
Vol.:(0123456789)

Applied Intelligence
https://doi.org/10.1007/s10489-024-05367-4

Multi‑start team orienteering problem for UAS mission re‑planning
with data‑efficient deep reinforcement learning

Dong Ho Lee1  · Jaemyung Ahn1 

Accepted: 26 February 2024
© The Author(s) 2024

Abstract
In this paper, we study the Multi-Start Team Orienteering Problem (MSTOP), a mission re-planning problem where vehi-
cles are initially located away from the depot and have different amounts of fuel. We consider/assume the goal of multiple
vehicles is to travel to maximize the sum of collected profits under resource (e.g., time, fuel) consumption constraints. Such
re-planning problems occur in a wide range of intelligent UAS applications where changes in the mission environment force
the operation of multiple vehicles to change from the original plan. To solve this problem with deep reinforcement learning
(RL), we develop a policy network with self-attention on each partial tour and encoder-decoder attention between the partial
tour and the remaining nodes. We propose a modified REINFORCE algorithm where the greedy rollout baseline is replaced
by a local mini-batch baseline based on multiple, possibly non-duplicate sample rollouts. By drawing multiple samples per
training instance, we can learn faster and obtain a stable policy gradient estimator with significantly fewer instances. The
proposed training algorithm outperforms the conventional greedy rollout baseline, even when combined with the maximum
entropy objective. The efficiency of our method is further demonstrated in two classical problems – the Traveling Sales-
man Problem (TSP) and the Capacitated Vehicle Routing Problem (CVRP). The experimental results show that our method
enables models to develop more effective heuristics and performs competitively with the state-of-the-art deep reinforcement
learning methods.

Keywords  Deep reinforcement learning · Data-efficient training · Combinatorial optimization · Mission re-planning ·
Autonomous systems

1  Introduction

As the operational technology of Unmanned Aerial Systems
(UAS) matures, there is a growing need for fast and accurate
high-level decision-making for autonomous mission plan-
ning. The ability to adjust evolving mission objectives is
essential for addressing the dynamic nature of real-world
scenarios, enhancing safety, optimizing resources, and
ensuring the success of missions across various industrial,
civil, and defense sectors. For example, E-commerce drones
for last-mile delivery should be able to optimize routes to

ensure timely service. Surveillance drones monitoring ongo-
ing traffic require adaptive responses for optimal data collec-
tion. Several other potential applications include forest fire
detection in emergency response, geographical monitoring
for scientific research (where objectives may change based
on initial findings), surveying and mapping for urban plan-
ning, airborne reconnaissance for border control, and search
and rescue operations in disaster-stricken areas where UAS
assist in locating and aiding survivors [1, 2].

Prior UAS mission studies addressed variants of the vehi-
cle routing problem formulated as the NP-hard combina-
torial optimization (CO), such as the Traveling Salesman
Problem (TSP) and the Capacitated Vehicle Routing Prob-
lem (CVRP). These classical CO problems are primarily
concerned with mission preplanning based on the current
knowledge of the environment. However, missions in real
life involve many unknown and possibly changing factors
such as sudden gusts, GPS denial, unexpected threats, ter-
rain uncertainties, fuel leakage, and hardware malfunction.

 *	 Jaemyung Ahn
	 jaemyung.ahn@kaist.ac.kr

	 Dong Ho Lee
	 leedh0124@kaist.ac.kr

1	 Department of Aerospace Engineering, Korea Advanced
Institute of Science and Technology (KAIST), Daejeon,
South Korea

http://orcid.org/0000-0002-9045-2574
http://orcid.org/0000-0003-4971-5130
http://crossmark.crossref.org/dialog/?doi=10.1007/s10489-024-05367-4&domain=pdf

	 D. H. Lee, J. Ahn

Once the vehicles have left the base, it is critical to respond
to the unexpected environmental changes by managing mis-
sion objectives autonomously, thus prompting the need for
near-optimal mission re-planning in real-time. Furthermore,
visiting all nodes may not be practical considering resource
availability. Instead, such applications may require vehicles
to visit as many nodes as possible within a maximum dura-
tion given on each route. These characteristics of real-life
applications give rise to the Multi-Start Team Orienteering
Problem (MSTOP), which is a generalization of the Team
Orienteering Problem (TOP) with additional degrees of free-
dom on launch location and available fuel for each vehicle.
Many routing problems assume vehicles that identically
begin routing from the depot. In contrast, MSTOP mod-
els the real-life mission re-planning scenario by launching
vehicles located away from the depot, each with a different
amount of fuel available.

The MSTOP is formulated in the context of route plan-
ning for intelligent UAS and robotic agent systems. Given
the nature of higher-level decision making, more efficient
route plans for optimal assignments among agents are desir-
able. For example, a fleet of UAVs suppressing forest fires
needs an optimal order of visiting sites to make the most out
of their limited volume of extinguishing water. The fleet may
also be subject to frequently updating their assigned spots as
wildfires can spread unpredictably, which calls for re-plan-
ning the routes. Another application is the efficient operation
of unmanned delivery drones. If a delivery drone were to
visit a number of sites to deliver multiple parcels, the order
of sites to be visited can be optimized so that operational
revenue is maximized. On top of that, a scheduled delivery
site can be modified at the request of the customer, and the
drones already in delivery require a new mission plan. In
this manner, the MSTOP belongs to a general higher-level
planning framework for a wide range of applications in the
UAS and robotic systems.

Various traditional approaches have been applied to solve
the CO problems so far. For example, exact algorithms are
generally based on branch-and-bound or branch-and-cut
approaches to obtain optimal solutions. However, finding
an optimal solution may take an inordinate amount of time
when the problem size grows. Approximate algorithms rap-
idly produce near-optimal solutions that are often tailored for
specific CO problems. Heuristic approaches utilize domain
expertise to design hand-crafted strategies for progres-
sively constructing a solution. These approaches may not
be straightforwardly applicable to other routing problems.

The deep reinforcement learning (RL) approach has
recently emerged as a fast and powerful heuristic solver
to find near-optimal solutions to many CO problems. This
paper aims to develop a deep RL-based construction frame-
work for solving the MSTOP. We propose a data-efficient
training methodology that improves the solution quality

and learning speeds. To demonstrate the effectiveness of
our training methodology, we experiment on two classical
CO problems: TSP and CVRP. These experiments confirm
that our training methodology outperforms the conventional
methodology in [3] and is comparable to the state-of-the-art
policy optimization with multiple optima for reinforcement
learning (POMO) [4] while using significantly smaller data.
In addition, we identify the asymmetry in the solution repre-
sentation of MSTOP and use it to improve performance dur-
ing inference further. With this advanced inference strategy,
our model can generate high-quality solutions in a notably
short time, bringing us a step closer to real-time mission
re-planning.

In summary, our primary contributions are threefold.
First, we explore the MSTOP, a routing problem that reflects
a real-life mission re-planning scenario, using a data-driven
method (deep reinforcement learning). Specifically, we fol-
low the Transformer’s encoder-decoder architecture [5]. We
use a standard encoder with a multi-head attention mecha-
nism. For the decoder, we adapt the decoding strategy in
[6], the current state-of-the-art deep RL solver for a single
vehicle TSP, and generalize the strategy to handle multiple
vehicle launch locations. Our overall approach adopts the
nested inner/outer loop framework similar to [7] that updates
the current state after each vehicle returns to the depot to
reflect the changes after a partial tour is complete. We name
our neural policy network the Deep Dynamic Transformer
Model (DDTM).

Second, we propose a data-efficient training approach
based on a baseline derived from multiple instances gen-
erated by applying linear coordinate transformations to a
single instance. These augmented instances are distinct in
their raw form since each node in the 2D cartesian plane
has been transformed. But, as a graph, these are identical
because the lengths between the nodes are preserved. We
replace the greedy rollout baseline with a local, mini-batch
mean (obtained by rolling out all augmented instances) and
combine it with the maximum entropy RL method [8, 9].
Our proposed methodology outperforms the computation-
ally expensive greedy rollout baseline [3] and significantly
expedites the learning process.

Finally, we improved the efficiency of the inference phase
by using the instance-augmentation tailored for the MSTOP.
Unlike TSP and CVRP, solutions to MSTOP are inherently
asymmetric since the order of vehicles breaks the symmetry
in the solution representations (see Fig. 1). We utilize the
asymmetry in MSTOP solutions by permuting all vehicle
orders and generating multiple rollouts for each permuta-
tion of vehicle order at the inference stage. This method is
more efficient than the conventional sampling and instance-
augmentation inference (using a single-vehicle order).

The remainder of this paper is as follows. Section II
briefly introduces past studies related to our work (e.g., deep

Multi‑start team orienteering problem for UAS mission re‑planning with data‑efficient deep…

RL approaches for classical CO problems). Section III for-
mulates the MSTOP as the Mixed Integer Linear Program-
ming (MILP) and Markov Decision Process (MDP). Section
IV describes our DDTM policy network in detail. Section V
describes our proposed REINFORCE baseline and presents
inference results on various routing problems. In Section VI,
to corroborate the effectiveness of our method, we report an
ablation study among several training baselines and present
generalization results. Finally, Section VII concludes the
paper and discusses future research directions.

2 � Literature review

The Team Orienteering Problem (TOP) belongs to the
broader Vehicle Routing Problem with Profits (VRPP) class.
A fleet of vehicles is given, but the vehicles are not required
to visit all the nodes or customers. Each node is associated
with a prize (profit), denoting its relative attractiveness. The
objective is to find a subset of nodes that maximizes the total
collected profits while satisfying a limit on the maximum
duration of each route [10–12]. Exact algorithms to solve the
TOP include approaches based on column generation and
constraint branching [13] and branch-and-price algorithm
[14]. Taking the TOP as a basis, we devise the MSTOP by
extending it with two additional degrees of freedom: launch
locations of vehicles and remaining fuel for each vehicle.
The MSTOP stands in contrast to traditional CO problems in
that the launch locations for each vehicle are distinct. There-
fore, the problem state seen by each vehicle is naturally dif-
ferent at each construction step [15]. It is also important
to note that the context of multi-start in MSTOP stands in
contrast with a number of existing works sharing the same
term. For example, Lin et al. [16, 17] uses the term multi-
start to refer to a variant of simulated annealing approach
they used to solve TOP, while Hapsari et al. [18] deals with
multi-objective TOP.

