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Abstract
Numerical weather prediction is an established weather forecasting technique in which equations describing wind, temperature, 
pressure and humidity are solved using the current atmospheric state as input. This study examines deep learning to forecast 
weather given historical data from two London-based locations. Two distinct Bi-LSTM recurrent neural network models 
were developed in the TensorFlow deep learning framework and trained to make predictions in the next 24 and 72 h, given 
the past 120 h. The first trained neural network predicted temperature at Kew Gardens with a forecast accuracy of ± 2 ◦ C in 
73% of instances in a whole unseen year, and a root mean squared errors of 1.45 ◦ C. The second network predicted 72-h air 
temperature and relative humidity at Heathrow with root mean squared errors 2.26 ◦ C and 14% respectively and 80% of the 
temperature predictions were within ± 3 ◦ C while 80% of relative humidity predictions were within ± 20%. Both networks were 
trained with five years of historical data, with cloud training times of over a minute (24-h network) and three minutes (72-h).

Keywords  Recurrent Neural Network · Bi-LSTM · Weather Forecast

1  Introduction

Numerous sectors are heavily reliant on accurate weather 
forecasting including renewable energy production, energy 
consumption, agriculture and emergency services. Numeri-
cal weather prediction is an established weather forecasting 
technique in which the transport fluid equations momen-
tum, energy and scalar transport are solved using the current 
atmospheric state as an input. The output is the temperature, 
humidity, pressure, etc. in a desired forecast length. Model-
ling large scale weather is notoriously difficult due to uncer-
tain boundary conditions and the chaotic nature of the under-
lying fluid mechanics equations. The accuracy of numerical 
forecast predictions has improved steadily since the 1960s, 
carried mostly by the increase of computational power and 
turbulence modelling techniques [1]. To reduce the uncer-
tainty of the predictions, expensive ensemble modelling 
is used, where simulations are run many times with small 
differences in initial conditions. Beyond five days, chaotic 

effects become dominant and the simulations demand large 
computational resources and are exceedingly expensive [2]

Ensemble modelling is computationally demanding requiring 
numerous runs of each model with different initial conditions. 
To make meaningful seasonal predictions, the number of runs 
should be between 100 and 200 [3], increasing the cost 100-fold 
over deterministic approaches. Moreover, the multi-scale nature 
of the fluid equations and physical processes associated cre-
ates simplifications and the initial state approximation may be 
inaccurate [4]. Similarly, the acquisition of representative initial 
conditions is one of the biggest hurdles in numerical weather pre-
diction [5]. This characterisation process becomes increasingly 
challenging in cities where landscape drastically affects wind and 
temperature behaviour. Machine learning approach can comple-
ment existing numerical weather prediction, or in some cases 
even substitute it, thereby reducing the enormous computational 
demands associated with numerical weather prediction.

The present work proposes to use historical data of 
weather stations to produce short-term local forecasts. The 
locality of the data and forecast simplifies the complexity of 
spatial correlations that exist in turbulent fluid dynamics and 
reduces the size and training of the network. Moreover, local 
data is attractive for Deep Learning, which can account for 
the "unpredictability" of the local conditions.

The novelty of the method resides in the use of large his-
torical data of nearby locations, to create simple input–output 
network models independent of the date. The approach is 
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purely data-driven, without any kind of data assimilation or 
hybridisation. The model is tested using historical data from 
two London- based locations to train a Bi-LSTM recurrent 
neural network to predict temperature and relative humidity.

The main contributions of this article are:

•	 The creation of a Deep Neural Network framework to 
use historical weather data to create forecasts of selected 
weather features over desired length.

•	 The development of two models to predict temperature 
and humidity hourly evolution over 24 and 72 h in two 
locations in London.

•	 The study of forecasting errors investigating seasonal 
variations and forecast length.

The rest of the paper is structured as follows. In Section 2, 
the relevant literature related to the use of Machine Learn-
ing in Weather forecasting is discussed, while in Section 3, 
the architecture and the dataset used for testing is described. 
In Section 4, the results with the two models developed are 

presented, while Section 5 concludes the paper and outlines 
future research directions.

