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Abstract
In this paper, we study the Multi-Start Team Orienteering Problem (MSTOP), a mission re-planning problem where vehi-
cles are initially located away from the depot and have different amounts of fuel. We consider/assume the goal of multiple 
vehicles is to travel to maximize the sum of collected profits under resource (e.g., time, fuel) consumption constraints. Such 
re-planning problems occur in a wide range of intelligent UAS applications where changes in the mission environment force 
the operation of multiple vehicles to change from the original plan. To solve this problem with deep reinforcement learning 
(RL), we develop a policy network with self-attention on each partial tour and encoder-decoder attention between the partial 
tour and the remaining nodes. We propose a modified REINFORCE algorithm where the greedy rollout baseline is replaced 
by a local mini-batch baseline based on multiple, possibly non-duplicate sample rollouts. By drawing multiple samples per 
training instance, we can learn faster and obtain a stable policy gradient estimator with significantly fewer instances. The 
proposed training algorithm outperforms the conventional greedy rollout baseline, even when combined with the maximum 
entropy objective. The efficiency of our method is further demonstrated in two classical problems – the Traveling Sales-
man Problem (TSP) and the Capacitated Vehicle Routing Problem (CVRP). The experimental results show that our method 
enables models to develop more effective heuristics and performs competitively with the state-of-the-art deep reinforcement 
learning methods.

Keywords  Deep reinforcement learning · Data-efficient training · Combinatorial optimization · Mission re-planning · 
Autonomous systems

1  Introduction

As the operational technology of Unmanned Aerial Systems 
(UAS) matures, there is a growing need for fast and accurate 
high-level decision-making for autonomous mission plan-
ning. The ability to adjust evolving mission objectives is 
essential for addressing the dynamic nature of real-world 
scenarios, enhancing safety, optimizing resources, and 
ensuring the success of missions across various industrial, 
civil, and defense sectors. For example, E-commerce drones 
for last-mile delivery should be able to optimize routes to 

ensure timely service. Surveillance drones monitoring ongo-
ing traffic require adaptive responses for optimal data collec-
tion. Several other potential applications include forest fire 
detection in emergency response, geographical monitoring 
for scientific research (where objectives may change based 
on initial findings), surveying and mapping for urban plan-
ning, airborne reconnaissance for border control, and search 
and rescue operations in disaster-stricken areas where UAS 
assist in locating and aiding survivors [1, 2].

Prior UAS mission studies addressed variants of the vehi-
cle routing problem formulated as the NP-hard combina-
torial optimization (CO), such as the Traveling Salesman 
Problem (TSP) and the Capacitated Vehicle Routing Prob-
lem (CVRP). These classical CO problems are primarily 
concerned with mission preplanning based on the current 
knowledge of the environment. However, missions in real 
life involve many unknown and possibly changing factors 
such as sudden gusts, GPS denial, unexpected threats, ter-
rain uncertainties, fuel leakage, and hardware malfunction. 
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Once the vehicles have left the base, it is critical to respond 
to the unexpected environmental changes by managing mis-
sion objectives autonomously, thus prompting the need for 
near-optimal mission re-planning in real-time. Furthermore, 
visiting all nodes may not be practical considering resource 
availability. Instead, such applications may require vehicles 
to visit as many nodes as possible within a maximum dura-
tion given on each route. These characteristics of real-life 
applications give rise to the Multi-Start Team Orienteering 
Problem (MSTOP), which is a generalization of the Team 
Orienteering Problem (TOP) with additional degrees of free-
dom on launch location and available fuel for each vehicle. 
Many routing problems assume vehicles that identically 
begin routing from the depot. In contrast, MSTOP mod-
els the real-life mission re-planning scenario by launching 
vehicles located away from the depot, each with a different 
amount of fuel available.

The MSTOP is formulated in the context of route plan-
ning for intelligent UAS and robotic agent systems. Given 
the nature of higher-level decision making, more efficient 
route plans for optimal assignments among agents are desir-
able. For example, a fleet of UAVs suppressing forest fires 
needs an optimal order of visiting sites to make the most out 
of their limited volume of extinguishing water. The fleet may 
also be subject to frequently updating their assigned spots as 
wildfires can spread unpredictably, which calls for re-plan-
ning the routes. Another application is the efficient operation 
of unmanned delivery drones. If a delivery drone were to 
visit a number of sites to deliver multiple parcels, the order 
of sites to be visited can be optimized so that operational 
revenue is maximized. On top of that, a scheduled delivery 
site can be modified at the request of the customer, and the 
drones already in delivery require a new mission plan. In 
this manner, the MSTOP belongs to a general higher-level 
planning framework for a wide range of applications in the 
UAS and robotic systems.

Various traditional approaches have been applied to solve 
the CO problems so far. For example, exact algorithms are 
generally based on branch-and-bound or branch-and-cut 
approaches to obtain optimal solutions. However, finding 
an optimal solution may take an inordinate amount of time 
when the problem size grows. Approximate algorithms rap-
idly produce near-optimal solutions that are often tailored for 
specific CO problems. Heuristic approaches utilize domain 
expertise to design hand-crafted strategies for progres-
sively constructing a solution. These approaches may not 
be straightforwardly applicable to other routing problems.

The deep reinforcement learning (RL) approach has 
recently emerged as a fast and powerful heuristic solver 
to find near-optimal solutions to many CO problems. This 
paper aims to develop a deep RL-based construction frame-
work for solving the MSTOP. We propose a data-efficient 
training methodology that improves the solution quality 

and learning speeds. To demonstrate the effectiveness of 
our training methodology, we experiment on two classical 
CO problems: TSP and CVRP. These experiments confirm 
that our training methodology outperforms the conventional 
methodology in [3] and is comparable to the state-of-the-art 
policy optimization with multiple optima for reinforcement 
learning (POMO) [4] while using significantly smaller data. 
In addition, we identify the asymmetry in the solution repre-
sentation of MSTOP and use it to improve performance dur-
ing inference further. With this advanced inference strategy, 
our model can generate high-quality solutions in a notably 
short time, bringing us a step closer to real-time mission 
re-planning.

In summary, our primary contributions are threefold. 
First, we explore the MSTOP, a routing problem that reflects 
a real-life mission re-planning scenario, using a data-driven 
method (deep reinforcement learning). Specifically, we fol-
low the Transformer’s encoder-decoder architecture [5]. We 
use a standard encoder with a multi-head attention mecha-
nism. For the decoder, we adapt the decoding strategy in 
[6], the current state-of-the-art deep RL solver for a single 
vehicle TSP, and generalize the strategy to handle multiple 
vehicle launch locations. Our overall approach adopts the 
nested inner/outer loop framework similar to [7] that updates 
the current state after each vehicle returns to the depot to 
reflect the changes after a partial tour is complete. We name 
our neural policy network the Deep Dynamic Transformer 
Model (DDTM).

Second, we propose a data-efficient training approach 
based on a baseline derived from multiple instances gen-
erated by applying linear coordinate transformations to a 
single instance. These augmented instances are distinct in 
their raw form since each node in the 2D cartesian plane 
has been transformed. But, as a graph, these are identical 
because the lengths between the nodes are preserved. We 
replace the greedy rollout baseline with a local, mini-batch 
mean (obtained by rolling out all augmented instances) and 
combine it with the maximum entropy RL method [8, 9]. 
Our proposed methodology outperforms the computation-
ally expensive greedy rollout baseline [3] and significantly 
expedites the learning process.

Finally, we improved the efficiency of the inference phase 
by using the instance-augmentation tailored for the MSTOP. 
Unlike TSP and CVRP, solutions to MSTOP are inherently 
asymmetric since the order of vehicles breaks the symmetry 
in the solution representations (see Fig. 1). We utilize the 
asymmetry in MSTOP solutions by permuting all vehicle 
orders and generating multiple rollouts for each permuta-
tion of vehicle order at the inference stage. This method is 
more efficient than the conventional sampling and instance-
augmentation inference (using a single-vehicle order).

