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Abstract
Air pollutants harm human health and the environment. Nowadays, deploying an air pollution monitoring network in many
urban areas could provide real-time air quality assessment. However, these networks are usually sparsely distributed and the
sensor calibration problems thatmay appear over time lead tomissing andwrongmeasurements. There is an increasing interest
in developing air quality modelling methods to minimize measurement errors, predict spatial and temporal air quality, and
support more spatially-resolved health effect analysis. This research aims to evaluate the ability of three feed-forward neural
network architectures for the spatial prediction of air pollutant concentrations using the measures of an air quality monitoring
network. In addition to these architectures, Support Vector Machines and geostatistical methods (Inverse Distance Weighting
and Ordinary Kriging) were also implemented to compare the performance of neural network models. The evaluation of the
methods was performed using the historical values of seven air pollutants (Nitrogen monoxide, Nitrogen dioxide, Sulphur
dioxide, Carbon monoxide, Ozone, and particulate matters with size less than or equal to 2.5 µm and to 10 µm) from an
urban air quality monitoring network located at the metropolitan area of Madrid (Spain). To assess and compare the predictive
ability of the models, three estimation accuracy indicators were calculated: the Root Mean Squared Error, the Mean Absolute
Error, and the coefficient of determination. FFNN-based models are superior to geostatistical methods and slightly better than
Support Vector Machines for fitting the spatial correlation of air pollutant measurements.

Keywords Air pollution · Spatial estimation · Air quality monitoring · Feed-forward neural networks · Support vector
machines · Kriging

1 Introduction

Exposure to air pollution is a risk factor for diseases such
as stroke, asthma, cancer and chronic obstructive pulmonary
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disease. It is associated with noxious effects on human health
and it is especially harmful to vulnerable groups such as
children, the elderly and patients with respiratory and car-
diovascular diseases [1–4]. Air pollutants not only severely
impact public health, but also the climate and ecosystems
because several of them are greenhouse gases [1, 5]. Many
of the air pollutants are also sources of greenhouse gas emis-
sions. Considering the significance of air quality on health
and the environment, theWorld Health Organization (WHO)
has developed guidelines to improve air quality by setting
limits on the concentrations of various air pollutants: ozone
(O3), nitrogen dioxide (NO2), sulphur dioxide (SO2), car-
bon monoxide (CO), particulate matter with size less than or
equal to 2.5 µm (PM2.5) and particulate matter with size less
than or equal to 10 µm (PM10) [5].

Air quality monitoring is an important task for govern-
ments to provide information on potential health risks and
determine appropriate environmental management policies.

http://crossmark.crossref.org/dialog/?doi=10.1007/s10489-023-05109-y&domain=pdf
http://orcid.org/0000-0003-0176-7863
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The development of air pollution sensing technology in the
last few decades and the support of government agencies
have contributed to build an air quality monitoring network
inmany urban areas with the aim of analysing and publishing
the concentrations of several air pollutants that are potentially
harmful to health 1 2. However, these networks are usually
sparsely distributed and the sensor calibration problems that
may appear lead to missing and wrong measurements [6–
9]. There is an increasing interest in developing air quality
modelling methods to minimize measurement errors, predict
spatial and temporal air quality, and support more spatially-
resolved health effect analyses [8–13].

Air pollution modelling follows two different approaches.
The first approach consists in using the deterministic mathe-
matical modelling of atmospheric pollutant dispersion. The
second approach, on the other hand, consists in employing
statistical models based on historical air quality data, and, in
some cases, meteorological and geographic information too.

The deterministic mathematical modelling involves the
simulation of pollutant dispersion and transport mechanisms
using emission values in industrial and urban areas, physical
and chemical processes in the atmosphere, meteorologi-
cal data, and geographic and topological information. The
deterministic methods that are most present in the scien-
tific literature are the “Community Multiscale Air Quality
(CMAQ) model” [14, 15], “Weather Research and Forecast-
ing model with Chemistry (WRF-Chem)” [16], and “Nested
Air Quality Prediction Modelling System (NAQPMS)” [17,
18]. The deterministic modelling has limitations due to the
enormous number of pollution sources and the fact that
air distribution is influenced by several complex physi-
cal/chemical processes that require many variables.

The statistical approach takes advantage of the spatial and
temporal correlations that are present in the air pollution con-
centration time series and formulates models that simulate
these dependencies with a high degree of accuracy. Sev-
eralmethodologies have been developed along this approach,
including classical statistics [19], artificial intelligence [8, 9,
11–13, 20, 21] and geostatistical techniques [6, 7, 22].

The application ofArtificial Neural Networks (ANNs) has
been frequently used to forecast air quality. Some recent arti-
cles [7, 13, 20, 21, 23–26] use the historical values of various
pollutants to predict the air quality index and/or air pollutant
concentrations. Several of them use meteorological data too.
Machine and deep learning methods show a more remark-
able ability to simulate non-linear systems because of their
self-learning, self-organizing, and self-adaptation features.