One of the early attempts to apply the deep RL approach
to CO in a constructive manner is the study by Bello et al.
[19]. They used the pointer network (PtrNet) architecture
[20] to encode input sequences and construct the node

sequence in the decoder. Their model was tested on the TSP
and the 0–1 knapsack problem (KP) and yielded close-to-
optimal results. The PtrNet model is further improved by
Khalil et al. [21] and Nazari et al. [22]. Deudon et al. [23]
used the pointer network with an attention encoder. Inspired
by the Transformer model for machine translation [5], Kool
et al. [3] proposed the attention model (AM) based on the
transformer architecture to solve various CO problems such
as the TSP, VRP, and Orienteering Problem (OP). Cappart
et al. [24] combined the RL and constraint programming
(CP) to solve the TSP with Time Windows (TSPTW) by
learning branching strategies. Additionally, Bono et al.
[15] proposed a modified Transformer model to handle the
dynamic and stochastic VRPs (DS-VRPs) by using online
measurements of the environment to online select the next
vehicle via a vehicle-customer intersection module. More
recently, Li et al. [25] improved the AM to solve the Hetero-
geneous Capacitated VRP (HCVRP). Li et al. [26] proposed
the attention-dynamic model to solve the covering sales-
man problem (CSP). Xu et al. [27] designed an attention
model with multiple relational attention mechanism that
better captures the transition dynamics. Pan and Liu [28]
designed a graph-based partially observable MDP (POMDP)
that captures the changes in the customer demands to solve
a dynamic and uncertain VRP using a deep neural network
model with dynamic attention mechanism. Besides atten-
tion model, Wang [29] proposed a variational autoencoder-
based reinforcement learning methodology using a graph
reasoning network for classic vehicle routing problems. In
terms of performance, Kwon et al. [4] introduced the POMO
method which has demonstrated state-of-the-art results on
TSP, CVRP, and KP. During training, the POMO decoder
generates multiple heterogeneous trajectories that start at
every node to maximize entropy on the first action.

The majority of past studies used policy gradient
approaches, which have advantages over supervised learn-
ing (SL) [30]. Bello et al. [19] used an actor-critic algo-
rithm to train their model. However, Kool et al. [3] showed
that a greedy rollout baseline yields better results than a
(learned) critic baseline. Many subsequent works, includ-
ing [6, 25–27], and [7], used the greedy rollout baseline.

Fig. 1   Multiple representations for an optimal solution exist in TSP and CVRP. However, for MSTOP, the order of vehicles breaks the symmetry
in solution representation

	 D. H. Lee, J. Ahn

Although the greedy rollout baseline is effective, it requires
an additional forward-pass of the model, increasing the
computational load on the device. To leverage more data
parallelism for efficient learning of training instances, Kool
et al. [31, 32] proposed to use a local baseline equal to the
average return over k trajectories sampled without replace-
ment from a single instance using Stochastic Beam Search.
They reported that this baseline performed on par or slightly
better than the computationally expensive greedy rollout and
significantly better than the batch baseline. The benefit of
sampling without replacement is that the gradient estima-
tors do not lose much final performance while learning from
substantially fewer instances (number of training instances
is reduced by factor of k).

In addition, Kwon et al. [4] used a shared baseline based
on all POMO samples, taking the average tour length over
n sample trajectories from a single instance, where n is the
number of nodes. Like multiple-sample baselines in [31], the
POMO-shared baseline is local, concentrating on a single
instance. As reported in [4], their baseline is very effec-
tive since it generates n, typically larger than k in [31], non-
duplicative sample trajectories for a single instance. How-
ever, the POMO requires an additional tensor dimension,
and as the graph size n increases, the tensor size increases
by n-fold. Consequently, while the training time of POMO
is comparable to that of REINFORCE with greedy rollout
(owing to the parallel generation of trajectories), it requires
more GPU memory. Moreover, the POMO training may not
be readily applicable on problems such as MSTOP, where
we cannot simply use all the nodes as starting points for
exploration.

Many strategies for efficient inference were also pro-
posed in prior studies. Bello et al. [19] proposed the “one-
shot” greedy inference and sampling strategies. Deudon
et al. [23] improved their solution quality by refining it
with the 2-Opt heuristic [33]. Kwon et al. [4] suggested × 8

instance-augmentation to generate multiple trajectories and
select the best solution to obtain better results.

3 � Problem definition

3.1 � Mathematical formulation of MSTOP

This section presents the MILP formulation of MSTOP. In
particular, this formulation is defined on a graph following
[10]. A complete graph G consists of the set of all nodes (N)
and the set of arcs (A). We summarize key notations in the
mathematical formulation of MSTOP in Table 1. Since each
vehicle is associated with a unique starting location, we drop
the subscript k in the notation vk for simplicity whenever its
inclusion is implied.

In the MSTOP, multiple vehicles begin at locations dif-
ferent from the depot. Each vehicle has an available amount
of fuel at the start. Given the vehicle set, the MSTOP deter-
mines K routes that maximize the total profits collected over
the partial routes while satisfying a maximum duration con-
straint on each route.

In the MILP formulation below, xijk denotes a binary
variable, which equals one if arc (i, j) in A is traversed by
vehicle k (in K), and zero otherwise. Also, binary variable
yik equals one if node i (in X) is visited by vehicle k (in K)
and otherwise zero. tij is measured as the Euclidean distance
between the two nodes, and the subscript v denotes a vehi-
cle’s launching node. The MILP formulation for the MSTOP
is as follows:

(MILP Formulation for MSTOP)

subject to

(1)max
∑

i∈X�{0}

pi

K∑

k=1

yik,

Table 1   Notation table for
MSTOP

Notation Description

G = (N, A) Complete graph
N = X∪ V Set of all nodes
X = {0, 1, …, n} Customer (1 ~ n) and depot (0) nodes

V = 
{
vk
}K

k=1
Initial locations of K vehicles

A = An∪ Ak Set of arcs or edges
An= {(i, j)|i, j ∈ X, i ≠ j} Set of arcs among customer/depot nodes
Ak= {(k, j)|k ∈ V , j ∈ X} Set of arcs among vehicle locations and remaining nodes
Tmax Maximum route duration for all vehicles
tij Travelling length associated with arc (i,j)
fk Available fuel amount at the start for vehicle k ( ∈ K)
pi Scalar prize associated with visiting node i ( ∈ X)

Multi‑start team orienteering problem for UAS mission re‑planning with data‑efficient deep…

Equation (1) expresses the objective of the problem, which is
maximizing the collected profit from routes. Equations (2)-(10)
present the constraints of the problem. Equation (2) ensures
that all routes end at the depot. Equation (3) guarantees that an
arc enters a node and leaves from that node. Equations (4)-(5)
ensure that a route begins at the initial vehicle location. Equa-
tion (6) constrains the number of total routes (K). Equation (7)
imposes a constraint that each node is visited at most once.
Equation (8) limits the maximum duration or length for each
route. Lastly, Eqs. (9)-(10) define the decision variables.

Note that the local constraints of the formulation do not
guarantee that all nodes in a route are properly connected
without subtours. To generate a feasible set of routes, we
add the subtour elimination constraints. However, given the
nature of routing problems, adding such constraints before
the optimization can significantly increase the model size
for large-scale problems. As a result, we add the subtour
elimination constraints in a lazy fashion [34]. This way, we
can remove solutions with subtours during the optimization.

3.2 � MDP formulation of MSTOP

This section introduces the MDP formulation of the MSTOP.
To apply reinforcement learning to MSTOP, we model the

(2)
∑

i∈X�{0}

xi0k + xv0k = 1 k = 1, ...,K ,

(3)

�

j∈X,j<i

xijk +
∑

j∈X,i<j

xjik + xvik = 2yik ∀i ∈ X�{0}, k = 1, ...,K ,

(4)
∑

j∈X

xvjk = yvk k = 1, ...,K ,

(5)
K∑

k=1

yvk = K,

(6)
K∑

k=1

y0k = K,

(7)
K∑
k=1

yik ≤ 1 ∀i ∈ X�{0} ,

(8)
∑

(i,j)∈A,j<i

tijxijk + fk ≤ Tmax k = 1, ...,K,

(9)yik ∈ {0, 1} ∀i ∈ X ∪ {v}, k = 1, ...,K,

(10)
xijk ∈ {0, 1} ∀(i, j) ∈ A, j < i, i ∈ X�{0} ∪ {v}, k = 1, ...,K.

problem as a sequential decision-making process, where an
agent performs a sequence of actions (i.e., decides which
node to visit) through interactions with the surrounding
environment (i.e., observing changes in the state) to maxi-
mize the cumulative reward.

In our MDP setting, a vehicle is first assigned at ran-
dom. The agent selects nodes to visit starting from the
initial position of the assigned vehicle. Once a partial
route is constructed, the agent chooses the next vehicle
starting at a different location. The complete solution is
constructed by concatenating the individual partial routes.
We model the MSTOP as an MDP defined by a 4-dimen-
sional tuple < S, A, P, R > , where S denotes the state
space, A the action space, P the state transition model,
and R the reward model.

State space (S)  Each state at time step t is defined as a
tuple st (= < Xt, Vt >). The first component of the tuple,
Xt, denotes the set of all nodes (= {xt

i
}), and the sec-

ond component, Vt, expresses the states of all vehicles
(= {vt

k
}). Here, xi

t (= (ri, pi
t)) contains the information of

a node where ri (= (xi, yi)) is the location and pi
t is the

prize assigned to the node. Also, vt
k
=
(
�t
k
, f t
k
,Ot

k

)
 denotes

the vehicle information where �t
k
=
(
xk, yk

)
 represents the

vehicle location, fk
t is the vehicle’s available/remaining

fuel amount, and Ok
t is the total prizes collected until step

t. We denote the terminal time as T at which all vehicles
arrive at the depot.

Action space (A)  The permissible set of actions in our MDP
is the choice of the next node to visit by considering the
vehicle’s current partial route and the amount of fuel. We
denote each action at time step t (at ∈ A) as xj

t and view the
action as an addition of a node to the partial route. The con-
struction of partial route satisfies the maximum travel dura-
tion constraint for each vehicle by action masking policy, i.e.
masking the nodes that cannot be visited.
State transition model (P: S × A → S)  The state transition
model describes how the current state (st) transitions to the
next state (st+1) when an action (at) is taken. We adopt deter-
ministic transition dynamics, i.e., a vehicle moves to the
chosen node with the probability of 1. Given the current
vehicle k and chosen action at =

(
xt
j

)
 (i.e., the vehicle visits

node j), we update the elements of
{
xt
i

}
 and

{
vt
k

}
 at step t as

follows.

(11)pt+1
i

=

{
0 i = j

pt
i
i ≠ j

,

(12)�t+1
k

= rj,

	 D. H. Lee, J. Ahn

Equation (11) sets the prize associated with node j as 0
when visited, and Eq. (12) updates the current location of
vehicle k. Equation (13) updates the available amount of
fuel by subtracting tij (distance between nodes i and j) from
it. Equation (14) updates the total prize by adding the prize
value obtained at node j (pj).

Reward model (R: S × A → ℝ)  We model the cumulative
reward as the sum of total prizes collected from all partial
routes. To be specific, the reward is defined as R =

∑K

k=1
OT

k
 .

Termination time T, determined by the number of actions
executed until the completion of all partial routes, defines
the trajectory length.

(13)f t+1
k

= f t
k
− tij,

(14)Ot+1
k

= Ot
k
+ pt

i
.