2 � Related work

Machine Learning (ML) is showing large potential in 
fluid mechanics [6, 7], where it can be used to model sub-
grid stress [8, 9] or extract turbulent structures [10]. One 
of the first ML applications in weather forecasting was 
Schizas et al. [11] in 1991, where Artificial Neural Net-
works (ANN), where used to predict minimum tempera-
tures. Similarly, Ochiai et al. [12] used ANN in 1995 to 
predict rainfall and snowfall. These models were able to 
improve the forecasting accuracy compared to statistical 
models [13]. However, the limited forecast of 30–180 min 
and difficulties in obtaining solution convergence made 
practical application impossible. Traditional machine 
learning examples include support vector machine or lin-
ear regression which are typically far less computationally 

Fig. 1   Joint probability density functions of two features (off-diagonal) and single-feature probability density functions (diagonal) for the two locations
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demanding than neural networks and have been investi-
gated as forecasting candidates. For example, Ma et al. 
[14] deployed a traditional machine learning model 
known as XGBoost, which are comprised of gradient 
boosted decision trees, to predict air temperature and 
humidity over a 3-h period with resulting root mean 
square errors (RMSE) of temperature of 1.77 ◦C . Despite 
the relatively good result of traditional machine learning 
approaches, there are several reasons why a deep learning 
approach is preferred for weather prediction. Traditional 
algorithms are unable to model non-linearity, which is 
essential in predicting the evolution of the weather [15, 
16]. Similarly, Shao et al. [17] reported that statistical 
and traditional ML techniques are not well-suited for 
complex wind forecasting and attribute this need to the 
turbulent and chaotic behaviour of wind. Recent efforts 
have focused on using Support Vector Machines and vari-
ations for short term series forecasting and classification 
of non-linear data and time series [18–20]. Deep Learning 
(DL) leverages the growing volume and accessibility of 
data. While traditional machine learning models reach 
a point beyond which additional training data no longer 
improves model performance, deep learning models have 
been observed to benefit from the increase in data [21]. 
DL networks have been increasingly used in time series 
forecasting in several applications, examples include 
finance [22], sugarcane yield prediction [23] and power 
load forecasting [24] among others. DL has the potential 
to significantly improve the accuracy of weather forecast-
ing and its applications increased exponentially. Bauer 
et al. [4] showed that their Convolutional Neural Network 
(CNN) ensemble forecasting model can predict anoma-
lies such as Hurricane Irma. Weyn et al. [25] increased 
the accuracy of weather prediction by applying ensem-
ble modelling of separate CNN models, each with dif-
ferent starting conditions and sets of weights. Roy et al. 
[26] evaluated a multilayer perceptron, a long short-term 
memory (LSTM) model and a hybrid CNN/LSTM model 
and concludes that models with more complex architec-
tures in general improve performance, while Ravuri et al. 
[27] demonstrated that their neural network model can 

predict precipitation more accurately in 89% of instances 
compared to existing weather prediction techniques. Hew-
age et al. [13] report that their ML models predict weather 
conditions 12 h into the future with higher accuracy than 
conventional weather forecasting.

Neural networks have been identified as being particu-
larly promising in precipitation forecasting. A MetNet model 
developed at Google [28] was shown to predict precipita-
tion accurately over the course of eight hours. In this hybrid 
approach, several models were used at different stages includ-
ing LSTMs and CNNs. Despite its good performance, the 
model requires large volumes of data. An improvement 
was obtained by Met-Net2 [29], outperforming up to 12 h 
state-of-the-art weather models operating in the Continental 
United States. Fu et al. [30], upon evaluating many neural 
network architectures, settled on a combined Bidirectional-
LSTM (Bi-LSTM) and a one-dimensional CNN to predict 
ground air temperature, relative humidity and wind speed 
over seven days. They used weather station data from ten 
weather stations in Beijing and the final model contained 
more than a million nodes. Despite its size and complexity, 
the quantitative performance relative to the local weather 
observations was uncertain. The latest trends among others, 
include the use of hybrid LSTM/GAN [31] to predict cloud 
movement, LSTM/CNN for drought forecast [32]. Wind fore-
casting is of great importance in wind power and load estima-
tions and DL has been recently applied [33–36]. Most of the 
applications focused on short term which sped up prediction 
by up to 24 h.