The remainder of this paper is as follows. Section II 
briefly introduces past studies related to our work (e.g., deep 
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RL approaches for classical CO problems). Section III for-
mulates the MSTOP as the Mixed Integer Linear Program-
ming (MILP) and Markov Decision Process (MDP). Section 
IV describes our DDTM policy network in detail. Section V 
describes our proposed REINFORCE baseline and presents 
inference results on various routing problems. In Section VI, 
to corroborate the effectiveness of our method, we report an 
ablation study among several training baselines and present 
generalization results. Finally, Section VII concludes the 
paper and discusses future research directions.

2 � Literature review

The Team Orienteering Problem (TOP) belongs to the 
broader Vehicle Routing Problem with Profits (VRPP) class. 
A fleet of vehicles is given, but the vehicles are not required 
to visit all the nodes or customers. Each node is associated 
with a prize (profit), denoting its relative attractiveness. The 
objective is to find a subset of nodes that maximizes the total 
collected profits while satisfying a limit on the maximum 
duration of each route [10–12]. Exact algorithms to solve the 
TOP include approaches based on column generation and 
constraint branching [13] and branch-and-price algorithm 
[14]. Taking the TOP as a basis, we devise the MSTOP by 
extending it with two additional degrees of freedom: launch 
locations of vehicles and remaining fuel for each vehicle. 
The MSTOP stands in contrast to traditional CO problems in 
that the launch locations for each vehicle are distinct. There-
fore, the problem state seen by each vehicle is naturally dif-
ferent at each construction step [15]. It is also important 
to note that the context of multi-start in MSTOP stands in 
contrast with a number of existing works sharing the same 
term. For example, Lin et al. [16, 17] uses the term multi-
start to refer to a variant of simulated annealing approach 
they used to solve TOP, while Hapsari et al. [18] deals with 
multi-objective TOP.

One of the early attempts to apply the deep RL approach 
to CO in a constructive manner is the study by Bello et al. 
[19]. They used the pointer network (PtrNet) architecture 
[20] to encode input sequences and construct the node 

sequence in the decoder. Their model was tested on the TSP 
and the 0–1 knapsack problem (KP) and yielded close-to-
optimal results. The PtrNet model is further improved by 
Khalil et al. [21] and Nazari et al. [22]. Deudon et al. [23] 
used the pointer network with an attention encoder. Inspired 
by the Transformer model for machine translation [5], Kool 
et al. [3] proposed the attention model (AM) based on the 
transformer architecture to solve various CO problems such 
as the TSP, VRP, and Orienteering Problem (OP). Cappart 
et al. [24] combined the RL and constraint programming 
(CP) to solve the TSP with Time Windows (TSPTW) by 
learning branching strategies. Additionally, Bono et  al. 
[15] proposed a modified Transformer model to handle the 
dynamic and stochastic VRPs (DS-VRPs) by using online 
measurements of the environment to online select the next 
vehicle via a vehicle-customer intersection module. More 
recently, Li et al. [25] improved the AM to solve the Hetero-
geneous Capacitated VRP (HCVRP). Li et al. [26] proposed 
the attention-dynamic model to solve the covering sales-
man problem (CSP). Xu et al. [27] designed an attention 
model with multiple relational attention mechanism that 
better captures the transition dynamics. Pan and Liu [28] 
designed a graph-based partially observable MDP (POMDP) 
that captures the changes in the customer demands to solve 
a dynamic and uncertain VRP using a deep neural network 
model with dynamic attention mechanism. Besides atten-
tion model, Wang [29] proposed a variational autoencoder-
based reinforcement learning methodology using a graph 
reasoning network for classic vehicle routing problems. In 
terms of performance, Kwon et al. [4] introduced the POMO 
method which has demonstrated state-of-the-art results on 
TSP, CVRP, and KP. During training, the POMO decoder 
generates multiple heterogeneous trajectories that start at 
every node to maximize entropy on the first action.

The majority of past studies used policy gradient 
approaches, which have advantages over supervised learn-
ing (SL) [30]. Bello et al. [19] used an actor-critic algo-
rithm to train their model. However, Kool et al. [3] showed 
that a greedy rollout baseline yields better results than a 
(learned) critic baseline. Many subsequent works, includ-
ing [6, 25–27], and [7], used the greedy rollout baseline. 

Fig. 1   Multiple representations for an optimal solution exist in TSP and CVRP. However, for MSTOP, the order of vehicles breaks the symmetry 
in solution representation
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Although the greedy rollout baseline is effective, it requires 
an additional forward-pass of the model, increasing the 
computational load on the device. To leverage more data 
parallelism for efficient learning of training instances, Kool 
et al. [31, 32] proposed to use a local baseline equal to the 
average return over k trajectories sampled without replace-
ment from a single instance using Stochastic Beam Search. 
They reported that this baseline performed on par or slightly 
better than the computationally expensive greedy rollout and 
significantly better than the batch baseline. The benefit of 
sampling without replacement is that the gradient estima-
tors do not lose much final performance while learning from 
substantially fewer instances (number of training instances 
is reduced by factor of k).

In addition, Kwon et al. [4] used a shared baseline based 
on all POMO samples, taking the average tour length over 
n sample trajectories from a single instance, where n is the 
number of nodes. Like multiple-sample baselines in [31], the 
POMO-shared baseline is local, concentrating on a single 
instance. As reported in [4], their baseline is very effec-
tive since it generates n, typically larger than k in [31], non-
duplicative sample trajectories for a single instance. How-
ever, the POMO requires an additional tensor dimension, 
and as the graph size n increases, the tensor size increases 
by n-fold. Consequently, while the training time of POMO 
is comparable to that of REINFORCE with greedy rollout 
(owing to the parallel generation of trajectories), it requires 
more GPU memory. Moreover, the POMO training may not 
be readily applicable on problems such as MSTOP, where 
we cannot simply use all the nodes as starting points for 
exploration.

Many strategies for efficient inference were also pro-
posed in prior studies. Bello et al. [19] proposed the “one-
shot” greedy inference and sampling strategies. Deudon 
et al. [23] improved their solution quality by refining it 
with the 2-Opt heuristic [33]. Kwon et al. [4] suggested × 8 

instance-augmentation to generate multiple trajectories and 
select the best solution to obtain better results.

3 � Problem definition

3.1 � Mathematical formulation of MSTOP

This section presents the MILP formulation of MSTOP. In 
particular, this formulation is defined on a graph following 
[10]. A complete graph G consists of the set of all nodes (N) 
and the set of arcs (A). We summarize key notations in the 
mathematical formulation of MSTOP in Table 1. Since each 
vehicle is associated with a unique starting location, we drop 
the subscript k in the notation vk for simplicity whenever its 
inclusion is implied.

In the MSTOP, multiple vehicles begin at locations dif-
ferent from the depot. Each vehicle has an available amount 
of fuel at the start. Given the vehicle set, the MSTOP deter-
mines K routes that maximize the total profits collected over 
the partial routes while satisfying a maximum duration con-
straint on each route.

In the MILP formulation below, xijk denotes a binary 
variable, which equals one if arc (i, j) in A is traversed by 
vehicle k (in K), and zero otherwise. Also, binary variable 
yik equals one if node i (in X) is visited by vehicle k (in K) 
and otherwise zero. tij is measured as the Euclidean distance 
between the two nodes, and the subscript v denotes a vehi-
cle’s launching node. The MILP formulation for the MSTOP 
is as follows:

(MILP Formulation for MSTOP)

subject to

(1)max
∑

i∈X�{0}

pi

K∑

k=1

yik,

Table 1   Notation table for 
MSTOP

Notation Description

G = (N, A) Complete graph
N = X∪ V Set of all nodes
X = {0, 1, …, n} Customer (1 ~ n) and depot (0) nodes

V = 
{
vk
}K

k=1
Initial locations of K vehicles

A = An∪ Ak Set of arcs or edges
An= {(i, j)|i, j ∈ X, i ≠ j} Set of arcs among customer/depot nodes
Ak= {(k, j)|k ∈ V , j ∈ X} Set of arcs among vehicle locations and remaining nodes
Tmax Maximum route duration for all vehicles
tij Travelling length associated with arc (i,j)
fk Available fuel amount at the start for vehicle k ( ∈ K)
pi Scalar prize associated with visiting node i ( ∈ X)
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Equation (1) expresses the objective of the problem, which is 
maximizing the collected profit from routes. Equations (2)-(10) 
present the constraints of the problem. Equation (2) ensures 
that all routes end at the depot. Equation (3) guarantees that an 
arc enters a node and leaves from that node. Equations (4)-(5) 
ensure that a route begins at the initial vehicle location. Equa-
tion (6) constrains the number of total routes (K). Equation (7) 
imposes a constraint that each node is visited at most once. 
Equation (8) limits the maximum duration or length for each 
route. Lastly, Eqs. (9)-(10) define the decision variables.

