
Vol.:(0123456789)1 3

https://doi.org/10.1007/s10489-023-04807-x

How to train your pre‑trained GAN models

Sung‑Wook Park1  · Jun‑Yeong Kim1  · Jun Park1  · Se‑Hoon Jung2  · Chun‑Bo Sim1 

Accepted: 18 June 2023
© The Author(s) 2023

Abstract
Generative Adversarial Networks (GAN) show excellent performance in various problems of computer vision, computer
graphics, and machine learning, but require large amounts of data and huge computational resources. There is also the issue of
unstable training. If the generator and discriminator diverge during the training process, the GAN is subsequently difficult to
converge. In order to tackle these problems, various transfer learning methods have been introduced; however, mode collapse,
which is a form of overfitting, often arises. Moreover, there were limitations in learning the distribution of the training data.
In this paper, we provide a comprehensive review of the latest transfer learning methods as a solution to the problem, propose
the most effective method of fixing some layers of the generator and discriminator, and discuss future prospects. The model
to be used for the experiment is StyleGAN, and the performance evaluation uses Fréchet Inception Distance (FID), coverage,
and density. Results of the experiment revealed that the proposed method did not overfit. The model was able to learn the
distribution of the training data relatively well compared to the previously proposed methods. Moreover, it outperformed
existing methods at the Stanford Cars, Stanford Dogs, Oxford Flower, Caltech-256, CUB-200–2011, and Insect-30 datasets.

Keywords  Deep learning · Generative adversarial networks (GAN) · Computer vision (CV) · Artificial intelligence (AI)

1  Introduction

Generative Adversarial Networks (GAN) have been suc-
cessfully applied to various applications in computer vision,
computer graphics, and machine learning [1–7]. However, it
is not easy to apply the GAN to an actual scene, because the
recently announced GAN requires large data and huge com-
putational resources. Several methods have been proposed to
solve this problem. One method transfers the knowledge of
a well-trained model, while another method acquires meta
knowledge for quick adaptation to the target domain [8–13].
One auxiliary task facilitates training, while another task
improves the inference procedure of the suboptimal model
[14–21]. A priori distributions with expressive expressions,

active selection of samples to provide supervision for con-
ditional synthesis, or active sampling of mini-batches for
training can also be used [22, 23]. The a priori distribution is
the distribution of parameters that are already known, while
the a posteriori distribution is the distribution of the param-
eters changed by the sample, that is, the answer to be found.

Transfer learning is the most promising way to train mod-
els on limited data and resources [24]. The recent success
of deep learning utilizes a backbone pre-trained with super-
vised or self-supervised learning for large datasets [25, 26].
Self-supervised learning is a machine learning method that
can be considered an intermediate form between supervised
learning and unsupervised learning. As a type of autono-
mous learning using artificial neural networks, sample data
classified in advance by humans is not necessarily required,
and it is achieved by training the neural network in two steps.
Another way is to after successfully transmitting the clas-
sifier in the recognition task, use the well-trained backbone
of the GAN for downstream synthesis. Downstream is data
transmitted from the upper layer to the lower layer. For
example, the convolutional layer output of a discriminator
can be used as a feature extractor, and a linear model, such
as a support vector machine (SVM), can be combined as a
classifier. GAN frequently experience mode collapse, which

 *	 Se‑Hoon Jung
	 shjung@scnu.ac.kr

 *	 Chun‑Bo Sim
	 cbsim@scnu.ac.kr

1	 Interdisciplinary Program in IT‑Bio Convergence
System, Sunchon National University, Suncheon 57922,
Republic of Korea

2	 Department of Computer Engineering, Sunchon National
University, Suncheon 57922, Republic of Korea

/ Published online: 31 August 2023

Applied Intelligence (2023) 53:27001–27026

http://orcid.org/0000-0003-1051-9263
http://orcid.org/0000-0002-5937-4571
http://orcid.org/0000-0001-6268-9593
http://orcid.org/0000-0002-1776-9823
http://orcid.org/0000-0003-0802-6355
http://crossmark.crossref.org/dialog/?doi=10.1007/s10489-023-04807-x&domain=pdf

1 3

is a form of overfitting, for a variety of reasons [27–29].
For these reasons, even the transfer learning methods pro-
posed so far may not be robust enough to handle the prob-
lems of overfitting or small distribution shift when applied
to GAN. Therefore, we comprehensively review the latest
transfer learning methods as part of a solution to the problem
and propose a simple yet highly effective transfer learning
method for GAN.

The lower layer of the GAN using convolutional opera-
tion learns the general features of the image, while the upper
layer trains how to classify whether the image is real or syn-
thetic, based on the extracted features. The dichotomous
view of feature extractor and classifier and fixing the feature
extractor for fine-tuning are not new, but the effectiveness
of the proposed method using various datasets is verified by
comparison with the existing method.

The model uses StyleGAN pre-trained with the Flickr
Faces High Quality (FFHQ) dataset [30]. The datasets are
Stanford Cars, Stanford Dogs, Oxford Flower, Caltech-256,
Caltech-University of California San Diego Birds (CUB)-
200–2011, and Insect-30.

The contributions of this paper are as follows:

•	 It is possible to check how various transfer learning
methods affect the GAN model training results.

•	 By providing experimental results of various datasets,
service improvement and performance in related fields
can be achieved.

•	 We analyzed the issues with major GAN evaluation met-
rics and suggested careful consideration in the selection
of evaluation metrics as an appropriate solution.

A comprehensive review of the latest transfer learning
methods can provide valuable insights for future research
and identify areas for further investigation, making a sig-
nificant contribution to the academic community. While the
proposed methods, such as selecting the appropriate combi-
nation of Freezing for the generator and discriminator, may
vary depending on the architecture and dataset character-
istics, we offer insights that can minimize experimentation
and trial-and-error to determine the most effective method
in a given scenario.