4 � Proposed model and solution procedure

4.1 � Proposed framework

Figure 2 explains a framework proposed to solve the
MSTOP, which contains inner and outer loops. The inner
loop begins at the vehicle’s initial location and generates
a partial route that terminates at the depot. Each partial
route is a permutation of numbers ending with 0, as shown
in Fig. 3. When the inner loop is finished, the outer loop
updates the graph instance.

This procedure contrasts the models in [3], where the
encoder is executed only once initially (t = 0). In classi-
cal CO problems, when a vehicle returns to the depot,
the graph instance changes only slightly because the next
vehicle starts at the same depot. However, constructing a
partial route in an MSTOP modifies the graph instance.
Not only does the next vehicle face a different set of nodes

Generate Problem

Graph Embedding

Encoder

Start partial tour

Decoder

Select next node

Partial tour
complete?

Update state

No

Yes All tours
constructed?

No

Done

Update state

Update graph
embedding

Yes

depot

Vehicle A

Vehicle B

Vehicle C

depot

Vehicle A

Vehicle B

Vehicle C

Fig. 2   Diagram explaining the proposed framework

Multi‑start team orienteering problem for UAS mission re‑planning with data‑efficient deep…

(i.e., without visited nodes), but it also starts at a different
location.

The rationale behind this sequential construction frame-
work, which addresses one vehicle at a time, is grounded in
empirical observations that simultaneous consideration of
the next node for each vehicle can impede training conver-
gence due to additional freedom in decision-making. During
early training epochs, this additional complexity presents
challenges for the model to “learn” to generate routes.

In the solution procedure, the encoder plays a piv-
otal role in transforming the raw features of the graph
instance, encompassing mission node and vehicle data,
into a hidden representation known as node-vehicle and
graph embeddings. These embeddings, as computed in
Eqs. (23) and (24), capture essential information about
the spatial relationships and characteristics of the nodes
and vehicles within the graph. The major interplay
between the encoder and decoder occurs when the output
of the encoder, comprising the node-vehicle embeddings
and graph embedding, is sent as input to the decoder.
Subsequently, the decoder leverages this information to

extract relevant features, generating a probability dis-
tribution over non-visited (candidate) nodes that guides
the selection of the next node in the route. This iterative
process continues until the depot is chosen (i.e., complet-
ing an individual vehicle route). Following each partial
route, the graph is updated before advancing to the next
vehicle. Table 2 outlines key terminologies used in this
section that describe the structure of DDTM.

4.2 � Encoder‑decoder architecture of DDTM

Figure 4 presents the encoder-decoder architecture of DDTM
used for MSTOP. Figure 5 illustrates the encoder structure (for
a single encoding layer). The encoder embeds the MSTOP
features using separate parameters for the additional vehicle
features – vehicle location and available fuel. We denote the
embedded feature data as h(l), where l is the encoder layer.
The embedded data as a whole represents the graph instance,
and each element in h(l) is a mapping corresponding to each
feature.

A good feature mapping needs to consider the feature’s con-
text within the graph. For example, the node representation
should contain sufficient information to be selected among its
neighbors and to determine its position in the output sequence.
To understand how one feature is related to another from a
broader perspective, we apply multi-head self-attention, which
generates enhanced feature embeddings. The self-attention
mechanism enables the encoder to effectively weigh and con-
sider the significance of different features of the input graph.
The encoding steps are formally expressed as follows.

(15)h
(l)

0
=
[
x0, y0

]
Winit

0
,

(16)h
(l)

i
=
[
xi, yi, pi

]
Winit

node,i
for i ∈ {1, ...,N},

(17)ĥ
(l)

k
=
[
x̂k, ŷk, fk

]
Winit

veh,k
for k ∈ {1, ...,K},

Fig. 3   Complete MSTOP solution obtained by combining individual routes – each route is constructed by a single vehicle. Opaque nodes indi-
cate either (i) visited nodes (triangular) or (ii) vehicles that have arrived at the depot

Table 2   Summary of key terminologies for DDTM

Terminology Description

(x0,y0) Depot location
(xi,yi, pi) Node location and prize for mission i
(
x̂k, ŷk, fk

)
Location and fuel for vehicle k

h(l) Embedded feature data at lth encoder layer
nenc, ndec Number of encoder/decoder layers

h(nenc) Node-vehicle embedding

h
(nenc) Graph embedding

tdec Current decoding step
PEtdec

Positioning encoding at tdec

pdec
t

Probability distribution over all candidate nodes

	 D. H. Lee, J. Ahn

where dk = d/H with d (= 128) is a hyperparameter and H (= 8)
is the number of heads. To compute multi-head attention, we
concatenate the attention outputs of each head ( Zh

l
 ) as

The next embedded feature, h(l+1), is obtained by pass-
ing h(l) through a feed-forward layer with batch normaliza-
tion, residual connection, and ReLU activation as follows,

where Wff

0
∈ ℝ

d×dh and Wff

1
∈ ℝ

dh×d are trainable parameters
with dh (= 512). After nenc encoding layers, the final output
of the encoder is the node-vehicle embedding ( h(nenc) ) and
the graph embedding ( h(

nenc) ) defined as

(18)h(l) =
[
h
(l)

0
, h

(l)

1
, ..., h

(l)

N
, ĥ

(l)

0
, ..., ĥ

(l)

K

]
,

(19)Ql = h(l)W
Q

l
, Kl = h(l)WK

l
, Vl = h(l)WV

l
,

(20)Zh
l
= attention

�
Ql,Kl,Vl

�
= Softmax

�
QlK

T
l√

dk

�
Vl,

(21)MHA
(
h(l)

)
=
[
Z1
l
, Z2

l
, ..., ZH

l

]
Wout

l
.

(22)h̃(l) = BN
(
h(l) +MHA

(
h(l)

))
,

(23)h(l+1) = FF
(
h̃(l)

)
= BN

(
W

ff

1
ReLU

(
W

ff

0
h̃(l)

)
+ h̃(l)

)
,

(24)h
(nenc)

=

⎧
⎪
⎪
⎨
⎪
⎪
⎩

1

N+K+1

�
N+1∑
i=0

h
i
(nenc) +

K∑
k=1

�h
(nenc)
k

�
if t = 0

1

N’+K’+1

�
N+1∑
i=0

h
i
(nenc) +

K∑
k=1

�h
(nenc)
k

�
if t > 0

where N’ (= N – Nvisited) is the remaining number of nodes
and K’ is the remaining number of vehicles. After a partial
route is constructed (t > 0), the graph instance seen by the
next vehicle differs from that seen by the previous ones. We
update the graph instance by computing h(nenc) and h(

nenc)
using Eqs. (15)–(24), and mask the visited nodes using the
outer product as,

where M ∈ ℝ
(N+K)×1 is a column mask vector that masks

visited nodes and vehicles at the depot, 1 ∈ ℝ
(N+K)×1 is a

column vector of ones, and ⊙ is the Hadamard product for
matrices.

Given the node-vehicle and graph embeddings by the
encoder, the decoder produces probability distributions
( pdec

t
 ) for all candidate nodes and selects the next node. Can-

didate nodes are those not visited by any vehicle at the start
of decoding. Our decoding strategy consists of three steps
based on [6] as follows:

Step 1: We begin by computing the multi-head self-atten-
tion between the current node and the nodes in the current
partial route. By examining the history of visited nodes
for the current node, we obtain the contextual information
up to the current decoding time, tdec. We first extract the
current node embedding ( ̃htdec ) from the node-vehicle
embeddings ( h(nenc) ), then concatenate it with the current
amount of fuel ( f t

k
 ). We set tdec as zero at the start of the

decoding for each partial route and increment it by one

(25)
Matt = M⊗ 1T + 1⊗M

T −M⊗M
T ∈ ℝ

(N+K)×(N+K),

(26)

Zl = attention
�
Ql,Kl,Vl

�
= Softmax

�
QlK

T
l√

dk

⊙Matt

�
Vl,

Fig. 4   Encoder-Decoder architecture of DDTM

Multi‑start team orienteering problem for UAS mission re‑planning with data‑efficient deep…

per each node selection within the inner loop. Since the
decoding starts at the vehicle’s initial location, we select
the current node embedding as h̃0 = ĥ

(nenc)
k

 and update it
as h̃tdec = h

(nenc)
a  , where a ( ∶= atdec−1 ∈ {1, ...,N} ) is the

node selected in the previous step. Since the partial route
begins at the vehicle’s location and ends at the depot, the
order of nodes in the partial route matters. This charac-
teristic requires the addition of positional encoding [5]
(which describes the position of a node within the graph
instance so that each node can have a unique representa-

tion) to the linearly projected pair to generate
◦

h

(l)

tdec
∈ ℝ

1×d
as follows,

where PEtdec
 is a d-dimensional row vector. Each element

of the vector is defined as

(27)
◦

h

(l)

tdec
=

[
h̃tdec , f

tdec
k

]
Wproj

o
+ PEtdec

,

Fig. 5   Encoder structure

	 D. H. Lee, J. Ahn

where i ∈ {0, 1, ..., d − 1} is the position along the d
dimension.
Figure 6 illustrates the decoding Step 1. There are tdec vis-
ited nodes in the current partial route. We first compute the
self-attention between ◦h

(l)

tdec

 and
[
◦

h

(l)

0
,
◦

h

(l)

1
, ...,

◦

h

(l)

t
dec

−1

]
∈ ℝ

t
dec

×d . Step

1 is mathematically described as follows (where dk = d/H).

(28)PEtdec,i
=

{
sin

(
tdec∕10000

2i∕d
)
if i is even

cos
(
tdec∕10000

2i∕d
)

if i is odd
,

(29)
◦

Ql = h
(l)
tdec
W

Q

l,sa
∈ ℝ

1×dk ,W
Q

l,sa
∈ ℝ

d×dk

(30)

Kl =

[
◦

h

(l)

0
,
◦

h

(l)

1
, ...,

◦

h

(l)

tdec−1

]
WK

l,sa
∈ ℝ

tdec×dk , WK
l,sa

∈ ℝ
d×dk ,

(31)

Vl =

[
◦

h

(l)

0
,
◦

h

(l)

1
, ...,

◦

h

(l)

tdec−1

]
WV

l,sa
∈ ℝ

tdec×dk , WV
l,sa

∈ ℝ
d×dk ,

(32)
◦

Z
h

l
= attention

�
Q

l
,K

l
,V

l

�
= Softmax

�
Q

l
K

T

l√
d
k

�
V
l
∈ ℝ

1×d
k ,

Step 2: This step queries the next node to visit among all
candidate nodes. The step uses the encoder-decoder attention
between the self-attention of a partial route (output of Step 1;
denoted as h◦(l)tdec

 for coherence) and context node embeddings
( Hnode ∈ ℝ

(N+2)×d ; node-vehicle embeddings with current
vehicle embedding only (Eq. (34)). We mask the nodes that
cannot be visited from the current location. Figure 7 illus-
trates the encoder-decoder attention in Step 2 of the decoding
procedure. The following equations express Step 2.