Instead, fewer studies have used the ANN technique for
the spatial estimation of air pollution [6, 8, 11, 12, 27].
The study [8] evaluates the use of a Back-Propagation Neu-
ral Networks (BPNN) for modelling the spatial atmospheric
pollution of five air pollutants (NO2, O3, SO2, PM2.5 and
PM10). The authors of [6] proposed machine learning and
geostatistical methods to predict PM2.5 pollution levels.
Some of these studies applied Deep learning methods to
extract complex and non-linear spatiotemporal correlations
[11, 12]. The next section further describes the references
about the use of machine learning and deep learning meth-
ods for predicting air pollution.

The main objective of this research was to develop an
ANN-based system for modelling the spatial characteristics
of air pollutant concentrations measured at an urban air qual-
ity monitoring network. To estimate the air pollutant value
at the target site based on the measurements collected at
nearby locations,we applied three Feed-ForwardNeuralNet-
work (FFNN) architectures for regression (with one, two,
and three fully connected hidden layers), a Support Vector
Machine (SVM) and geostatistical methods. The evaluation
of the methods was performed by using the historical val-
ues of seven air pollutants (Nitrogen monoxide (NO), NO2,
O3, SO2, CO, PM2.5, and PM10) collected at the urban air
quality monitoring network located at the greater metropoli-
tan area of Madrid (Spain). For assessing and comparing the
predictive ability of the models, three estimation accuracy
indicators were calculated: the Root Mean Squared Error
(RMSE), the Mean Absolute Error (MAE) and the coeffi-
cient of determination (R2).

Themain contributions of this work include the following:

• A broad analysis of the most common pollutants evalu-
ated on a real dataset consisting of samples obtained from
the air quality monitoring network deployed in the city
of Madrid (Spain).

• A FFNN-based air pollution spatial estimation system
able to accurately predict NO2, NO, SO2, O3, PM2.5
and PM10 concentrations.

• A systematic comparison between two geostatistical
models, SVM, and three FFNNarchitectures (one-hidden
FFNN, bi-layer FFNN, and tri-layer FFNN) for eval-
uating the prediction of the concentration of seven air
pollutants (NO2, NO, CO, SO2, O3, PM2.5 and PM10).

The present work is structured as follows. The following
section reviews literature related to machine learning and
deep learning methods applied to air quality prediction. Sec-
tion 3 presents the study area and the air pollution dataset
used in the experiments. In Section 4, the methods applied to
estimate air pollutant concentrations are described: Inverse
distance weighted (IDW), Ordinary Kriging (OK), SVM,
FFNN. In Section 5, every phase of the experiments is pre-
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1 European Air Quality Index: https://www.eea.europa.eu/themes/air/
air-quality-index. Retrieved October 28, 2023
2 AIRNOW: https://www.airnow.gov/aqi/aqi-basics. Retrieved Octo-
ber 28, 2023
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sented. Section 6 describes the results of the experiments
performed. In Section 7 we discuss our results. Finally, the
conclusions are presented in Section 8.

2 Related work

Machine learning methods are widely used to extract non-
linear correlations in air pollutant concentrationdata.Deploy-
ing air pollution monitoring stations in urban areas generates
a massive amount of collected data, creating databases suit-
able for statistical analysis. In addition, machine learning
methods do not require a deep understanding of the dynamic
and chemical processes between air pollutants and other rel-
ative atmospheric variables.

ANNs have been improved through years of research and
applications, bringing more evolved versions to air pollution
prediction. For example, [27] proposed a BPNN to estimate
the hourly concentrations of NO2 in unsampled locations at
AlgecirasBay (Spain) using the historical values ofNO2con-
centrations at fourteen monitoring stations and the distances
to each monitoring station. The prediction system has a first
stage that applies the IDW interpolation and a multiple linear
regressionmethod to produce air pollutionmaps that are used
as input of the the BPNN. The highest result achieved was
an R2 value of 0.76. They also evaluated the methods sepa-
rately, showing the BPNN as the best prediction method in
most monitoring stations. Instead, [6] used several methods
to obtain daily estimates of PM2.5 concentration across the
contiguousUS, and the results showed a better predictive per-
formance of spatial statistical models over machine learning
methods. The 829 monitor stations take measurements every
1, 3, or 6 days, with only approximately 15% of monitors
sampling daily, implying an irregular and sparse dataset. In
other recent research, [8] applied a BPNN for spatially esti-
mating pollutant concentrations in the metropolitan city of
Athens in Greece. Five pollutants were estimated, NO2, O3,
PM10, PM2.5 and SO2, and the R2 values for O3 and PM10
were above 0.87,and for NO2, PM2.5, and SO2 were 0.76,
0.69 and 0.55, respectively.

Deep learning has become increasingly widely used in air
quality prediction because of its ability to extract complex
and non-linear spatiotemporal correlations on large datasets.
Many researchers employed a Long Short Term Memory
(LSTM) network for modelling the complex and non-linear
temporal correlation of the historical values of the pollutants
[9, 20, 25, 28, 29]. LSTMis an enhancedversion of theRecur-
rent Neural Network for handling long-time sequence data.
The recent studies [11, 24, 30] have proposed combinedmod-
els for air quality prediction based on Convolutional Neural
Networks (CNNs) to extract the spatial characteristics, and
LSTMs to predict future air pollution concentrations. [24]
developed a CNN-LSTM method for predicting the next