Section 1 of this paper describes the problems and solu-
tions of GAN. Section 2, we introduced the latest transfer
learning methods of GAN, such as fine-tuning, freezing,
scale/shift, Generative Latent Optimization (GLO), Mine-
GAN, L2-Starting Point (SP), and Feature Distillation (FD).
Section 3 describes the dataset and experimental environ-
ment configuration. Section 4 compares the experimental
results to see how the proposed method differs from the pre-
viously published method. Section 5 provides a final sum-
mary of what has been described above, and the prospects
for future work. The last section includes the results of the

ablation study of the proposed method, and images synthe-
sized by various transfer learning methods.

2 � Methods

Transfer Learning is a method that takes trained weights
from a specific dataset of tens of thousands, and uses them
in a user’s project; it is mainly useful when the size of the
dataset is small. Currently, in various fields, such as com-
puter vision and natural language processing, the prediction
rate is increasing with transfer learning methods.

In the case of Convolutional Neural Network (CNN),
training starts by identifying which pixel combination is a
line, and which type of group becomes a plane. If image
discrimination starts without any information, training takes
some time, so the transfer learning method is used. Transfer
learning first loads an existing network trained on a large
dataset. After that, the front side of the CNN is filled with
the loaded network, and connected with the user project in
the back layer. Finally, the above two networks are tuned, so
that they mesh well. GAN is also like CNN except that it has
two neural networks, and the mechanism is shown in Fig. 1.
We assume that the pre-trained generator and discrimina-
tor can be fully utilized and compare it with the previously
proposed method.

Fine-tuning: First, fine-tuning is the simplest and most
effective way to transfer trained knowledge and initializes
the parameters of the target model with the pre-trained
weights of the source model. The fine-tuning method
retrains the weights of all layers of the neural network.
That is, the method sets the weights of the pre-trained
model as initial values, and retrains from the beginning.
At this time, it is important to set the learning rate low.
If the learning rate is high, it is difficult to expect good
performance, because the existing weights of the model
are greatly damaged. Because the learning rate is low and
the target to be learned is changed, the fine-tuning method
takes more time to train the parameters of the output layer
than the freezing method. The fine-tuning method can be
implemented by passing the variable list of all layers to
the optimizer. Note that it often suffers from overfitting,
and requires regularization. Regularization is a technique
for solving an ill-posed problem or preventing overfitting
in machine learning; and an ill-posed problem means a
rogue condition problem, in which there is no single cor-
rect answer. In this paper, we compare the performance
when the entire layer is fine-tuned, and when only a part of
the layer is fine-tuned; and propose a method of fine-tuning
only some layers. In general, the deeper the layer, the more
specialized the CNN.

The first few layers learn simple, general features that can
be considered in any type of image, and the higher the layer,

27002 S.-W. Park et al.

1 3

the more specific the unique features found in the training
dataset. The goal of fine-tuning is to tune these unique fea-
tures so that they work well on new datasets, without being
overwritten by general features. Since the weights within the
layers are set at random, trying to train all layers will cause
the gradient updates to become too large, and the pre-trained
model may forget what it has learned. Therefore, to reduce
the possibility of learning failure, we propose a method of
fine-tuning only some layers. The fine-tuning method is
shown in Fig. 2.

In general, if a dataset is large and the similarity to the
pre-trained model is small, Fig. 2c is used. Due to the large
dataset size, retraining the entire model would be a good
strategy. If the dataset is large and the similarity to the pre-
trained model is large, Fig. 2b is used. Figure 2b describes
the case of training the rear part of the convolutional layer
and the image generator or classifier. Since the dataset is

similar, it is possible to achieve an optimal performance
even if only the latter part of the convolutional layer, which
shows strong features, and the image generator or classifier
is newly trained rather than training the whole. Figure 2b
is also used when the dataset is small and the similarity
to the pre-trained model is small. Because of the small
amount of data, applying a fine-tuning technique to some
layers might not be effective. Therefore, it is necessary to
appropriately set the level of the convolutional layer to be
newly trained. If the dataset is small and the similarity to
the pre-trained model is large, Fig. 2a is used. Figure 2a
describes the case where only the image generator or clas-
sifier is trained. Since the dataset is small, applying the
fine-tuning technique to many layers can lead to overfit-
ting. In this paper, the performance of the Fig. 2b method
was the best. In the case of fine-tuning, if a large change is
made to a parameter during the parameter update process,

Fig. 1   Architecture and the principle of transfer learning

Fig. 2   Types of fine-tuning
techniques

27003How to train your pre-trained GAN models

1 3

an overfitting problem might occur. Thus, a sophisticated
and fine parameter update is required.

Freezing  The freezing method is also widely used, and the
weights up to the output layer are fixed and reused. The
convolutional layer responsible for feature extraction of the
existing pre-trained model is trained to detect low-level fea-
tures in the image, so it is useful for other image classifica-
tion and synthesizing tasks. Therefore, the weights of the
corresponding layer are fixed to their initial values, and then
reused. This method is the freezing method. If the freezing
method is used, it is easy to train the weights of the output
layer, because the object to be learned does not change. At
this time, the output layer of the original model may be dif-
ferent from the new work, and the number of output units
is not the same, so it is usually added after deletion. The
freezing method can be implemented by passing the list of
variables of the output layer to be trained to the optimizer,
excluding the variables of the corresponding layer.

Scale/shift  Scale/shift is a method that updates the nor-
malization layer only when the weights are frozen. It
uses the knowledge of the pre-trained network to learn
small datasets in other domains. As a representative
normalization layer, there is batch normalization. The
model synthesizes images using knowledge that cannot
be acquired from small datasets. This method focuses on
batch statistics of the network hidden layer, scale, and shift
parameters. The network is trained stably while updating
parameters in a supervised learning method. Even with
small datasets, high-quality images can be synthesized
and classes or domains can be added to the pre-trained
network while maintaining the performance of the source
domain. This means that the diversity of filters obtained in
the pre-trained network is important for the performance
of the target domain. However, if movement between the
source and target distribution is frequent, inferior results
can occur due to restrictions.