(33)h
◦(l)

t
dec

← MHA(⋅)
|||sa =

[
Z
◦1

l
, Z

◦2

l
, ...,Z

◦H

l

]
W

out

l,sa
∈ ℝ

1×d
,W

out

l,sa
∈ ℝ

d×d
.

(34)
Hnode =

[
h0
(nenc), h1

(nenc), ..., hN
(nenc), ĥ

(nenc)
k

]
∈ ℝ

(N+2)×d,

(35)Ql,att =
◦

h

(l)

tdec
W

Q

l,att
∈ ℝ

1×dk , W
Q

l,att
∈ ℝ

d×dk ,

(36)Kl,att = HnodeW
K
l,att

∈ ℝ
(N+2)×dk , WK

l,att
∈ ℝ

d×dk ,

(37)Vl,att = HnodeW
V
l,att

∈ ℝ
(N+2)×dk , WV

l,att
∈ ℝ

d×dk ,

(38)◦

Z
h

l,att
= attention

�
Q

l,att,Kl,att,Vl,att

�
= Softmax

�
Q

l,attK
T

l,att
√
d
k

⊙M
T

�
V
l,att ∈ ℝ

1×d
k ,

(39)h
◦(l)

t
dec

← MHA(⋅)
|||att =

[
Z
◦1

l,att
, Z

◦2

l,att
, ..., Z

◦H

l,att

]
W

out

l,att
∈ ℝ

1×d
,W

out

l,att
∈ ℝ

d×d
.

Fig. 6   Step 1 of the decoding procedure. The orange contour indi-
cates the partial route at time step tdec

Fig. 7   Step 2 of the decoding procedure. The blue box denotes the
current node, the green contour represents the set of candidate nodes,
and the red cross indicates masked nodes

Multi‑start team orienteering problem for UAS mission re‑planning with data‑efficient deep…

Step 3: Step 1 and Step 2 form a single decoding layer.
After ndec decoding layers, the resultant output h◦(l)tdec

 is sent
to the final attention layer, where we compute a single-
head attention to get probability distribution across all
candidate nodes. The decoder receives a graph embedding
( h(

nenc) ) from the encoder, and its linear projection is added
to h◦(l)tdec

 . The query is constructed from the sum. The key
is obtained by a linear projection of H̃node ∈ ℝ

(N+1)×d ,
which is the context node embedding in Eq. (34) without
current vehicle embedding ( ̂h(nenc)

k
 ). The decoding step 3

is described as the following equations and illustrated in
Fig. 8.

The value of C in Eq. (43) is selected as 10. Consequently,
the next node a ∈ {0, 1, ...,N} is sampled from the output prob-
ability distribution pdec

t
 (following a categorical distribution or

greedy fashion), and t and tdec are incremented by one.

(40)H̃node =

[
h0
(nenc), h1

(nenc), ..., hN
(nenc)

]
∈ ℝ

(N+1)×d,

(41)Qf ,att = h
◦(l)
tdec

W
Q

f ,att
∈ ℝ

1×d, W
Q

f ,att
∈ ℝ

d×d,

(42)Kf ,att = H̃nodeW
K
f ,att

∈ ℝ
(N+1)×d, WK

f ,att
∈ ℝ

d×d,

(43)pdec
t

= Softmax

�
C ⋅ 𝑇 𝑎𝑛h

�
Qf ,attK

T
f ,att

√
d

⊙M
T

��
∈ ℝ

1×(N+1).

5 � Data‑efficient training with proposed
REINFORCE baseline

This section presents our proposed training methodology that
improves learning efficiency. In terms of data efficiency, our
methodology requires fewer (raw) training instances at every
epoch compared to the conventional method. Since the train-
ing instances are generated on the fly, an epoch in our pro-
posed methodology takes shorter time to generate the training
data and transfer them over to the GPU. Moreover, in terms of
sample efficiency, our method reaches an equivalent perfor-
mance (validation score) within fewer training epochs or with
fewer training instances in comparison with other methods.

5.1 � Preliminary

Policy-gradient methods learn the policy directly and
explicitly through gradient-based optimization. We define
the model’s policy as a parametrized function ��(a|s) , where
θ denotes the trainable parameters of the model. The func-
tion is stochastic in that it defines a probability distribution
of actions (a) at a given state (s). The goal of policy optimi-
zation is to maximize the expected cumulative return (sum
of rewards, R(τ)) of the trajectory ( � = (s0, a0, s1, a1, ..., sT) )
whose actions are chosen by the policy defined as

The objective of the policy optimization problem
expressed in Eq. (44) uses the expectation over all possible
trajectories. For a given stochastic policy ( �� ), the trajectory
probability ( P(�;��) ∶= P(�;�) ) represents the probability of
generating a trajectory following the policy. The trajectory
probability is factorized as

where p
(
st+1| st, at

)
 is the state-transition probability of the

MDP defined in Section III. Williams [35] proposed a viable
estimator of the policy gradient using Monte-Carlo sampling
by assuming that R(τ) is independent of θ:

In practice, the unbiased REINFORCE gradient estima-
tor presented in Eq. (46) suffers from a high variance of the
returns R(�i) and is sample inefficient since it requires many
sample episodes to converge. We can overcome these issues
by including a baseline (b(s)), an action-independent function,
in the policy gradient estimation. Consequently, an unbiased
estimate of the gradient with reduced variance is expressed as

(44)J(�) = ��∼��
[R(�)] = ��∼��

[∑T

t=0
r
(
st, at

)]
.

(45)P(�;�) =

T∏

t=0

��(at|st)p(st+1|st, at),

(46)∇�J(�) = ��∼��
[R(�)∇�logP(�;�)].

Fig. 8   Step 3 of the decoding procedure. The purple boxes above can-
didate nodes and depot indicate the selection probability

	 D. H. Lee, J. Ahn

5.2 � Choice of REINFORCE baseline b(s)

An example of the baseline is the average return over sample
trajectories ( b = ��∼��

[R(�)] ≈
1

N

∑N

i=1
R(�i) ), where N is the

number of samples in a mini-batch. Although the mini-batch
baseline can effectively reduce variance in Gradient-Bandit
algorithms [36], Kool et al. [31] showed that it performs
significantly worse than other state-of-the-art baselines.

Prior studies suggest that designing an effective yet compu-
tationally tractable REINFORCE baseline is crucial in train-
ing the policy network. In this work, we propose to use the
average return of sample trajectories generated by instance
augmentation from a single instance as the baseline, referred
to as the instance-augmentation baseline. Our baseline is a
potential alternative to the existing baselines with improved
training speed and reduced variance. The proposed baseline is
motivated by observations of other baselines in prior works.
In general, a local baseline performs significantly better than
a batch baseline. In particular, a local baseline based on multi-
ple samples without replacement is expected to perform better
because non-duplicate samples are guaranteed [31, 32]. This
observation can be extended to POMO [4], whose local batch
mean is based on N non-duplicate sample trajectories from a
single instance, despite an increased tensor size. Since each
POMO trajectory begins at a unique node, these samples are
also guaranteed to be non-identical. These REINFORCE base-
lines are more data-efficient than the greedy rollout because
they require fewer training instances (reduced by some factor).

It would be effective if a baseline as equally data-efficient as
the multiple-sample baselines and even computationally lighter
than the POMO shared baseline is used. The proposed baseline
meets these requirements by utilizing the instance augmenta-
tion, which was first suggested in [4] for effective inference.

Table 3 lists the coordinate transformations applied to all
features (nodes, depots, and vehicle locations) to generate
additional instances for a given training instance (a total of 8
instances). While each of these instances is distinct, the optimal
tour would be identical since these transformations preserve
the lengths between nodes. We then rollout sample trajectories
of each of these “counterfactuals.” The policy model would
perceive these as distinct instances, only to arrive at similar
solutions as it generates multiple rollouts in parallel. The model

(47)∇�J(�) = ��∼��
[(R(�) − b)∇�logP(�;�)]. inherently learns to find improved solutions for a given instance

based on the local batch mean. The policy model also learns
more effective heuristics because the baseline offers a more
focused view on a single instance through diverse perspectives.
Figure 9 is an illustration of how our local baseline works. We
believe that the proposed baseline combines the strengths of
multiple-sample baselines and the POMO shared baseline.

Comparison with multiple samples with/without replace‑
ments  Our baseline does not strictly generate non-duplicate
samples. However, it is highly less likely to generate many
duplicate samples, especially in the early stages of training,
when the policy network �� has not yet “learned” much. So,
our baseline promotes more “exploration” in the initial learn-
ing phase. To see this, we note that each augmented instance
is associated with a distinct input embedding in the encoder
output ( h(nenc) ). Let i denote the original instance, and let k and
j denote the augmented instances derived from i. For k (≠ j)
and si

k
≠ si

j
 in raw form, h(nenc),i

k
≠ h

(nenc),i
j

 in the latent space.
Since a trajectory is sampled based on h(nenc) , it is likely that
� i
k
 is different from � i

j
 . Indeed, as training proceeds, �� may

generate duplicate samples since it learns which action pro-
duces high-return trajectories in a more general setting. How-
ever, this limitation could be mitigated in large-size problems
for which longer trajectories are likely to be unique.

Comparison with greedy rollout baseline  In greedy rollout
baseline, a solution is generated by running the policy greed-
ily, i.e., at each construction step, the node with the highest
probability (where the probability distribution is obtained

Table 3   Unit square
transformations

f (x, y)

(x, y) (y, x)

(x, 1 − y) (y, 1 − x)

(1 − x, y) (1 − y, x)

(1 − x, 1 − y) (1 − y, 1 − x)
Fig. 9   Proposed REINFORCE baseline

Multi‑start team orienteering problem for UAS mission re‑planning with data‑efficient deep…

from an earlier version of the model) is visited. This deter-
ministic solution trajectory serves as a baseline in the REIN-
FORCE algorithm. While effective, the greedy rollout base-
line incurs an additional forward pass of the earlier model
version, which increases computation by 50%. Apart from
this, we also empirically found that the greedy rollout base-
line entails slightly noisy learning. The current model’s (best)
performance may not be replicated or generalized to another
problem set. This finding is more apparent towards the later
stages of training, especially when the model finds it difficult
to surpass its greedy self, and there is a noticeable lack of
baseline policy updates. At this point, the model does not
learn much from the competition with its greedy self.

Comparison with POMO shared baseline  Compared to the
POMO baseline, our approach is more computationally
efficient since it uses a fixed local batch size that does not
increase with the number of nodes.