Note that the local constraints of the formulation do not 
guarantee that all nodes in a route are properly connected 
without subtours. To generate a feasible set of routes, we 
add the subtour elimination constraints. However, given the 
nature of routing problems, adding such constraints before 
the optimization can significantly increase the model size 
for large-scale problems. As a result, we add the subtour 
elimination constraints in a lazy fashion [34]. This way, we 
can remove solutions with subtours during the optimization.

3.2 � MDP formulation of MSTOP

This section introduces the MDP formulation of the MSTOP. 
To apply reinforcement learning to MSTOP, we model the 

(2)
∑

i∈X�{0}

xi0k + xv0k = 1 k = 1, ...,K ,

(3)

�

j∈X,j<i

xijk +
∑

j∈X,i<j

xjik + xvik = 2yik ∀i ∈ X�{0}, k = 1, ...,K ,

(4)
∑

j∈X

xvjk = yvk k = 1, ...,K ,

(5)
K∑

k=1

yvk = K,

(6)
K∑

k=1

y0k = K,

(7)
K∑
k=1

yik ≤ 1 ∀i ∈ X�{0} ,

(8)
∑

(i,j)∈A,j<i

tijxijk + fk ≤ Tmax k = 1, ...,K,

(9)yik ∈ {0, 1} ∀i ∈ X ∪ {v}, k = 1, ...,K,

(10)
xijk ∈ {0, 1} ∀(i, j) ∈ A, j < i, i ∈ X�{0} ∪ {v}, k = 1, ...,K.

problem as a sequential decision-making process, where an 
agent performs a sequence of actions (i.e., decides which 
node to visit) through interactions with the surrounding 
environment (i.e., observing changes in the state) to maxi-
mize the cumulative reward.

In our MDP setting, a vehicle is first assigned at ran-
dom. The agent selects nodes to visit starting from the 
initial position of the assigned vehicle. Once a partial 
route is constructed, the agent chooses the next vehicle 
starting at a different location. The complete solution is 
constructed by concatenating the individual partial routes. 
We model the MSTOP as an MDP defined by a 4-dimen-
sional tuple < S, A, P, R > , where S denotes the state 
space, A the action space, P the state transition model, 
and R the reward model.

State space (S)  Each state at time step t is defined as a 
tuple st (= < Xt, Vt >). The first component of the tuple, 
Xt, denotes the set of all nodes (= {xt

i
}), and the sec-

ond component, Vt, expresses the states of all vehicles 
(= {vt

k
}). Here, xi

t (= (ri, pi
t)) contains the information of 

a node where ri (= (xi, yi)) is the location and pi
t is the 

prize assigned to the node. Also, vt
k
=
(
�t
k
, f t
k
,Ot

k

)
 denotes 

the vehicle information where �t
k
=
(
xk, yk

)
 represents the 

vehicle location, fk
t is the vehicle’s available/remaining 

fuel amount, and Ok
t is the total prizes collected until step 

t. We denote the terminal time as T at which all vehicles 
arrive at the depot.

Action space (A)  The permissible set of actions in our MDP 
is the choice of the next node to visit by considering the 
vehicle’s current partial route and the amount of fuel. We 
denote each action at time step t (at ∈ A) as xj

t and view the 
action as an addition of a node to the partial route. The con-
struction of partial route satisfies the maximum travel dura-
tion constraint for each vehicle by action masking policy, i.e. 
masking the nodes that cannot be visited.
State transition model (P: S × A → S)  The state transition 
model describes how the current state (st) transitions to the 
next state (st+1) when an action (at) is taken. We adopt deter-
ministic transition dynamics, i.e., a vehicle moves to the 
chosen node with the probability of 1. Given the current 
vehicle k and chosen action at =

(
xt
j

)
 (i.e., the vehicle visits 

node j), we update the elements of 
{
xt
i

}
 and 

{
vt
k

}
 at step t as 

follows.

(11)pt+1
i

=

{
0 i = j

pt
i
i ≠ j

,

(12)�t+1
k

= rj,
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Equation (11) sets the prize associated with node j as 0 
when visited, and Eq. (12) updates the current location of 
vehicle k. Equation (13) updates the available amount of 
fuel by subtracting tij (distance between nodes i and j) from 
it. Equation (14) updates the total prize by adding the prize 
value obtained at node j (pj).

Reward model (R: S × A → ℝ)  We model the cumulative 
reward as the sum of total prizes collected from all partial 
routes. To be specific, the reward is defined as R =

∑K

k=1
OT

k
 . 

Termination time T, determined by the number of actions 
executed until the completion of all partial routes, defines 
the trajectory length.

(13)f t+1
k

= f t
k
− tij,

(14)Ot+1
k

= Ot
k
+ pt

i
.

4 � Proposed model and solution procedure

4.1 � Proposed framework

Figure  2 explains a framework proposed to solve the 
MSTOP, which contains inner and outer loops. The inner 
loop begins at the vehicle’s initial location and generates 
a partial route that terminates at the depot. Each partial 
route is a permutation of numbers ending with 0, as shown 
in Fig. 3. When the inner loop is finished, the outer loop 
updates the graph instance.

This procedure contrasts the models in [3], where the 
encoder is executed only once initially (t = 0). In classi-
cal CO problems, when a vehicle returns to the depot, 
the graph instance changes only slightly because the next 
vehicle starts at the same depot. However, constructing a 
partial route in an MSTOP modifies the graph instance. 
Not only does the next vehicle face a different set of nodes 

Generate Problem

Graph Embedding

Encoder

Start partial tour

Decoder 

Select next node

Partial tour 
complete?

Update state

No

Yes All tours 
constructed?

No

Done

Update state

Update graph 
embedding

Yes

depot

Vehicle A

Vehicle B

Vehicle C

depot

Vehicle A

Vehicle B

Vehicle C

Fig. 2   Diagram explaining the proposed framework
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(i.e., without visited nodes), but it also starts at a different 
location.

The rationale behind this sequential construction frame-
work, which addresses one vehicle at a time, is grounded in 
empirical observations that simultaneous consideration of 
the next node for each vehicle can impede training conver-
gence due to additional freedom in decision-making. During 
early training epochs, this additional complexity presents 
challenges for the model to “learn” to generate routes.

In the solution procedure, the encoder plays a piv-
otal role in transforming the raw features of the graph 
instance, encompassing mission node and vehicle data, 
into a hidden representation known as node-vehicle and 
graph embeddings. These embeddings, as computed in 
Eqs. (23) and (24), capture essential information about 
the spatial relationships and characteristics of the nodes 
and vehicles within the graph. The major interplay 
between the encoder and decoder occurs when the output 
of the encoder, comprising the node-vehicle embeddings 
and graph embedding, is sent as input to the decoder. 
Subsequently, the decoder leverages this information to 

extract relevant features, generating a probability dis-
tribution over non-visited (candidate) nodes that guides 
the selection of the next node in the route. This iterative 
process continues until the depot is chosen (i.e., complet-
ing an individual vehicle route). Following each partial 
route, the graph is updated before advancing to the next 
vehicle. Table 2 outlines key terminologies used in this 
section that describe the structure of DDTM.