The recent literatures shows that DL applications in weather 
forecast are accelerating, with large-scale forecasts using CNN-
variant architectures and LSTM dominating point forecast. 
However, there are clearly several research bottlenecks associ-
ated with short-term forecasting. Most applications have been 
in wind-farm sites with "simple" weather patterns, while urban 
environments are more complex to predict as the turbulence 
content of the signal is larger. Moreover, there is a deterioration 

Table 1   Architecture of the Bi-LSTM used in Model A, which 
includes the number and type of layers and the number of nodes in 
each layer

Layer Type Value Shape Parameters

Input - - (120 × 6) 0
Hidden Bi-LSTM Tanh activa-

tion function
(32 × 512) 538,624

Hidden Dropout 0.25 (32 × 512) 0
Output Linear - (32 × 6) 3,078
Total 541,702

Table 2   Parameters used in Model A including number of epochs and 
optimiser settings

Parameter Value

Context Length 120 h
Gradient Optimisation Adaptive moment esti-

mation (ADAM)
Learning rate 0.001
Model optimised metric Mean squared error
Performance metric Root mean squared error
Epochs 2
Batch size 32
Runtime size 78 s
Train, validate, test ratios 0.7, 0.15 and 0.15
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of predictions after several hours and there is not an optimal 
forecast length, which seems to depend on application.

3 � Methodology and data processing

LSTMs are applied frequently in sequential problems as they 
address the issue of loss of long-term memory [37]. The 
Bi-LSTM recurrent neural network builds upon the LSTM 
structure. In a Bi-LSTM model a duplicate layer is produced, 
where sequential information flows in chronological order 
through the first layer while the duplicate layer is used for 
the same sequential information, but in reversed order. This 
provides the model with far more context as key information 
at both the start and end of the sequence is available.

The training data is openly available by the Met Office 
from two London weather observation stations: Kew Gardens 
(51.482, -0.294) and Heathrow (51.479, -0.451). The data was 

extracted from the Centre for Environmental Data Analysis 
[38] and contains weather information from 2015–2021 with 
dozens of hourly weather parameters, hereinafter referred to 
as features for consistency. However, not all features are avail-
able for all weather stations and so the selection was limited 
to six unique features (three per weather station). The features 
of particular interest are air temperature, relative humidity and 
wind speed at both Heathrow and Kew Gardens, see Fig. 1.

With the features selected, the dataset is normalised. This 
is performed by using the mean and standard deviation for 
each feature. The mean and standard deviation are calculated 
from the training dataset, as including data from the valida-
tion and test sets and may result in overfitting [39].

The training, validation and test datasets are split up in frac-
tions of 0.7, 0.15 and 0.15 respectively with the chronological 
sequence of the data maintained. This corresponds to a sample 
size of 36,825, 7,891 and 7,892 observations respectively.

Two networks were created, Model A, to forecast 24 h 
and Model B to predict 72 h. The same dataset with the 

Fig. 2   Comparison between predicted and measured temperature at Kew Gardens using the forecast length of one hour and a context length of 
120 h. Scatter plot (left), one-year predictions (right)

Fig. 3   Comparison between 
predicted and measured tem-
perature at Kew Gardens using 
the 24-h and 1-h temperature 
predictions
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same split ratio for training, validation, and testing was 
used in both models. However, Model B is deeper, with a 
denser Bi-LSTM with more cells and an additional Feed 
Forward neural network (FNN) in the second hidden layer. 
Model B was trained on the same dataset with the same 
split ratio for training, validation, and testing.

The architecture of Model A is characterised in Table 1 
and determines the number of calculations performed. The 
input layer shape is defined by the length of the context and 
the number of features. The hidden layer shape is defined 
by the batch size and number of Bi-LSTM units; 256 for-
ward and 256 backward units. A batch size of 32 results in 
1,151 observations per batch from a total of 36,825 train-
ing observations with any difference subtracted from the 
final batch. Finally, the output layer shape is defined by 

the number of features and batch size. The total number of 
parameters to be trained in the model is the sum of those in 
the hidden layer and output layer, totalling 541,702.

A dropout layer is included to minimise the impact of over-
fitting by randomly setting the weight of 25% of the units in 
the hidden layer to zero. Dropout is a well-established tech-
nique in neural network modelling to overcome overfitting and 
is considered a more practical approach than regularisation, 
which is a common approach to reduce overfitting in tradi-
tional machine learning problems (Table 2) [40].

