonicity constraints, so that the
order relationship in the dataset coincides with the product
order in R?. It’s important to note that if there are inverse
monotonicity constraints present, we can simply invert the
sign of the corresponding features and apply the algorithm
to the resultant dataset. Additionally, we will discuss the sit-
uation involving non-monotonic features at the end of the
section.

As mentioned above, one of the problems of learning a
distance by means of a linear transformation is that this trans-
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formation disturbs the monotonic constraints and, therefore,
some new constraints that are not necessarily true could be
added. However, this can be avoided by restricting ourselves
to the appropriate subset of matrices, such as the one defined
below.

Definition 1 A linear transformation or square matrix L €
My (R) is said to be monotone [4] if for any real vector
x € R, we have that

Lx>0 = x>0,

where 0 € R? is the vector with zeros in all its entries and >
is the product order in R?,

Observe that, if L is monotone, if we have two samples
X;,xj € Xsothat Lx; > Lx,then L(x; —x;) > 0and there-
fore x; > x;. This means that any pair of samples that meets a
monotonicity constraint after applying L was already meet-
ing the constraint before applying the transformation. So,
when L is monotone, no new monotonic constraints can be
added after the dataset is transformed. However, this property
isnotreciprocal:if x; > x;,itdoes not necessarily follow that
Lx; > Lx;. Consequently, some monotonic constraints may
be lost in this transformation. This will allow the algorithms
that use this type of matrices to select the constraints that
may be more relevant in the dataset without ever adding new
incorrect monotonicity constraints after applying the trans-
formation.

Monotone matrices are tough to use in optimization set-
tings, since they cannot be adequately parameterized for this
purpose. When L is invertible and monotonic, L is the inverse
of apositive matrix (thatis, a matrix with all its entries greater
than or equal to zero). This may facilitate its parameteriza-
tion, but the computation of the inverse matrix would make
the optimization procedure very expensive. However, there
is a subset of monotone matrices with much more suitable
properties for use in differential optimization. We describe
them below.

Definition 2 A linear transformation or square matrix L €
M4 (R) is an M-Matrix [4] if it can be expressed as L = s1 —
B, where I is the identity matrix of dimensiond, B € M (R)
is a positive matrix, and s € R verifies that s > p(B), where
p(B) is the spectral radius of the matrix B.

M-matrices are monotone [4] and, since they depend on
the real value s and the positive matrix B, they can be eas-
ily and efficiently used to optimize a differentiable objective
function.

3.2 Objective function and optimization

After establishing the linear applications that enable us to
regulate the monotonicity of the dataset, the next step is to

define the function to be optimized. Since the linear applica-
tion already controls the monotonicity implicitly, the focus
of the objective function will be on assessing a goodness-of-
classification metric. This metric should consider the ordinal
nature of the dataset, in that the prediction penalty should
increase as the actual label moves farther away from the pre-
dicted label.

Drawing inspiration from the large margin proposals for
distance metric learning in other classification tasks [25, 43],
we present a triplet-based objective function. For each anchor
sample x; in the dataset, we consider a positive sample x;
and a negative sample x; such that y; < y; < y; or y; >
yj > yi. The aim is to minimize the distance from x; to
x; while simultaneously maximizing the distance from x;
to x;. The objective function and the associated constrained
optimization problem are defined as follows:

i D DY

Xi€X xj,x €U (x;)
Yi=Yj<y
or

(LG —x ) 1P =L (i = xpI* + 2],

YiZzYyj=i
s.t.:.L=sI —B
Bij>0,3G,j=1,...,d)
s = p(B).