5.3 � Combining with maximum entropy objective

Training the policy model with entropy can smooth out the
optimization landscape, speeding up the learning process. In
some environments, it yields a better final policy [9]. It also
turns out to be robust to internal algorithmic disturbances
and external environmental disturbances like dynamics and
reward function [8]. We note that robustness to external dis-
turbances is an important factor determining the generalization

capability (i.e., performance on graphs of various sizes). This
work combines the maximum entropy RL with our instance-
augmentation baseline and shows improved training and infer-
ence performance for various problem instances.

We implement the maximum entropy RL as follows. The
objective aims to maximize the expected cumulative return
augmented by a conditional action entropy as

w h e r e ℍ(��(⋅�st)) = 𝔼
a
t
∼��

[−log��(at�st)] = −
∑

a
t

[��(at�st)log��(at�st)]
denotes the Shannon entropy of conditional distribution
over actions along the trajectory, ��

�

(
st, at

)
 is the state-action

marginal of trajectory distribution induced by �� and � is
the entropy weight or temperature. The maximum entropy
objective function presented in Eq. (48) results in a slightly
different gradient [9] (trajectory view):

Although Sultana et al. [37] used the entropy maximization
term to train the policy with a greedy rollout baseline, we note
that its application has not been used with other baselines.
By integrating the objective function with entropy and using
our instance-augmentation baseline, our policy model learns
a more stochastic policy that is applicable in a generalized
setting. Algorithm 1 presents our proposed REINFORCE algo-
rithm. The Adam optimizer [38] with a constant learning rate
of 0.0001 is used to train the policy model parameters.

(48)JMaxEnt(�) =
∑

t
𝔼(st ,at)∼��

�

[r
(
st, at

)
+ �ℍ(��(⋅|st))]

(49)
∇�J(�) = 𝔼�∼��

[R(�)∇�logP(�;�) + �
∑

t
∇�ℍ(��(⋅|st))]

Algorithm 1   Proposed REINFORCE Algorithm (Instance-augmentation baseline with maximum entropy objective)

	 D. H. Lee, J. Ahn

6 � Experiments and discussion
To establish the effectiveness of our proposed REIN-
FORCE algorithm, we conducted a comprehensive study,
first comparing our instance-augmentation baseline with
the greedy rollout baseline and subsequently comparing
our instance-augmentation baseline with maximum entropy
objective against the greedy rollout baseline with entropy.
The strengths of our method are substantiated across vari-
ous problem sets, encompassing TSP, CVRP, and MSTOP,
demonstrating consistent improvement in training (in terms
of both solution quality and training time) even with increas-
ing problem sizes.

6.1 � Problem setup and hyperparameters

This section describes the controlled experiments to solve
the MSTOP using the DDTM. To observe the benefits of our
instance-augmentation baseline (over greedy rollout), we con-
duct an ablation study on classical TSP and CVRP using the

original AM. To this end, we consider three problem/policy
pairs – MSTOP/DDTM, TSP/AM, and CVRP/AM. The graph
sizes (n) of 10, 20, 50, and 70 are set for the MSTOP (Table 4)
and we consider these cases with 2 and 3 vehicles. The deci-
sion to focus on scenarios involving 2 and 3 vehicles is rooted
in our motivation to providing insights into optimizing the
efficiency of limited resources in situations where deploying
a larger fleet is impractical. For TSP and CVRP, we consider
the instances with sizes of 50 and 100. For TSP and CVRP, we
consider the instances with sizes of 50 and 100. Furthermore,
to check how our proposed training algorithm improves the
generalization performance, we test the performance of each
AM on problem instances of various sizes.

Training DDTM to solve MSTOP  We follow the basic prob-
lem setup in [3] for the Orienteering Problem (OP), i.e., the
coordinates of all customer and depot nodes are randomly
sampled within a normalized [0,1] × [0,1] world. The prizes
of nodes are either initialized as one (constant) or sampled
from a uniform distribution between 0 and 1.

Table 4 describes the experimental details, including the
graph size (n), the number of vehicles (N), and the maxi-
mum length constraint for each route (Tmax). Additionally,
each vehicle in MSTOP starts at a random location within
the same [0,1] × [0,1] world and is given a variable remain-
ing tour length (or equivalently fuel amount) with the dis-
tance between the current vehicle location and the depot
as the lower bound. This setting ensures that the sum of
the remaining tour length and the partial tour constructed
henceforth is bounded above by Tmax. For all MSTOP
cases, the DDTM is initialized with nenc = 4 and ndec = 2,
which we found to be an acceptable trade-off between com-
putational load and the quality of learned policy.

For numerical experiments, we train 1,280,000 instances
per epoch. Considering the GPU memory constraints, we
train 1250 batches of 1024 instances (n = 10, 20) for 200
epochs, train 2500 batches of 512 instances (n = 50) for 100

Table 4   MSTOP problem
instances of various sizes

n N Tmax

10 2 1.5
20 2 2.0
50 3 3.0
70 3 3.0

Table 5   Permutations of vehicle order. Bold denotes the first vehicle
to start routing. The DDTM sequentially begins routing according to
the given vehicle order

N Permutations

2 AB/BA
3 ABC/ACB/BCA/BAC/CAB/CBA

Fig. 10   LEFT: Routing begins with Vehicle A. RIGHT: Routing begins with Vehicle B (optimal tour found)

Multi‑start team orienteering problem for UAS mission re‑planning with data‑efficient deep…

Ta
bl

e 
6  

E
xp

er
im

en
ta

l r
es

ul
ts

 o
n

M
ST

O
P

(c
on

st
an

t p
riz

es
; b

ol
d:

 b
es

t r
es

ul
t)

M
et

ho
d

N
 =

 2
Ve

hi
cl

es
N

 =
 3

Ve
hi

cl
es

n =
 10

n =
 20

n =
 50

n =
 70

O
bj

.
G

ap
Ti

m
e

O
bj

.
G

ap
Ti

m
e

O
bj

.
G

ap
Ti

m
e

O
bj

.
G

ap
Ti

m
e

G
ur

ob
i

5.
35

0.
00

%
(8

 m
)

11
.8

4
0.

00
%

(2
 h

)
−

−
−

−
−

−
gr

ee
dy

Ts
ili

4.
82

9.
92

%
(<

 1
s)

10
.0

6
15

.0
1%

(<
 1

s)
34

.9
4

14
.8

1%
(<

 1
s)

43
.5

8
16

.9
8%

(<
 1

s)
D

D
TM

 (g
re

ed
y +

 en
t.)

5.
20

2.
76

%
(<

 1
s)

11
.2

0
5.

43
%

(1
 s)

38
.7

2
5.

59
%

(7
 s)

49
.0

8
6.

50
%

(8
 s)

D
D

TM
(p

ro
po

se
d)

5.
21

2.
61

%
(<

 1
s)

11
.2

3
5.

13
%

(1
 s)

39
.1

0
4.

66
%

(7
 s)

49
.5

7
5.

55
%

(8
 s)

sa
m

pl
in

g
Ts

ili
5.

32
0.

50
%

(2
 m

)
11

.6
6

1.
53

%
(4

 m
)

39
.2

8
4.

21
%

(1
1

m
)

49
.2

1
6.

26
%

(1
3

m
)

D
D

TM
 (g

re
ed

y +
 en

t.)
5.

30
1.

02
%

(8
 m

)
11

.6
0

1.
99

%
(1

6
m

)
40

.7
3

0.
68

%
(1

 h
)

52
.0

7
0.

79
%

(1
.5

 h
)

D
D

TM
(p

ro
po

se
d)

5.
30

0.
96

%
(8

 m
)

11
.6

2
1.

84
%

(1
6

m
)

40
.8

4
0.

42
%

(1
 h

)
52

.3
4

0.
28

%
(1

.5
 h

)

au
gm

en
t

 ×
 N

!
D

D
TM

 (g
re

ed
y +

 en
t.)

5.
29

1.
15

%
(1

 s)
11

.5
0

2.
92

%
(2

 s)
40

.0
6

2.
31

%
(1

 m
)

50
.9

1
3.

01
%

(2
 m

)
D

D
TM

 (p
ro

po
se

d)
5.

30
1.

02
%

(1
 s)

11
.5

2
2.

68
%

(2
 s)

40
.2

8
1.

79
%

(1
 m

)
51

.3
1

2.
25

%
(2

 m
)

 ×
 8N

!
D

D
TM

 (g
re

ed
y +

 en
t.)

5.
34

0.
24

%
(4

 s)
11

.7
3

0.
90

%
(1

1
s)

40
.9

1
0.

25
%

(3
 m

)
52

.2
2

0.
52

%
(5

 m
)

D
D

TM
 (p

ro
po

se
d)

5.
34

0.
19

%
(4

 s)
11

.7
5

0.
78

%
(1

1
s)

41
.0

1
0.

00
%

(3
 m

)
52

.4
9

0.
00

%
(5

 m
)

Ta
bl

e 
7  

E
xp

er
im

en
ta

l r
es

ul
ts

 o
n

M
ST

O
P

(u
ni

fo
rm

ly
 d

ist
rib

ut
ed

 p
riz

es
; b

ol
d:

 b
es

t r
es

ul
t)

M
et

ho
d

N
 =

 2
Ve

hi
cl

es
N

 =
 3

Ve
hi

cl
es

n =
 10

n =
 20

n =
 50

n =
 70

O
bj

.
G

ap
Ti

m
e

O
bj

.
G

ap
Ti

m
e

O
bj

.
G

ap
Ti

m
e

O
bj

.
G

ap
Ti

m
e

G
ur

ob
i

2.
88

0.
00

%
(9

 m
)

6.
49

0.
00

%
(2

 h
)

−
−

−
−

−
−

gr
ee

dy
Ts

ili
2.

56
11

.1
8%

(<
 1

s)
5.

40
16

.7
0%

(<
 1

s)
17

.9
5

16
.3

0%
(<

 1
s)

22
.7

1
18

.8
1%

(<
 1

s)
D

D
TM

 (g
re

ed
y +

 en
t.)

2.
77

3.
80

%
(<

 1
s)

6.
06

6.
57

%
(1

 s)
20

.3
7

5.
05

%
(6

 s)
26

.2
2

6.
27

%
(9

 s)
D

D
TM

(p
ro

po
se

d)
2.

78
3.

62
%

(<
 1

s)
6.

11
5.

86
%

(1
 s)

20
.5

1
4.

36
%

(6
 s)

26
.4

1
5.

59
%

(9
 s)

sa
m

pl
in

g
Ts

ili
2.

85
1.

12
%

(2
 m

)
6.

26
3.

44
%

(3
 m

)
20

.1
6

6.
00

%
(1

0
m

)
25

.7
3

8.
02

%
(1

2
m

)
D

D
TM

 (g
re

ed
y +

 en
t.)

2.
85

1.
31

%
(8

 m
)

6.
33

2.
47

%
(1

5
m

)
21

.3
6

0.
40

%
(1

 h
)

27
.8

2
0.

56
%

(1
.5

 h
)

D
D

TM
(p

ro
po

se
d)

2.
85

1.
31

%
(8

 m
)

6.
35

2.
07

%
(1

5
m

)
21

.3
8

0.
31

%
(1

 h
)

27
.9

1
0.