The training process was performed using Jupyter Note-
book within a Google Colaboratory environment. The com-
plete runtime was 78 s after which predictions could be made 
within 10 s. The maximum memory usage during training was 
less than 16 GB. The entire test dataset corresponds to roughly 
one year of data in 2020 (while training is 2015–2019). The 
model uses 120 measured hourly data as input and the output is 
the desired forecast hours. A benefit of having a context length 
greater than the forecast length is that some measured data 
will always be used in making the prediction. However, the 
returns are diminished as the temporal gap between the meas-
ured data and forecast increases. A model with a larger context 
of 240 h capture the data trend but failed to express the peaks 
and troughs accurately. The approach was first tested by doing 

Table 3   Root mean squared error (RMSE), mean average error 
(MAE) and maximum error between hourly and 24-h temperature 
predictions in Fig. 3

RMSE [ ◦C] MAE [ ◦C] Max. Error [ ◦C]

Single timestep 0.86 0.63 2.19
Multi-timestep 1.74 1.33 4.76

Fig. 4   24-h forecast of the air temperature at Kew Gardens during four days in different seasons
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a single-hour forecast (see Fig. 2). This process is repeated 
across the entire test dataset and 7,772 single-hour predictions 
are generated. The root mean, mean absolute and maximum 
errors were 0.89◦C , 0.62◦C and 12.81◦C respectively.

4 � Results

4.1 � 24‑h temperature forecast

To predict 24-h, a comparison was initially made between 
the single-step (predict 24 h in one step) and multi-step pre-
diction models to assess the impact of error propagation, see 
Fig. 3. Table 3 shows that the multi-step model prediction 

error according to all three metrics is approximately twice 
as large as the single-step error.

To quantify how well our 24-h model generalises to dif-
ferent time periods and seasons, four prediction windows 
spaced 90 days apart are illustrated in Fig. 4. A benchmark 
model, naive mode, is used for comparison. The naive model 
uses the last measured temperature for the entire 24-h fore-
cast. The naive model does not made assumptions about the 
future state and is completely uninformed. The root mean 
squared errors confirm the neural network performs signifi-
cantly better than the naive model in all instances (Table 4) 
with an average error of 1.45◦C and 6.00◦C for the neural 
network and naive forecast respectively.

To contextualise the performance, the neural network 
was compared to performance metrics from the Met 
Office. The 24-h predictions produced by the neural net-
work were in 72.9% of all instances accurate to ±2◦C . 
By comparison, the Met Office states 92.5% of its 24-h 
temperature predictions are accurate to ±2◦C while 92% 
of 24-h wind speed predictions are within 5 knots [41]. 
Note that measurements used in the weather stations were 
acquired with a resolution of ± 0.1◦C (Fig. 5).

A better statistical comparisons is done by looking at the 
probability density functions of the predicted and measured data. 
The 96 individual forecasts are derived from the four windows in 
Fig. 4. These points were used to compute a distribution function 
and are compared to the measured temperature distribution for 

Table 4   Root mean squared error (RMSE), mean average error 
(MAE) and maximum errors for the 24-h temperature prediction 
(Fig. 4), values in parentheses are normalised RMSE

RMSE [ ◦C] RMSE Naïve 
[ ◦C]

MAE [ ◦C] Max. Error [ ◦C]

Summer 1.33 (0.91) 3.30 (2.27) 1.74 (1.20) 4.76 (3.27)
Autumn 1.12 (0.77) 10.4 (7.15) 1.36 (0.93) 2.39 (1.64)
Winter 1.64 (1.13) 7.30 (5.02) 2.03 (1.40) 4.01 (2.76)
Spring 1.73 (1.19) 3.00 (2.06) 2.25 (1.55) 4.24 (2.91)
Mean 1.45 6.00 1.84 3.85
Std. dev 0.244 3.06 0.333 0.886

Fig. 5   Temperature probability 
density functions at Kew Gar-
dens. Full temperature dataset 
of 52,608 samples and two 
predicted and measured distrin-
butions from 96 samples
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the same period, while the entire yearly data was used to cre-
ate a benchmark. The 96-sample measured temperature peak 
is wider than the predicted peak indicating that predictions are 
conservative with both curves demonstrating bimodal behaviour. 
Nonetheless, the predicted and measured distribution agree very 
well, except tails on very hot days. Outlier temperatures above 
40 ◦C were measured that are not predicted.

Using the same network (Model A), the length of fore-
cast was varied next to understand the deterioration of the 
predictions without adapting the model and parameters. 
Ten different forecast lengths were tested ranging from one 
to 168 h (seven days). The RMSE mean and standard devi-
ation are plotted against forecast length in Fig. 6 to indicate 
uncertainty for increasing forecast lengths. For consistency, 
each prediction was run with a single epoch rather than 
attempting to optimise performance by identifying the most 
suitable number of epochs for each forecast length. The 
single hour prediction has the smallest mean and standard 
deviation, both of which increase as the forecast length 
increases, but become more stable after 24 h. 1–24 h pre-
dictions have a mean error less than 3 ◦C . Beyond 24 h, the 
prediction uncertainty continues to increase before rapidly 
converging around 4 ◦C . While there are many caveats to 
this information, the results suggest that, without further 

optimisation, the model should not be used for predictions 
exceeding one day.