4.2 � Encoder‑decoder architecture of DDTM

Figure 4 presents the encoder-decoder architecture of DDTM 
used for MSTOP. Figure 5 illustrates the encoder structure (for 
a single encoding layer). The encoder embeds the MSTOP 
features using separate parameters for the additional vehicle 
features – vehicle location and available fuel. We denote the 
embedded feature data as h(l), where l is the encoder layer. 
The embedded data as a whole represents the graph instance, 
and each element in h(l) is a mapping corresponding to each 
feature.

A good feature mapping needs to consider the feature’s con-
text within the graph. For example, the node representation 
should contain sufficient information to be selected among its 
neighbors and to determine its position in the output sequence. 
To understand how one feature is related to another from a 
broader perspective, we apply multi-head self-attention, which 
generates enhanced feature embeddings. The self-attention 
mechanism enables the encoder to effectively weigh and con-
sider the significance of different features of the input graph. 
The encoding steps are formally expressed as follows.

(15)h
(l)

0
=
[
x0, y0

]
Winit

0
,

(16)h
(l)

i
=
[
xi, yi, pi

]
Winit

node,i
for i ∈ {1, ...,N},

(17)ĥ
(l)

k
=
[
x̂k, ŷk, fk

]
Winit

veh,k
for k ∈ {1, ...,K},

Fig. 3   Complete MSTOP solution obtained by combining individual routes – each route is constructed by a single vehicle. Opaque nodes indi-
cate either (i) visited nodes (triangular) or (ii) vehicles that have arrived at the depot

Table 2   Summary of key terminologies for DDTM

Terminology Description

(x0,y0) Depot location
(xi,yi, pi) Node location and prize for mission i
(
x̂k, ŷk, fk

)
Location and fuel for vehicle k

h(l) Embedded feature data at lth encoder layer
nenc, ndec Number of encoder/decoder layers

h(nenc) Node-vehicle embedding

h
(nenc) Graph embedding

tdec Current decoding step
PEtdec

Positioning encoding at tdec

pdec
t

Probability distribution over all candidate nodes
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where dk = d/H with d (= 128) is a hyperparameter and H (= 8) 
is the number of heads. To compute multi-head attention, we 
concatenate the attention outputs of each head ( Zh

l
 ) as

The next embedded feature, h(l+1), is obtained by pass-
ing h(l) through a feed-forward layer with batch normaliza-
tion, residual connection, and ReLU activation as follows,

where  Wff

0
∈ ℝ

d×dh and  Wff

1
∈ ℝ

dh×d are trainable parameters 
with dh (= 512). After nenc encoding layers, the final output 
of the encoder is the node-vehicle embedding ( h(nenc) ) and 
the graph embedding ( h(

nenc) ) defined as

(18)h(l) =
[
h
(l)

0
, h

(l)

1
, ..., h

(l)

N
, ĥ

(l)

0
, ..., ĥ

(l)

K

]
,

(19)Ql = h(l)W
Q

l
, Kl = h(l)WK

l
, Vl = h(l)WV

l
,

(20)Zh
l
= attention

�
Ql,Kl,Vl

�
= Softmax

�
QlK

T
l√

dk

�
Vl,

(21)MHA
(
h(l)

)
=
[
Z1
l
, Z2

l
, ..., ZH

l

]
Wout

l
.

(22)h̃(l) = BN
(
h(l) +MHA

(
h(l)

))
,

(23)h(l+1) = FF
(
h̃(l)

)
= BN

(
W

ff

1
ReLU

(
W

ff

0
h̃(l)

)
+ h̃(l)

)
,

(24)h
(nenc)

=

⎧
⎪
⎪
⎨
⎪
⎪
⎩

1

N+K+1

�
N+1∑
i=0

h
i
(nenc) +

K∑
k=1

�h
(nenc)
k

�
if t = 0

1

N’+K’+1

�
N+1∑
i=0

h
i
(nenc) +

K∑
k=1

�h
(nenc)
k

�
if t > 0

where N’ (= N – Nvisited) is the remaining number of nodes 
and K’ is the remaining number of vehicles. After a partial 
route is constructed (t > 0), the graph instance seen by the 
next vehicle differs from that seen by the previous ones. We 
update the graph instance by computing h(nenc) and h(

nenc) 
using Eqs. (15)–(24), and mask the visited nodes using the 
outer product as,

where M ∈ ℝ
(N+K)×1 is a column mask vector that masks 

visited nodes and vehicles at the depot, 1 ∈ ℝ
(N+K)×1 is a 

column vector of ones, and ⊙ is the Hadamard product for 
matrices.

Given the node-vehicle and graph embeddings by the 
encoder, the decoder produces probability distributions 
( pdec

t
 ) for all candidate nodes and selects the next node. Can-

didate nodes are those not visited by any vehicle at the start 
of decoding. Our decoding strategy consists of three steps 
based on [6] as follows:

Step 1: We begin by computing the multi-head self-atten-
tion between the current node and the nodes in the current 
partial route. By examining the history of visited nodes 
for the current node, we obtain the contextual information 
up to the current decoding time, tdec. We first extract the 
current node embedding ( ̃htdec ) from the node-vehicle 
embeddings ( h(nenc) ), then concatenate it with the current 
amount of fuel ( f t

k
 ). We set tdec as zero at the start of the 

decoding for each partial route and increment it by one 

(25)
Matt = M⊗ 1T + 1⊗M

T −M⊗M
T ∈ ℝ

(N+K)×(N+K),

(26)

Zl = attention
�
Ql,Kl,Vl

�
= Softmax

�
QlK

T
l√

dk

⊙Matt

�
Vl,

Fig. 4   Encoder-Decoder architecture of DDTM
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per each node selection within the inner loop. Since the 
decoding starts at the vehicle’s initial location, we select 
the current node embedding as h̃0 = ĥ

(nenc)
k

 and update it 
as h̃tdec = h

(nenc)
a  , where a ( ∶= atdec−1 ∈ {1, ...,N} ) is the 

node selected in the previous step. Since the partial route 
begins at the vehicle’s location and ends at the depot, the 
order of nodes in the partial route matters. This charac-
teristic requires the addition of positional encoding [5] 
(which describes the position of a node within the graph 
instance so that each node can have a unique representa-

tion) to the linearly projected pair to generate 
◦

h

(l)

tdec
∈ ℝ

1×d 
as follows,

where PEtdec
 is a d-dimensional row vector. Each element 

of the vector is defined as

(27)
◦

h

(l)

tdec
=

[
h̃tdec , f

tdec
k

]
Wproj

o
+ PEtdec

,

Fig. 5   Encoder structure
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where i ∈ {0, 1, ..., d − 1} is the position along the d 
dimension.
Figure 6 illustrates the decoding Step 1. There are tdec vis-
ited nodes in the current partial route. We first compute the 
self-attention between ◦h

(l)

tdec

 and 
[
◦

h

(l)

0
,
◦

h

(l)

1
, ...,

◦

h

(l)

t
dec

−1

]
∈ ℝ

t
dec

×d . Step 

1 is mathematically described as follows (where dk = d/H).

(28)PEtdec,i
=

{
sin

(
tdec∕10000

2i∕d
)
if i is even

cos
(
tdec∕10000

2i∕d
)

if i is odd
,

(29)
◦

Ql = h
(l)
tdec
W

Q

l,sa
∈ ℝ

1×dk ,W
Q

l,sa
∈ ℝ

d×dk

(30)

Kl =

[
◦

h

(l)

0
,
◦

h

(l)

1
, ...,

◦

h

(l)

tdec−1

]
WK

l,sa
∈ ℝ

tdec×dk , WK
l,sa

∈ ℝ
d×dk ,

(31)

Vl =

[
◦

h

(l)

0
,
◦

h

(l)

1
, ...,

◦

h

(l)

tdec−1

]
WV

l,sa
∈ ℝ

tdec×dk , WV
l,sa

∈ ℝ
d×dk ,

(32)
◦

Z
h

l
= attention

�
Q

l
,K

l
,V

l

�
= Softmax

�
Q

l
K

T

l√
d
k

�
V
l
∈ ℝ

1×d
k ,

Step 2: This step queries the next node to visit among all 
candidate nodes. The step uses the encoder-decoder attention 
between the self-attention of a partial route (output of Step 1; 
denoted as h◦(l)tdec

 for coherence) and context node embeddings 
( Hnode ∈ ℝ

(N+2)×d ; node-vehicle embeddings with current 
vehicle embedding only (Eq. (34)). We mask the nodes that 
cannot be visited from the current location. Figure 7 illus-
trates the encoder-decoder attention in Step 2 of the decoding 
procedure. The following equations express Step 2.