ey

In the aforementioned optimization problem, the notation
[z]+ = max{z, 0} is used, where A denotes a margin con-
stant. The aim is to ensure that the distance from the negative
sample to the anchor sample is not smaller than the dis-
tance from the positive sample to the anchor sample plus
the margin constant. Moreover, for each x; € X, U(x;) rep-
resents a neighborhood that includes the K nearest neighbors
to x; for the Euclidean distance. This neighborhood is com-
puted prior to the optimization process and serves to filter the
instances that are initially farther away, giving a local charac-
ter to the method and reducing the computational cost. This
draws inspiration from the metric learning method for ordi-
nal regression proposed in [25]. The parameter K represents
a hyperparameter that can be adjusted to enhance algorithm
performance. It is suggested to set K to a sufficiently large
value to ensure representative neighborhoods. This is fur-
ther discussed in Section 4.5. The choice of the Euclidean
distance stems from its suitability as an a priori distance
measure before the algorithm learns from the data [24, 36,
41,43]. However, alternative precomputed distance measures
can also be considered.

The constraints specified in the optimization problem of
(1) guarantee that no additional monotonic constraints are
introduced when the dataset is transformed. On the other
hand, the objective function aims to bring data from nearby
classes closer while pushing data from distant classes farther
apart. By minimizing (1), the transformed dataset that we
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obtain has optimal ordinality and monotonicity properties,
which can then be learned by a similarity-based classifier.

To optimize (1), we propose a stochastic projected gradi-
ent descent method. Since L is fully parameterized by s and
B, the optimization problem can be rewritten as

seR, BEJI\IA (R) Fy= Z Z

§>p(3) x,eXx] x1€U (x;)
.. i Visyi<y
B,/zo Vi, j i ojr

1657 = B0 = I

YiZYj>Vl
— 6T = BYo =P + 2]
2

At each gradient step we can update the pair (s, B) using
the partial derivatives. We know that [26]

]
%(x, By= Y > d;[Zsl—(B—O—B )d;j —d} (251 —(B+BT)ldy,
tleXx X €A (x;)
3)
—(s B=Y Y 2B-sD0; - 0. )

X, eX X X €A (x;)

where dj; = x; — xj, O;j = d,jd”, and Ay (x;) is the set of
active (positive, negative) 2-tuples associated with the anchor
sample x; and L = sI — B, that is:

Ap () ={(xj, x): xj, x € Uxi), [(vi < yj < y)or(y =y; > y)]land

LG — xp)I* = ILGy — x> + 4 > 0).

From this, in the stochastic gradient descent process, we
choose at each step a random sample x; € X and update
s and B with the following rules:

Snew = Sold — 1 Z

xj.x1€Ax)

dl12s1 — (B + BT)ldij—d][2s1— (B + BT)ldy,

(&)

Buew=Boa—n Y 2(B—sI)(0ij— On), (6)

xj.xeAx)

where 7 is a pre-established learning rate. Since the above

update rules do not ensure that s and B meet the constraints
to which they are subject, it is necessary to project them
into the constrained set. Therefore, after applying the update
rules, we convert the negative entries of B to zero and, if s is
smaller than p(B), we make it equal to p(B):

w(B) = (f?,-j), where B,-j = max{B;;,0}, foreachi, j=1,...,d.
7
7 (s) = max{s, p(B)}. ()
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This concludes the optimization process of LM3L. In
short, at each epoch the samples x; € X are chosen ran-
domly. With each of the samples, s and B are updated using
the rules from (5) and (6) and then projected into valid values
with (7) and (8). The process is repeated until a maximum
of epochs is reached or the algorithm converges. With the
final values of s and B, the obtained distance is retrieved by
means of the linear transformation L = s/ — B.

3.3 Benefits of the method

Our distance metric learning algorithm for monotonic classi-
fication offers several advantages from a theoretical perspec-
tive. Firstly, it can find new transformed variables in the latent
space that may better capture the monotonicity of the dataset.
By learning a distance metric that is specifically tailored to
the problem of monotonic classification, without introduc-
ing any new fake monotonic constraints, the algorithm can
identify new features that are better suited for capturing the
underlying monotonic structure of the data. This can lead to
better classification performance and a deeper understanding
of the relationships between the variables.

