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Abstract
Online supervised learning from fast-evolving data streams, particularly in domains such as health, the environment, and
manufacturing, is a crucial research area. However, these domains often experience class imbalance, which can skew class
distributions. It is essential for online learning algorithms to analyze large datasets in real-time while accurately modeling rare
or infrequent classes that may appear in bursts. While methods have been proposed to handle binary class imbalance, there is
a lack of attention to multi-class imbalanced settings with varying degrees of imbalance in evolving streams. In this paper, we
present the Dynamic Queues (DynaQ) algorithm for online learning in multi-class imbalanced settings to fill this knowledge
gap. Our approach utilizes a batch-based resampling method that creates an instance queue for each class to balance the
number of instances. We maintain a queue threshold and remove older samples during training. Additionally, we dynamically
oversample minority classes based on one of four rate parameters: recall, F1-score, κm , and Euclidean distance. Our learning
algorithm consists of an ensemble that uses sliding windows and a soft voting schema while incorporating a drift detection
mechanism. Our experimental results demonstrate the superiority of the DynaQ approach over state-of-the-art methods.

Keywords Online learning · Multi-class imbalance · Data streams · Ensembles · Concept drift

1 Introduction

In dynamic data streaming environments, online learning
algorithms consider incoming examples “on arrival” without
needing persistent storage and multiple scans, while main-
taining a model that reflects the current data. This type of
learning has applications in various real-world applications,
such as network intrusion detection, spam filtering, fault
diagnostics in manufacturing, and e-commerce applications
[23]. Learning from such streaming data is challenging, espe-
cially in the presence of multiple skewed class distributions,
also knownas “multi-class imbalance”,where a large number
of majority-class instances may lead to the minority classes
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being ignored. This problem is aggravated in an online learn-
ing setting because a steady arrival of minority instances
cannot be guaranteed, and a minority class may become a
majority concept and vice versa [21]. In addition, evolv-
ing streams are susceptible to concept drifts, which is the
phenomenon of unexpected changes in the underlying data
distribution [35].

While previous studies have primarily focused on binary
imbalanced data or stationary streams, only a limited num-
ber of studies have addressed the challenge of learning from
evolving streams with multi-class imbalanced data [1]. For
instance, [21] proposedmodifications to resamplingmethods
to adjust formulti-class imbalanced data. In addition, [14, 15]
introduced ensemble-based approaches utilizing random fea-
ture subsets and resampling to address imbalances. However,
further investigation is needed to explore classifier-agnostic
approaches that can effectively utilize alternative evaluation
metrics and resampling parameters to address the challenges
of imbalanced datasets. Additionally, it is crucial to develop
class-based drift detection methods to prevent performance
deterioration.

This paper introduces an algorithm for online learning in a
multi-class imbalance setting to address these shortcomings.
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Our dynamic queues (DynaQ) approach extends the online-
multi-class-queue (OMCQ) [46] approach that maintains
separate queues for each class, without any form of sampling.
In addition, our DynaQ algorithm uses oversampling with
replacement based on a rate parameter associated with the
various classes. That is, we oversample the minority classes
based on the recall, F1-score, κm and Euclidean distance.

Our DynaQ algorithm combines batch-incremental and
instance-incremental ensemble learning. Initially, a batch of
data with the classes that have been seen so far is presented to
the learner, and it subsequently updates the model with new
instances as they arrive. Each ensemble member learns from
a sliding batch, and the results are combined using soft vot-
ing. In addition, we incorporate a class-specific concept drift
detection mechanism into DynaQ. Our algorithm can thus
dynamically adapt to changes in label arrivals and individual
class performances, as monitored by the recalls. Specifically,
we do not make any assumptions regarding the frequency
of classes, which implies that minority classes may become
majority classes, and vice versa. Our experimental results
confirm that our DynaQ algorithm is efficient in terms of
multi-class concept separation.

The main contributions of this paper are as follows.

Novel online queue-based ensemble architecture:DynaQ
utilizes a batch-based resampling method that creates an
instance queue for each class and incorporates an ensem-
ble approach that utilizes sliding windows and a soft
voting schema.
Self-handling class imbalance:DynaQdynamically over-
sampling minority classes based on a rate parameter
associated with the various classes.
Class-based concept drift approach: DynaQ incorporat-
ing a drift detection mechanism to dynamically adapt
to changes in label arrivals and individual class perfor-
mances.
Multi-class imbalanced and concept drift stream:DynaQ
highlights the challenges of learning from dynamic data
streaming environments while addressing multi-class
imbalance and concept drift in online learning.

The paper is organized as follows. Section 2 presents
related work, while Section 3 introduces the DynaQ algo-
rithm. Section 4 describes the experimental evaluation, and
Section 5 concludes the paper.

2 Background and related work

In online learning, a data-generating process provides at each
time step t a sequence of examples (xt , yt ) from an unknown
probability distribution, where xt is a vector consisting of

qualitative or quantitative f features, and yt ∈ Y is the class
label, where Y = {c1, c2, . . . , cs}, and S is the number of
classes. An online classifier is built receiving an example
xt at time step t , resulting in a prediction ŷt . In a supervised
learning setting, the label yt is available, and the performance
of a learning algorithm is evaluated using a loss function
f (xt ) = l(yt , ŷt ) to find the best predictor for future data at
each step [23]. This paper focuses on online learning from
multi-class imbalanced data, where S > 2, from evolving
streams.

2.1 Online class imbalance learning

In an online class imbalance learning setting, the main
goal is to correctly classify minority examples because the
minority class is often of most interest. Existing online learn-
ing approaches that address the class imbalance problem
may be categorized into data-level, algorithmic and hybrid
ensemble-based approaches. Several methods proposed for
solving class imbalance problems in data-level techniques
provide solutions, including resampling and feature selection
[4]. Data-level modifications aim to balance the underlying
dataset, making them classifier-agnostic approaches. Resam-
pling is an effective data-level approach that proceeds inde-
pendently of the learning algorithm; this method has been
used for binary classification problems in the data stream
setting. The major types of resampling are oversampling
(increasing the number of minority-class examples), under-
sampling (reducing the number of majority-class examples),
and hybrid sampling [23]. SyntheticMinorityOver-sampling
Technique (SMOTE) [19] is a base idea for many resampling
methods. SMOTE is an over-sampling technique that creates
new instances of the minority class by interpolating between
existing instances that are located close to each other. This
method effectively reduces the degree of class imbalance
compared to the original majority-to-minority class ratio.
Recently, new modifications of the SMOTE method have
been introduced that enable it to work compatible with
streaming data [5–7]. The technique known as Selection-
Based Resampling (SRE) [45], utilizes undersampling to
eliminate safe instances from themajority class in an iterative
manner, without causing reverse bias towards the minority
class. However, undersampling methods may lead to crucial
information being overlooked, whereas oversampling may
potentially introduce artificial instances that may be deemed
unacceptable in real-world domains. Hybrid ensemble-based
methods combine resampling and algorithmic approaches to
manage the class imbalance [13]. For example, in a study by
[51], the authors integrated resampling into ensemble algo-
rithms to define the oversampling online bagging (OOB) and
undersampling online bagging (UOB) techniques for binary
classification. The work extends bagging ensembles follow-
ing a class-based ensemble approach to dynamically change
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the learning rate by maintaining a base learner for each
class and updating the base learners with new data to deal
with binary class imbalance. Resampling will be triggered to
either increase the chance of training minority-class exam-
ples (in OOB) or reduce the chance of trainingmajority-class
examples (in UOB).