26
%

(1
.5

 h
)

au
gm

en
t

 ×
 N

!
D

D
TM

 (g
re

ed
y +

 en
t.)

2.
83

1.
97

%
(1

 s)
6.

23
3.

96
%

(2
 s)

21
.0

1
2.

02
%

(1
 m

)
27

.1
9

2.
82

%
(1

.5
 m

)
D

D
TM

 (p
ro

po
se

d)
2.

83
1.

78
%

(1
 s)

6.
26

3.
50

%
(2

 s)
21

.0
7

1.
75

%
(1

 m
)

27
.3

7
2.

18
%

(1
.5

 m
)

 ×
 8N

!
D

D
TM

 (g
re

ed
y +

 en
t.)

2.
87

0.
62

%
(4

 s)
6.

39
1.

52
%

(1
1

s)
21

.4
2

0.
16

%
(3

 m
)

27
.8

6
0.

43
%

(5
 m

)
D

D
TM

 (p
ro

po
se

d)
2.

87
0.

56
%

(4
 s)

6.
40

1.
34

%
(1

1
s)

21
.4

5
0.

00
%

(3
 m

)
27

.9
8

0.
00

%
(5

 m
)

	 D. H. Lee, J. Ahn

epochs, and train 3333 batches of 384 instances (n = 70)
for 100 epochs. The instance-augmentation baseline uses
a batch size reduced by 8, i.e. 128 for n = 10 and n = 20,
64 for n = 50, and 48 for n = 70, so that the total number
of training instances is the same. These training instances

are generated randomly on the fly at every epoch to pre-
vent overfitting. After each epoch, we roll out the current
model (with greedy decoding) on a held-out validation set
of size 10,000 and plot the learning curve to observe the
training process.

Fig. 11   DDTM solution quality
(optimality gap) on MSTOP20
instances

(a) Constant prizes (b) Uniformly distributed prizes

()MILP DDTMp p p∆ = − 100%MILP DDTM
rel

MILP

p pp
p

 −∆ = × 


(a) DDTM Result (b) Optimal Result

Fig. 12   Example solution of MSTOP20 (uniformly distributed prizes). Numerical values next to blue nodes represent node prizes

Multi‑start team orienteering problem for UAS mission re‑planning with data‑efficient deep…

Training AM to solve TSP/CVRP  We adopt the problem setup
prescribed in [3]. We used the same hyperparameters for train-
ing AM policy network for a fair comparison (except for the
application of ‘warmup’).

Entropy weight  To ensure the benefits of maximum entropy
realized in our methodology, we need to use a suitable value
for α. A very large α value can make the problem close to
the maximum entropy problem, whose policy is purely ran-
dom. On the contrary, if α is small, premature convergence
may occur due to inadequate exploration. The α value used
for training is 0.01 for both MSTOP and TSP/CVRP. We
observed that this value works well on MSTOP20 (uniformly
distributed prizes) and TSP50.

6.2 � Inference result

This section presents the performance of DDTM on 10,000 ran-
dom MSTOP instances. To validate our proposed methodology,

we assess the performance of 1) DDTM trained with our pro-
posed baseline and maximum entropy objective, and 2) DDTM
trained with greedy rollout baseline and maximum entropy
objective. The following section presents a comprehensive abla-
tion study for various REINFORCE training baselines.

We use three decoding strategies. The greedy strategy rolls
out a single greedy trajectory for each instance. The sampling
strategy generates 1280 trajectories (per instance) and selects
the best one. Finally, the instance augmentation strategy draws
multiple greedy trajectories for each instance and selects the
best result. To effectively handle inherent asymmetry in the
MSTOP solutions, we permute the order of starting vehicles
(see Table 5). Then, we generate a single greedy trajectory for
each vehicle order and choose the best out of N! trajectories.
To expand the search space, for each permutation, we further
rollout eight trajectories about each problem instance (by solv-
ing its augmented instances) and select the best out of 8*N!
trajectories. As illustrated in Fig. 10, this increases the chance
of finding near-optimal solutions.

To the best of our knowledge, we could not find any
algorithms specifically for MSTOP. For n values of 10
and 20, we compare the results with the optimal solutions
obtained using the MILP formulation introduced in Section
III (implemented with Gurobi [34]). We also implement
the heuristic by Tsiligirides for OP introduced in [39] with
slight modification and compare the results. The MILP
solution is used as the reference to compute the optimality
gap. For larger instances (n = 50 and n = 70), it takes pro-
hibitively long to solve the MILP to optimality. Therefore,
the best out of the solutions obtained by various methodol-
ogies is used as a reference to compute the optimality gap.

Tables 6 and 7 summarize the experimental results for
comparison. We report the average of total prizes over
10,000 test MSTOP instances. Using the greedy strategy,
the DDTM finds near-optimal solutions with optimality gaps
of around 4 – 5%. The optimality gap values for DDTM
solutions obtained using the sampling strategy are 1 – 2%.
In almost all strategies, the DDTM outperforms the heuris-
tic by Tsiligrides. The DDTM performs best with the × 8N!
instance augmentation strategy, which finds high-quality
solutions much faster than the sampling technique, demon-
strating its superiority.

Figure 11 presents the quality (optimality gap) of the
solutions obtained using the DDTM trained under the pro-
posed methodology for 10,000 test MSTOP20 instances.
The optimality gap of the DDTM solutions is 0% in more
than 90% of constant-prize instances. Also, in over 90% of
instances with uniformly-distributed prizes, the optimality
gap is smaller than 5%. Figure 12 show example solutions
of MSTOP20 for different prize distributions. The DDTM
inference solutions with “ × 8N!-augmentation-strategy” are
plotted on the left. The corresponding MILP solutions are
presented on the right for comparison.

Fig. 13   Learning curves for MSTOP20 with uniformly distributed
prizes. Dark curves are smoothed results, lighter curves are raw
results

Fig. 14   Learning curves on TSP50 using the vanilla AM. Dark curves
are smoothed results, lighter curves are raw results

	 D. H. Lee, J. Ahn

6.3 � Ablation study

The ablation study analyses the contribution of our proposed
training methodology (instance-augmentation baseline with
maximum entropy objective) to training policy network mod-
els. Specifically, we compare the learning curves using differ-
ent baselines on the DDTM (for solving MSTOP) and the orig-
inal AM (for TSP and CVRP). Each learning curve is obtained
by evaluating the model on a held-out validation set of 10,000
random instances. The following learning curves are plotted for
four different training strategies: greedy rollout baseline (A),
greedy rollout baseline with maximum entropy objective (B),
instance-augmentation baseline (C), and instance-augmenta-
tion baseline with maximum entropy objective (D).

DDTM & training baselines (MSTOP)  Fig. 13 shows the
learning curves of the four training methods – (A) to
(D) – on MSTOP20 with uniformly distributed prizes.
It can be observed that our proposed baseline (C) helps

Table 8   Comparison of training time for different training strategies
(per epoch, in min: sec); training performed on a single 3090Ti GPU

(A) (B) (C) (D)

TSP50 9:21 8:18 6:28 6:19
TSP100 17:43 19:00 12:30 14:13
CVRP50 13:26 12:08 8:38 8:23
CVRP100 24:07 25:08 16:00 17:41

(a)

(b)

Fig. 15   Generalization performance of DDTMs trained and tested between MSTOP10 and MSTOP20 environments. Models trained under (a)
Constant prizes and (b) Uniformly distributed prizes. Optimality gaps reported as the performance measure

Multi‑start team orienteering problem for UAS mission re‑planning with data‑efficient deep…

the model learn better policy than both the greedy roll-
out baseline (A) and its combination with the maximum
entropy objective (B). As an added benefit, the instance-
augmentation baseline substantially speeds up learning
by generating fewer training data. With the maximum
entropy objective (D), the proposed methodology sig-
nificantly outperforms the rest of the methodologies and
achieves high validation scores in fewer training epochs,
demonstrating the sample efficiency of the proposed
training methodology.

AM & training baselines (TSP, CVRP)  We believe that the
proposed methodology is a general technique that can be
used instead of the conventional greedy rollout baseline.
To validate this, we perform additional experiments on the
vanilla AM network using the original code to solve TSP and
CVRP. For a fair comparison, we plot the learning curves
on the same validation set (with seed 1234) and also report
the inference results on the same test set (with seed 4321)
used in [3].

Figure 14 shows the learning curves for the original
AM with different baselines for TSP50. The instance-
augmentation baseline (C) performs comparatively bet-
ter than the greedy rollout baseline (A) and slightly worse
than the greedy rollout baseline with maximum entropy
objective (B). However, the proposed methodology (D)
substantially improves the quality of the learned policy.
Moreover, using the instance-augmentation baseline – (C)
and (D) – instead of greedy rollout baseline – (A) and (B)
– significantly reduces the per-epoch training time by over
30% (see Table 8). Our proposed method is thus effective
in expediting per-epoch training time while simultaneously
keeping competitive performance. This indeed supports the

claim that our proposed method strikes a favorable balance
between training speed and overall performance.

Table 9 summarizes the inference test results on TSP and
CVRP. Our proposed methodology (D) outperforms the
other training methods across all decoding strategies in all
cases. In particular, the proposed approach is comparable
to the state-of-the-art POMO method in terms of the opti-
mality gap. The best performance for TSP50 obtained by
the proposed approach (optimality gap: 0.15%, sampling) is
better than that by the POMO inference without augmenta-
tion (0.24% [4]). Similarly, in CVRP50 instances, the best
result obtained by the proposed method (1.75%; sampling)
outperforms the POMO inference with a single trajectory
(3.52% [4]). Even on large instances (n = 100), the proposed
methodology (D) shows improvement over all decoding
strategies.

6.4 � Generalization result

This section discusses the generalization capability of our
training methodology. Kool et al. [3] demonstrated that the
AM and greedy rollout baseline can be generalized to prob-
lems with different graph sizes, although the error increases
as the graph size increases. Since training with the maxi-
mum entropy objective is known to improve the model’s
robustness, we conduct a comparative study on generali-
zation performance between greedy rollout with maximum
entropy objective (B) and our proposed methodology (D)
to see how our proposed methodology reduces generaliza-
tion error. Note that the generalization results are reported
according to the instance-augmentation decoding strategy on
the same test datasets as in the previous sections.