Secondly, since no new monotonic constraints can be
added but some of them may be removed, our algorithm can
help us to filter the dataset and to discover different ways of
interaction in the latent space. By removing constraints that
are not relevant, the algorithm can provide insight into the
structure of the data and help us to discover new relationships
among the variables. This can be particularly useful in cases
where the data is high-dimensional or complex, and where
traditional methods may struggle to identify meaningful pat-
terns [38].

Finally, the new variables in the latent space can con-
tribute further information on how the variables are related
and their impact on the monotonicity of the dataset, which
can assist in making interpretable and explainable decisions
about the data. By providing a more complete picture of the
underlying structure of the data, the algorithm can help us to
identify important features and relationships that may not be
immediately apparent from the raw data. This can be partic-
ularly useful in cases where the data is being used to make
critical decisions, such as in finance or healthcare, where
interpretability and transparency are essential.

In summary, our distance metric learning algorithm offers
several major benefits from a theoretical perspective, includ-
ing the ability to identify new transformed variables in the
latent space, the ability to filter and discover new ways of
interaction in the data, and the ability to facilitate inter-
pretable and explainable decisions about the data. These
benefits make it a powerful tool for researchers and practi-
tioners working in a variety of fields and applications where
monotonicity is a key consideration.
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3.4 LM3L and non-monotonic features

In the previous sections we have assumed that all the fea-
tures in the dataset are subject to monotonic constraints.
However, this assumption may not hold in real-world sce-
narios. In the context of distance-based classification, both
the majority and median-vote k-NN classifiers do not con-
sider the monotonic constraints in any sense. On the other
hand, the monotonic and monotonic-fuzzy variants assume
the monotonicity across all the features [13, 16]. Since our
algorithm is designed to learn a distance that respects the
dataset’s monotonic constraints, it is essential to address how
to handle non-monotonic features and how the later classifi-
cation stage will be affected by them.

LM?3L can be adapted or combined with other algorithms
in order to handle non-monotonic features. One approach
is to apply LM3L locally to the monotonic attributes and
then employ another distance metric learning algorithm for
standard classification [14, 43] locally to the non-monotonic
features. Concatenating the obtained maps, represented as
a matrix containing the two locally learned distance matri-
ces as blocks, will yield a global distance metric for use in
the classification stage. This method treats the two types of
features separately, thus not capturing interactions between
monotonic and non-monotonic features.

An alternative approach that does capture the interac-
tions between monotonic and non-monotonic features is to
introduce an unconstrained matrix Lq to the optimization
problem of (1) for the non-monotonic attributes. This intro-
duces the constraint L = s/ — B + Lo, where L only
contains non-zero rows in the positions corresponding to the
non-monotonic features. Consequently, the monotonic con-
straints remain effective for monotonic features, while L
removes limitations on exploring the search space for non-
monotonic features.

In applying subsequent distance-based classification meth-
ods, since monotonic nearest neighbors approaches assume
all features are monotonic, it’s advisable to rely on standard
majority-vote or median-vote classifiers. These classifiers do
not assume monotonicity in the data, as those assumptions
are already considered during the distance learning stage.

4 Experiments

In this section we describe the experiments we have devel-
oped with our algorithm and the results we have obtained.

4.1 Experimental framework
We have assessed the distance metric learned by LM3L

through various distance-based classifiers. All of them are
variations of the nearest neighbors classifier, which include:

the original k.-NN (majority-vote), the median-vote k-NN, the
monotonic k-NN (both the in-range and out-range versions),
and the monotonic fuzzy k-NN (both the in-range and out-
range versions). The standard k-NN is commonly applied in
non-ordinal classification problems, while the median-vote
k-NN is the natural adaptation for k-NN in ordinal regression,
without taking into consideration any monotonic constraints.
The remaining k-NN versions refer to the monotonic nearest
neighbors approaches discussed in Section 2.3.