Online queue-based resampling [38] has also been pro-
posed as a method for binary classification. The main idea
of this algorithm is to selectively include a subset of the pos-
itive and negative examples in the training set that thus far
have appeared in the stream. The examples are selected by
maintaining, at any given time t , separate queues based on
class labels received from data of equal lengths L ∈ Z

+,
qtn = {(xi , yi )}Li=1 and qtp = {(xi , yi )}Li=1 that contain the
negatives as majority examples and the positives as minority
examples, respectively. Once the queues are filled, the classi-
fier is incrementally updated after combining the two queues
into one training set [38]. The algorithm employs an inter-
leaved test-then-train evaluation [8] in which each example
is used to test the model before the example is appended to
the queues for training, thus implementing a sliding window
method. Our work extends the notion of queues as presented
in [38] to the multi-class scenario by incorporating explicit
concept drift detection during learning.

2.2 Multi-class imbalanced learning

Multi-class classification problems are often considered
more challenging than their binary counterparts, because
multiple classes can increase the data complexity and aggra-
vate the imbalanced distribution [1]. Current approaches
in an online setting are primarily based on binary decom-
position techniques, algorithmic-level modifications using
misclassification costs, and resampling methods [1, 51].
Binary decomposition algorithms typically combine bina-
rization techniques that transform the original multi-class
data into binary subsets [30]. One of the most commonly
used binarization strategies is the one-versus-one (OVO) [20]
decomposition where it first selects a subset from the original
data that only contains the instances for each pair of classes
and proceeds to train a binary classifier for each pair. In con-
trast, in the one-versus-all (OVA) approach [20], amulti-class
data set is decomposed into several binary class problems
and subsequently train single classifiers for each class by
considering a single class versus a combination of all the
remaining classes. For instance, [28] uses adaptive online
one-class Support Vector Machines to monitor changes in
minority classes over time. Further, [17] propose integrating
one-class classification with ensembles using over-sampling
and instance selection techniques to balance the class dis-
tribution of incoming data batches, which are then used to
induce classifier ensembles. A disadvantage of binarization

techniques is that the interactions between multiple classes
cannot be considered simultaneously.

Algorithmic-level approaches adapt the training process
to enhance the classifiers’ ability to deal with skewed dis-
tributions. These methods are often specific to particular
learningmodels, making themmore specialized but less flex-
ible than data-level approaches. One of the most common
algorithmmodifications for addressing class imbalance com-
bines Hoeffding Trees with the Hellinger splitting criteria for
imbalanced domains. In GHVFDT [36], Hoeffding Trees are
used to construct a decision tree that can handle data streams,
while the Hellinger distance is used as a splitting criterion
that is less sensitive to class imbalance. Further, [31] intro-
duced an approach that modifies predictions made by a base
classifier to address imbalanced data streams. This algorithm
aims to map prior probabilities in the statistics of assigned
classes.

A few research studies considered multi-class online
learning from evolving streams, focusing on resampling
techniques, using resampling and online ensemble learn-
ing together [1, 29]. Online ensembles learn each incoming
training example separately, and component classifiers are
constructed from corresponding instances. These approaches
use this method to learn the data stream in one pass. Sev-
eral approaches extend the well-known online bagging (OB)
algorithm, as introduced by [42]. The OB algorithmmodifies
the original batch-based bagging method that samples with
replacement in an online setting by calculating the value of k
based on the Poisson distribution. New instances are classi-
fied by a majority voting of the N base model. Specifically,
in a recent study [52], the authors proposed two ensemble
learning methods for multi-class online learning. These two
algorithms, multi-class oversampling-based online bagging
(MOOB) and multi-class under-sampling-based online bag-
ging (MUOB), use resampling to overcome class imbalance
with the framework of OB, as introduced above [42]. These
algorithms can process multi-classes directly without using
class decomposition. However, the performance is based on
underlying assumptions, such as that sampling only based
on the size of classes is efficient and does not introduce
bias. Some approaches employ feature space modification
to define what feature space input is used by base classi-
fiers. In [14] diverse feature subspaces of random sizes are
used to improve the ensemble’s performance. The Kappa
Updated Ensemble (KUE) method employ a combination
of base classifiers that are updated dynamically based on
a κ statistic, which measures the agreement between the
base classifiers on a sliding window of recent data. KUE
also incorporates an instance weighting scheme that priori-
tizes recent data over older data. Similarly, [15] introduce the
Robust Online Self-Adjusting Ensemble (ROSE), an online
ensemble-based algorithm that combines classifiers trained
on variable-sized random subsets of features. The ROSE
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algorithm incorporates undersampling of themajority classes
and employs so-called background classifiers initiated once
drift is detected. In essence, ROSE is based on self-adjusting
bagging and balances the training sets by monitoring the
product of the accuracy and κ statistic. Specifically, each
window provides a background classifier with a balanced
data set of recent instances at the start of model construction.
Background classifiers are dynamically added to the ensem-
ble once their performance surpasses a threshold.

The OMCQ framework maintains multiple queues for
each class in the multi-class learning setting [46]. This
algorithm learns directly from the original data without
resampling and incorporates a drift detection mechanism
that can adapt to class sizes. While previous results were
promising, the OMCQ approach may be extended to use
dynamic sampling, as will be discussed in Section 3. The
authors in [47] introduced a new method for dealing with
multi-class imbalanced data called improved online ensem-
bles (IOE) for semi-supervised learning. In this technique,
instances from the minority and majority classes are sam-
pled based on the classifier’s performance,measured in terms
of the recall of each class. Classes with lower-than-average
recalls are oversampled, while classes with higher recalls
are undersampled. The sampling in the IOE algorithm is
controlled by setting the rate parameter of the Poisson dis-
tribution based on the recall score of classes, which controls
the number of times each instance is used for training each
base learner in the ensemble learning model. At each time
step, the ensemble model is employed so that the N individ-
ual classifiers are trained by oversampled or undersampled
instances.

In cases where ensembles have limited access to labels, a
set of algorithms is also available [48, 55].One such approach
is CALMID [32], which is a robust framework that deals with
limited label access, concept drift, and class imbalance by
dynamically inducing new base classifiers and weighting the
most relevant instances. Themethod uses a variable threshold
uncertainty strategy based on an asymmetric margin thresh-
old matrix to address the problem of a given class being a
majority to a given subset of classeswhile also being aminor-
ity to others. A novel sample weight formula is designed to
consider the class imbalance ratio of the sample’s category
and the prediction difficulty.

Next, we introduce our DynaQ framework.

3 DynaQ framework

Our DynaQ framework maintains a queue for each of our
multiple classes. Initially, all queues will be empty. As
instances arrive, they are added to the appropriate queue
per their true label. Our sampling and training processes

commencewhen the first queue has beenfilled. Figure 1 illus-
trates how our contributions fit together and operate in one
iteration of an interleaved test-then-train loop. For each arriv-
ing instance, minority classes are oversampled to balance the
different classes. As noted in Section 2, the sampling process
is based on rate parameters of the classes, where classes with
rates lower than the average are oversampled, while classes
with higher rates use the original training instances. That is,
our algorithm oversamples minority instances, while major-
ity classes are not undersampled.

Theonline learningphase ofDynaQ thus incorporates four
processes: evaluation, dynamic class balancing, ensemble
learning, and concept drift detection. Our algorithm creates
a queue space in the class balancing module to separate the
instances from each class as they arrive within the stream.
Subsequently, if the queue for a class is not full or the param-
eter rate for that class is below a threshold, the queue is
updated with an oversampled instance; otherwise, we use
the instance only once by inserting it in the related queue.
The concept drift detector captures changes in the data dis-
tributions by adapting the idea of the drift detection method
(DDM) [50] and subsequently updating the instances in the
queues. The online ensemble component updates a single
learner per iteration of the interleaved test-then-train loop in a
cyclical manner, meaning that each classifier in the ensemble
is trained only once every N loop iterations; N is the number
of classifiers in an ensemble. That is, a different learner from
the ensemble is trained at the next loop iteration, with the
sliding batch including the new instance and overlapping by
the previous one.