Figure 15 illustrates the generalization performance of
DDTMs trained on MSTOP10 and MSTOP20 environments

Table 9   Test results of vanilla
AM trained with different
methods

*: Values reported in [3]

Method TSP50 TSP100 CVRP50 CVRP100

Obj. Gap Obj. Gap Obj. Gap Obj. Gap

Concorde*/LKH3* 5.70* − 7.76* − 10.38* − 15.65* −
greedy AM (A) 5.81 1.89% 8.10 4.43% 11.01 6.07% 16.66 6.47%

AM (B) 5.79 1.65% 8.11 4.50% 10.97 5.70% 16.64 6.32%
AM (C) 5.80 1.78% 8.08 4.14% 10.96 5.59% 16.65 6.36%
AM (D) 5.78 1.38% 8.04 3.59% 10.93 5.30% 16.50 5.45%

sampling AM (A) 5.73 0.48% 7.91 1.97% 10.64 2.47% 16.14 3.13%
AM (B) 5.71 0.21% 7.93 2.15% 10.57 1.87% 16.15 3.22%
AM (C) 5.73 0.49% 7.90 1.74% 10.62 2.31% 16.12 2.98%
AM (D) 5.71 0.15% 7.89 1.69% 10.56 1.75% 16.07 2.69%

 × 8 augment AM (A) 5.72 0.40% 7.93 2.24% 10.69 3.03% 16.30 4.16%
AM (B) 5.72 0.32% 7.94 2.30% 10.67 2.81% 16.28 4.03%
AM (C) 5.72 0.37% 7.92 2.01% 10.68 2.86% 16.28 4.05%
AM (D) 5.71 0.23% 7.89 1.68% 10.66 2.67% 16.19 3.42%

	 D. H. Lee, J. Ahn

for N = 2 vehicles where the horizontal axis represents the
test environment (i.e. prize distribution and graph size) and
the vertical axis refers to the optimality gap. Part (a) reports
the performance of DDTM trained under constant prizes
whereas part (b) corresponds to that of DDTM trained under
uniformly distributed prizes. We observe that the models
naturally perform best when tested under the same condi-
tions as the training environment. However, optimality gaps
tend to increase when tested on different graph sizes. In gen-
eral, the proposed methodology (D) shows better generaliza-
tion than the conventional method (B) in terms of reduced
optimality gaps for changing graph sizes. Moreover, we also
observe that models trained under uniformly distributed
prizes generalize better than the counterparts trained under
constant prizes when tested on environments with different

prize distributions. This is not surprising since uniformly
distributed prizes can be seen as a generalized version of
constant prizes, and the problems with constant prizes are
generally considered easier to solve. One exception is the
case of DDTM trained under MSTOP10 with uniformly
distributed prizes being tested on MSTOP20 with constant
prizes, where the model trained using the proposed method-
ology (D) performs worse than the conventional approach
(B). The reason behind this result might be attributed to
using entropy weight α tuned for MSTOP20 (with uniformly
distributed prizes) problems.

Figure 16 presents the generalization result for DDTM
trained on MSTOP50 and MSTOP70 environments for N = 3
vehicles where the vertical axis represents the test score.
Similar to Fig. 15, the proposed methodology (D) generally

(a)

(b)

Fig. 16   Generalization performance of DDTMs trained and tested between MSTOP50 and MSTOP70 environments. Models trained under (a)
Constant prizes and (b) Uniformly distributed prizes. Test scores reported as performance measure

Multi‑start team orienteering problem for UAS mission re‑planning with data‑efficient deep…

performs better for both changing graph sizes and prize dis-
tributions, as evidenced by larger test scores. The degree
of improvement is more apparent for large-scale problems,
demonstrating that the proposed methodology generalizes
well with scalability on graph size.

Figure 17 presents the generalization performance for
TSP and CVRP versus the graph size. For both TSP and
CVRP, the proposed methodology (D) shows better gener-
alization performance (reduced optimality gaps) except for
the CVRP100 model on graph size n = 50, which is likely
a result of using entropy weight � that is tuned for TSP50.
From the various tests on different routing problems, it can
be observed that our proposed methodology generally results
in an improved generalization performance compared to the
existing conventional method.

7 � Conclusion

The Multi-Start Team Orienteering Problem (MSTOP)
is introduced to address the routing problems arising in
dynamic environments. An attention-based policy network
model referred to as the Deep Dynamic Transformer
Model (DDTM) is proposed to solve the MSTOP. The
proposed learning procedure modifies the REINFORCE
algorithm by introducing a new baseline with instance-
augmentation and combining it with the maximum entropy
objective, improving its learning efficiency and inference
capability. A set of numerical experiments comparing
the performance of the proposed procedure with existing

methodologies demonstrates its effectiveness. For a suitable
value of entropy weight, the instance-augmented baseline
outperforms the conventional greedy rollout baseline
both in terms of inference performance, generalization
performance and training speed. The test result indicates
that the proposed approach performs comparably to the
current state-of-the-art POMO baseline while requiring less
computational resources. The procedure is further applied
to classical TSP and CVRP, showing the potential to be a
general technique for solving various routing problems. It
would be interesting to apply the proposed methodology to
other asymmetric CO problems, such as the Multi-Depot
VRP and Multi-Depot MSTOP, where the order of vehicles
break the symmetry in solution representations. Applying
the proposed approach to missions involving the cooperation
between agents would be also a meaningful extension of this
study [37]. Another promising subject for future study is
to handle the instance-augmentation inference for problems
with many vehicles. We can tackle these large problems by
breaking them into smaller, more manageable subproblems.
By doing so, we can utilize our model (that is trained for
2 or 3 vehicles) to iteratively solve portions of the larger
problem. Subsequently, we can then concatenate the
individual solutions to generate a comprehensive solution for
the entire fleet. While this iterative approach may not yield
optimal solutions, it may produce near-optimal solutions
rapidly, as our model solves in the order of 10 ms. We also
acknowledge that the current implementation of DDTM
architecture is heavy, resulting in a longer training time
compared to the original AM. One possible resolution would

(a) (b)

Fig. 17   Generalization results for (a) TSP and (b) CVRP

	 D. H. Lee, J. Ahn

be to “compress” the model [38, 39] for efficient training
and inference.

Funding  Open Access funding enabled and organized by KAIST.
This work was prepared at the Korea Advanced Institute of Sci-
ence and Technology, Department of Aerospace Engineering, under
a research grant from the National Research Foundation of Korea
(2020R1A2C1005037).

Declarations 

Conflicts of interest  The authors have no competing interests to dis-
close.

Code  Our DDTM implementation and training methodology code
based on the instance-augmentation baseline with maximum entropy
is publicly available at https://​github.​com/​leedh​0124/​Deep-​Dynam​ic-​
Trans​former-​Model-​for-​Multi-​Start-​Team-​Orien​teeri​ng-​Probl​em.

Open Access  This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in
the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

	 1.	 Coutinho WP, Battarra M, Fliege J (2018) The unmanned aerial
vehicle routing and trajectory optimisation problem, a taxonomic
review. Comput Ind Eng 120:116–28. https://​doi.​org/​10.​1016/j.​
cie.​2018.​04.​037

	 2.	 Rojas Viloria D, Solano-Charris EL, Muñoz-Villamizar A,
Montoya-Torres JR (2021) Unmanned aerial vehicles/drones in
vehicle routing problems: a literature review. Int Trans Oper Res
28:1626–57. https://​doi.​org/​10.​1111/​itor.​12783

	 3.	 Kool W, Hoof HV, Welling M (2019) Attention, Learn to Solve
Routing Problems! In: 2019 International Conference on Learning
Representations (ICLR).https://​doi.​org/​10.​48550/​arXiv.​1803.​08475

	 4.	 Kwon Y-D, Choo J, Kim B, Yoon I, Gwon Y, Min S (2020) Pomo:
Policy optimization with multiple optima for reinforcement learn-
ing. In: Advances in Neural Information Processing Systems
(NeurIPS), 21188–98. https://​doi.​org/​10.​48550/​arXiv.​2010.​16011

	 5.	 Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez
AN, Kaiser Ł, Polosukhin I (2017) Attention is all you need.
In: Proceedings of the 31st International Conference on Neural
Information Processing Systems, 6000–10. Curran Associates
Inc, Long Beach, California, USA. https://​dl.​acm.​org/​doi/​10.​5555/​
32952​22.​32953​49

	 6.	 Bresson X, Laurent T (2021) The transformer network for the
traveling salesman problem. In: ArXiv. https://​doi.​org/​10.​48550/​
arXiv.​2103.​03012

	 7.	 Peng B, Wang J, Zhang Z (2020) A deep reinforcement learn-
ing algorithm using dynamic attention model for vehicle routing
problems. In. https://​doi.​org/​10.​48550/​arXiv.​2002.​03282

	 8.	 Eysenbach B, Levine S (2021) Maximum entropy rl (provably)
solves some robust rl problems. In. https://​doi.​org/​10.​48550/​arXiv.​
2103.​06257

	 9.	 Ahmed Z, Le Roux N, Norouzi M, Schuurmans D (2019) Under-
standing the impact of entropy on policy optimization. In: Inter-
national conference on machine learning, 151–60. PMLR. https://​
doi.​org/​10.​48550/​arXiv.​1811.​11214

	10.	 Archetti C, Grazia Speranza M, Vigo D (n.d.) Chapter 10: Vehi-
cle Routing Problems with Profits. In: Vehicle Routing (MOS-
SIAM Series on Optimization). https://​epubs.​siam.​org/​doi/​abs/​10.​
1137/1.​97816​11973​594.​ch10

	11.	 Archetti C, Bianchessi N, Speranza MG (2013) Optimal solutions
for routing problems with profits. Discret Appl Math 161:547–57.
https://​doi.​org/​10.​1016/j.​dam.​2011.​12.​021

	12.	 Vansteenwegen P, Souffriau W, Van Oudheusden D (2011) The
orienteering problem: a survey. Eur J Oper Res 209:1–10. https://​
doi.​org/​10.​1016/j.​ejor.​2010.​03.​045

	13.	 Butt SE, Ryan DM (1999) An optimal solution procedure for the
multiple tour maximum collection problem using column genera-
tion. Comput Oper Res 26:427–41. https://​doi.​org/​10.​1016/​S0305-​
0548(98)​00071-9

	14.	 Boussier S, Feillet D, Gendreau M (2007) An exact algorithm for
team orienteering problems. 4OR 5:211–30. https://​doi.​org/​10.​
1007/​s10288-​006-​0009-1

	15.	 Bono G, Dibangoye JS, Simonin O, Matignon L, Pereyron F
(2021) Solving multi-agent routing problems using deep attention
mechanisms. IEEE Trans Intell Transp Syst 22:7804–13. https://​
doi.​org/​10.​1109/​TITS.​2020.​30092​89

	16.	 Lin S-W (2013) Solving the team orienteering problem using
effective multi-start simulated annealing. Appl Soft Comput
13:1064–73. https://​doi.​org/​10.​1016/j.​asoc.​2012.​09.​022

	17.	 Lin S-W, Yu VF (2017) Solving the team orienteering problem
with time windows and mandatory visits by multi-start simulated
annealing. Comput Ind Eng 114:195–205. https://​doi.​org/​10.​
1016/j.​cie.​2017.​10.​020