The goal of these experiments is to evaluate whether the
distance metric learned by LM?>L can improve the perfor-
mance of k-NN in two ways: (1) classification accuracy
when dealing with new data and (2) adherence to the mono-
tonic constraints of the dataset. To achieve this goal, we will
compare various versions of k-NN using both the Euclidean
distance and the distance learned by LM>L.

The experiments were conducted using a fixed number
of neighbors k = 9 for all the k-NN classifiers. The dis-
tances computed using each classifier were evaluated through
a stratified 5-fold cross validation, which preserves the origi-
nal class proportions in each fold. Ten different numerical
datasets with monotonic constraints from various sources
were used in the experiments [1, 17, 37]. To prepare the data
for the experiments, any features with inverse monotonic con-
straints were sign-switched, and a min-max normalization to
the interval [0, 1] was applied. It is worth noting that some
datasets were not completely monotonic, and contained pairs
of samples that violated the monotonicity constraints. The
datasets selected for the experiments, along with their dimen-
sions and monotonicity properties, are presented in Table 1.

4.2 Metrics and results

To evaluate the classification performance of the distances
with each classifier, we have used two metrics: the mean
absolute error (MAE) [17], which penalizes the classifica-
tion error according to the distances between the labels, and
the concordance index (C-INDEX) [15], which measures the
ratio between the number of ordered pairs in both true labels
and predictions and the number of all comparable pairs.
For the execution of these experiments, the parameters
suggested for LM?3L are as follows: a fixed neighborhood
size of 50 for the anchor samples, a maximum of 300 opti-
mization epochs, a neighborhood margin A of 0.1, and an
adaptive learning rate n. The adaptive learning rate starts
at 107 and, at each epoch, it is either increased by 1 %
if the objective function improves, or halved if it does not,
following the adaptive approach in [43]. These parameters
were chosen based on the guidelines of the algorithms that
inspired this method, as well as a preliminary hyperparameter
analysis presented in Section 4.5. The code of LM3L used
for these experiments is available in pyDML [31], which is
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Table 1 Datasets used in the experiments

Dataset # Samples # Features # Classes Attribute directions Non-Monotonic pairs /
Comparable pairs (%)
autoMPG8 392 7 5 (-t ) 0.044 /36.14
car 1728 6 4 All direct (4) 0.246 /39.67
ERA 1000 4 9 All direct (4) 3.349/16.77
ESL 482 4 7 All direct (4) 0.585/59.81
LEV 1000 4 5 All direct (4) 1.330/24.08
machineCPU 209 6 5 (-, +++1) 1.196 / 46.24
pima 768 8 2 All direct (4) 0.151/6.576
SWD 1000 10 4 All direct (4) 0.949/12.62
balance 625 4 3 (1) 0.000/25.64
boston-housing 506 13 5 (O R e ) 0.299/14.60

a Python library containing various distance metric learning
algorithms.

Table 2 shows the results of the classification performance.
This table also includes, for each combination of distance and
classifier, its average ranking over all the combinations of
distance and classifiers (AVG RANK [ALL]) and its average
ranking within the distances that use the same classifier (AVG
RANK [IN]). The combination of distance and classifier with
the highest value or C-INDEX and MAE for each dataset is
highlighted in bold.

To evaluate the fulfillment of the monotonic constraints
we rely on the non monotonicity index (NMI). This metric is
a normalized measure of how many samples do not fulfill a
monotonic constraint. This can be used to evaluate both the
monotonicity of the transformed training dataset after apply-
ing LM?L and the monotonicity of the predicted samples
with respect the training dataset. For a training set X and a
labeled point (x, y) € R? x {1,..., C} we define

NClashy (x)=|{x; € X: (xj <x and y; >y) or (x; > x and y; < y)}|.