Generative Latent Optimization (GLO)  GLO defines the
loss as the sum of the L2 loss and the perceptual, fine-
tuning the generator with a supervised learning method,
and optimizing the generator and the latent code together
to avoid overfitting [31]. The perceptual loss is defined
using the feature reconstruction loss and the style recon-
struction loss [32]. A pre-trained Visual Geometry Group
(VGG)-16 model is used to obtain the feature reconstruc-
tion loss and the style reconstruction loss. The purpose
of the feature reconstruction loss is to make the same
content and the style reconstruction loss the same style.
The feature reconstruction loss is calculated by compar-
ing the activation map passed through the activation func-
tion existing for each layer. At this time, by making the

low-dimensional expression synthesized by the convolu-
tion operation similar, we intend to synthesize a percep-
tually similar image that looks similar when we accept
it, even if it is not exactly the same. Style reconstruction
can identify which features are active at the same time as
each other. GLO can perform the linear arithmetic opera-
tions with latent vector z without adversarial optimiza-
tion. Setting the latent vector z value during training is
important because it tracks the correspondence between
the sample and its representatives. Since the image syn-
thesized with a meaningful latent code in GLO matches
the real image, the generator can generalize the image by
interpolation. However, since there is no prior knowledge
of adversarial loss and source discriminator, blurry and
ambiguous images can be synthesized. For example, with
the Large-scale Scene UNderstanding (LSUN) bedroom
dataset, the adversarial optimization method performed
better than the GLO. Of course, the visual quality can be
improved by changing the loss function, architecture, pro-
gressive synthesis, post-training sampling method, and so
on. This characteristic of GLO can be a strength in terms
of possibility. However, it can also be interpreted as being
sensitive to hyperparameter settings. Thus, it can also be
considered a weakness.

MineGAN  MineGAN can mine the most meaningful knowl-
edge of a specific target domain from single or multiple pre-
trained GAN. The task is performed using a minor network
that identifies which parts of the pre-trained GAN synthesis
distribution output the closest samples in the target domain.
That is, it is based on a mining task that identifies regions
of the GAN manifold that have been trained closer to a
given target domain. Mining adjusts the GAN sampling to
an appropriate region of latent space to facilitate post-mor-
tem fine-tuning and avoid problems such as mode collapse
and training instability. For this reason, mining can make
efficient fine-tuning even when there are few images of the
target domain. The minor network consists only of fully con-
nected layers. In the paper, it is optimal when four layers are
stacked. MineGAN can be effective when the source and
target distributions share support. However, it can be dif-
ficult to generalize when the source and target distributions
do not share support. Support is a support set whose function
is a closure of a set of non-zero points, and a closure is the
smallest closed set containing a subset of a given topological
space. Here, the phase space is a space that does not contain
information about the distance, area, volume, etc. between
points, and a closed set is a concept that contradicts an open
set, a subset of the phase space, that does not contain any
boundaries of its own.

L2‑Starting Point (SP)  L2-SP is a mechanism to keep fea-
tures learned from the source dataset well. The target model

27004 S.-W. Park et al.

1 3

is regularized so that it does not stray too far from the source
model [33]. The source model and target model parameters
use L2-norm regularization. The L2-SP grants an L2 penalty
based on the starting point, which is more effective in learn-
ing than a typical L2 penalty. It also has the advantage of
possessing an explicit inductive bias since it can explicitly
promote similarity between the initial model and the final
solution in this way. Inductive bias aims to construct an algo-
rithm that can learn how to predict a specific target output.
It is noteworthy that the early stopping algorithm may work
before convergence. However, the L2-SP is robust against
such problems. Furthermore, it is easier to implement than
freezing the initial layer in the network. We tried L2-SP as a
generator, a discriminator, and both, but the results were not
good. However, since freezing layers can be seen as provid-
ing an infinite weight of L2-SP for the selected layer and
weight of ‘0’ for the unselected layer, it is considered that
the appropriate weight for each layer can perform better.

Feature Distillation (FD)  FD is also one of the most widely
used methods for the transfer learning of classifiers [34,
35]. We distill the activation of the source model and the
target model, and Fig. 3 shows the operation principle of
vanilla FD.

In Fig. 3, the teacher model is a large and deep model
with high prediction accuracy, while the student model is
a small and shallow model that will receive the features of
the teacher model. LSoft in Fig. 3 can be defined by Eq. (1),
and LTask can be calculated by Eq. (2)

In Eq. (1), fT
(
xi
)
 is the logit value of the teacher model,

and fS
(
xi
)
 is the logit value of the student model, while � is

a hyperparameter that plays a scaling role. As � is larger, it
has a softer probability distribution, and if it is 1, it is the
same as the existing softmax function. The modified softmax
function is equal to Eq. (3)

That is, the method of distilling the features of a large
model into a small model is to designate the final softmax
output of the large model as a soft target and use it in the
training process of the small model. As a result, the small
model has both the soft target, which is the output of the
large model, and the hard target, which is the existing label
value. The soft target means the probability for each class.
The hard target is the result of one-hot encoding the prob-
ability of each class. Therefore, FD is applicable to the dis-
criminator model. Training proceeds by calculating the loss
of both targets. A soft target is actually a value output by
the model through training, and a value that the model can
output sufficiently, so when training a new model, it can be
adopted as a realistic target. Specifically, a large model is

(1)

LSoft =
∑

xi∈X

KL

(
softmax

(
fT
(
xi
)

�

)
, softmax

(
fS
(
xi
)

�

))

(2)LTask = CrossEntropy(softmax
(
fS
(
xi
))
, ytrue)

(3)Softmax
�
zi
�
=

exp(zi∕�)∑
jexp(zi∕�)

Fig. 3   The architecture and principle of vanilla feature distillation (FD)

27005How to train your pre-trained GAN models

1 3

trained using the training dataset, and after the large model
has been sufficiently trained, a transfer dataset with the out-
put as a soft target is synthesized.

Then, a small model is trained using the transfer data-
set and the training dataset. Each loss function uses cross-
entropy, and as a result, the final loss function of the smaller
model is equal to Eq. (4) multiplied by the weight � of LSoft ;
� is used as a form of feedback control. Feedback control
is a control function that compares the output result with
the target value in automatic control, returns it to the previ-
ous step, and corrects it. FD showed similar results to the
proposed method, but the calculation took one more time.