4.2 � 72‑h temperature, relative humidity and wind 
velocity forecasts

The Model B setup, is shown in Table 5. The main differ-
ence with Model A is the addition of a linear layer within 
the hidden layer and a reduction in the dropout percentage 
to 10%. The hyperparameters used in the optimised model 
are recorded in Table 6.

As the first model, an increase in the number of epochs 
resulted in a reduction in the error and increase of the 
r-square value. However, there was no direct correlation 
between optimisation of these two parameters and how the 
72-h forecast performed over different time periods. There-
fore, once a capable architecture was identified, a similar 
trial-and-error approach began to optimise the hyperparam-
eters and context length based on the RMSE from the four 
windows. Initially, 120 h were used for the context length 
but later changed to 168 h as this gave optimal performance. 
After upwards of twenty iterations with different conditions, 
the hyperparameters listed in Table 6 resulted in the best 

Fig. 6   RMSE of Model A pre-
dictions against forecast length. 
The error bar correspond to 
min/max RMSE in the windows

Table 5   Architecture of Bi-LSTM model, Model B, including the 
number and type of layers and nodes in each layer

Layer Type Value Shape Parameters

Input - - (168 × 12) 0
Hidden Bi-LSTM Tanh activation func-

tion
(4 × 640) 852,480

Hidden Linear ReLU activation func-
tion

(4 × 256) 164,096

Hidden Dropout 0.10 (4 × 256) 0
Output Linear - (4 × 12) 3,048
Total 1,019,660

Table 6   The finalised hyperparameters used to train Model B includ-
ing the number of epochs and optimiser settings

Parameter Value

Context Length 168 h
Gradient Optimisation Adaptive Moment Esti-

mation (ADAM)
Learning rate 0.001
Loss: model training Mean squared error
Metrics: test data evaluation Root mean squared error
Epochs 1
Batch size 4
Run time 187 s
Train, validate and test split 0.7, 0.15 and 0.15



24998	 G. Zenkner, S. Navarro‑Martinez 

1 3

performance. * Once the model was trained, it was possible 
to make new predictions rapidly, within 15 s. The single-
step hourly prediction RMSE was 0.94◦C , MAE 0.68◦C and 
maximum error 14.94◦C when calculated over the entire test 
dataset. While the numbers are comparable to the single-
hour predictions generated in Model A, the model did not 
perform quite as well over three days as one day. This is to 
be expected as the forecast window is three times longer and 
the likelihood of error propagation is much higher.

The four windows in Fig. 7 illustrate how the Bi-LSTM 
and linear model is highly capable of making predictions 
with excellent generalisability across different periods and 
seasons. The three day forecast resulted RMSE mean and 

standard deviation 2.26◦C and 0.316◦C respectively, with 
79.5% of the temperature forecasts are within ±3◦C when 
making a 72-h forecast (compared to 1.45◦C and 0.244◦C in 
single day prediction) (Table 7).

Figure 8 shows predicted distribution for 72-h forecasts. 
Despite the qualitatively good agreement, the modelled dis-
tribution has a narrower peak with extreme high tempera-
tures underestimated (similarly to model A), showcasing the 
difficulty to represent the tails of the distribution.

The model takes in all features from both locations result-
ing in six unique features and 12 features in total. As before, 
it is possible to generate a prediction for any one of the fea-
tures introduced to the model in training. While the model 

Fig. 7   72-h forecast of the air temperature at Heathrow during four days in different seasons. Symbols same as Fig. 4

Table 7   Root mean squared 
error (RMSE), mean average 
error (MAE) and maximum 
errors for the 72-h temperature 
prediction (Fig. 7), values in 
parentheses are normalised 
RMSE

RMSE [ ◦C] MAE [ ◦C] Max. Error [ ◦C]