Then, the NMI of the labeled dataset X’ with respect to the
labeled dataset ) is defined as

1
XNV = 1N

NMI(X,)Y) = > NClashy (x).

xey

We can use the NMI in different ways. If we want to measure
the monotonicity of the original training set X, we can use
NMI(X, X). If we want to measure the monotonicity of
the training set after being transformed by a linear map L €
My4(R), we can use NMI(LX, LX). Finally, if we want
to measure the monotonicity of a set of test samples and
their predictions, &X;, with respect to the training set, we can
use NMI(LX, A;). Table 3 shows the results regarding the

@ Springer

fulfillment of the monotonic constraints. In this table, the
metric NMI-TRAIN represents the NMI for the training sets,
for the Euclidean distance (that is, with no transformations
applied) and for the transformed dataset using the distance
learned by L M3 L. The NMI-TEST metric represents each of
the NMIs of the training sets for each distance, with respect
to the sets of predicted values by each of the classifiers for
the test set. We also show the total of comparable pairs in the
training set (CP-TRAIN), and between the training and test
sets (CP-TEST), for each of the distances. The lowest values
of NMI and CP for each dataset are highlighted in bold.

Finally, we also include in Table 5 the time required for
LM?3L to learn the distance within each dataset. It is impor-
tant to note that these times are independent of the classifier
employed, as the distance is learned independently of the
classification stage. In addition, there is no comparison with
the Euclidean distance, opposed as it was done in Table 2.
One might assume that the Euclidean distance requires zero
time, but in reality, no distance learning process occurs in
that scenario. The provided timings illustrate that the algo-
rithm scales effectively in response to the growing number
of samples in the datasets. This can be primarily attributed to
the local nature provided by the neighborhood filter during
triplet generation.

4.3 Analysis of results

Based on the results presented in Tables 2 and 3, we can make
the following observations. Firstly, we can conclude that the
performance of the Med-k-NN classifier improves signifi-
cantly when combined with L M3 L in terms of both MAE and
C-INDEX. In fact, the combination of L M3 L and Med-k-NN
is the most successful one in the experiments. In contrast, the
combination of LM?3L with monotonic classifiers yielded
less competitive results compared to non-monotonic classi-
fiers, often performing worse than the Euclidean distance in
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Table 5 Time (in seconds) required for LM 3L to learn the distance
within each dataset

TIME
autoMPG8 3053.281696
car 9943.930562
ERA 8204.803218
ESL 2991.658279
LEV 7656.171229
machineCPU 1502.185281
pima 5180.773168
SWD 7346.903710
balance 1818.846962

boston-housing 4512.102694

those particular cases. Thus, we can say that the distance
learned by LM?3L is capable of achieving superior classifi-
cation performance compared to the Euclidean distance, but
only when used in combination with the more traditional k-
NN and Med-k-NN classifiers. This could be attributed to
the fact that the monotonic classifiers already heavily focus
on optimizing the constraint aspect, which may render their
combination with LM?3L counterproductive. In any case,
combining LM?>L with a non-monotonic classifier is not a
drawback, since monotonic constraints are already taken into
account in the distance learning process itself.

Finally, by looking at the monotonicity results, it becomes
evident that the transformation learned by our algorithm sig-
nificantly reduces the number of non-monotonic pairs of
samples after transforming the training set. The observed
monotonicity of the predicted samples with respect to the
training set confirms that L M3 L is successful in decreasing
the number of predictions that violate a monotonic con-
straint, for all classifiers. This highlights the capability of
our method to avoid introducing new incorrect monotonic
constraints when transforming the dataset, owing to the uti-
lization of M-matrices in the optimization process. However,
it is worth noting that the reduction in NMI comes at the
expense of diminishing the number of comparable instances
in the dataset, as is apparent in Table 3; the number of com-
parable pairs is consistently higher in the untransformed
dataset. Nevertheless, this reduction can assist in identifying
instances that are inaccurately linked in monotonic con-
straints due to noise or lack of accuracy. The results presented
in Table 4 demonstrate the performance of the NMI metric
when considering only the comparable pairs in both the train-
ing and test sets. The lowest relative NMI values are again
highlighted in bold. The average NMI values for Euclidean
and LM?3L distances are similar, but LM3L outperforms
Euclidean distance in terms of ranking. These findings sug-
gest that, despite the reduction in the number of comparable
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pairs, the NMI metric normalized by the number of compa-
rable pairs remains competitive when LM?>L is employed.