3 � Experimental setup

3.1 � Training and test environment

For hardware specification, the Central Processing Unit
(CPU) used was Intel Core i9 11900 K Rocket LakeS; the
graphics card was NVIDIA GeForce RTX 3090 24 GB, the
RAM was G.Skill DDR4 64 GB, and the Solid State Drive
(SSD) was FireCuda 530 Gaming Peripheral Component
Interconnect express (PCIe) 4.0 Non Volatile Memory
express (NVMe) 1 TB. Table 1 shows the hardware specifi-
cations for the experiment. We found that there was a limit
in generating images with a resolution higher than 256 × 256
due to hardware limitations.

For software specification, the operating system was
ubuntu 20.04.3 Long Term Support (LTS); the Compute
Unified Device Architecture (CUDA) was 11.2.67, the cuda
Deep Neural Network library (cuDNN) was 8.1.0, Torch
was 1.8.2, and python was 3.8.10. Torch is a framework for
machine learning and deep learning. Table 2 presents the
software specifications for the experiment:

3.2 � Model architecture

StyleGAN is the first model to use a combination of Progres-
sive Growing of Generative Adversarial Networks (PGGAN)

(4)Ltotal = LTask + � ∙ LSoft

and neural style transfer technology [36, 37]. Its solution has
been recognized and widely used. Of course, there are cur-
rently several applied models [38, 39]. However, in the case
of the initial model, the number of layers that can be frozen
in the generator and the discriminator is the same. Thus, an
accurate comparative analysis is possible. For this reason, in
this paper, StyleGAN was selected as the transfer learning
method comparison model. StyleGAN drew attention for
generating full high-definition quality results with few steps
of control from detail to overall image. Figure 4 shows the
generator architecture of StyleGAN:

A in Fig. 4 is a learned affine transformation. StyleGAN
proposed a method called Adaptive Instance Normalization
(AdaIN), and AdaIN uses reference style bias yb,i and scale
ys,i . The mean and variance of the feature map xi output from
the layers in the synthesis network are adjusted using yb,i and
ys,i , respectively. AdaIN is given by Eq. (5):

A latent vector z is passed through the mapping network f
to compute the style parameters, and an intermediate vector
w is generated. Then, it passes through the fully connected
layer, and synthesizes yb,i and ys,i vectors of length n . This
is to separate the image style selection process. AdaIN pre-
vents style information from being lost between layers. The
style vector added to each layer does not affect the feature of
other layers. This latent vector w is better than the original
vector z.

Using AdaIN, StyleGAN learns about interpretable dis-
entangled representations by solving the problem of entan-
glement in latent space. Generative models aim to capture
generative factors in the training data. A disentangled rep-
resentation is associated with a symmetry transformation
in which some properties are preserved, while other prop-
erties are changed. Symmetry transformation transforms
certain properties, but preserves others. To realize a sym-
metry transformation in a neural network, neurons must have
no connections with other neurons. That is, each neuron is
in an isolated state. The concept of symmetry is broader
than the scope of geometry and is mainly used in quantum
mechanics.

(5)AdaIN
(
xi, y

)
= ys,i

xi − �(xi)

�(xi)
+ yb,i

Table 1   Hardware specifications

Hardware Specifications

CPU Intel Core i9 11900 K
Graphics card NVIDIA RTX 3090 24 GB
RAM G.Skill DDR4 64 GB
SSD FireCuda 530 Gaming

PCIe4.0 NVMe 1 TB

Table 2   Software versions

Software Version

Operating system Ubuntu Linux 20.04.3 LTS
Programming language Python 3.8.10
GPGPU CUDA 11.2.67
Deep neural network library cuDNN 8.1.0
Deep learning framework Torch 1.8.2

27006 S.-W. Park et al.

1 3

The disentangled representation is the process of learn-
ing symmetry through training, and becoming disentangled,
even starting from the fully connected layer. This means that
the latent unit is sensitive to changes in the generative factor.
From the point of view of information theory, disentangled
representation is highly useful. Because it compresses infor-
mation, it is more efficient than other algorithms, and this
is because small things can be increased into many things.
However, disentangled representation is only effective for
latent vectors.

The synthesis network was designed with inspiration
from PGGAN. The more the style vector of the synthesis
network is in the front layer, the larger the feature is. Style-
GAN completely controlled the synthesized image using the
latent vector w , And by changing the position of the w vec-
tor in the synthesis network, different levels of style were
synthesized.

StyleGAN passes the w vector of I through the synthesis
network to combine different images I and I′ , and turns it
into an I′ vector at a specific point. I and I′ were synthesized
with different vectors. When the transformation occurs in
the early stages, the posture, appearance, and styles, such as
glasses, are transmitted to the I . If the transformation occurs
later, styles, such as the color and micro-shape of a face, are
transferred to I′ . All I image features are maintained. Style-
GAN adds noise behind each convolutional layer to capture
parts such as the position of the hair or the background of
the face. The noise injection location determines the fineness
and coarseness of the image.

3.3 � Dataset description

We used the pre-trained StyleGAN model with the
FFHQ dataset, and fine-tuned our six datasets: Stanford

Cars, Stanford Dogs, Oxford Flower, Caltech-256, CUB-
200–2011, and Insect-30. There are 196 classes in the Stan-
ford Cars dataset, with a total of 8,144 images, while the
Stanford Dogs dataset has 120 classes and a total of 20,580
images. There are 102 classes in the Oxford Flower dataset,
a total of 8,189 images, and 256 classes in the Caltech-256
dataset, with a total of 30,609 images embedded. There are
200 classes in the CUB-200–2011 dataset, a total of 11,788
images, while the Insect-30 dataset has 30 classes, a total of
28,896 images.