(33)h
◦(l)

t
dec

← MHA(⋅)
|||sa =

[
Z
◦1

l
, Z

◦2

l
, ...,Z

◦H

l

]
W

out

l,sa
∈ ℝ

1×d
,W

out

l,sa
∈ ℝ

d×d
.

(34)
Hnode =

[
h0
(nenc), h1

(nenc), ..., hN
(nenc), ĥ

(nenc)
k

]
∈ ℝ

(N+2)×d,

(35)Ql,att =
◦

h

(l)

tdec
W

Q

l,att
∈ ℝ

1×dk , W
Q

l,att
∈ ℝ

d×dk ,

(36)Kl,att = HnodeW
K
l,att

∈ ℝ
(N+2)×dk , WK

l,att
∈ ℝ

d×dk ,

(37)Vl,att = HnodeW
V
l,att

∈ ℝ
(N+2)×dk , WV

l,att
∈ ℝ

d×dk ,

(38)◦

Z
h

l,att
= attention

�
Q

l,att,Kl,att,Vl,att

�
= Softmax

�
Q

l,attK
T

l,att
√
d
k

⊙M
T

�
V
l,att ∈ ℝ

1×d
k ,

(39)h
◦(l)

t
dec

← MHA(⋅)
|||att =

[
Z
◦1

l,att
, Z

◦2

l,att
, ..., Z

◦H

l,att

]
W

out

l,att
∈ ℝ

1×d
,W

out

l,att
∈ ℝ

d×d
.

Fig. 6   Step 1 of the decoding procedure. The orange contour indi-
cates the partial route at time step tdec

Fig. 7   Step 2 of the decoding procedure. The blue box denotes the 
current node, the green contour represents the set of candidate nodes, 
and the red cross indicates masked nodes
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Step 3: Step 1 and Step 2 form a single decoding layer. 
After ndec decoding layers, the resultant output h◦(l)tdec

 is sent 
to the final attention layer, where we compute a single-
head attention to get probability distribution across all 
candidate nodes. The decoder receives a graph embedding 
( h(

nenc) ) from the encoder, and its linear projection is added 
to h◦(l)tdec

 . The query is constructed from the sum. The key 
is obtained by a linear projection of H̃node ∈ ℝ

(N+1)×d , 
which is the context node embedding in Eq. (34) without 
current vehicle embedding ( ̂h(nenc)

k
 ). The decoding step 3 

is described as the following equations and illustrated in 
Fig. 8.

The value of C in Eq. (43) is selected as 10. Consequently, 
the next node a ∈ {0, 1, ...,N} is sampled from the output prob-
ability distribution pdec

t
 (following a categorical distribution or 

greedy fashion), and t and tdec are incremented by one.

(40)H̃node =

[
h0
(nenc), h1

(nenc), ..., hN
(nenc)

]
∈ ℝ

(N+1)×d,

(41)Qf ,att = h
◦(l)
tdec

W
Q

f ,att
∈ ℝ

1×d, W
Q

f ,att
∈ ℝ

d×d,

(42)Kf ,att = H̃nodeW
K
f ,att

∈ ℝ
(N+1)×d, WK

f ,att
∈ ℝ

d×d,

(43)pdec
t

= Softmax

�
C ⋅ 𝑇 𝑎𝑛h

�
Qf ,attK

T
f ,att

√
d

⊙M
T

��
∈ ℝ

1×(N+1).

5 � Data‑efficient training with proposed 
REINFORCE baseline

This section presents our proposed training methodology that 
improves learning efficiency. In terms of data efficiency, our 
methodology requires fewer (raw) training instances at every 
epoch compared to the conventional method. Since the train-
ing instances are generated on the fly, an epoch in our pro-
posed methodology takes shorter time to generate the training 
data and transfer them over to the GPU. Moreover, in terms of 
sample efficiency, our method reaches an equivalent perfor-
mance (validation score) within fewer training epochs or with 
fewer training instances in comparison with other methods.

5.1 � Preliminary

Policy-gradient methods learn the policy directly and 
explicitly through gradient-based optimization. We define 
the model’s policy as a parametrized function ��(a|s) , where 
θ denotes the trainable parameters of the model. The func-
tion is stochastic in that it defines a probability distribution 
of actions (a) at a given state (s). The goal of policy optimi-
zation is to maximize the expected cumulative return (sum 
of rewards, R(τ)) of the trajectory ( � = (s0, a0, s1, a1, ..., sT ) ) 
whose actions are chosen by the policy defined as

The objective of the policy optimization problem 
expressed in Eq. (44) uses the expectation over all possible 
trajectories. For a given stochastic policy ( �� ), the trajectory 
probability ( P(�;��) ∶= P(�;�) ) represents the probability of 
generating a trajectory following the policy. The trajectory 
probability is factorized as

where p
(
st+1| st, at

)
 is the state-transition probability of the 

MDP defined in Section III. Williams [35] proposed a viable 
estimator of the policy gradient using Monte-Carlo sampling 
by assuming that R(τ) is independent of θ:

In practice, the unbiased REINFORCE gradient estima-
tor presented in Eq. (46) suffers from a high variance of the 
returns R(�i) and is sample inefficient since it requires many 
sample episodes to converge. We can overcome these issues 
by including a baseline (b(s)), an action-independent function, 
in the policy gradient estimation. Consequently, an unbiased 
estimate of the gradient with reduced variance is expressed as

(44)J(�) = ��∼��
[R(�)] = ��∼��

[∑T

t=0
r
(
st, at

)]
.

(45)P(�;�) =

T∏

t=0

��(at|st)p(st+1|st, at),

(46)∇�J(�) = ��∼��
[R(�)∇�logP(�;�)].

Fig. 8   Step 3 of the decoding procedure. The purple boxes above can-
didate nodes and depot indicate the selection probability
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5.2 � Choice of REINFORCE baseline b(s)

An example of the baseline is the average return over sample 
trajectories ( b = ��∼��

[R(�)] ≈
1

N

∑N

i=1
R(�i) ), where N is the 

number of samples in a mini-batch. Although the mini-batch 
baseline can effectively reduce variance in Gradient-Bandit 
algorithms [36], Kool et al. [31] showed that it performs 
significantly worse than other state-of-the-art baselines.

Prior studies suggest that designing an effective yet compu-
tationally tractable REINFORCE baseline is crucial in train-
ing the policy network. In this work, we propose to use the 
average return of sample trajectories generated by instance 
augmentation from a single instance as the baseline, referred 
to as the instance-augmentation baseline. Our baseline is a 
potential alternative to the existing baselines with improved 
training speed and reduced variance. The proposed baseline is 
motivated by observations of other baselines in prior works. 
In general, a local baseline performs significantly better than 
a batch baseline. In particular, a local baseline based on multi-
ple samples without replacement is expected to perform better 
because non-duplicate samples are guaranteed [31, 32]. This 
observation can be extended to POMO [4], whose local batch 
mean is based on N non-duplicate sample trajectories from a 
single instance, despite an increased tensor size. Since each 
POMO trajectory begins at a unique node, these samples are 
also guaranteed to be non-identical. These REINFORCE base-
lines are more data-efficient than the greedy rollout because 
they require fewer training instances (reduced by some factor).

It would be effective if a baseline as equally data-efficient as 
the multiple-sample baselines and even computationally lighter 
than the POMO shared baseline is used. The proposed baseline 
meets these requirements by utilizing the instance augmenta-
tion, which was first suggested in [4] for effective inference.