4.4 Bayesian non-parametric statistical analysis

In order to assess the extent to which the best models obtained
outperform the other models, and to compare the distances
learned on the same classifier, we have performed a series
of Bayesian statistical tests. We have prepared several pair-
wise Bayesian sign tests [2] to perform these comparisons.
The tests take into account the differences between the C-
Index and MAE scores obtained by each pair of compared
algorithms, assuming that their prior distribution is a Dirich-
let process [3], defined by a prior strength s = 1 and a
prior pseudo-observation zo = 0. After perceiving the score
obtained for each dataset, the tests produce a posterior dis-
tribution that gives us the probabilities that either one of the
compared algorithms outperforms the other, or that they are
practically equivalent. The region of practical equivalence
has been established as the region where the score differ-
ences are in the interval [—0.01, 0.01]. In summary, from the
posterior distribution we obtain three probabilities: the prob-
ability that the first algorithm outperforms the second, the
probability that the second algorithm outperforms the first,
and the probability that the two algorithms are practically
equivalent. The distribution can be plotted as a ternary sim-
plex plot for a sample of the posterior distribution, where a
greater skew of the points towards on of the regions represent
a higher probability.

To carry out the Bayesian sign tests we have used the R
package rNPBST [7]. In Figs. 1 and 2 we show all the pair-
wise comparisons among every combination of distance and
classifier. This comparison is displayed as a heatmap, with
the lower half showing the posterior probability for the algo-
rithm with the highest likelihood of outperformance against
its competitor. The color of the heatmap in this half indicates
which algorithm is the winner via an increase in color inten-
sity with higher probability of outperformance. The upper
half shows the posterior probabilities that the compared pairs
of algorithms are practically equivalent (the rope region prob-
ability). Again, the intensity of the color refers to a higher
probability, while the two colors indicate how high the rope
probability is: whether the algorithms are more likely to per-
form equivalently or the better algorithm in the lower half
clearly wins.

In the comparisons of Figs. 1 and 2, we can confirm that
Med-k-NN with the distance learned by LM?L is the algo-
rithm that stands out the most, since, when compared to the
other algorithms, its probability of winning always exceeds
the probability of the other algorithm winning. Looking at
the C-Index, we observe that the rope probabilities are high
in general, which indicates that it is also likely that Med-k-
NN with LM3L has an equivalent performance, in terms of
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Fig.1 Pairwise Bayesian
comparisons of the C-Index
scores obtained by the different
algorithms

MON-f-KNN-IR [Euclidean] -

Algorithm 1

MONKNN-IR [Euclidean] -

MEDKNN [Euclidean] -

KNN [LM3L] -

MEDKNN [L3ML] -

the C-Index, to the other algorithms. In any case, the proba-
bility that this algorithm will be significantly outperformed
by any of the compared algorithms is always lower. As for
MAE, we see that the rope probabilities are no longer as high.
Therefore, the probability that Med—k—NN with LM3L
significantly outperforms any of the compared algorithms,
with respect to MAE, is clearly dominant.

The above heatmaps offer a general overview of the
Bayesian test results. To have a more specific view we focus
now on two main comparisons: one for the best algorithm
obtained against the rest of the algorithms, and another one

Fig.2 Pairwise Bayesian
comparisons of the MAE scores
obtained by the different
algorithms
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for the Euclidean distances against the distances learned by
LM?3L within the same classifier, for each of the classifiers
analyzed in this study. For this purpose, we have obtained the
ternary simplex plots and the posterior distribution barplots
for each of the pairwise comparisons, which are available in
Appendix A.