Specifically, the evaluator is used to predict the class label
of arriving instances, using soft voting, and to update the eval-
uation metrics. The concept drift detector captures changes
in the data distributions by adapting the DDM algorithm [50]
idea and subsequently updating the instances in the queues.
In the class balancing module, our algorithm creates a queue
space to separate the instances from each class as they arrive
within the stream. Subsequently, if the queue for a class is not
full or the rate parameter for that class is below a threshold,
the queue is updated with the oversampled instance. Oth-
erwise, as indicated above, we use the instance only once
by inserting it in the related queue. During online learning,
a single learner is trained during a single iteration of the
interleaved test-then-train loop in a cyclical manner. A soft
voting-based ensemble of classifiers is used during training to
incrementally update the model using sliding batches. This
implies that each classifier in the ensemble is trained only
once every N loop iteration, where N is the number of clas-
sifiers in the ensemble. A different learner from the ensemble
is trained at the next loop iteration, where the sliding batch
includes one new instance. Next, we present ourDynaQ algo-
rithm’s details, as shown in Algorithm 1.
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Fig. 1 High-level overview of DynaQ methodology

3.1 Online queue construction

In an offline supervised learning setting, it follows that a data
set D is available with input signals xi and output yi . The task
is to infer a model M ≈ p(y | x) from such data. In contrast,
online learning refers to approaches when the full data set
D is unavailable during learning. Here, examples arrive over
time, and the task is to infer a reliable model Mt at time step t
based on the newly arriving example (xt , yt ) and the previous
model Mt−1.

Incremental online learning is a sub-area of online learn-
ing that is additionally bounded by memory resources and
the capability of continuous learning with limited data com-
pared to offline learning. In the literature, approaches to
incremental learning can generally be categorized as batch
incremental and instance incremental [44]. As the name sug-
gests, batch learningmethods employ batches of data to form
hypotheses about the data. At every time step t , this form
of training collects the k newest instances to form a batch.
When a batch of data Dt is filled, a model mt is learned
[34]. This process continues, batch by batch. In our work,
following [38], we consider a sequence of streaming data
f = {(x1, y1), . . . , (xt , yt )} ∈ Rn × {1, . . . , S}, where f
is the data dimension, and S is the total number of classes.
The key idea is to keep a fixed number of examples (queue

size denoted by L) for each class in a stream to combine
the training set. In other words, each arriving sample (xt , yt )
at any given time t will be stored in a separate queue of
equal length qtCS

= L , where cs is the class label received
with the data. Together, the queues form a sliding batch Bt .
This method considers a given stream of data x1, x2, ..., xt
and learns from a sequence of batches b1, b2, ..., bt , where
the batches are updated as instances arrive and update the
model.

Figure 2 illustrates how QueueL works when q = 3. The
upper part shows the examples that arrive at each time step;
for example, z0 and z4 arrive at t = 0 and t = 4, respec-
tively. Assume that the data stream contains three classes
Y = {c1, c2, c3} and that all instances have their own queues.
The queues are of equal length L ∈ Z

+, qtC1
= L , qtC2

= L ,
and qtC3

= L and contain the samples of class c1, class c2,
and class c3, respectively. After instances have been sepa-
rated based on their labels, the arriving samples for class cs
are placed at the front of the queuecs . When the queues fill,
we combine the full queues in the batch by adding to the
training set and commence online learning. Here, the sliding
batch explicitly employs a forgetting mechanism, where the
oldest instance will be removed from the head of the related
queue.

Fig. 2 Example of Queue3
resampling (adapted from [38])
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Figure 3 shows that Bt is a batch of data, including the full
queues of current classes, defined as the number of instances
used to update the model. We construct an initial model with
warm-up instances from the data stream as an initial training
step. Whenever the first queue is full, we proceed to initiate
our rebalancing process until we have created a full queue
for each class. We include those queues in our batch. Next,
the model construction process is initiated, and this batch-
incremental process continues until the end of the stream.
For each arriving instance (xt , yt ) at time t , the oldest sample
from the queue towhich yt belongs is removed, and the recent
sample is added to batch Bt . Whenever the first queues are
full, they are used as our first batch, and we then proceed
to update the model. Meanwhile, at each point in time, only
one learner is updated with the batch that includes the new
resampled instance in a circular order. The learner will use
batch Bt to update its model; the training process utilizes a
balanced set consisting of themost recent data. The algorithm
waits until it has enough instances from the classes, including
the current minority classes, before updating its model. It
follows that the sizes of the individual queues are highly
domain-dependent; the size of the queue is set by inspection.

3.2 Queue-based sampling

As noted above, our DynaQ methodology employs queue-
based sampling of original instances of each class to dynami-
cally construct models against all classes, using an ensemble
against a sliding batch. Next, we will explain the process
of sampling each instance in the queues. Recall that minor-
ity classes suffer from not having enough data to present
againstmajority classes. Following [47],we oversample each
class’s recent instances based on the class’s rate parameter
while maintaining the majority instances without any form
of undersampling. This is done dynamically during learning
as the stream evolves. In this way, the learner has access
to newer samples and concepts, and we can balance the
number of instances for all classes. In addition, the oversam-
pling of minority classes implies that the associated queues
will fill faster. We employ a sliding batch of S queues,
where S is the number of current classes, and N learners are
updated one at a time in a periodic order with each arriving
instance. The oversampling rate of our DynaQ algorithm is
implemented considering four different metrics, as discussed
below.

Fig. 3 Illustration of batch-instance incremental learning process
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3.2.1 Recall-based Sampling

In our first variant, the rate parameter is set based on the
recalls of the classes [47]. That is, we employ the recall value
to maintain a balance in terms of the samples from the major-
ity and minority classes that we maintain, where we define:

recall = T P

T P + FN
(1)

and where true positive (T P) refers to the instances from
the actual class that are correctly classified, while false nega-
tive (FN ) denotes those instances with incorrect predictions.
As such, recall measures the ratio of correctly classified
instances from the minority class (true positive rate). When
employing the recall scores for the multi-class data stream,
we may assess how many of the examples from each class
are correctly classified. A model with high recall on each
class successfully predicts true labels in the data [52]. If the
absolute difference between the recall score for a class and
the mean recall is higher than the pre-defined threshold, then
the examples for this class will be oversampled using recalls,
as follows.

k = Poisson(ravg_excluding_c/rc) (2)

Where, ravg_excluding_c is the average recall for the classes
excluding class c and rc is the recall for class c, which is cal-
culated based on prequential evaluation, where each instance
will be used to test the model before it is used for training
[56], and from this the recall can be incrementally updated.
If the recall for a class is lower than the average recall, then
the class will be oversampled. We set the max-value of k
equal to the defined queue size, which is determined through
inspection.

3.2.2 F1-Score-based Sampling

The F-measure [21] refers to the harmonic mean of two met-
rics, recall, and precision. The F-measure may be weighted
depending on the value assigned to α. We used a balanced
value, referred to as the F1-score, by setting α = 1, which
implies that precision and recall are assumed to carry equal
weights in the metric.

F − measure = (1 + α2 × recall × precision)

α2 × recall + precision
(3)

In our second sampling approach, we utilize the F1-score
of the classes as a measure to control the number of over-
sampled instances. That is, if the absolute difference between
the F1-score for a class and the mean F1-score is higher than

the pre-defined threshold, then the samples for this class will
be oversampled using the F1-score.

k = Poisson(F1 − scoreavg_excluding_c/F1 − scorec)
(4)

Here, the F1-score refers to the score of each class calcu-
lated prequentially and F1 − scoreavg_excluding_c denotes
the average F1-score of all classes excluding class c. If the
F1-score of one class is lower than the average, it will be
oversampled k times.