day’s daily average PM2.5 concentration inBeijingCity. [30]
proposed an attention-based CNN-LSTM multilayer struc-
ture to predict the PM2.5 concentration in the next 72 hours
at Beijing-Tianjin-Hebei region. This research analysed the
historical air quality and meteorological data of 100 moni-
toring stations for spatiotemporal correlation. [11] proposed
spatiotemporal forecasting models of Beijing’s Air Quality
Index. Four methods (CNN, LSTM, CNN-LSTM, BPNN)
were evaluated to extract the spatiotemporal characteristics
of air quality concentration data (hourly PM2.5, PM10, SO2,
NO2, O3, and CO) and the relations with meteorological and
spatiotemporal data. Themethod that showed the best perfor-
mance in next-hour forecastingwas theCNN-LSTMmethod.
[12] developed a spatiotemporal air quality prediction model
based on LSTMs. The input data were Beijing’s historical
concentrations of PM2.5, SO2, NO2, O3, and CO and mete-
orological data. The output was the concentration sequence
of PM2.5, CO, NO2, O3, and SO2 at four monitoring sites.
The model’s prediction accuracy is high, as shown by the
best R2 value of the four analysed sites: 0.939 for PM2.5,
0.847 for CO, 0.875 for NO2, 0.935 for O3, and 0.809 for
SO2. Some researchers took advantage of the CNN’s ability
to process sequence-structure data for air pollutant concen-
tration prediction. For example, [31] used a five-layer CNN
to extract the temporal correlation from historical observa-
tion data and predict the ozone concentration in the next 24
hours in an urban area. [7] applied the IDW method to inter-
polate air quality and weather data collected in South Korea
and then used the interpolation as input of the CNN to predict
PM2.5 and PM10 concentrations. The results show an effec-
tive prediction performance with an R2 higher than 0.97.

In our research, we have deployed and compared six
air quality prediction methods present in the recent litera-
ture: spatial-based interpolation (IDW), geostatistical model
(Kriging), machine learning (SVM and FFNN), and deep
learning (FFNN with 2 - 3 hidden layers). Each method is
evaluated for extracting spatial dependencies of seven air
pollutants: NO2, NO, CO, SO2, O3, PM2.5, and PM10.
Therefore, we have broadly compared different methods
to predict the concentrations of several air pollutants that
are generated by various sources and that have different
behaviours. The analysis of so many air pollutants is rare
in the literature. The urban area selected has an air quality
monitoring network with a spatial density and a sample time
higher or similar to recent studies.

3 Study area and dataset

The area of study is the city of Madrid, which is the capital
of Spain and the largest and most populated metropolitan
area of the country. Madrid’s province population has grown
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from 6,446 million in 2016 to 6,751 million in 2021 3. The
elevation at its centre (40◦ 25’ N, 3◦ 41’W) is 657m.Madrid
area’s expected mean temperature changes from 9.8 ◦C in
January to 32.1 ◦C in July, experiencing cold winters and
hot summers. Spring and autumn are the seasons with more
expected rainy days, while the summer months are usually
dry and sunny 4.

Madrid’s air pollution levels are high, although, since the
activation of air quality policies in 2011, those levels were
effectively reduced [32]. This study analysed hourly time
series of four air pollutants (NO2, O3, PM10, and SO2)mon-
itoring in Madrid urban area during the period from 2001 to
2017 by a two-stage method: first, a Hidden Markov Model
was used to characterize the air pollution at temporal scales.
Then, the spatial distribution was analysed by combining the
interpolation results of Ordinary Kriging and Inverse Dis-
tance Weighting. [32] concludes that the air pollution spatial
analysis is challenging to assess due to meteorological and
physical factors and the regional contributions originated in
adjacent municipals. Not only is human activity responsible
for bad air quality, but also other climate events like Saha-
ran dust intrusions have an impact by rising PM levels [32,
33].The research [34] examined the effects of local road traf-
fic, meteorological conditions, and temporal variables on air
pollution in Madrid. Its result showed that air pollutant lev-
els were weakly linked to local vehicular emissions because
various elements affect the pollutant concentration, mainly
meteorological agents, topography, tree and shrub presence,
building distribution, and water streams like rivers.

This study uses hourly air quality data measured between
January 2016 andAugust 2018 by the airmonitoring network
ofMadrid.Madrid’s city council operates an air quality mon-
itoring network from 2001 and publishes both real-time and
historical air quality data5. We used the Dataset “Air Qual-
ity in Madrid”6 that contains the processed data from the
files offered by the Madrid’s city council with a structured
organization based on timestamp and standard format data. It
consists of a file for each year where each row is timestamped
and the columns are the different measures performed at that
point in time in a certain station. In addition, the information

3 Instituto Nacional de Estadística (National Statistics Insti-
tute): https://www.ine.es/dynt3/inebase/index.htm?padre=1689&
capsel=9041. Retrieved October 13, 2023.
4 Madrid, Retiro: Madrid, Retiro - Agencia Estatal de Meteo-
rología - AEMET. Gobierno de España: https://www.aemet.es/
es/serviciosclimaticos/datosclimatologicos/valoresclimatologicos?
l=3195&k=28. Retrieved October 13, 2023.
5 Open data portal of theMadrid City Council: https://datos.madrid.es/
portal/site/egob. Retrieved October 13, 2023.
6 KaggleAirQuality inMadrid (2001-2018): https://www.kaggle.com/
datasets/decide-soluciones/air-quality-madrid. Retrieved October 13,
2023.

regarding each station (identifier, name, address, coordinates
and elevation) is available in another file. The measurements
of many pollutants are available (NO, NO2, O3, SO2, CO,
PM2.5, PM10, toluene, benzene, methane), but not every
station is equipped with all air pollution sensors, which have
been increasing over the years.