The first comparison with Bayesian tests puts the classi-
fication model with Med-k-NN and the distance learned by
LM?3L, which is the best performer according to the tables,
against the rest of the classifiers and distances. Figures 11-14
show the relevant Bayesian plots.
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Fig.3 Effect of no on C-Index and MAE in autoMPGS8

This comparison confirms what we had already observed
in the heatmaps: in all the algorithms there is a clear trend
towards the regions associated with Med-k-NN with LM3L
and the rope. In the case of C-Index there is a greater bias
towards the rope, while for the MAE it becomes strongly
apparent that the distributions are concentrated in the region
of Med-k-NN with L M3 L, thus showing that this algorithm
is most likely significantly outperforming the rest under this
metric.

The second analysis with Bayesian tests compares, within
the same classifier, the Euclidean distance and the distance
learned by LM?3L. Figures 15-16 show the Bayesian plots
obtained for this analysis. We can confirm, as already seen in
the Tables, that LM3L is able to outperform the Euclidean
distance when using the non-monotonic majority-vote and
median-vote nearest neighbor classifiers, although it is not
significantly better than the Euclidean distance when com-
paring within each of the monotonic classifiers. According
to the metrics, the MAE shows more bias towards the win-
ner algorithm region, for each case, and the C-Index is more
dominated by the rope. In any case, these diagrams show
how dominant Med-k-NN with LM?3L is with respect to the
Euclidean Med-k-NN. Together with the above comparison,
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Fig.4 Effect of no on C-Index and MAE in boston-housing
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LM?3L is still validated as the best alternative when used in
conjunction with the median-vote nearest neighbors.

4.5 Analysis of hyperparameters

In this section, we analyze the hyperparameters of the
proposed algorithm on some of the datasets used in the exper-
iments above. The main parameters of LM3L are:

The initial learning rate for the gradient optimization 7.
The large margin A in the objective function.

The neighborhood size K.

— The maximum number of iterations of the gradient opti-
mization.

We evaluate these hyperparameters in the datasets
autoMPG8 and boston-housing, which are both
inspired by real world monotonic problems. We use LM?L
with the same Med-9-NN classifier used in the experiments.

Influence of the initial learning rate In what follows, we
analyze the impact of the initial learning rate on the above-
mentioned datasets. With the rest of the parameters fixed as

—&— boston-housing-9medknn

0.42 4
0.40 1
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Fig.5 Effect of A on C-Index and MAE in autoMPGS8

in the initial experimentation, we vary 1g according to the set
of values {10~7, 1075, 1073, 10~%, 1073, 1072, 10~'}. The
results are shown in Figs. 3 and 4.

In the graphics we can see that, when 1o ranges from 10~°
to 1073, the adaptive update of the learning rate is enough to
lead to competitive results. In contrast, when etay is too low
or too high, it negatively influences the optimization process
and the final metrics are suboptimal, despite the adaptability
of n during the gradient optimization.

Influence of the margin The margin A determines the degree
to which the most distant class is kept away in the triplets that
are used during the optimization process. When the margin
is low, the three ordered elements in the triplet are closer than
when the margin is high. We analyze the impact of A for the
set of values

{0.01,0.05,0.1,0.2,0.4, 0.6, 0.8, 1.0, 1.5, 2.0,
3.0,4.0,5.0, 10.0, 20.0, 30.0, 40.0, 50.0}

with the other parameters fixed, in Figs. 5 and 6.
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Fig.6 Effect of A on C-Index and MAE in boston-housing
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Here, it is readily visible that the highest levels of per-
formance are achieved when the margins are below 1, which
tells us that it is interesting to keep the elements of the triplets
close together (as long as they are correctly ordered). The
amplitude of the optimal margin range seems to be small
as well, so it is crucial to specify this margin adequately to
achieve optimal performance.