Kew G Heathrow Kew G Heathrow Kew G Heathrow

Winter 2.22 (0.78) 1.80 (0.63) 1.79 (0.63) 1.44 (0.51) 6.25 (2.2) 4.11 (1.45)
Autumn 3.02 (1.06) 2.27 (0.80) 2.51 (0.88) 1.89 (0.67) 7.64 (2.70) 5.24 (1.85)
Summer 3.41 (1.20) 2.69 (0.95) 2.80 (0.99) 2.03 (0.72) 7.10 (2.50) 6.66 (2.35)
Spring 2.70 (0.95) 2.31 (0.82) 2.12 (0.75) 1.87 (0.66) 5.25 (1.85) 5.31 (1.87)
Mean 2.83 2.26 2.31 1.81 6.56 5.33
Std. dev 0.436 0.316 0.383 0.221 0.910 0.904
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does take all inputs into consideration during training and 
seeks to minimise the loss function with respect to all fea-
tures, the performance arising from this approach does not 
necessarily translate into good generalisability across all 
timescales. When training the model, the weighted sum of 

all 12 features is used when minimising the loss, assigning 
different levels of importance to each feature. During the 
training of Model B, the objective was to optimise the 72-h 
temperature predictions, there was no guarantee that this 
performance would translate into comparable performance 

Fig. 8   Temperature probability density functions (left) and scatter plot (right) at Heathrow

Fig. 9   72-h forecast of the relative humidity at Heathrow during four days in different seasons
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for another feature, in this case relative humidity. The accu-
racy of the results in Fig. 9 are a byproduct of the process to 
optimise the air temperature. If the relative humidity were 
the focus of the optimisation, the forecast prediction would 
probably show considerable improvement (Table 8).

5 � Conclusions and future work

This paper presented a novel, flexible, deep learning local 
weather forecasting. The approach is capable of rapidly 
predicting weather features and generating cheap, reliable 
short duration forecasts. The model is purely data-driven, 
in contrast with earlier approaches that required varying 
degrees of data assimilation or hybrid model. A total of 
two models were trained and used to predict air tempera-
ture and relative humidity. The dataset used to train the 
models contained six years of historical weather observa-
tions from Kew Garden and Heathrow weather observa-
tion stations in London. The objective of having multiple 
locations is to infer a topographical representation for the 
model to learn from. As the two weather observation sta-
tions are positioned 11 km apart, it is expected that they 
would share similar weather characteristics. Discrepancies 
in wind speed and humidity between the location could be 
explained by local land features and artificial structures. 
Kew Gardens is positioned near the river Thames in a built-
up area while the nearest body of water to Heathrow is sev-
eral kilometres away. Heathrow observation station is situ-
ated within the airport boundaries with few obstructions.

Model A is a 24-h prediction network designed to pre-
dict air temperature. This model was intended to demon-
strate proof of concept and was trained with wet bulb, air 
and dew point temperatures. The Model A achieved its 
objective of establishing a baseline for further predictions. 
It showed that air temperature could be predicted with 
reasonable accuracy compared to the Met Office, predict-
ing the air temperature within a range of 2 ◦C in 72.9% 
of instances with a maximum error of 3.85◦C occurring 
mostly in very hot days. Model B is a 72-h prediction 
network that attempted to predict air temperature, relative 

humidity and wind speed. Despite a three-fold increase 
in the forecast length, the model was able to accurately 
predict air temperature with an RMSE of 2.26◦C at Heath-
row and was able to predict the temperature accurately to 
within ±3◦C in 79.5% of instance. It was able to predict 
the relative humidity in the same location with an RMSE 
of 14%. However, Model B was optimised with respect to 
air temperature which impacted the accuracy.

The flexibility and speed of the model makes it attrac-
tive to short-term local forecast in locations where weather 
stations are present but it maybe difficult to have accurate 
weather predictions (due to topography, local effects, etc.) 
The result show that predictions up to three days have accu-
racy comparable to expensive numerical weather predic-
tions. However, featured-based optimisation may be required 
to improve the accuracy of features such as wind speed or 
humidity. Future lines of research will be in this direction.
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copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

Table 8   Root mean squared 
error (RMSE), mean average 
error (MAE) and maximum 
errors for the 72-h relative 
humidity prediction (Fig. 7), 
values in parentheses are 
normalised RMSE

RMSE [%] MAE [%] Max. Error [%]

Kew G Heathrow Kew G Heathrow Kew G Heathrow

Winter 8.78 7.46 6.33 5.4 22.9 20.6
Autumn 9.48 8.25 7.30 6.21 21.9 19.6
Summer 28.0 29.1 22.2 23.43 58.6 61.6
Spring 11.9 11.5 8.43 8.51 36.2 33.4
Total 58.1 56.3 44.3 43.6 139.6 135.2
Average 14.5 14.0 11.1 10.9 34.9 33.8

https://catalogue.ceda.ac.uk/
http://creativecommons.org/licenses/by/4.0/
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