In the case of the Insect-30 dataset, 30 species of forest
insects that are commonly observable were selected. Five
types of images from the ImageNet and 25 types of images
through Screen Scraping were collected and organized into
datasets through a separate screening process. Screen scrap-
ing is a program designed to extract only necessary data
from data displayed on the internet screen. The image of the
insect dataset was cropped around the insect in the image,
as Fig. 5 shows:

The model used was trained on 256 × 256 images, and
the iteration was maintained at 50,000. Learning was

Fig. 4   Generator G architecture of StyleGAN and Adaptive Instance Normalization (AdaIN) layer mechanism

Fig. 5   Example of a cropped insect image

27007How to train your pre-trained GAN models

1 3

successful even without progressive training. Progres-
sive training is a method of synthesizing high-quality and
high-resolution images by adding a new layer in the train-
ing process of the generator and discriminator. We train
the generator and discriminator from a 4 × 4 pixel low-
resolution image. After that, the resolution is increased by
adding a layer, and the added layer is continuously trained
without being frozen.

3.4 � Implementation details

When injecting label information into the StyleGAN
architecture generator, a conditional version of AdaIN
was used. When injecting label information into the dis-
criminator, the PGGAN projection discriminator was used.
The loss function used logistics and the activation function
used softplus. The softplus function is a variant of the
Rectified Linear Unit (ReLU) that can relax the criteria for
creating zero. It can be differentiated across all intervals.
Additionally, exponential moving average (EMA) was
used for generator updates.

When using the L2-SP or FD method, the loss was
defined as the sum of the existing loss and the Mean
Squared Error (MSE). The supervised loss was defined
as the sum of L2 loss and perceptual, with the perceptual
and embedding scales set to be 0.1, the regularizer scale
set to be 0.02, and the image and perceptual normalization
set to be True.

For the optimizer, Adaptive moment estimation (Adam)
was used. Adam can perform deflection correction of hyper-
parameters by fusion of momentum and Adaptive Gradient
algorithm (AdaGrad). The initial learning rate was set to
0.002. The coefficient for primary momentum �1 was set to
0.0. The coefficient for secondary momentum �2 was set to
0.99. Epsilon was set to 1e-08. Weight decay was set to 0.
AMSGrad was set to False. Foreach was None. The maxi-
mum was set to False. The capability was also set to False.
For weight initialization, the linear layer used the Xavier
normal distribution, and the convolutional layer used Kaim-
ing normal distribution.

In a standard normal distribution with a mean of 0 and
a variance of 1, the latent vector z is sampled and the z size
is set to 512. The random seed was set to 0. The mini-batch
was set to 8. The image size was set to 256. The number
of samples for evaluation was set to 5,000. The number of
samples used for each training phase was set to 50,000. The
basic step size was set to 6. The step size for evaluation
was set to 1,000 and the step size for model save was set to
10,000.

In this paper, the above settings were applied equally to
all experiments in order to secure objectivity when drawing
conclusions.

3.5 � Evaluation metrics

Evaluation indicators such as how to evaluate the syn-
thesized image and whether the trained model can be
compared with other models may vary depending on the
learning goal [40]. Objective functions of generators and
discriminators in GAN are measured by comparing how
well they each perform their roles. For example, a par-
ticular objective function measures how well a generator
deceives a discriminator. Methods of comparing the results
of GAN models include the Inception Score (IS), and the
Fréchet Inception Distance (FID) [41, 42].

IS represents two performances of GAN. The first is
the quality of the synthesized image, and the second is
the diversity. A good result is that the conditional prob-
ability p(y|x) is easy to predict. That is, when an image is
input, it should be possible to easily identify the type of
object. IS classifies the synthesized image using the Incep-
tionV3 model, and predicts p(y|x) . Here, y is the label, and
x is the synthesized image. This reflects the quality of the
image. Then, p(y) is the marginal probability calculated
as in Eq. (6):

Marginal probability is the probability distribution of X
or Y when two random variables X and Y pair, and have a
joint probability distribution as ( X, Y  ). Equation (6) elimi-
nates the remaining probabilities through integral or sum-
mation. If the images synthesized in Eq. (7) are diverse,
the data distribution for y should be uniform. That is, it
must have high entropy:

When synthesizing only one image per class, IS may
misrepresent performance. This is because p(y) can still
be uniform, even with low diversity.

Introduced in 1957 by the French mathematician
Maurice René Fréchet, FID was inspired by the metric.
FID also uses Inception V3, and extracts features from
the middle layer. FID models the data distribution of
the extracted features using multi-variate normal dis-
tribution with mean � and covariance matrix

∑
 added.

The lower the FID value, the better, because the image
quality and diversity increase. FID is sensitive to mode
collapse. So, the more similar images, the higher the
value. FID is resistant to noise, and can detect missing
samples within a class.

Because IS improves performance by synthesizing only
one kind of class, FID is better than IS. FID calculates the
distance between images in pixel space, and is equivalent
to Eq. (8):

(6)∫ z

p(y|x = G(z))dz

(7)IS(G) = exp(EX∼pdata
DKL(p(y|x) ∥ p(y)))

27008 S.-W. Park et al.

1 3

In Eq. (8), � is the mean,
∑

 is the covariance matrix,
x is the real image, and g is the synthesized image. The
Trace of a Matrix (Tr) is a summary of all elements of a
diagonal, that is, the sum of the diagonals. In a covari-
ance matrix, the diagonal is an element with the same
row and column indices in a square-shaped matrix. The
key is to assume that the vector passing through Incep-
tionV3 follows a normal distribution. Without this
assumption, the FID value cannot be calculated; and even
so, it is not an accurate number. The FID can be trans-
formed into the Fréchet Audio Distance (FAD) in music
synthesis, the Fréchet Video Distance (FVD) in video
synthesis, and the Fréchet ChemNet Distance (FCD) in
molecular synthesis.

Precision, recall, and F1 score are also used as evalua-
tion metrics [43]. The more similar the synthesized image
is to the real image, the higher the precision. The more the
generator synthesizes the samples from the training dataset
without duplication, the higher the recall. Recall is also
called hit rate, sensitivity, and true positive rate. The F1
score is the harmonic mean of precision and recall. The
harmonic mean is the reciprocal of the arithmetic mean of
n positive numbers and their reciprocals.