The study area and the distribution of 24 air quality mon-
itoring stations deployed in Madrid are shown in Fig. 1. The
maximum distance between two stations is 7 kilometres, and
the average distance between stations at the urban centre is 3.
Table 1 contains the coordinates, elevation and the air pollu-
tant measured in each air quality monitoring station between
2016 and 2018. We selected the most harmful air pollu-
tants according to WHO and several government agencies
like the U.S. Environmental Protection Agency7, European
Environment Agency8 and Health Canada and Environment
Canada9. The criteria for the selection of themonitoring sites
are the hourly data availability along with homogeneous spa-
tial data coverage for each air pollutant.

Table 2 presents themeasuring units and the range ofmea-
sured concentrations for each pollutant between 2016 and
2018.

4 Methods

In this work, we present a system based on FFNN architec-
ture for regression to predict the air pollutant concentration
in a specific location based on the measurements obtained
from nearby monitored locations. To compare our proposal,
we applied the following geostatistical and machine learn-
ing methods: Inverse Distance Weighting (IDW), Ordinary
Kriging (OK), and Support Vector Machine (SVM).

4.1 Inverse distance weighting and krigingmethods

Nearly all spatial interpolation methods share the same gen-
eral estimation formula, which is as follows:

Z(x0) =
n∑

i=1

(wi z(xi )) (1)

where Z is the estimated value at the point of interest x0, z is
the observed value at the sampled point xi , wi is the weight

7 AIRNOW: https://www.airnow.gov/aqi/aqi-basics. Retrieved Octo-
ber 13, 2023
8 European Air Quality Index: https://www.eea.europa.eu/themes/air/
air-quality-index. Retrieved October 13, 2023
9 Canada Air Quality Health Index: https://www.canada.ca/en/
environment-climate-change/services/air-quality-health-index/about.
html. Retrieved October 13, 2023
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Fig. 1 Area of study and
position of the different air
monitoring stations. Map image
is obtained from Google Maps

assigned to the sampled point, and n represents the num-
ber of sampled points used for the estimation. The difference
between the methods depends on the formula to calculate the
weights. The two most commonly used interpolation meth-
ods in the literature are IDW and OK [35, 36]. The IDW
method uses the following expression for the weight:

wi =
1p
di∑n

i=1
1p
di

(2)

where di is the distance between x0 and xi , and p is an expo-
nent that determines the influence of values closest to the
interpolated point, while the weight for OK is estimated
by minimizing the variance of the prediction errors. It is
assumed that the data are part of an intrinsic function z(x)
with the sample variogram [37]. The sample variogram is fit-
ted with specific known positive defined functions. The most
common functions are linear, spherical, exponential, and
Gaussian.

In our experiments, we tested the IDW model for p=1
and p=2 and, for the implementation of the OK method,
we applied four function models for fitting the sample
variogram: spherical, exponential, Gaussian and bounded
linear.

4.2 Support vector machine

SVM is a popular machine learning tool for classification,
but it can also be used for regression analysis [38, 39]. SVMs
aim to provide a nonlinear function to map a given training
data set D: (x1, y1), (x2, y2), ..., (xi , yi ) to a high dimen-
sional feature space. In this space, a hyperplane is optimized
to be within a certain threshold of the selected data, called
the support vectors, and the hyperplane is used for predicting
regression.

A linear epsilon-insensitive (ε) SVMwas used for regres-
sion, which is also known as L1 loss. The set of training
data included predictor variables and observed response val-
ues. The goal was to find a function z(x) that deviates from
observed values no greater than ε for each training point x ,
and that is as flat as possible at the same time. The training
of the SVM with epsilon-insensitive loss function was per-
formed by using quadratic programming for minimising the
objective-function.

4.3 Feed-forward neural network for regression

ANNsaremassively parallel interconnected networks of sim-
ple, hierarchically organized elements (artificial neurons)
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Table 1 Air quality monitoring
stations, coordinates, and
measured pollutants (from 2016
to 2018)