3.2.3 �m-based Sampling

In the third case, we utilize the κm measure to oversam-
ple. Bifet and Morales proposed the κm statistic for online
learning in [11]; where they confirmed that this measure has
advantages over accuracy and the original κ statistic [8].
The main motivation for using the κm statistic is when data
streams are evolving, and classes are imbalanced, where we
have:

κm = p0 − pm
1 − pm

(5)

In (5), quantity p0 refers to the current algorithm X ’s pre-
quential accuracy, while pm is the prequential accuracy of a
majority-class classifier, a baseline learner that predicts the
label that occurredmost frequently up to now [8]. If classifier
X is always correct, we conclude κm = 1. If its predictions
are correct as often as those of a majority-class classifier,
then κm = 0. Since the κm metric measures the performance
agreement between the majority class classifier and classifier
X , we cannot calculate it for each class. However, it is a mea-
sure that sensitively detects changes in the class distribution
while automatically compensating for such changes. It may
thus be used to recognizewhere classifier X is underperform-
ing the baseline majority class learner. In this way, we will
be able to assess when classifier X would benefit from over-
sampling the minority classes. Specifically, the ratio of the
mean of the κm value divided by the last calculated κm value
is considered as a rate parameter. If the result surpassed a
threshold, the class will be oversampled M times following:

k = Poisson(MajorClassSize/New I nstanceClassSize))
(6)

In this equation, MajorClassSize refers to the number of
instances in the class with the most instances seen so far, and
we update each class size by the class label of each arriving
instance.
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3.2.4 Euclidian distance-based sampling

The last oversamplingversionmonitors the ratio of themajor-
ity class to the class label of newly arrived instances. This
parameter as per equation 6, defines the number of instances
we need to oversample based on a distance criterion [39]. In
this case, if k is greater than a defined threshold, we resample
the k instances that aremost similar to the current one. The
Euclidean distance similarity score is used to determine the
k most similar instances as:

EuclideanDistance(xc, qc) = sqrt((xc − qc)
2) (7)

Here, xc refers to the most recently arrived instance with
the class label c, and qc is a vector of instances inside the
queue of class c. After we sort the results based on distances,
the top k instances will be oversampled and inserted into the
qc. In this way, the qc contains instances that are most similar
to the xc while disregarding the less similar ones.

3.3 Ensemble learning

Recall that we utilize a sliding ensemble approach, where the
base learners update their models against different batches,
corresponding to sliding batches, following [22]. In our algo-
rithm, each of the base classifiers is trained independently
[22]. We extended OB [42] so that, instead of training each
instance k times from a Poisson distribution, we employ k
to oversample the relevant queues. Figure 4 illustrates how
we use sliding batches to update base learners. That is, for
each instance in the data stream, one base learner in N is
updated by the sliding batch. If we consider N learners as
N = {p1, p2, ..., pN−1, pN }, where p1 refers to the first

learner, p1 updates the batch at time t , p2 updates with the
batch at time t+1 and the PN updates with the batch at t+N .
Subsequently, the rotation restarts from p1. Note that the pre-
diction at each time step is made over all the base learners.
We employed a soft voting process to determine the ensem-
ble prediction [27]. For each arriving instance, soft voting
requires each of the learners in the ensemble to produce a
confidence score (within the range [0, 1]) for their predic-
tion for each class value or to output the probabilities that an
instance belongs to a given class label. Consequently, a sim-
ple, soft voting classifier without weighting factors, given an
instance xt , calculates the average probability for each class
label over the predictions of all classifiers and determines the
most probable class C as in (8) [27]:

ŷt = argmin
C

|N |∑

j=1

Pj (= C‖xt ), yt ∈ Y , t ∈ {1, 2, ..., t ′ } (8)

The class with the largest average probability is exported
as the winner through this process, where yt ∈ Y , and the
notation of N depicts the number of the combined classifiers.

Our ensemble is designed so that the training set of the
N individual classifiers proceeds out of step, using a sliding
batch for instance selection. As shown in Fig. 4, at every
time step, we append a new updated batch to the ensemble
and train a single classifier pn on that batch. For the next N−1
iterations, we train the remaining N−1 classifiers, and so on.
From the ensemble point of view, it looks like we are using a
sliding window to train with the differences of N time steps.
However, from the point of view of each base classifier in the
ensemble, we are employing sliding batches to train. Figure 4
illustrates this process for N classifiers in the ensemblewhere

Fig. 4 Ensemble learning of
sliding batch [22]
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the difference for each is a time step, and each classifier will
learn based on a batch of the same color. Starting with p1
with the blue batch, the next classifier is p2 with the orange
batch of time t + 1. The next rotation will start after N + 1
steps, as shown with the next blue batch training p1 at time
t + (N + 1). Intuitively, this method ensures diversity in
terms of the instances used by the individual classifiers when
casting their votes.

Algorithm 1 DynaQ.
1: Define rate_parameter(Recall,F1score,κm ,EuclideanDistance)
2: while stream.has_more_instances() at each time step t do
3: xti , y

t
i = get.next_instance();

4: yti _predict = Ensemble.Predict(xti ); #Test-then-train evaluation
5: W = Update_Wci ;
6: Dri f t_listCi = [ ];
7: αt

Ci
= TestForDrift(xti , y

t
i ); #Test for concept drifts

8: if yt in previously seen class Ci then #Add to queue
9: Increment CounterCi ;

10: Qt
Ci

=(t−1)
Ci

.append(i);
11: Update(αt

Ci
);

12: else
13: CounterCi = 1;
14: InitializetCi

,Qt
Ci

.append(i);
15: Update(αt

Ci
);

16: end if
17: if rate_parameter_ratio > threshold then
18: L[Ci ] = rate_parameter_oversampling;
19: end if
20: k = Poisson(L[Ci ]);
21: if k > queue_si ze then, k = queue_si ze;
22: end if
23: for k times do
24: Qt

Ci
.append(xti );

25: end for
26: if (αt

Ci
≥ wt

Ci
) is TRUE then #Warning, Start Drift list

27: Add instance i to Dri f t_list(Ci );
28: end if
29: if (αt

Ci
≥ dtCi

) is TRUE then #Drift detected
30: Update QCi = Dri f t_listCi ;
31: end if
32: QCi = QCi (xh, yh);
33: Bt = ⋃n

i=2 QCi ;
34: Base_Learnerp = t%N ; #Creates a rotatory updates of base

learners
35: Classifier(Base_Learnerp).Incremental.Update(Bt );
36: end while
37: Return G_Mean, F_Measure, κ , Model