There are also coverage and density [44]. The author
of the paper first forms a manifold with k-Nearest Neigh-
borhood ( k NN), before defining fidelity and diversity. In
other words, fidelity and diversity are defined after assum-
ing that the Euclidean distance that can contain k pieces
of data closest to a specific vector V is formed as the cor-
responding data manifold. Density is a ratio indicating
how much density of synthetic image is included in the
manifold synthesized with real image. If the density value
is large, the synthetic image is distributed at high density
in the manifold and does not deviate significantly from the
distribution of the original dataset. The density is given
by Eq. (9):

Coverage is a ratio indicating how many manifolds con-
tain the synthesized image on multiple manifolds synthe-
sized with the real image. If the model synthesizes images
only in a part or a narrow space in the real image manifold,
fidelity and diversity have a trade-off relationship; but if
the synthesized distribution can cover the real image dis-
tribution as a whole, the trade-off problem can be solved.
NVIDIA announced improved precision and recall, but
claim that they are too sensitive to outliers, and that IS and
FID cannot distinguish fidelity and diversity to evaluate,

(8)

FID(x, g) = ||ux − ug||22 + Tr

(∑
x
+
∑

g
−2

(∑
x

∑
g

) 1

2

)

(9)Density ∶=
1

kM

∑M

j=1

∑N

i=1
1Yj

∈ B(Xi,NNDk

(
Xi

)
)

but density and coverage are possible [45]. The Coverage
is given by Eq. (10):

The IS, FID, precision, recall, F1 score, coverage, and
density all use Inception V3, so it is a feature extraction-
based methodology. If the model is not good at feature
extraction, the same value can be calculated, no matter
which image is synthesized.

Research is still ongoing regarding end-to-end evaluation
metrics that can detect and prevent problems in GAN, such
as earlier mode collapse, as well as cost optimization [46].
However, it is difficult to find a satisfactory solution. We use
FID, coverage, and density, but we propose to find and apply
an evaluation metrics suitable for the model to be used based
on a theoretical basis, or through a lot of trial and error.

4 � Results

Figure 6 visualizes the synthesized image using the exist-
ing weights and fine-tuned weights for the FFHQ dataset.
The similar latent code shared the similar meaning after
fine-tuning.

Table 3 evaluates the FID values of the existing and pro-
posed methods of models trained with the Stanford Cars
and Stanford Dogs datasets. For the Stanford Cars dataset,
Freeze D fixed up to discriminator layer 5, and Freeze G
fixed it up to generator layer 3. Partial fine-tuning method
was fixed up to generator layer 4 and discriminator layer 4.
For the Stanford Dogs dataset, Freeze D fixed up to discrimi-
nator layer 5, and Freeze G fixed it up to generator layer 2.
Partial fine-tuning method was fixed up to generator layer 5
and discriminator layer 7. All tables in Appendix 6.1 shows
the rationale for layer freezing. The weights of L2-SP and
FD were selected from {0.1, 1, 10}, and in the case of regu-
larization weights, ‘1’ was set for all experiments. FD lin-
earized the fifth activation of the discriminator, and matched
the activation of the source and target discriminators. Since
the activation size is different for each layer, L2 − norm nor-
malized to the feature dimension was used. The hyperparam-
eter of GLO was set to the value proposed by the author of
the paper, and for the minor network, a 2-layer Multi-Layer
Perceptron (MLP) and Rectified Linear Unit (ReLU) were
used as the activation functions.

In Stanford Cars, the partial fine-tuning method showed
the highest performance with FID 10.84. The FID of Min-
eGAN with GLO was 33.65, showing the lowest perfor-
mance, and there was a performance difference between
partial fine-tuning and 22.81. In Stanford Dogs, the Freeze
G method showed the highest performance with an FID of

(10)Coverage ∶=
1

N

∑N

i=1
1∃js.t.Yj ∈ B(Xi,NNDk

(
Xi

)
)

27009How to train your pre-trained GAN models

1 3

29.83. The FID of scale/shift with GLO was 57.30, showing
the lowest performance, and there was a performance differ-
ence between Freeze G and 27.47. While MineGAN could
potentially generate high-quality images with specific attrib-
utes, such as poses and lighting, it may not be able to cap-
ture the full range of diversity present in the training data.
There can be several reasons for the performance degrada-
tion of FID in scale/shift with GLO. Firstly, updating only
the normalization layer while keeping the weights frozen can
make it difficult for the model to learn the target dataset and
result in unstable training. Secondly, there may be a more
appropriate layer than the current normalization layer that

can improve performance. Thirdly, hyperparameters such
as learning rates may also contribute to performance deg-
radation. Compared to methods other than fine-tuning, the
proposed freezing and partial fine-tuning methods were both
performance and stability solutions. We chose our method
because FD has similar results to the proposed method, but
it is twice as slow in speed.

Table 4 evaluates the coverage and density values of
the previously published method and the proposed method
of the model trained with the Stanford Cars and Stanford
Dogs datasets. When evaluating the coverage of Stanford
Cars, Freeze D fixed up to discriminator layer 5, and when
evaluating density, Freeze D fixed up to discriminator layer

(a) FFHQ (b) Stanford Cars (c) Stanford Dogs

Fig. 6   (a) was synthesized by StyleGAN trained on the FFHQ data-
set. (b) shows 100 car images synthesized by the partial fine-tuning
method, which had the best performance in the ‘Stanford Cars’ data-
set. (c) shows 100 dog images synthesized by the Freeze G method,

which had the best performance in the ‘Stanford Dogs’ dataset. As a
result of the analysis, we found that each item represented a similar
latent code and that similar latent codes shared similar meanings even
after freezing

Table 3   Comparison of various methods under the ‘Stanford Cars’
and ‘Stanford Dogs’ datasets. Values indicate the best FID scores.
‘ + ’ indicates the styleGAN is trained by GLO loss For each value,
the methods are marked with the best performance using gold , sil-
ver , and bronze medals

Table 4   Comparison of various methods under the ‘Stanford Cars’
and ‘Stanford Dogs’ datasets. Left and right values indicate the best
coverage and density scores. ‘ + ’ indicates the styleGAN is trained by
GLO loss