Station ID Longitude Latitude Height (m) Measured pollutant

1 -3.7122472 40.4238528 635 NO2, NO, CO, SO2

2 -3.6823194 40.4215638 670 NO2, NO, CO, SO2, O3, PM2.5, PM10

3 -3.6773555 40.4514750 708 NO2, NO

4 -3.63923333 40.4400472 693 NO2, NO, CO, O3

5 -3.7133222 40.3471389 604 NO2, NO, SO2, O3,

6 -3.7318527 40.3947805 630 NO2, NO, CO, SO2, O3, PM10

7 -3.7473472 40.4193555 642 NO2, NO, CO, SO2, O3, PM2.5, PM10

8 -3.5800305 40.4769278 621 NO2, NO, O3

9 -3.7031722 40.4192083 659 NO2, NO, CO, O3

10 -3.6453056 40.4079472 685 NO2, NO, CO, SO2, PM10

11 -3.7071278 40.4455444 698 NO2, NO, SO2, PM2.5, PM10

12 -3.7115417 40.4782278 674 NO2, NO, CO, O3

13 -3.6515222 40.3881527 677 NO2, NO, SO2, PM10

14 -3.686825 40.3981138 599 NO2, NO, PM2.5, PM10

15 -3.6903667 40.4398972 676 NO2, NO, PM2.5, PM10

16 -3.6825833 40.4144444 662 NO2, NO, O3

17 -3.68876945 40.4655722 728 NO2, NO, PM2.5, PM10

18 -3.6121167 40.3729333 627 NO2, NO, O3,

19 -3.5807472 40.4625305 618 NO2, NO, PM10

20 -3.7187278 40.3849639 604 NO2, NO, CO, O3

21 -3.6605028 40.4942083 700 NO2, NO, CO, SO2, PM10

22 -3.7746111 40.5180583 615 NO2, NO, O3

23 -3.60907222 40.4652500 660 NO2, NO, O3

24 -3.6897611 40.5005889 715 NO2, NO, O3, PM10

that attempt to interact with the environment in the same
way as the biological nervous system [40]. The output of
such an artificial neuron can be calculated using the (3).

y = f (
n∑

i=1

(wi xi )) + b) (3)

where xi are the inputs, n the number of inputs,wi the synap-
tic weights, b the threshold and f the activation function. The
most commonly used activation functions are linear, sigmoid,
and hyperbolic tangent. Artificial neurons are arranged in
several layers and connected by synaptic weights.

In this work, three feed-forward, fully connected neural
networks were used for regression. The structure includes an
input layer, one or more hidden layers, and an output layer.
The input layer takes information (predictor data) from the

domain and passes it to all the neurons from the first hid-
den layer. As the first hidden layer is fully connected to
the input layer, each subsequent layer is connected to all
the neurons from the previous layer. Each neuron of a fully
connected layer multiplies the input by the synaptic weight
and then adds the multiplication results with the bias. The
sum is passed through an activation function. The final fully
connected layer produces the network’s output (predicted
response values). The proposed architecture for the fully
connected layered neural network with two hidden layers
is shown in Fig. 2. An enlarged diagram of a single artificial
neuron is presented separately to show its five components
-inputs, synaptic weights, sum, bias, and activation function.
We chose two activation functions for hidden layers: a Rec-
tified Linear Unit (ReLU) and a sigmoid function. These
functions are described in (4) and (5), respectively. Accord-

Table 2 Measuring units and
range of measured
concentrations for each
pollutant (years 2016 to 2018)

NO2 NO CO SO2 O3 PM2.5 PM10
(μg/m3) (μg/m3) (mg/m3) (μg/m3) (μg/m3) (μg/m3) (μg/m3)

[1, 349] [1, 973] [0.1, 4.9] [1, 98] [1, 193] [0, 96] [0, 318]
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Fig. 2 Fully interconnected bi-layer FFNN with 5 input nodes, two
hidden layers with 10 neurons and the output layer with one neuron.
An enlarged diagram of a single artificial neuron is presented separately
to show its five components -inputs, synaptic weights, sum, bias, and
activation function

ing to the regression problem, the activation function of the
output layer is the linear function f(x) = x.

f (x) =
{
x, x ≥ 0
0, x < 0

(4)

f (x) = 1

1 + e−x
(5)

The training is based on the limited-memory Broyden-
Fletcher-Goldfarb-Shanno quasi-Newton algorithm (LBFGS)
[41], where the mean squared error (MSE) is minimized.

We proposed three FFNN architectures for extracting the
spatial characteristics of the air pollution concentration: one
hidden layer neural network, a bi-layer neural network, and
a tri-layer neural network. Regarding the current application,
the number of monitoring sites for predicting each pollutant
defines the number of input nodes, and the output layer con-
sists of a fully connected neuron to return the prediction. The
number of neurons in each hidden layer is configurable. In
order to compare the same structure for different air pollu-
tants, we determined 10 neurons per hidden layer for each
architecture.

5 Experiments

Figure 3 shows the diagram of the experimental workflow. It
was followed for the evaluation of several prediction models
to estimate each air pollutant.

Firstly, we selected the target location, which should be a
point with historical concentrations of the air pollutant to be
estimated. We chose target stations based on their position
close to the centre of Madrid and the five stations closest to
the target site. However, our decision was constrained by the
availability of air pollution sensors in each station. Table 3
shows the monitoring station selected as the target site and
five nearbymonitoring stations used to estimate the air pollu-
tant concentrations. The average distance between the target
and the selected stations is 3.26 kilometres. The coordinates
and distribution of the air quality monitoring stations are
shown in Table 1 and in Fig. 1, respectively.

Secondly, we processed the dataset to get the air pollu-
tant concentrations from the selected stations. Each sample
included the air pollutant concentrations for each station
taken simultaneously. The samples with some missing val-
ues were removed. The input values for IDW andOKmodels
are the latitudes, longitudes, and pollutant concentration at
the five nearby stations. However, the input data for SVM
and FFNN are the historical values of the pollutants from six
stations, for training, and the pollutant concentration at the
five nearby stations, for predicting.