3.4 Concept drift detection

Recall thatwe also included a class-based concept drift detec-
tor to handle evolving streams. To this end, we adapted the
idea of the DDM drift detection algorithm in our frame-
work [50]. The main task of a drift detector is to prompt
the learner to update the model after drift occurs. The num-
ber of misclassified instances corresponding to each class

is used as a drift indicator based on the results so far.
Following [50], we employ two counters for each class,
where wi denotes a warning level, and di denotes the drift
detection threshold. That is, we continuously update wi and
di , and if the number of misclassified instances reaches di ,
then a drift is detected. Subsequently, a newmodel is induced
using the examples stored betweenwi and di . Practically, this
process aids in removing outdated samples and updates the
queue with new instances. Our drift detector process is ini-
tiated once an instance is misclassified, then continues until
it reaches the specified proportion of the queue (denoted by
L/n). The rationale behind this approach is to find a trade-
off between the ability of the learner to adapt faster while
not testing for drift too often to limit the overhead associ-
ated with detection. We aim to maintain only the optimal
“small subset” of data necessary to accurately flag for drift.
Intuitively, if L = 1, then the process corresponds to testing
for drift as every instance arrives; that is, n = 1. Figure 5
shows our results against the Gas Sensor [49] and LED data
stream [10], two of the repositories we used in our experi-
ments where n was set to 2 by inspection. The reader will
notice that, as expected, the drift detection threshold has a
considerable influence on the predictive performance. In this
setting, once a misclassification occurs, we signal a warning
for potential drift and start to collect all instances from this
point in time into the drift detector queues. Next, we test for
drift when we reach (L/n) instances and proceed accordingly.
We either detect a drift (reset the learner) or continue mon-
itoring. If no drift has been detected, but the warning level
remains, we proceed to collect and test with the next (L/n)
instances. This process continues until the set of examples
is equal to our queue size L. When a drift is detected, the
learner is reset, and a new model is learned using a training
set consisting of all the examples in the drift detection queues
maintained since the warning was triggered. It follows that
the values of n and L are domain-dependent and should be
carefully selected to ensure the accuracy and efficiency of the
drift detector.As shown inFig. 5, the response to concept drift
in α = (1, L) is later than the other two, which decreased
the model performance. However, as should be expected,
the reaction to the threshold values is different for both data
streams. The Gas Sensor data experience more fluctuation
and decrement during the stream; the LED stream is more
tolerant of late drift detection for α = (1, L). In summary,
results of α = (1, 1/2L) outperform the other thresholds for
both streams.

In summary, in our DynaQ algorithm, the rate parameter
is calculated when a new instance arrives. Subsequently, for
minority classes, the new instance is resampled k times and
appended to the appropriate queue. As explained above, we
use each instance to test the model, then insert the instance
into the appropriate queue. The set of queues form a batch
and each batch is used by a single learner to update themodel.
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Fig. 5 G-mean value results with different concept drift thresholds against the Gas Sensor and LED streams

Ensemble learning involves slidingwindows, and soft voting.
Next, we discuss our experimental evaluation.

4 Experimental evaluation

All experiments were conducted on a MacBook Pro with a
Dual-Core Intel Core i5 processor, CPU @ 3.1 GHz proces-
sor, 8.0 GB RAM on the Mac Catalina Operating System
(OS) and the Alliance Canada Cloud with 10 Core CPUs [3].
Our code was implemented using the Scikit-Learn [43] and
Scikit-Multiflow [40] packages in Python version 3.8.2. Our
competitor methods run on the MOA [10] library and we
used MOA to generate synthetic streams. The framework’s
implementation and all the code for the experiments will be
made available on GitHub upon publication. The no-change
andmajority-class classifiers were used as our baselines. The
no-change classifier assumes that the class label of instance
xi would be the same as the last-seen instance xi−1, while
themajority-class learner assigns the class seenmost often so
far to a new instance [40]. Additionally, we employed three
baseline classifiers, namely, Hoeffding Adaptive Tree (HAT)
[9],HoeffdingTree (HT) [18], and the self-adjustingmemory
(SAM) model for the K-nearest neighbour (KNN), denoted
by SAMKNN [33], during our ensemble learning. HTs are
incremental decision trees for data stream classification that
use Hoeffding’s bound to commence online learning. HAT is
an extension of HT that adaptively learns from data streams
that change over time without needing a fixed-size sliding
window. SAMKNN is an online implementation of KNN,
and we set k = 7 by inspection. Following [47], we set the
number of base learners in our ensemble to 10.

The estimation technique we use is prequential evalua-
tion, which consists of executing a loop infinitely, where the
ensemble first predicts labels for new data (without its label),
then updates its model by that data with the correct label [56].

The performance measures we used are the F-measure, geo-
metric mean (G-mean), and κm statistic. As mentioned, the
F-measure [21] is macro-averaged over the sum of F1-scores
over all classes, which assigns equal weights to the existing
classes. Additionally, we employed the G-mean [50] value
which is the geometric mean of the recall rates of majority
and minority classes in the imbalanced data set. The calcu-
lation method is as shown in (9).

G − mean =
√

T P

T P + T N
× T N

FP + T N
(9)

The G-mean value is higher only when the classification
accuracies of themajority sample and theminority sample are
high; therefore, the G-mean value can accurately the classi-
fication effect of unbalanced data sets. In addition, we utilize
the previously introduced κm metric, to address the effect of
the performance agreement between the majority class clas-
sifier and classifier X [11].

We also compare DynaQ with six state-of-the-art online
multi-class learning methods, namely, OMCQ, IOE, ROSE,
KUE, MOOB and MUOB. We use inspection and grid-
searching for hyper-parameter tuning to determine the opti-
mal parameters for all methods. However, if a particular
algorithm specifies certain parameters, we respect that and
use themaccordingly.Aswe introduced inSection 2.2,ROSE
and KUE are driven by the κ metric. While KUE is a chunk-
based general-purpose ensemble for drifting data streams
[14], ROSE is an online ensemble that works with imbal-
anceddata streamswith dynamic imbalance ratio and concept
drift, offering several features designed specifically to deal
with these challenges [15]. All ensembles are evaluated using
HTs as base learners with the same parameter settings of 10
base classifiers. These twomethods employ a slidingwindow
size of 1000 instances. Recall thatOMCQuses a queue-based
sampling strategy to keep each class separated in the queues
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to maintain a balanced training set. The method employs
a class-based DDM with a queue-based recovery process.
Following [46], the queue sizes were set by inspection. As
noted in Section 2.2, Vafaie et al. (2019) introduced an
IOE algorithm for handlingmulti-class imbalanced data. The
approach samples with replacement and incorporates DDM-
OCI [50]. DDM-OCI tracks the recall rates on the minority
classes to actively locate concept drifts for imbalanced data
streams. A significant drop in the recall suggests a drift in
this class. After drift is detected, the model will be reset and
trained based on the data received between the drift warning
and drift detection. Following [47], we set the forgetting fac-
tor in recall rates to be 0.9 and the threshold of the absolute
difference between the class recall and average recall equal
to 0.05. Additionally, as mentioned in Section 2.2, [52] intro-
duced the MOOB andMUOB algorithms that oversample or
undersample classes based on the probabilities of instances
belonging to a class. That is, in MOOB, oversampling is
used to increase the possibility of learning minority-class
examples based on the occurrence probability of examples
belonging to each class. Meanwhile, in MUOB, undersam-
pling is used to reduce the chance of learning majority-class
examples. We incorporated the DDM-OCI [50] method with
MOOB and MUOB in case of concept drift to conduct a
fair comparison. We conducted four sets of experiments to
assess our DynaQ algorithm. First, we studied the impact
of the four different rate parameters used in order to con-
duct minority class oversampling. Second, we considered
the impact of queue size on learning. Third, we explored the
performance of DynaQ when utilizing different base classi-
fiers in our ensemble. Fourth, we considered the impact of
concept drift detection on DynaQ. Finally, we contrast our
DynaQ with the state of the art.