Table 3 lists the coordinate transformations applied to all 
features (nodes, depots, and vehicle locations) to generate 
additional instances for a given training instance (a total of 8 
instances). While each of these instances is distinct, the optimal 
tour would be identical since these transformations preserve 
the lengths between nodes. We then rollout sample trajectories 
of each of these “counterfactuals.” The policy model would 
perceive these as distinct instances, only to arrive at similar 
solutions as it generates multiple rollouts in parallel. The model 

(47)∇�J(�) = ��∼��
[(R(�) − b)∇�logP(�;�)]. inherently learns to find improved solutions for a given instance 

based on the local batch mean. The policy model also learns 
more effective heuristics because the baseline offers a more 
focused view on a single instance through diverse perspectives. 
Figure 9 is an illustration of how our local baseline works. We 
believe that the proposed baseline combines the strengths of 
multiple-sample baselines and the POMO shared baseline.

Comparison with multiple samples with/without replace‑
ments  Our baseline does not strictly generate non-duplicate 
samples. However, it is highly less likely to generate many 
duplicate samples, especially in the early stages of training, 
when the policy network �� has not yet “learned” much. So, 
our baseline promotes more “exploration” in the initial learn-
ing phase. To see this, we note that each augmented instance 
is associated with a distinct input embedding in the encoder 
output ( h(nenc) ). Let i denote the original instance, and let k and 
j denote the augmented instances derived from i. For k (≠ j) 
and si

k
≠ si

j
 in raw form, h(nenc),i

k
≠ h

(nenc),i
j

 in the latent space. 
Since a trajectory is sampled based on h(nenc) , it is likely that 
� i
k
 is different from � i

j
 . Indeed, as training proceeds, �� may 

generate duplicate samples since it learns which action pro-
duces high-return trajectories in a more general setting. How-
ever, this limitation could be mitigated in large-size problems 
for which longer trajectories are likely to be unique.

Comparison with greedy rollout baseline  In greedy rollout 
baseline, a solution is generated by running the policy greed-
ily, i.e., at each construction step, the node with the highest 
probability (where the probability distribution is obtained 

Table 3   Unit square 
transformations

f (x, y)

(x, y) (y, x)

(x, 1 − y) (y, 1 − x)

(1 − x, y) (1 − y, x)

(1 − x, 1 − y) (1 − y, 1 − x)
Fig. 9   Proposed REINFORCE baseline
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from an earlier version of the model) is visited. This deter-
ministic solution trajectory serves as a baseline in the REIN-
FORCE algorithm. While effective, the greedy rollout base-
line incurs an additional forward pass of the earlier model 
version, which increases computation by 50%. Apart from 
this, we also empirically found that the greedy rollout base-
line entails slightly noisy learning. The current model’s (best) 
performance may not be replicated or generalized to another 
problem set. This finding is more apparent towards the later 
stages of training, especially when the model finds it difficult 
to surpass its greedy self, and there is a noticeable lack of 
baseline policy updates. At this point, the model does not 
learn much from the competition with its greedy self.

Comparison with POMO shared baseline  Compared to the 
POMO baseline, our approach is more computationally 
efficient since it uses a fixed local batch size that does not 
increase with the number of nodes.

5.3 � Combining with maximum entropy objective

Training the policy model with entropy can smooth out the 
optimization landscape, speeding up the learning process. In 
some environments, it yields a better final policy [9]. It also 
turns out to be robust to internal algorithmic disturbances 
and external environmental disturbances like dynamics and 
reward function [8]. We note that robustness to external dis-
turbances is an important factor determining the generalization 

capability (i.e., performance on graphs of various sizes). This 
work combines the maximum entropy RL with our instance-
augmentation baseline and shows improved training and infer-
ence performance for various problem instances.

We implement the maximum entropy RL as follows. The 
objective aims to maximize the expected cumulative return 
augmented by a conditional action entropy as

w h e r e  ℍ(��(⋅�st)) = 𝔼
a
t
∼��

[−log��(at�st)] = −
∑

a
t

[��(at�st)log��(at�st)] 
denotes the Shannon entropy of conditional distribution 
over actions along the trajectory, ��

�

(
st, at

)
 is the state-action 

marginal of trajectory distribution induced by �� and � is 
the entropy weight or temperature. The maximum entropy 
objective function presented in Eq. (48) results in a slightly 
different gradient [9] (trajectory view):

Although Sultana et al. [37] used the entropy maximization 
term to train the policy with a greedy rollout baseline, we note 
that its application has not been used with other baselines. 
By integrating the objective function with entropy and using 
our instance-augmentation baseline, our policy model learns 
a more stochastic policy that is applicable in a generalized 
setting. Algorithm 1 presents our proposed REINFORCE algo-
rithm. The Adam optimizer [38] with a constant learning rate 
of 0.0001 is used to train the policy model parameters.

(48)JMaxEnt(�) =
∑

t
𝔼(st ,at)∼��

�

[r
(
st, at

)
+ �ℍ(��(⋅|st))]

(49)
∇�J(�) = 𝔼�∼��

[R(�)∇�logP(�;�) + �
∑

t
∇�ℍ(��(⋅|st))]

Algorithm 1   Proposed REINFORCE Algorithm (Instance-augmentation baseline with maximum entropy objective)
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6 � Experiments and discussion
To establish the effectiveness of our proposed REIN-
FORCE algorithm, we conducted a comprehensive study, 
first comparing our instance-augmentation baseline with 
the greedy rollout baseline and subsequently comparing 
our instance-augmentation baseline with maximum entropy 
objective against the greedy rollout baseline with entropy. 
The strengths of our method are substantiated across vari-
ous problem sets, encompassing TSP, CVRP, and MSTOP, 
demonstrating consistent improvement in training (in terms 
of both solution quality and training time) even with increas-
ing problem sizes.

6.1 � Problem setup and hyperparameters

This section describes the controlled experiments to solve 
the MSTOP using the DDTM. To observe the benefits of our 
instance-augmentation baseline (over greedy rollout), we con-
duct an ablation study on classical TSP and CVRP using the 

original AM. To this end, we consider three problem/policy 
pairs – MSTOP/DDTM, TSP/AM, and CVRP/AM. The graph 
sizes (n) of 10, 20, 50, and 70 are set for the MSTOP (Table 4) 
and we consider these cases with 2 and 3 vehicles. The deci-
sion to focus on scenarios involving 2 and 3 vehicles is rooted 
in our motivation to providing insights into optimizing the 
efficiency of limited resources in situations where deploying 
a larger fleet is impractical. For TSP and CVRP, we consider 
the instances with sizes of 50 and 100. For TSP and CVRP, we 
consider the instances with sizes of 50 and 100. Furthermore, 
to check how our proposed training algorithm improves the 
generalization performance, we test the performance of each 
AM on problem instances of various sizes.

Training DDTM to solve MSTOP  We follow the basic prob-
lem setup in [3] for the Orienteering Problem (OP), i.e., the 
coordinates of all customer and depot nodes are randomly 
sampled within a normalized [0,1] × [0,1] world. The prizes 
of nodes are either initialized as one (constant) or sampled 
from a uniform distribution between 0 and 1.

Table 4 describes the experimental details, including the 
graph size (n), the number of vehicles (N), and the maxi-
mum length constraint for each route (Tmax). Additionally, 
each vehicle in MSTOP starts at a random location within 
the same [0,1] × [0,1] world and is given a variable remain-
ing tour length (or equivalently fuel amount) with the dis-
tance between the current vehicle location and the depot 
as the lower bound. This setting ensures that the sum of 
the remaining tour length and the partial tour constructed 
henceforth is bounded above by Tmax. For all MSTOP 
cases, the DDTM is initialized with nenc = 4 and ndec = 2, 
which we found to be an acceptable trade-off between com-
putational load and the quality of learned policy.