	18.	 Hapsari I, Surjandari I, Komarudin K (2019) Solving multi-
objective team orienteering problem with time windows using
adjustment iterated local search. J Ind Eng Int 15:679–93. https://​
doi.​org/​10.​1007/​s40092-​019-​0315-9

	19.	 Bello I, Pham H, Le QV, Norouzi M, Bengio S (2017) Neural
Combinatorial Optimization with Reinforcement Learning. In:
2017 International Conference on Learning Representations
(ICLR). https://​doi.​org/​10.​48550/​arXiv.​1611.​09940

	20.	 Vinyals O, Fortunato M, Jaitly N (2015) Pointer networks. In:
Advances in Neural Information Processing Systems (NeurIPS).
https://​doi.​org/​10.​48550/​arXiv.​1506.​03134

	21.	 Khalil E, Dai H, Zhang Y, Dilkina B, Song L (2017) Learning
combinatorial optimization algorithms over graphs. In: Advances
in Neural Information Processing Systems (NeurIPS). https://​doi.​
org/​10.​48550/​arXiv.​1704.​01665

	22.	 Nazari M, Oroojlooy A, Snyder L, Takác M (2018) Reinforcement
learning for solving the vehicle routing problem. In: Advances in
Neural Information Processing Systems (NeurIPS). https://​doi.​
org/​10.​48550/​arXiv.​1802.​04240

	23.	 Deudon M, Cournut P, Lacoste A, Adulyasak Y, Rousseau LM
(2018) Learning heuristics for the tsp by policy gradient. In: Inter-
national conference on the integration of constraint programming,
artificial intelligence, and operations research, 170–81. Springer.
https://​doi.​org/​10.​1007/​978-3-​319-​93031-2_​12

	24.	 Cappart Q, Moisan T, Rousseau L-M, Prémont-Schwarz I, Cire A
(2020) Combining reinforcement learning and constraint program-
ming for combinatorial optimization. In: ArXiv. https://​doi.​org/​
10.​48550/​arXiv.​2006.​01610

	25.	 Li J, Ma Y, Gao R, Cao Z, Lim A, Song W, Zhang J (2021) Deep
reinforcement learning for solving the heterogeneous capacitated

https://github.com/leedh0124/Deep-Dynamic-Transformer-Model-for-Multi-Start-Team-Orienteering-Problem
https://github.com/leedh0124/Deep-Dynamic-Transformer-Model-for-Multi-Start-Team-Orienteering-Problem
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/j.cie.2018.04.037
https://doi.org/10.1016/j.cie.2018.04.037
https://doi.org/10.1111/itor.12783
https://doi.org/10.48550/arXiv.1803.08475
https://doi.org/10.48550/arXiv.2010.16011
https://dl.acm.org/doi/10.5555/3295222.3295349
https://dl.acm.org/doi/10.5555/3295222.3295349
https://doi.org/10.48550/arXiv.2103.03012
https://doi.org/10.48550/arXiv.2103.03012
https://doi.org/10.48550/arXiv.2002.03282
https://doi.org/10.48550/arXiv.2103.06257
https://doi.org/10.48550/arXiv.2103.06257
https://doi.org/10.48550/arXiv.1811.11214
https://doi.org/10.48550/arXiv.1811.11214
https://epubs.siam.org/doi/abs/10.1137/1.9781611973594.ch10
https://epubs.siam.org/doi/abs/10.1137/1.9781611973594.ch10
https://doi.org/10.1016/j.dam.2011.12.021
https://doi.org/10.1016/j.ejor.2010.03.045
https://doi.org/10.1016/j.ejor.2010.03.045
https://doi.org/10.1016/S0305-0548(98)00071-9
https://doi.org/10.1016/S0305-0548(98)00071-9
https://doi.org/10.1007/s10288-006-0009-1
https://doi.org/10.1007/s10288-006-0009-1
https://doi.org/10.1109/TITS.2020.3009289
https://doi.org/10.1109/TITS.2020.3009289
https://doi.org/10.1016/j.asoc.2012.09.022
https://doi.org/10.1016/j.cie.2017.10.020
https://doi.org/10.1016/j.cie.2017.10.020
https://doi.org/10.1007/s40092-019-0315-9
https://doi.org/10.1007/s40092-019-0315-9
https://doi.org/10.48550/arXiv.1611.09940
https://doi.org/10.48550/arXiv.1506.03134
https://doi.org/10.48550/arXiv.1704.01665
https://doi.org/10.48550/arXiv.1704.01665
https://doi.org/10.48550/arXiv.1802.04240
https://doi.org/10.48550/arXiv.1802.04240
https://doi.org/10.1007/978-3-319-93031-2_12
https://doi.org/10.48550/arXiv.2006.01610
https://doi.org/10.48550/arXiv.2006.01610

Multi‑start team orienteering problem for UAS mission re‑planning with data‑efficient deep…

vehicle routing problem. IEEE Trans Cybern. https://​doi.​org/​10.​
48550/​arXiv.​2110.​02629

	26.	 Li K, Zhang T, Wang R, Wang Y, Han Y, Wang L (2021) Deep
reinforcement learning for combinatorial optimization: covering
salesman problems. IEEE Trans Cybern. https://​doi.​org/​10.​48550/​
arXiv.​2102.​05875

	27.	 Xu Y, Fang M, Chen L, Gangyan X, Yali D, Zhang C (2021) Rein-
forcement learning with multiple relational attention for solving
vehicle routing problems. IEEE Trans Cybern. https://​doi.​org/​10.​
1109/​TCYB.​2021.​30891​79

	28.	 Pan W, Liu SQ (2023) Deep reinforcement learning for the
dynamic and uncertain vehicle routing problem. Appl Intell
53:405–22. https://​doi.​org/​10.​1007/​s10489-​022-​03456-w

	29.	 Wang Q (2022) VARL: a variational autoencoder-based reinforce-
ment learning Framework for vehicle routing problems. Appl
Intell 52:8910–23. https://​doi.​org/​10.​1007/​s10489-​021-​02920-3

	30.	 Joshi CK, Laurent T, Bresson X (2019) On learning paradigms
for the travelling salesman problem. In ArXiv. https://​doi.​org/​10.​
48550/​arXiv.​1910.​07210

	31.	 Kool W, van Hoof H, Welling M (2019) Buy 4 reinforce samples,
get a baseline for free! In: ICLR 2019 Deep Reinforcement Learn-
ing meets Structured Prediction Workshop. https://​openr​eview.​net/​
forum?​id=​r1lgT​GL5DE. Accessed 23 Jun 2022

	32.	 Kool W, van Hoof H, Welling M (2019) Stochastic beams
and where to find them: The gumbel-top-k trick for sampling
sequences without replacement. In: International Conference on
Machine Learning (ICML), 3499–508. PMLR. https://​doi.​org/​10.​
48550/​arXiv.​1903.​06059

	33.	 Croes GA (1958) A method for solving traveling-salesman
problems. Oper Res 6:791–812. https://​www.​jstor.​org/​stable/​
167074. Accessed 23 Jun 2022

	34.	 Gurobi Optimization, LLC (2018) Gurobi optimizer reference
manual. https://​www.​gurobi.​com

	35.	 Williams RJ (1992) Simple statistical gradient-following algo-
rithms for connectionist reinforcement learning. Mach Learn
8:229–56. https://​doi.​org/​10.​1007/​BF009​92696

	36.	 Sutton RS, Barto AG (2018) Reinforcement learning: An intro-
duction. Cambridge, MIT press

	37.	 Sultana N, Chan J, Sarwar T, Qin AK (2021) Learning to Optimise
Routing Problems using Policy Optimisation. In: 2021 Interna-
tional Joint Conference on Neural Networks (IJCNN), 1–8. IEEE.
https://​doi.​org/​10.​1109/​IJCNN​52387.​2021.​95340​10

	38.	 Kingma DP, Ba J (2014) Adam: A method for stochastic optimiza-
tion. In. https://​doi.​org/​10.​48550/​arXiv.​1412.​6980

	39.	 Tsiligirides T (1984) Heuristic methods applied to orienteering.
J Oper Res Soc 35:797–809. https://​www.​jstor.​org/​stable/​25826​
29. Accessed 23 Jun 2022

Publisher's Note  Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Dong Ho Lee  is a research scientist within the Department of Aero-
space Engineering at KAIST. He received both his bachelor’s degree
and master’s degree in Aerospace Engineering from KAIST in 2017
and 2022, respectively. His primary focus lies at the intersection of
optimization, machine learning and control theory, especially in the
areas of interactive autonomous systems.

Jaemyung Ahn  is a professor of aerospace engineering at the Korea
Advanced Institute of Science and Technology (KAIST; Daejeon,
South Korea). His research interests include design and optimization of
aerospace missions/systems, compexity analysis, and flight mechanics.
From 2008 to 2010, he worked for Bain & Company as a management
consultant. He also worked for the Korea Aerospace Research Institute
from 1999 to 2004 as a system engineer. He received his B.S. and M.S.
degrees from Seoul National University in 1997 and 1999, and Ph.D.
degree in aeronautics and astronautics from MIT in 2008.

https://doi.org/10.48550/arXiv.2110.02629
https://doi.org/10.48550/arXiv.2110.02629
https://doi.org/10.48550/arXiv.2102.05875
https://doi.org/10.48550/arXiv.2102.05875
https://doi.org/10.1109/TCYB.2021.3089179
https://doi.org/10.1109/TCYB.2021.3089179
https://doi.org/10.1007/s10489-022-03456-w
https://doi.org/10.1007/s10489-021-02920-3
https://doi.org/10.48550/arXiv.1910.07210
https://doi.org/10.48550/arXiv.1910.07210
https://openreview.net/forum?id=r1lgTGL5DE
https://openreview.net/forum?id=r1lgTGL5DE
https://doi.org/10.48550/arXiv.1903.06059
https://doi.org/10.48550/arXiv.1903.06059
https://www.jstor.org/stable/167074
https://www.jstor.org/stable/167074
https://www.gurobi.com
https://doi.org/10.1007/BF00992696
https://doi.org/10.1109/IJCNN52387.2021.9534010
https://doi.org/10.48550/arXiv.1412.6980
https://www.jstor.org/stable/2582629
https://www.jstor.org/stable/2582629

	Multi-start team orienteering problem for UAS mission re-planning with data-efficient deep reinforcement learning
	Abstract
	1 Introduction
	2 Literature review
	3 Problem definition
	3.1 Mathematical formulation of MSTOP
	3.2 MDP formulation of MSTOP

	4 Proposed model and solution procedure
	4.1 Proposed framework
	4.2 Encoder-decoder architecture of DDTM

	5 Data-efficient training with proposed REINFORCE baseline
	5.1 Preliminary
	5.2 Choice of REINFORCE baseline b(s)
	5.3 Combining with maximum entropy objective

	6 Experiments and discussion
	6.1 Problem setup and hyperparameters
	6.2 Inference result
	6.3 Ablation study
	6.4 Generalization result

	7 Conclusion
	References