Then, the predictive models were designed. We devel-
oped two IDW models (p=1 and p=2) for evaluating the
influence of the distance in the prediction. When p=2, the
method is known as the inverse distance squared weighted
interpolation. To implement the OK method, four function
models were applied to fit the sample variogram: spherical,
exponential, Gaussian, and bounded linear. We proposed a
linear ε-SVM for regression and three different FFNN archi-
tectures: one hidden layer neural network, a bi-layer neural
network, and a tri-layer neural network. The number of mon-
itoring sites for predicting each pollutant defines the number
of input nodes, a parameter set to five in our system. The
output layer consists of a fully connected neuron to return
the prediction. The number of neurons in each hidden layer
is a configurable parameter, and we set it to ten to compare
the same structure for different air pollutants. We tested two
activation functions for hidden layers: a RectifiedLinearUnit
(ReLU) and a sigmoid function.

In the case of the SVM and FFNN models, the next phase
is training. In both cases, we used 80% of the samples to
train the neuronal network model and the remaining 20% to
test the performance of the trained model with new data.
Figure 4 shows the data and processes of training stage.
The results are the trained FFNN (or SVM) and the differ-
ence and correlation measures. The IDW and OK models do
not require training since the estimated value is calculated
from the simultaneous measurements taken at the nearby
stations and the distances to the target site. We used the test
set to validate the SVM and FFNN models and the whole
dataset to evaluate the IDW and OK models. The accuracy
of each model is based on the comparison of the observed
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Fig. 3 Experimental workflow
followed for the prediction of
each air pollutant and the
evaluation of the proposed
models

and predicted concentrations and the statistical analysis of
the residual values.

Finally, we determined the mean performance of each
model by using a set of difference and correlation mea-
sures:MeanAbsolute Error (MAE), RootMean Square Error

(RMSE), and the coefficient of determination (R2). R2 is
the proportion of variation in the dependent variable that is
predicted by the statistical model (range from 0 to 1). There-
fore, R2 provides information about the model’s goodness of
fit. The following equations determine these error measures

Table 3 The selected
monitoring stations and
distances to the target site for
each air pollutant under
evaluation

Pollutant Target site Monitoring stations and distance to target site

NO2 and NO 15 1 2 3 9 11

2.57 km 2.15 km 1.69 km 2.54 km 1.55 km

CO 2 1 6 9 10 20

2.55 km 5.15 km 1.79 km 3.49 km 5.11 km

SO2 2 1 6 10 11 13

2.55 km 5.15 km 3.49 km 3.39 km 4.54 km

O3 9 2 4 6 16 20

1.79 km 5.90 km 3.64 km 1.82 km 4.02 km

PM2.5 15 2 7 11 14 17

2.15 km 5.35 km 1.55 km 4.65 km 2.85 km

PM10 15 2 10 11 14 17

2.15 km 5.22 km 1.55 km 4.65 km 2.85 km
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Fig. 4 The training phase flowchart of SVM and FFNN methods

between observed (xi ) and predicted (yi ) values, where n rep-
resents the number of sampled points used for the estimation
and μx is the mean of observed values.

MAE = 1

n

n∑

i=1

|xi − yi | (6)

RMSE =
√√√√1

n

n∑

i=1

(xi − yi )2 (7)

R2 = 1 −
∑n

i=1 (xi − yi )2∑n
i=1 (xi − μx )

2 (8)

This process was followed for the seven selected pollu-
tants: NO, NO2, O3, SO2, CO, PM2.5 and PM10.

6 Results

Six methods for modelling the spatial characteristics of the
air pollutant concentrations were implemented and evalu-
ated for each of the seven air pollutants (NO2, NO, CO,

SO2, O3, PM2.5, and PM10). The experiments used histori-
cal pollutant data from monitoring stations of Madrid city’s
air quality monitoring network collected from January 1,
2016, to December 31, 2018. Among the different model
variants that were tested for the IDW and OK methods, only
the best ones are shown in the results. We proposed three
FFNN architectures: a FFNN with one fully connected layer
(FCL), two FCLs, and three FCLs. Except in the prediction
of SO2 concentration, we chose to apply the ReLU function
in the hidden layers because it has a greater accuracy than
the sigmoid one.

Tables 4, 5, 6, 7, 8, 9 and 10 present the assessment of
the statistical (IDW and OK) and machine learning (SVM
and FFNN) methods by RMSE, MAE and R2. RMSE and
MAE are in the same units of pollutant concentrations, and
R2 ranges from 0 to 1.

The results for predicting NO2 and NO showed a bet-
ter predictive performance of machine learning methods
over spatial statistical models. The bi-layer FFNN method
presents maximum R2 and minimum RMSE for estimating
NO2 and NO air pollutants. The proposed models for esti-
mating the CO concentrations result in low accuracy. Neither
method is appropriate to extract the spatial characteristics of
the CO concentrations. A possible reason for this result may
be that CO is a primary pollutant whose concentration is
closely linked to local combustion phenomena, aggravated
in some cases by low dispersion due to thermal inversion or
lack ofwind.Heavy traffic or traffic jams in a specific area can
cause high local measurements of CO without hardly affect-
ing neighbouring areas. A higher density of measurement
stations could be needed to get better results for CO because
its concentration relative to the distance from the pollution
source can decrease quickly. In the case of SO2, the accu-
racy of themachine learningmethods is vastly superior to that
of the spatial statistical models. FNNmethods experiment an
exceptional improvementwhen increasing the number of hid-
den layers. The prediction models of O3, PM2.5, and PM10
present similar performances, with slightly higher accuracy
for bi-layer FFNN methods.