Bold items mean the highest performance

Method Stanford Cars Stanford Dogs

Fine-tuning 0.939/7.695 0.246/16.412
 + GLO 0.607/14.845 0.115/30.949
Scale/shift 0.938/7.197 0.241/15.901
 + GLO 0.564/9.472 0.108/29.929
MineGAN 0.434/2.668 0.118/27.374
 + GLO 0.431/2.714 0.118/27.360
L2-SP ( G) 0.937/7.702 0.243/16.086
L2-SP ( D) 0.934/7.443 0.235/15.450
L2-SP ( G,D) 0.936/7.430 0.236/16.055
FD 0.940/7.661 0.251/16.161
FreezeD 0.941/7.642 0.246/17.396
FreezeG 0.943/7.837 0.250/17.833
Partial fine-tuning 0.945/7.552 0.246/18.129

27010 S.-W. Park et al.

1 3

6. Freeze G fixed up to generator layer 3 when evaluating
coverage and fixed up to generator layer 5 when evaluating
density. Partial fine-tuning fixed up to generator layer 7 and
discriminator layer 4 when evaluating coverage and fixed up
to generator layer 6 and discriminator layer 2 when evaluat-
ing density.

When evaluating the coverage of Stanford Dogs, Freeze
D fixed up to discriminator layer 6, and when evaluating
density, Freeze D fixed up to discriminator layer 1. In Freeze
G , both coverage and density were fixed up to the generator
layer 2 and evaluated. Partial fine-tuning fixed up to genera-
tor layer 7 and discriminator layer 1 when evaluating cover-
age, and fixed up to generator layer 1 and discriminator layer
6 when evaluating density. Table 3 shows the hyperparam-
eter settings of the other methods that were set.

In Stanford Cars, partial fine-tuning showed the high-
est performance with a coverage of 0.945. The coverage
of MineGAN with GLO showed the lowest performance
at 0.431, and there was a performance difference between
partial fine-tuning and 0.514. For density, fine-tuning with
GLO showed the highest performance at 14.845. Density
of MineGAN showed the lowest performance at 2.668, and
there was a performance difference between fine-tuning
with GLO and 12.177. In Stanford Dogs, FD showed the
highest performance with coverage 0.251. The coverage
of scale/shift with GLO showed the lowest performance at
0.108, and there was a difference in performance between

FD and 0.143. For density, fine-tuning with GLO showed
the highest performance at 30.949. Density of L2-SP(D )
showed the lowest performance at 15.450, and there was
a performance difference between fine-tuning with GLO
and 15.499. If the size of the target dataset to be learned
is smaller than the previously learned dataset, overfitting
may occur. As a result, the synthesized images may not be
diverse enough to represent the full range of the target data-
set, leading to degraded coverage performance. Addition-
ally, updating the normalization layer of GAN only in the
freezing state can cause inconsistent normalization of inputs
to the generator during training, leading to a degradation
in coverage performance. These issues may arise because
the normalization layer adapts to a specific distribution of
the training data and may not be suitable for samples from
the target dataset. If the previously learned dataset and the
target dataset are significantly different, density performance
may also be degraded. When using L2-SPs to control the
distance between the target model and the source model, if
the normalization strength is too weak, the target model may
deviate too much from the source model during fine-tuning,
leading to poor density performance.

Figure 7 shows the (a) FID, (b) Coverage, and (c) Density
values for each epoch of the existing method and the pro-
posed method. The early stopping algorithm was not used
to observe how each evaluation metric changed until 50,000
epochs. In the first epoch of Fig. 7a, partial fine-tuning

Fig. 7   Trends of FID, coverage, and density scores of the freeze-based methods in the Stanford Cars dataset

27011How to train your pre-trained GAN models

1 3

showed the highest performance with FID 23.89, and the
training speed was faster than Freeze D and Freeze G . Min-
eGAN showed the lowest performance with FID 34.32, and
there was a performance difference between partial fine-
tuning and 10.43. Even at 50,000 epochs, partial fine-tuning
showed the highest performance at 10.85, while MineGAN
showed the lowest performance at 33.79. There was a per-
formance difference of 22.94 between partial fine-tuning and
MineGAN. Looking at the graph change trend, the other
methods, except MineGAN, showed a smooth upward trend
up to 50,000 epochs.

At epoch 1 in Fig. 7b, Freeze D showed the highest
performance with a coverage of 0.497, while MineGAN
showed the lowest performance with a coverage of 0.409.
There was a performance difference of 0.088 between Freeze
D and MineGAN. FD and Freeze G started training with
the second and fourth highest performance, respectively,
but showed higher performance than partial fine-tuning at
50,000 epochs. The increase in value was 0.011 higher in
Freeze G than in FD. MineGAN still showed the lowest per-
formance with 0.418. There was a performance difference
of 0.522 between Freeze G and MineGAN. Looking at the
graph change trend, except for MineGAN, the other methods
showed a smooth upward trend up to 50,000 epochs. The
slow initial convergence of the FD-based freezing method
may be due to insufficient capacity of the pre-trained genera-
tor to synthesize similar images within the target dataset, or

limitations in the distillation loss used. In contrast, partial
fine-tuning can lead to faster convergence because it only
updates a fraction of the pre-trained generator.

At epoch 1 in Fig. 7c, fine-tuning with GLO showed
the highest performance with a density of 4.769, while
L2-SP(G ) showed the lowest performance with a density of
2.008. There was a performance difference of 2.761 between
fine-tuning with GLO and L2-SP(G ). Fine-tuning with GLO
showed the highest performance during epoch 1, but after a
certain section, the performance continued to decline. Scale/
shift with GLO started training with the second highest per-
formance, but showed the highest performance of 8.076 at
50,000 epochs. MineGAN with GLO showed the lowest
performance at 2.491. Scale/shift with GLO and MineGAN
with GLO had a performance difference of 5.585. When
using supervised learning loss, the presence of noise in
the training data labels or mislabeling can have a negative
impact on the performance. Figure 13a-h of Appendix 6.2
shows the image synthesized by the previously announced
method.