Influence of neighborhood size The neighborhood size K
determines how many neighbors are considered to compute
the triplets around each anchor sample in the dataset. This
parameter gives a local character to the algorithm, as only
nearby samples will be considered for each element. If K is
low, only a few nearest neighbors will be used to compute
the triplets. If K is high, the triplets will take into account
most of the dataset. A lower value of K also translates into
higher efficiency.

We analyze the impact of the neighborhood size used with
the set of values in the range from 10 to 100 with a step of 5.
Figures 7 and 8 show the effect of the neighborhood size on
the C-Index and MAE.
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In the figures we can observe that a good performance of
the algorithm is usually achieved when the neighborhood size
is 50 or higher. The optimal value may vary but, in general, a
higher quality is obtained when the neighborhood size is in
this range.

Influence of the number of iterations Lastly, we study how
the number of iterations of the gradient optimization affects
the convergence of the algorithm. Figures 9 and 10 show the
effect of the number of iterations on the C-Index and MAE,
in a range from 10 to 500 with a step of 10.

From the graphics we can conclude that the algorithm
seems to converge with a number of iterations around 300,
and there does not seem to be overfitting, as a higher number

of iterations does not imply a worsening in the values of the
metrics in this case.

5 Conclusion

In this paper, we have presented a new distance metric
learning algorithm developed specifically for monotonic
classification that, for the first time, exploits the potential
of linear transformations to reduce the non-monotonicity of
the dataset, thanks to the use of M-matrices. In addition, the
distances learned allow us to improve the classification per-
formance of the classifiers analyzed.
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Fig. 12 Posterior distributions using MAE for the Bayesian comparison between the best model and the rest of the classifiers and distances
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The results, supported by a Bayesian analysis, have shown
that L M3 L combined with the median vote nearest neighbors
classifier can outperform even the monotonic distance-based
classifiers. In addition, the transformation of the space per-
formed by L M? L allows the number of non-monotonic pairs
in the dataset to be reduced without introducing any false new
monotonic constraints. L M3 L is thus presented as an alterna-
tive to consider in monotonic classification problems based
on distances or similarities.

A Bayesian test simplex plots and posterior
distributions

This Appendix shows the pairwise Bayesian diagrams for
the two comparisons described in Section 4.4. The simplex
plots are ternary plots displaying a sample of the posterior
distribution. There are three regions that correspond to either
algorithm having a performance advantage and to the rope

rope

KNN [Euclidean] MEDKNN [LM3L] KNN [LM3L]

rope

. %
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MEDKNN [LM3L] MON-f-KNN-OR [LM3L]

(practical equivalence); each region is centered at one dif-
ferent vertex of the simplex, so that a greater tendency of
the points towards a region represents a greater probability
for that option. The posterior distributions are also shown as
barplots where the bars represent the probabilities of each of
the algorithms being better than the other, or the probability
that they are practically equivalent. These plots are shown
for the two metrics considered in the experiments: MAE and
C-Index.

A.1 Comparison of the best model obtained with
the rest of the algorithms

This section shows the results of the Bayesian tests that com-
pare Med-k-NN with each of the other algorithms. The results
are displayed in Figs. 11, 12, 13, and 14. The simplex dia-
grams and posterior distribution barplots are shown for both
MAE and C-Index metrics.
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Fig. 13 Simplex plots using C-Index for the Bayesian comparison between the best model and the rest of the classifiers and distances
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Fig. 14 Simplex plots using MAE for the Bayesian comparison between the best model and the rest of the classifiers and distances
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A.2 Comparison of distances within the same
algorithm

This section shows the results of the Bayesian tests that com-
pare both Euclidean distance and the distance learned by
LM?3L for each of the classifiers used in the experiments.
The results are shown in Figs. 15-16. The simplex diagrams
and posterior distribution barplots are shown for both MAE
and C-Index metrics.
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