The bi-layer FFNN method exhibits the best result for
most of the air pollutants under evaluation, except for the
prediction of SO2, where the best performance is led by the
tri-layer NN. The highest coefficient of determination (0.9)
is reached by the bi-layer FFNN method for the prediction
of NO2 and PM10. In most cases, we could rank the meth-
ods according to their performance (from best to worst) as
follows: bi-layer FFNN, tri-layer FFNN, FFNN, SVM, IDW,
and OK. The IDW and OK methods present similar results
and have the lowest accuracy for all the evaluated air pollu-
tants. The SVM models exhibit lower predictive ability than
the FFNN methods for fitting air pollution concentration.
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Table 4 Overall performance
metrics for the prediction of
NO2

IDW OK SVM FFNN
p=2 B. linear 1 FCL 2 FCL 3 FCL

RMSE (μg/m3) 14.06 14.79 10.09 8.67 8.61 8.65

MAE (μg/m3) 10.51 11.15 6.86 6.15 6.04 6.05

R2 0.84 0.83 0.86 0.89 0.90 0.89

Table 5 Overall performance
metrics for the prediction of NO

IDW OK SVM FFNN
p=2 B. linear 1 FCL 2 FCL 3 FCL

RMSE (μg/m3) 25.16 26.31 15.75 14.67 14.30 14.81

MAE (μg/m3) 12.96 13.73 6.54 5.86 5.71 5.71

R2 0.77 0.76 0.79 0.82 0.83 0.82

Table 6 Overall performance
metrics for the prediction of CO

IDW OK SVM FFNN
p=1 Expon. 1 FCL 2 FCL 3 FCL

RMSE (μg/m3) 0.178 0.179 0.177 0.162 0.164 0.162

MAE (μg/m3) 0.104 0.105 0.093 0.090 0.089 0.089

R2 0.51 0.51 0.49 0.57 0.57 0.57

Table 7 Overall performance
metrics for the prediction of SO2

IDW OK SVM FFNN
p=2 Gaussian 1 FCL 2 FCL 3 FCL

RMSE (μg/m3) 6.15 6.15 3.77 2.94 2.51 2.43

MAE (μg/m3) 4.70 4.70 2.87 2.13 1.73 1.62

R2 0.14 0.12 0.49 0.69 0.78 0.79

Table 8 Overall performance
metrics for the prediction of O3

IDW OK SVM FFNN
p=2 B. linear 1 FCL 2 FCL 3 FCL

RMSE (μg/m3) 14.35 14.63 10.79 9.60 9.49 9.48

MAE (μg/m3) 10.74 10.89 7.98 7.19 7.06 7.06

R2 0.84 0.84 0.85 0.88 0.88 0.88

Table 9 Overall performance
metrics for the prediction of
PM2.5

IDW OK SVM FFNN
p=1 Expon. 1 FCL 2 FCL 3 FCL

RMSE (μg/m3) 3.84 3.91 3.60 3.53 3.49 3.52

MAE (μg/m3) 2.59 2.65 2.35 2.34 2.18 2.33

R2 0.73 0.72 0.74 0.75 0.75 0.75

Table 10 Overall performance
metrics for the prediction of
PM10

IDW OK SVM FFNN
p=1 Expon. 1 FCL 2 FCL 3 FCL

RMSE (μg/m3) 5.63 5.53 4.78 4.50 4.52 4.49

MAE (μg/m3) 3.79 3.74 3.01 2.89 2.90 2.89

R2 0.88 0.89 0.90 0.91 0.91 0.91
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Fig. 5 FFNN prediction performance: (Left) scatter plots showing
observed versus predicted concentrations for the pollutants based on the
20% of data used for validation. (Centre) Residual plot of the difference

between the predicted and true responses. (Right) Residual histograms
showing the relative probability of error values
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Fig. 5 continued

Figure 5 shows the bi-layer FFNN performance for the
seven air pollutants (NO, NO2, CO, SO2, O3, PM2.5 and
PM10), based on the 20% of data used for validation. In
the left column, the scatter plots of observed versus pre-
dicted concentrations for each air pollutants are shown. In
all cases, low dispersion is observed along the diagonal of
the optimum prediction. The centre column shows the resid-
ual plots that display the difference between the predicted
and measured values. The right column contains the resid-
ual histogram showing the relative probability of predictive
errors. A general remark is that many error values are around
zero and residuals distributions are in accordance with the
mean model performance metrics.