4.1 Data streams

Our experimental study was based on the following multi-
class data sets depicted in Table 1: historical weather data

obtained from Open Data Canada [24], the Shuttle data set
from the KEEL repository [2], the LED data stream [10],
the radial basis function (RBF) stream [10], the Gas Sensor
stream [49], the Human Activity Recognition (HAR) stream
[16], the Covertype data stream [12] and the Intel Berkley
Research Lab Sensor data stream [37]. The Weather repos-
itory contains data from probes located across Canada to
detect adverseweather with natural drifts. The Shuttle stream
considers three classes and is used to predict when an auto-
landing would be preferable to the manual control landing
of a spacecraft. The LED data set comprises seven Boolean
attributes and ten labels; the goal was to predict the digit dis-
played on a seven-segment LEDdisplay, where each attribute
has a 10% noise level. We used a version of LED available
through Scikit-Multiflow that includes gradual concept drifts
in the stream by simply changing the attribute positions. The
RBF generates a fixed number of random centroids, where
each center has a random position, a single standard division
(SD), a class label, and a weight. The generated RBF data
sets have ten numerical attributes and 50 centers with four
classes, and a change speed of 0.89 was chosen for the grad-
ual drift in the data. To assess the impact of concept drifts
on imbalanced streams, we created two RBF streams with
comparable imbalance ratios but distinct concept drift pat-
terns. The Gas Sensor stream contains 13,610 measurements
from 16 chemical sensors utilized in simulations for drift
compensation in a discrimination task of six gases at various
concentration levels. TheHARdata set contains uncalibrated
accelerometer data from 15 participants performing seven
activities. We combined the activity of three participants to
create drift in the stream. Covertype is a benchmark data
set for evaluating stream classifiers that originates from the
UCI repository and contains cartographic attributes for pre-
dicting forest cover type. This data set represents a forest
cover type for 30 × 30m cells, where each cover type is
represented by one of the seven classes. Concept drift may
appear in this domain due to weather and climate change.
The Intel lab data is collected from54 sensors deployed in the

Table 1 Data streams and their
properties

Data set Size Number of class Class imbalance ratio Drift type

Weather 29,375 4 1:2.5:1.5:13 Abrupt

Shuttle 2167 3 1:5:13 No drift

LED 7205 4 1:1.5:2.7:5.7 Gradual and Noise

RBF1 50,000 4 1:1:1:2 Gradual

RBF2 40,000 5 1:2:4:10:20 Gradual

RBF3 40,000 5 1:2:4:10:20 Abrupt

Gas Sensor 13,610 4 1:1:1:4.4 Abrupt

HAT 35,300 4 1:1:1.7:6.3 Gradual

Covertype 42,000 7 1:1:1:1:1:5:13 Abrupt

Intel Sensor 50000 15 1,1,1,1,1,2,2,3,3,3,6,6,6,10,10 Abrupt
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Intel BerkeleyResearch lab between February 28th andApril
5th, 2004. Mica2Dot sensors with weatherboards collected
timestamped topology information and humidity, tempera-
ture, light, and voltage values once every 31 seconds. Data
was collected using the TinyDB in-network query process-
ing system, built on the TinyOS platform. We used the data
instances from 15 sensors to produce an imbalanced data
stream.

4.2 Experimental results

In our first set of experiments, we investigate using the
four different DynaQ oversampling metrics introduced in
Section 3.2, as depicted in Table 2. In this set of experi-
ments, we employ the HT classifier and report the G-mean,
F-measure, and κm evaluationmetrics. Table 2, shows that the
DynaQ variant using recall produced the highest values for
four of seven data streams. When considering the individual
metrics, the reader will notice that the results for DynaQwith
F1-score are highest for the Weather and RBF streams. In
the case of the CoverType data set, the variant of DynaQ_κm
using G-mean and κm metrics yields the highest results.

Future, we consider the statistical significance of the
results using the Nemenyi post-hoc test with α = 0.05, as
depicted inFig. 6. Figure 6 illustrates that oversampling using
recall and F1-score, results in a similar performance, with
the recall-based sampling ranking first. This result indicates
that paying close attention to the true positive rates clearly
benefits learning. As a result, we utilize the DynaQ variant
with recall-based sampling in our subsequent experiments.

Second, we investigated the effect of queue size on
our DynaQ algorithm to assess how the size of L affects
the performance of queue-based learning. Figure 7 depicts
the proposed method’s behavior on different queue sizes
L ∈ {1, 10, 20, 30, 50}. As expected, the figure shows that
the smaller the queue length, the faster the learning speed,
although the resultsmight differwith longer queues. Formost
data sets, this number is highly domain-dependent and should
be set according to the characteristics of each data stream.
In online learning, there is an obvious interplay between
accuracy and learning time. Our results indicate that, for our
experiments, a queue size of 10 resulted in a good trade-off
between accuracy and speed for theShuttle,Weather, andGas
Sensor data sets. A queue size of 20 produced good results

Table 2 Evaluation of different
versions of DynaQ against data
streams

Hoefding Tree
Data Metric DynaQ_Recall DynaQ_F1Score DynaQ_κm DynaQ_Similarity

Shuttle G-mean 0.971 0.958 0.871 0.828

F-measure 0.952 0.916 0.849 0.805

κm 0.837 0.742 0.783 0.582

Weather G-mean 0.862 0.863 0.750 0.711

F-measure 0.851 0.861 0.726 0.732

κm 0.821 0.763 0.734 0.505

LED G-mean 0.943 0.892 0.788 0.781

F-measure 0.901 0.869 0.830 0.727

κm 0.693 0.660 0.639 0.555

RBF G-mean 0.878 0.894 0.863 0.801

F-measure 0.890 0.901 0.848 0.790

κm 0.675 0.698 0.641 0.650

Gas Sensor G-mean 0.883 0.855 0.775 0.780

F-measure 0.833 0.828 0.782 0.699

κm 0.822 0.794 0.706 0.681

HAR G-mean 0.904 0.894 0.875 0.725

F-measure 0.801 0.798 0.708 0.763

κm 0.701 0.678 0.602 0.635

Covertype G-mean 0.915 0.908 0.923 0.827

F-measure 0.858 0.844 0.850 0.768

κm 0.711 0.648 0.751 0.638

Bold entries are used to indicate the best results
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Fig. 6 Nemenyi graph ranking
HT base classifier performance
for various sampling methods

for RBF and LED, but Covertype and HAR worked better
with a queue size of 50. We subsequently report the results
of a queue size of 50 against all data sets. It is noticeable
that our extensive experimentation shows that the queue size
does not depend on the size of the data set.

Next, we focus on the second set of experiments, where
we utilize various base learners in our DynaQ algorithm.
Figure 8 depicts the G-mean results for our data sets when
assessing the performance of the DynaQ technique com-
pared to the two baseline algorithms. The results clearly
show the benefit of our DynaQ algorithm compared to the
majority-class and no-change learners, which could not learn
the concepts within our multi-class imbalanced streams. The
HT ensemble reaches higher performance (in Shuttle by 1%,
in LED by up to 4%, in Covertype by 6%, and in HAR by
7%) than theHAT or SAMKNNensembles. However, for the
Weather, RBF, and Gas Sensor data sets, the HAT ensemble
presents up to 4% better results than ensembles based on
HT or SAMKNN. Recall that HT and HAT are both incre-
mental tree learners. However, HAT is more adaptable with
streaming data because it uses an adaptive sliding window
(ADWIN) algorithm as a drift detector error estimator and
requires no parameters related to change control. We con-
clude that those data sets that work slightly better with HAT
ensembles may include gradual or abrupt concept drift while
streaming. Readers should notice that fast drift detection and
the associated recovery process prevented a significant per-
formance drop. Our results also indicate that the baseline
no-change and majority-class learners produced low values
among all data sets.