For numerical experiments, we train 1,280,000 instances 
per epoch. Considering the GPU memory constraints, we 
train 1250 batches of 1024 instances (n = 10, 20) for 200 
epochs, train 2500 batches of 512 instances (n = 50) for 100 

Table 4   MSTOP problem 
instances of various sizes

n N Tmax

10 2 1.5
20 2 2.0
50 3 3.0
70 3 3.0

Table 5   Permutations of vehicle order. Bold denotes the first vehicle 
to start routing. The DDTM sequentially begins routing according to 
the given vehicle order

N Permutations

2 AB/BA
3 ABC/ACB/BCA/BAC/CAB/CBA

Fig. 10   LEFT: Routing begins with Vehicle A. RIGHT: Routing begins with Vehicle B (optimal tour found)
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epochs, and train 3333 batches of 384 instances (n = 70) 
for 100 epochs. The instance-augmentation baseline uses 
a batch size reduced by 8, i.e. 128 for n = 10 and n = 20, 
64 for n = 50, and 48 for n = 70, so that the total number 
of training instances is the same. These training instances 

are generated randomly on the fly at every epoch to pre-
vent overfitting. After each epoch, we roll out the current 
model (with greedy decoding) on a held-out validation set 
of size 10,000 and plot the learning curve to observe the 
training process.

Fig. 11   DDTM solution quality 
(optimality gap) on MSTOP20 
instances

(a) Constant prizes (b) Uniformly distributed prizes

( )MILP DDTMp p p∆ = − 100%MILP DDTM
rel

MILP

p pp
p

 −∆ = × 


(a) DDTM Result (b) Optimal Result

Fig. 12   Example solution of MSTOP20 (uniformly distributed prizes). Numerical values next to blue nodes represent node prizes
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Training AM to solve TSP/CVRP  We adopt the problem setup 
prescribed in [3]. We used the same hyperparameters for train-
ing AM policy network for a fair comparison (except for the 
application of ‘warmup’).

Entropy weight  To ensure the benefits of maximum entropy 
realized in our methodology, we need to use a suitable value 
for α. A very large α value can make the problem close to 
the maximum entropy problem, whose policy is purely ran-
dom. On the contrary, if α is small, premature convergence 
may occur due to inadequate exploration. The α value used 
for training is 0.01 for both MSTOP and TSP/CVRP. We 
observed that this value works well on MSTOP20 (uniformly 
distributed prizes) and TSP50.

6.2 � Inference result

This section presents the performance of DDTM on 10,000 ran-
dom MSTOP instances. To validate our proposed methodology, 

we assess the performance of 1) DDTM trained with our pro-
posed baseline and maximum entropy objective, and 2) DDTM 
trained with greedy rollout baseline and maximum entropy 
objective. The following section presents a comprehensive abla-
tion study for various REINFORCE training baselines.

We use three decoding strategies. The greedy strategy rolls 
out a single greedy trajectory for each instance. The sampling 
strategy generates 1280 trajectories (per instance) and selects 
the best one. Finally, the instance augmentation strategy draws 
multiple greedy trajectories for each instance and selects the 
best result. To effectively handle inherent asymmetry in the 
MSTOP solutions, we permute the order of starting vehicles 
(see Table 5). Then, we generate a single greedy trajectory for 
each vehicle order and choose the best out of N! trajectories. 
To expand the search space, for each permutation, we further 
rollout eight trajectories about each problem instance (by solv-
ing its augmented instances) and select the best out of 8*N! 
trajectories. As illustrated in Fig. 10, this increases the chance 
of finding near-optimal solutions.

To the best of our knowledge, we could not find any 
algorithms specifically for MSTOP. For n values of 10 
and 20, we compare the results with the optimal solutions 
obtained using the MILP formulation introduced in Section 
III (implemented with Gurobi [34]). We also implement 
the heuristic by Tsiligirides for OP introduced in [39] with 
slight modification and compare the results. The MILP 
solution is used as the reference to compute the optimality 
gap. For larger instances (n = 50 and n = 70), it takes pro-
hibitively long to solve the MILP to optimality. Therefore, 
the best out of the solutions obtained by various methodol-
ogies is used as a reference to compute the optimality gap.

Tables 6 and 7 summarize the experimental results for 
comparison. We report the average of total prizes over 
10,000 test MSTOP instances. Using the greedy strategy, 
the DDTM finds near-optimal solutions with optimality gaps 
of around 4 – 5%. The optimality gap values for DDTM 
solutions obtained using the sampling strategy are 1 – 2%. 
In almost all strategies, the DDTM outperforms the heuris-
tic by Tsiligrides. The DDTM performs best with the × 8N! 
instance augmentation strategy, which finds high-quality 
solutions much faster than the sampling technique, demon-
strating its superiority.

Figure 11 presents the quality (optimality gap) of the 
solutions obtained using the DDTM trained under the pro-
posed methodology for 10,000 test MSTOP20 instances. 
The optimality gap of the DDTM solutions is 0% in more 
than 90% of constant-prize instances. Also, in over 90% of 
instances with uniformly-distributed prizes, the optimality 
gap is smaller than 5%. Figure 12 show example solutions 
of MSTOP20 for different prize distributions. The DDTM 
inference solutions with “ × 8N!-augmentation-strategy” are 
plotted on the left. The corresponding MILP solutions are 
presented on the right for comparison.

Fig. 13   Learning curves for MSTOP20 with uniformly distributed 
prizes. Dark curves are smoothed results, lighter curves are raw 
results

Fig. 14   Learning curves on TSP50 using the vanilla AM. Dark curves 
are smoothed results, lighter curves are raw results
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6.3 � Ablation study

The ablation study analyses the contribution of our proposed 
training methodology (instance-augmentation baseline with 
maximum entropy objective) to training policy network mod-
els. Specifically, we compare the learning curves using differ-
ent baselines on the DDTM (for solving MSTOP) and the orig-
inal AM (for TSP and CVRP). Each learning curve is obtained 
by evaluating the model on a held-out validation set of 10,000 
random instances. The following learning curves are plotted for 
four different training strategies: greedy rollout baseline (A), 
greedy rollout baseline with maximum entropy objective (B), 
instance-augmentation baseline (C), and instance-augmenta-
tion baseline with maximum entropy objective (D).

DDTM & training baselines (MSTOP)  Fig. 13 shows the 
learning curves of the four training methods – (A) to 
(D) – on MSTOP20 with uniformly distributed prizes. 
It can be observed that our proposed baseline (C) helps 

Table 8   Comparison of training time for different training strategies 
(per epoch, in min: sec); training performed on a single 3090Ti GPU

(A) (B) (C) (D)

TSP50 9:21 8:18 6:28 6:19
TSP100 17:43 19:00 12:30 14:13
CVRP50 13:26 12:08 8:38 8:23
CVRP100 24:07 25:08 16:00 17:41

(a)

(b)

Fig. 15   Generalization performance of DDTMs trained and tested between MSTOP10 and MSTOP20 environments. Models trained under (a) 
Constant prizes and (b) Uniformly distributed prizes. Optimality gaps reported as the performance measure
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the model learn better policy than both the greedy roll-
out baseline (A) and its combination with the maximum 
entropy objective (B). As an added benefit, the instance-
augmentation baseline substantially speeds up learning 
by generating fewer training data. With the maximum 
entropy objective (D), the proposed methodology sig-
nificantly outperforms the rest of the methodologies and 
achieves high validation scores in fewer training epochs, 
demonstrating the sample efficiency of the proposed 
training methodology.

AM & training baselines (TSP, CVRP)  We believe that the 
proposed methodology is a general technique that can be 
used instead of the conventional greedy rollout baseline. 
To validate this, we perform additional experiments on the 
vanilla AM network using the original code to solve TSP and 
CVRP. For a fair comparison, we plot the learning curves 
on the same validation set (with seed 1234) and also report 
the inference results on the same test set (with seed 4321) 
used in [3].