7 Discussion

The main objective of this work was estimating air pollution
concentration in a certain location based on the measure-
ments taken at nearby stations for addressing the missing
values and detecting uncalibrated sensors. We have devel-
oped several statistical (IDW and OK) and machine learning
(SVM, FFNN, bi-layer FFNN, tri-layer FFNN) methods to
model the spatial characteristics of the concentrations of
seven air pollutants (NO2, NO, CO, SO2, O3, PM2.5, and
PM10) measured by Madrid’s air quality monitoring net-
work. Themodels were evaluated and compared usingMAE,
RMSE, and R2 as accuracy indicators.
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IDW and OK’s statistical models reached R2 greater than
0.75 for NO2, NO, O3, and PM10. The prediction accuracy
of the FFNN methods is better than the results of IDW and
OK for all analysed air pollutants. There is a more significant
accuracy difference between geostatisticalmodels andFFNN
methods for predicting NO2, NO, and SO2 than O3, PM2.5,
and PM10. The results show the effectiveness of the bi-layer
FFNN model to fit spatial correlation of the air pollution
concentration of NO2, NO, SO2, O3, PM2.5 PM10. For the
prediction of SO2, the tri-layer FFNN model improves the
bi-layer FFNN accuracy. Therefore, the proposed systems
have a direct application to provide missing values of the air
monitoring network and can be used to detect uncalibrated
sensors. Neither method is appropriate to extract the spatial
characteristics of the CO concentrations. A possible reason
for this result may be that the CO concentration is closely
linked to local combustion phenomena. A higher density of
measurement stations could be needed to get better results
for CO.

As mentioned in Section 2, the models proposed by [12]
and [7] reach a very high R2 value regarding the rest of the
recent research analysed in this section. The proposed bi-
layer FFNN-based system reaches a better R2 value of 0.9
for the prediction of NO2. The prediction of SO2 is less fre-
quently analysed in the related recent studies and gets worse
performance. [12] presents the highest R2 value of 0.81. In
this work, the tri-layer FFNN system reaches an R2 value
of 0.79. [12] proposed a model based on an LSTM network
with n hidden layers and a fully connected layer. Adding a
fully connected layer improves the performance of the pre-
diction model, according to the results presented in [12] and
this work. The input data of the models proposed by [12] and
[7] are air pollution concentrations collected at the monitor-
ing stations and meteorological data. A possibility of future
improvement is introducing an LSTM to extract temporal
correlation and adding meteorological variables such as tem-
perature, dew point, pressure, wind direction, andwind speed
to data input.

Several ablation experiments were carried out to evaluate
the effect of reducing components of the proposed neural
network architecture. The effectiveness of hidden layer size
was examined by two implementations of bi-layer FFNN
with seventy and fifty percent reduction of neurons in hidden
layers. For most of the pollutants analyzed, the performance

of the structure with a seventy percent reduction is similar
to the full bi-layer FFNN, obtaining the same value of the
R2 metric and a slight degradation of MAE and RMSE. In
the case of SO2, the R2 value decreases by 0.02. In con-
trast, reducing the number of neurons in the hidden layers
to fifty percent decreases the system’s accuracy for all cases,
as shown in Table 11 by the R2 metric. The performance for
PM10 prediction decreases markedly with an R2 value of
0.61. To verify the influence of the features on the proposed
system performance, the farthest station measurements were
removed from the input. For predicting NO2 and NO, sta-
tion 1 was eliminated. For CO and PM10, station 10. For
SO2, O3, and PM2.5, stations 13, 4, and 7, respectively. The
third entry in Table 11 shows the performance results for
the system with four inputs instead of five. The R2 value
decreases for predicting all pollutants, with the most signif-
icant difference for SO2. These ablation experiments were
also performed for the one-hidden FFNN and tri-layer FFNN
systems, obtaining similar results to the bi-layer FFNN.

8 Conclusion

In this study, three FFNN architectures (with one, two, and
three fully connected hidden layers) were implemented and
evaluated for modelling the spatial correlation of the con-
centrations of seven air pollutants: NO2, NO, CO, SO2, O3,
PM2.5, and PM10. A comparison with other exposure mod-
elling approaches has been presented: an SVM model and
two geostatisticalmodels (IWDandOK). The input dataset is
historical pollutant measurements collected by Madrid’s air
qualitymonitoring network from January 1, 2016, to Decem-
ber 31, 2018.

The performance results reveal that bi-layer FFNN and
tri-layer FFNN systems are suitable for the spatial predic-
tion of NO2, NO, SO2, O3, PM2.5, and PM10 concentration
with an accuracy of (R2) 0.9, 0.83, 0.79, 0.88, 0.75, 0.91,
respectively. The comparison results show that FFNN mod-
els are superior to geostatistical methods and slightly better
than Support Vector Machines for fitting the spatial correla-
tion of air pollutant measurements (NO2, NO, CO, SO2, O3,
PM2.5, and PM10) collected at nearby locations (less than
3.5 kilometres). For the prediction of NO2 and SO2 concen-

Table 11 Effect of decreasing
FFNN architecture

NO2 NO CO SO2 O3 PM2.5 PM10

Full bi-layer FFNN 0.9 0.83 0.57 0.78 0.88 0.75 0.91

Half bi-layer FFNN 0.89 0.82 0.56 0.75 0.87 0.74 0.61

4-input bi-layer FFNN 0.89 0.82 0.55 0.71 0.87 0.74 0.9

The table compares R2 metric for the performance of bi-layer FFNN in two ablation experiments: reducing
by half the number of neurons in the hidden layers and removing an input feature
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trations, the bi-layer FFNN and tri-layer FFNN models get a
similar accuracy to the recent studies where the BPNN and
deep neural network were developed.

In future work, we expect to introduce an LSTM neural
network to extract the temporal correlation of air pollution
concentration. Also, we will extend the system input with
meteorological variables such as temperature, dew point,
pressure, wind direction, and wind speed to data input to
evaluate the prediction system performance.
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