In the next set of experiments, we investigate the effect
of the queue-based concept drift detection method on the
DynaQ learning process. As expected, Fig. 9 indicates that
theG-mean is higherwhenwe include theDDMmechanisms
during learning. This result suggests that because the queue-
based sampling keeps the recent concepts of the stream, the
use of drift detection clearly benefits the learning process.
The fluctuation and recovery periods are different for vari-
ous types of concept drifts. In the related visualization graphs,
the reader will notice that the weather data experience abrupt
drift while LED data show gradual drift. With drift detection,
the performances against these two streams stay relatively
high. Still, with drift detection, the learner can recover

and reach back to higher values after the drift happens. In
this case, employing a DDM clearly prevents performance
degradation. FromFig. 9,wefind thatRBFandHAR, suscep-
tible to gradual drifts, do not suffer a drastic reduction in their
total predictive accuracies. However, there are clear fluctua-
tions related to gradual concept drifts handled by the DDM.
The Gas Sensor and Covertype data sets encounter sud-
den performance decrement and variation among the stream
caused by abrupt drifts. However, when utilizingDDM, these
changes recovered quickly without harming performance.

Finally, we present our results when contrasting differ-
ent online multi-class approaches. Specifically, Tables 3, 4,
5, and 6 presents the results of our comparative study con-
trasting the DynaQ, ROSE, KUE, OMCQ, IOE, MOOB, and
MUOB algorithms. Table 3 includes results on all methods
based onHTas the base classifier. The remainder of the tables
present results on base-classifier agnostic methods with
three component classifiers (HT, HAT, and SAMKNN) and
three evaluation metrics (G-mean, F-measure and Kappam).
Table 3 shows that DynaQ outperforms all approaches over
different measures. Although DynaQ and ROSE produce
competitive results, DynaQ yields better results in 25 out
of 30 cases than ROSE. However, ROSE performs slightly
better on the Weather, RBF3, and Covertype streams. This
result may be attributed to the abrupt drifts that these three
data streams experience, where the background classifiers
utilized by the ROSE algorithm facilitate the learning pro-
cess. Table 4 shows that the DynaQ algorithm produced the
highest values in terms of G-mean for 18 out of the 21 cases.
The results also indicate that the three base learners produce
comparable results in terms of G-mean, while no single base
learner consistently outperforms the other two in all settings.
However, the readerwill notice that there are often substantial
differences in G-mean, e.g., for LED and Covertype, when
contrasting the queue-based algorithms with IOE, MOOB,
and MUOB.

A similar observation holds for the F-measure depicted
in Table 5, where DynaQ produced the highest results for
all data streams and base learners. The design of DynaQ
implies that when there is no wait time for each queue to
commence training the model, and the queues are resampled
with themost recent data based on recall rates. Thus, the algo-
rithmallows for better generalizationon the incoming stream.
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Fig. 7 Performance comparison against different queue sizes on DynaQ
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Fig. 8 Results of DynaQ algorithm for different base learner when compared with baselines
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Fig. 9 Results with and without concept drift detection for DynaQ ensembles
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Table 3 HT results against data
streams

Hoefding-Tree
Data Metric DynaQ OMCQ IOE MOOB MUOB ROSE KUE

Shuttle G-mean 0.971 0.951 0.901 0.838 0.800 0.955 0.895

F-measure 0.952 0.942 0.849 0.815 0.764 0.802 0.782

κm 0.837 0.742 0.683 0.483 0.472 0.822 0.813

Weather G-mean 0.862 0.857 0.840 0.791 0.787 0.871 0.843

F-measure 0.851 0.831 0.766 0.752 0.749 0.796 0.770

κm 0.821 0.713 0.714 0.605 0.601 0.824 0.777

LED G-mean 0.943 0.912 0.782 0.780 0.777 0.940 0.893

F-measure 0.901 0.888 0.890 0.747 0.710 0.867 0.832

κm 0.693 0.560 0.659 0.455 0.495 0.664 0.649

RBF G-mean 0.878 0.844 0.843 0.701 0.617 0.823 0.811

F-measure 0.890 0.819 0.828 0.590 0.476 0.729 0.713

κm 0.675 0.615 0.601 0.450 0.325 0.624 0.630

RBF2 G-mean 0.825 0.784 0.762 0.692 0.688 0.812 0.800

F-measure 0.818 0.769 0.715 0.630 0.621 0.799 0.782

κm 0.638 0.598 0.544 0.568 0.487 0.602 0.652

RBF3 G-mean 0.811 0.782 0.723 0.800 0.719 0.767 0.738

F-measure 0.794 0.724 0.751 0.732 0.689 0.751 0.722

κm 0.608 0.583 0.512 0.534 0.492 0.615 0.565

Gas Sensor G-mean 0.883 0.860 0.815 0.740 0.550 0.710 0.694

F-measure 0.833 0.833 0.760 0.587 0.414 0.683 0.603

κm 0.822 0.780 0.786 0.511 0.495 0.792 0.778

HAR G-mean 0.904 0.834 0.872 0.825 0.830 0.730 0.714

F-measure 0.801 0.781 0.778 0.743 0.652 0.716 0.668

κm 0.701 0.641 0.666 0.655 0.612 0.671 0.663

Covertype G-mean 0.915 0.888 0.793 0.627 0.582 0.919 0.784

F-measure 0.858 0.844 0.667 0.661 0.387 0.816 0.751

κm 0.711 0.618 0.651 0.438 0.291 0.726 0.715

Intel Sensor G-mean 0.723 0.64 0.58 0.66 0.51 0.730 0.624

F-measure 0.591 0.508 0.543 0.509 0.484 0.523 0.518

κm 0.433 0.421 0.409 0.375 0.333 0.419 0.420

Bold entries are used to indicate the best results

Recall that OMCQ maintains queues that only include orig-
inal instances. In the case of highly imbalanced streams, the
minority queues may still contain instances representing the
concept prior to drift, thus leading to a degradation in perfor-
mance. The IOE technique also provides competitive results
with DynaQ, which suggests the benefit of balancing perfor-
mance based on the recall parameter. However, the results
suggest that the undersampling of majority instances do not
benefit learning. The superior results ofDynaQ are especially
evident for the LED, RBF, Gas Sensor and Covertype data
streams, which contained severe abrupt or gradual concept

drifts. TheMOOBandMUOBalgorithms struggled to obtain
high values against such evolving streams.

Regarding the κm statistical results presented in Table 6,
the DynaQ and IOE algorithms yielded comparable values,
with DynaQ in first place and IOE in second place. In the
case of the LED and RBF data sets, employing SAMKNN
results in κm values up to 10% higher than HT and HAT. The
reader will notice that recall balancing causes improvement
on synthetic streams using SAMKNNwhile the performance
decreases drastically in the HAR and Weather data sets.
For the Covertype, Gas Sensor and Weather data sets, even
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Table 4 G-mean results against
data streams

G-mean
Data Classifier DynaQ OMCQ IOE MOOB MUOB

Shuttle HAT 0.964 0.950 0.957 0.867 0.826

HT-Tree 0.971 0.951 0.901 0.838 0.800

SAMKNN-7 0.963 0.968 0.970 0.896 0.845

Weather HAT 0.905 0.854 0.825 0.785 0.790

HT-Tree 0.862 0.857 0.840 0.791 0.787

SAMKNN-7 0.890 0.880 0.876 0.839 0.771

LED HAT 0.935 0.921 0.898 0.784 0.789

HT-Tree 0.943 0.912 0.782 0.780 0.777

SAMKNN-7 0.908 0.911 0.856 0.767 0.792

RBF HAT 0.886 0.882 0.806 0.620 0.645

HT-Tree 0.878 0.844 0.843 0.701 0.617

SAMKNN-7 0.871 0.861 0.823 0.777 0.643

Gas Sensor HAT 0.920 0.866 0.901 0.619 0.640

HT-Tree 0.883 0.860 0.815 0.740 0.550

SAMKNN-7 0.880 0.874 0.824 0.764 0.757

HAR HAT 0.835 0.839 0.827 0.806 0.796

HT-Tree 0.904 0.834 0.872 0.825 0.830

SAMKNN-7 0.887 0.883 0.867 0.839 0.767

Covertype HAT 0.857 0.844 0.848 0.835 0.772

HT-Tree 0.915 0.888 0.793 0.627 0.582

SAMKNN-7 0.917 0.909 0.868 0.818 0.800

Bold entries are used to indicate the best results

though they experience abrupt drifts that may change the
behaviour of major classes, our results are up to 8% higher
than other methods. In DynaQ, we do not make any assump-
tions about separating majority and minority classes. This
aids DynaQ to reach promising κm performance. In our over-
all analyses, DynaQ using HT as a base learner performs
better than, or similar to HAT, as a base learner. Also, the
comparison between MOOB and MUOB shows that over-
sampling benefits themethodmore than undersampling. This
observation further reinforces our design choice of using an
oversampling approach.