Figure 14 shows the learning curves for the original 
AM with different baselines for TSP50. The instance-
augmentation baseline (C) performs comparatively bet-
ter than the greedy rollout baseline (A) and slightly worse 
than the greedy rollout baseline with maximum entropy 
objective (B). However, the proposed methodology (D) 
substantially improves the quality of the learned policy. 
Moreover, using the instance-augmentation baseline – (C) 
and (D) – instead of greedy rollout baseline – (A) and (B) 
– significantly reduces the per-epoch training time by over 
30% (see Table 8). Our proposed method is thus effective 
in expediting per-epoch training time while simultaneously 
keeping competitive performance. This indeed supports the 

claim that our proposed method strikes a favorable balance 
between training speed and overall performance.

Table 9 summarizes the inference test results on TSP and 
CVRP. Our proposed methodology (D) outperforms the 
other training methods across all decoding strategies in all 
cases. In particular, the proposed approach is comparable 
to the state-of-the-art POMO method in terms of the opti-
mality gap. The best performance for TSP50 obtained by 
the proposed approach (optimality gap: 0.15%, sampling) is 
better than that by the POMO inference without augmenta-
tion (0.24% [4]). Similarly, in CVRP50 instances, the best 
result obtained by the proposed method (1.75%; sampling) 
outperforms the POMO inference with a single trajectory 
(3.52% [4]). Even on large instances (n = 100), the proposed 
methodology (D) shows improvement over all decoding 
strategies.

6.4 � Generalization result

This section discusses the generalization capability of our 
training methodology. Kool et al. [3] demonstrated that the 
AM and greedy rollout baseline can be generalized to prob-
lems with different graph sizes, although the error increases 
as the graph size increases. Since training with the maxi-
mum entropy objective is known to improve the model’s 
robustness, we conduct a comparative study on generali-
zation performance between greedy rollout with maximum 
entropy objective (B) and our proposed methodology (D) 
to see how our proposed methodology reduces generaliza-
tion error. Note that the generalization results are reported 
according to the instance-augmentation decoding strategy on 
the same test datasets as in the previous sections.

Figure 15 illustrates the generalization performance of 
DDTMs trained on MSTOP10 and MSTOP20 environments 

Table 9   Test results of vanilla 
AM trained with different 
methods

*: Values reported in [3]

Method TSP50 TSP100 CVRP50 CVRP100

Obj. Gap Obj. Gap Obj. Gap Obj. Gap

Concorde*/LKH3* 5.70* − 7.76* − 10.38* − 15.65* −
greedy AM (A) 5.81 1.89% 8.10 4.43% 11.01 6.07% 16.66 6.47%

AM (B) 5.79 1.65% 8.11 4.50% 10.97 5.70% 16.64 6.32%
AM (C) 5.80 1.78% 8.08 4.14% 10.96 5.59% 16.65 6.36%
AM (D) 5.78 1.38% 8.04 3.59% 10.93 5.30% 16.50 5.45%

sampling AM (A) 5.73 0.48% 7.91 1.97% 10.64 2.47% 16.14 3.13%
AM (B) 5.71 0.21% 7.93 2.15% 10.57 1.87% 16.15 3.22%
AM (C) 5.73 0.49% 7.90 1.74% 10.62 2.31% 16.12 2.98%
AM (D) 5.71 0.15% 7.89 1.69% 10.56 1.75% 16.07 2.69%

 × 8 augment AM (A) 5.72 0.40% 7.93 2.24% 10.69 3.03% 16.30 4.16%
AM (B) 5.72 0.32% 7.94 2.30% 10.67 2.81% 16.28 4.03%
AM (C) 5.72 0.37% 7.92 2.01% 10.68 2.86% 16.28 4.05%
AM (D) 5.71 0.23% 7.89 1.68% 10.66 2.67% 16.19 3.42%
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for N = 2 vehicles where the horizontal axis represents the 
test environment (i.e. prize distribution and graph size) and 
the vertical axis refers to the optimality gap. Part (a) reports 
the performance of DDTM trained under constant prizes 
whereas part (b) corresponds to that of DDTM trained under 
uniformly distributed prizes. We observe that the models 
naturally perform best when tested under the same condi-
tions as the training environment. However, optimality gaps 
tend to increase when tested on different graph sizes. In gen-
eral, the proposed methodology (D) shows better generaliza-
tion than the conventional method (B) in terms of reduced 
optimality gaps for changing graph sizes. Moreover, we also 
observe that models trained under uniformly distributed 
prizes generalize better than the counterparts trained under 
constant prizes when tested on environments with different 

prize distributions. This is not surprising since uniformly 
distributed prizes can be seen as a generalized version of 
constant prizes, and the problems with constant prizes are 
generally considered easier to solve. One exception is the 
case of DDTM trained under MSTOP10 with uniformly 
distributed prizes being tested on MSTOP20 with constant 
prizes, where the model trained using the proposed method-
ology (D) performs worse than the conventional approach 
(B). The reason behind this result might be attributed to 
using entropy weight α tuned for MSTOP20 (with uniformly 
distributed prizes) problems.

Figure 16 presents the generalization result for DDTM 
trained on MSTOP50 and MSTOP70 environments for N = 3 
vehicles where the vertical axis represents the test score. 
Similar to Fig. 15, the proposed methodology (D) generally 

(a)

(b)

Fig. 16   Generalization performance of DDTMs trained and tested between MSTOP50 and MSTOP70 environments. Models trained under (a) 
Constant prizes and (b) Uniformly distributed prizes. Test scores reported as performance measure
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performs better for both changing graph sizes and prize dis-
tributions, as evidenced by larger test scores. The degree 
of improvement is more apparent for large-scale problems, 
demonstrating that the proposed methodology generalizes 
well with scalability on graph size.

Figure 17 presents the generalization performance for 
TSP and CVRP versus the graph size. For both TSP and 
CVRP, the proposed methodology (D) shows better gener-
alization performance (reduced optimality gaps) except for 
the CVRP100 model on graph size n = 50, which is likely 
a result of using entropy weight � that is tuned for TSP50. 
From the various tests on different routing problems, it can 
be observed that our proposed methodology generally results 
in an improved generalization performance compared to the 
existing conventional method.

7 � Conclusion

The Multi-Start Team Orienteering Problem (MSTOP) 
is introduced to address the routing problems arising in 
dynamic environments. An attention-based policy network 
model referred to as the Deep Dynamic Transformer 
Model (DDTM) is proposed to solve the MSTOP. The 
proposed learning procedure modifies the REINFORCE 
algorithm by introducing a new baseline with instance-
augmentation and combining it with the maximum entropy 
objective, improving its learning efficiency and inference 
capability. A set of numerical experiments comparing 
the performance of the proposed procedure with existing 

methodologies demonstrates its effectiveness. For a suitable 
value of entropy weight, the instance-augmented baseline 
outperforms the conventional greedy rollout baseline 
both in terms of inference performance, generalization 
performance and training speed. The test result indicates 
that the proposed approach performs comparably to the 
current state-of-the-art POMO baseline while requiring less 
computational resources. The procedure is further applied 
to classical TSP and CVRP, showing the potential to be a 
general technique for solving various routing problems. It 
would be interesting to apply the proposed methodology to 
other asymmetric CO problems, such as the Multi-Depot 
VRP and Multi-Depot MSTOP, where the order of vehicles 
break the symmetry in solution representations. Applying 
the proposed approach to missions involving the cooperation 
between agents would be also a meaningful extension of this 
study [37]. Another promising subject for future study is 
to handle the instance-augmentation inference for problems 
with many vehicles. We can tackle these large problems by 
breaking them into smaller, more manageable subproblems. 
By doing so, we can utilize our model (that is trained for 
2 or 3 vehicles) to iteratively solve portions of the larger 
problem. Subsequently, we can then concatenate the 
individual solutions to generate a comprehensive solution for 
the entire fleet. While this iterative approach may not yield 
optimal solutions, it may produce near-optimal solutions 
rapidly, as our model solves in the order of 10 ms. We also 
acknowledge that the current implementation of DDTM 
architecture is heavy, resulting in a longer training time 
compared to the original AM. One possible resolution would 

(a) (b)

Fig. 17   Generalization results for (a) TSP and (b) CVRP
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be to “compress” the model [38, 39] for efficient training 
and inference.
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