Next, we present the results of the Nemenyi posthoc test
[26] shown in Figs. 10, 11, 12, and 13, where β is set to 0.05.
This test highlights the contrasts in the algorithms against
all data sets, where a lower rank means a better predictive
performance (G-mean, F-measure, and kappam). In Fig. 10
DynaQ is ranked first, followed by ROSE, OMCQ, and IOE.
While ROSE benefits from combining backup ensembles,
DynaQprovides a stable backup in case of drifts by allocating
small-sized queues to each class. For this reason, DynaQ
delivers consistent performance and high ranks across all
data streams.

Figures 11 and 12 show a critical difference between our
DynaQ algorithm and the IOE, MOOB, and MUOB tech-
niques, for the F-measure and G-mean metrics. The reader
will notice no significant statistical differences between
the DynaQ and OMCQ methods. The DynaQ and OMCQ
methods benefit from their underlying queue-based learn-
ing processes. However, our DynaQ method ranks first
and OMCQ second. This ranking indicates the strength of
combining queue-based learning with minority-class over-
sampling and online ensemble learning.

Figure 13 indicates that DynaQ and IOE present similar
κm values, with DynaQ ranked first, while outperform-
ing OMCQ, MOOB, and MOUB. The DynaQ and IOE
algorithms both utilize recall rates that aid the learners in
handling the change in class labels caused by an evolv-
ing and skewed stream. The main difference between these
approaches is that DynaQ employs oversampling, while IOE
combines oversampling and undersampling. Since DynaQ
is ranked first, one may conclude that undersampling is
unnecessary in most settings. The results further indicate the
value of balancing recall rates to improve performance in a
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Table 5 F-measure results
against data streams

F-measure
Data Classifier DynaQ OMCQ IOE MOOB MUOB

Shuttle HAT 0.944 0.945 0.936 0.833 0.796

HT-Tree 0.952 0.942 0.849 0.815 0.764

SAMKNN-7 0.967 0.964 0.947 0.879 0.723

Weather HAT 0.906 0.838 0.785 0.733 0.750

HT-Tree 0.851 0.831 0.766 0.752 0.749

SAMKNN-7 0.874 0.868 0.745 0.786 0.694

LED HAT 0.926 0.902 0.905 0.756 0.761

HT-Tree 0.901 0.888 0.890 0.747 0.710

SAMKNN-7 0.910 0.893 0.862 0.699 0.754

RBF HAT 0.877 0.854 0.830 0.478 0.494

HT-Tree 0.890 0.819 0.828 0.590 0.476

SAMKNN-7 0.858 0.841 0.836 0.721 0.547

Gas Sensor HAT 0.901 0.826 0.836 0.640 0.544

HT-Tree 0.833 0.833 0.760 0.587 0.414

SAMKNN-7 0.889 0.865 0.818 0.710 0.737

HAR HAT 0.778 0.745 0.771 0.674 0.640

HT-Tree 0.801 0.781 0.778 0.743 0.652

SAMKNN-7 0.819 0.811 0.772 0.704 0.655

Covertype HAT 0.761 0.728 0.730 0.715 0.661

HT-Tree 0.858 0.844 0.667 0.661 0.387

SAMKNN-7 0.863 0.846 0.782 0.682 0.641

Bold entries are used to indicate the best results

multi-class imbalanced settingwhen focusing on the kappam
metric.

Our experimental evaluations indicate the strength of com-
bining a queue-based approach with dynamic minority class
oversampling, concept drift detection, and online ensemble
learning.

5 Conclusion

The paper addressed the challenge of online learning from
evolving multi-class imbalanced data streams susceptible to
concept drifts. The DynaQ algorithm combined class-based
queues, dynamic oversampling of minority classes, online
ensembles based on sliding windows, and class-based con-
cept drift detection. An advantage of the DynaQ method is
that it operates independently of a base classifier, thus provid-
ing a general framework for dealingwith evolvingmulti-class
streams. Our experimental results showed the benefits of our

approach, and we determined that the DynaQ method con-
structs accurate models.

Our DynaQ algorithm is highly suitable for scenarios
where minority classes may become majority classes, and
vice versa. Future work will specifically address highly
skewed distributions, where minority instances may arrive in
bursts. We will analyze the effect of the number of classes on
the performance of each class and our method. We will also
research other resamplingmethods, such as extendingSCUT-
DS [41], an approach for stationary streams that combines
SMOTE-based oversampling with cluster-based undersam-
pling.Another interesting idea is to extend theSOUPbagging
ensemble-based algorithm that uses the notion of safe lev-
els to resample data in an offline setting [25]. Moreover,
we are interested in examining the impact of our proposed
approach in the domain of privacy [53, 54]. We intend to
extend DynaQ to incorporate privacy concerns and conduct
experiments using time-series and text datasets to evaluate its
effectiveness.

123



DynaQ: Online learning from imbalanced multi-class streams through dynamic sampling 24927

Table 6 κm results against data
streams

κm Data Classifier DynaQ OMCQ IOE MOOB MUOB

Shuttle HAT 0.825 0.715 0.738 0.430 0.391

HT-Tree 0.837 0.742 0.683 0.483 0.472

SAMKNN-7 0.819 0.713 0.760 0.660 0.531

Weather HAT 0.784 0.780 0.746 0.715 0.714

HT-Tree 0.821 0.713 0.714 0.605 0.601

SAMKNN-7 0.642 0.613 0.642 0.340 0.321

LED HAT 0.662 0.616 0.638 0.450 0.454

HT-Tree 0.693 0.560 0.659 0.455 0.495

SAMKNN-7 0.789 0.726 0.788 0.392 0.445

RBF HAT 0.681 0.618 0.612 0.460 0.338

HT-Tree 0.675 0.615 0.601 0.450 0.325

SAMKNN-7 0.733 0.710 0.732 0.525 0.482

Gas Sensor HAT 0.826 0.756 0.760 0.516 0.500

HT-Tree 0.822 0.780 0.786 0.511 0.495

SAMKNN-7 0.816 0.754 0.795 0.679 0.654

HAR HAT 0.685 0.618 0.654 0.581 0.427

HT-Tree 0.701 0.641 0.666 0.655 0.612

SAMKNN-7 0.566 0.514 0.510 0.483 0.464

Covertype HAT 0.684 0.611 0.627 0.385 0.310

HT-Tree 0.711 0.618 0.651 0.438 0.291

SAMKNN-7 0.718 0.637 0.648 0.580 0.339

Bold entries are used to indicate the best results

Fig. 10 Nemenyi graph ranking algorithms based on HT base classifier

Fig. 11 Nemenyi graph ranking G-mean results among various algo-
rithms

Fig. 12 Nemenyi graph ranking F-measure results among various algo-
rithms

Fig. 13 Nemenyi graph ranking Kappam results among various algo-
rithms
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