Figure 8 shows the (a) FID, (b) Coverage, and (c) Den-
sity values for each epoch of the existing method and the
proposed method. The early stopping algorithm was not
used to observe how each evaluation metric changed until
50,000 epochs. In epoch 1 of Fig. 8a, partial fine-tuning
showed the highest performance with FID 52.08, while
MineGAN with GLO showed the lowest performance with

Fig. 8   Trends of FID, coverage, and density scores of the freeze-based methods on the Stanford Dogs dataset

27012 S.-W. Park et al.

1 3

FID 57.23. There was a performance difference of 5.15
between partial fine-tuning and MineGAN with GLO.
Freeze G started training with the fourth highest perfor-
mance, but had the highest performance of 29.83 at 50,000
epochs. MineGAN with GLO showed the lowest perfor-
mance at 57.46; in contrast, the performance decreased by
0.23 compared to the 1st epoch. There was a performance
difference of 27.63 between Freeze G and MineGAN with
GLO. Because the pre-trained dataset may not represent
the distribution of the dataset to be trained, the conver-
gence speed of Freeze G may be slow enough, and the
discriminator may have better learning capabilities than
the generator, making it difficult for the generator to syn-
thesize high-quality samples quickly. It is considered that
MineGAN failed to train, and more efforts such as increas-
ing the training data or selecting better initialization in
the step-by-step hyperparameter tuning process may be
necessary.

At epoch 1 in Fig. 8b, MineGAN showed the highest per-
formance with a coverage of 0.118, while partial fine-tuning
showed the lowest performance with a coverage of 0.111.
There was a performance difference of 0.007 between Min-
eGAN and partial fine-tuning. However, MineGAN’s 50,000
epoch coverage was 0.116, which was 0.002 lower than the
1 epoch. Fine-tuning and Freeze G started training with the
second highest performance, but at 50,000 epochs, Freeze G
performed 0.009 higher. There was a performance difference
of 0.132 between Freeze G and MineGAN.

At epoch 1 in Fig. 8c, MineGAN showed the highest per-
formance with density 26.086, while L2-SP(G ) showed the
lowest performance with density 16.086. There was a perfor-
mance difference of 10.0 between MineGAN and L2-SP(G ).
At epoch 1, MineGAN had the highest performance, but
at epoch 50,000, scale/shift with GLO allowed inversion.
Scale/shift with GLO started training with the second high-
est performance, but showed the highest performance of
29.907 at 50,000 epochs. FD showed the lowest performance
at 6.835, while there was a performance difference of 23.072
with scale/shift with GLO. In the case of scale/shift with
GLO, since no issues occurred when updating the normali-
zation layer each time, it can be naturally assumed that it led
to performance improvement.

Table 5 evaluates the FID values of vanilla fine-tuning
and the proposed method. Vanilla means original, with no
added ingredients. For Oxford Flower, Freeze G showed the
highest performance with FID 14.13. Fine-tuning’s FID was
14.51, showing the lowest performance, and there was a per-
formance difference of 0.38 from Freeze G . CUB-200–2011
showed the highest performance in partial fine-tuning with
FID 14.66. Fine-tuning’s FID was 15.14, showing the lowest
performance, and there was a performance difference of 0.48
from partial fine-tuning. For Caltech-256, Freeze G showed
the highest performance with 33.30. Fine-tuning’s FID was

33.59, showing the lowest performance, while there was a
performance difference of 0.29 from Freeze G.

As a result of the overall analysis, the proposed method
secures performance and stability, but not in the case of the
Caltech-256 dataset. Caltech-256 was more difficult to learn
than Oxford Flower and CUB-200–2011, because of the
large shift in distribution during training. To train a dataset
with large distribution variations, it is necessary to minimize
the constrains of the model. The point is, when looking only
at the FID values, the proposed method showed better sta-
bility than the fine-tuning method for all datasets. Figure 9
shows an Oxford Flower image synthesized by Freeze D
and Freeze G , while Fig. 14q-t of Appendix 6.2 shows the
CUB-200–2011 and Caltech-256 images.

Table 6 evaluates the coverage and density values of
vanilla fine-tuning and the proposed method. For Oxford
Flower, Freeze D and partial fine-tuning showed the high-
est performance with a coverage of 0.783. The coverage of
Freeze G showed the lowest performance at 0.779, and there
was a performance difference of 0.004 between Freeze D and
partial fine-tuning. For density, fine-tuning showed the high-
est performance at 12.670. Freeze D showed the lowest per-
formance at 11.746, and there was a performance difference
between fine-tuning and 0.924. The statistical properties of
the Oxford Flower dataset are different from those of the
previously learned dataset. Therefore, fine-tuning is better
able to adapt to the specific properties of the target dataset
than the freezing method. The difference between the Oxford
Flower dataset and the CUB-200–2011 and Caltech-256
datasets can be classified into five main categories: number
of classes, number of images, image quality, object size and
complexity, and annotation quality.

In CUB-200–2011, Freeze D showed the highest perfor-
mance with a coverage of 0.708. The coverage of Freeze
G was 0.693, showing the lowest performance, while there
was a performance difference of 0.015 from Freeze D . As
for density, Freeze G showed the highest performance with
4.133. Partial fine-tuning showed the lowest performance at

Table 5   FID scores under StyleGAN architecture. Values indicate the
best FID scores. For each value, the methods are marked with the best
performance using gold , silver , and bronze medals

27013How to train your pre-trained GAN models

1 3

3.977, while there was a performance difference of 0.156
with Freeze G . When the discriminator was frozen, the cov-
erage performance was high, and when the generator was
frozen, the density performance was high.

For Caltech-256, Freeze G showed the highest perfor-
mance with a coverage of 0.361. Freeze D showed the lowest
performance at 0.348, and there was a performance differ-
ence of 0.013 from Freeze G . For density, partial fine-tun-
ing showed the highest performance at 59.717. Fine-tuning
showed the lowest performance at 58.324, and there was
a performance difference between partial fine-tuning and
1.393. The partial fine-tuning method demonstrated excel-
lent density performance on datasets with large distribution
shifts during training, such as Caltech-256.

Figure 10 shows the (a) FID, (b) Coverage, and (c) Den-
sity values for each epoch of the existing method and the
proposed method. The early stopping algorithm was not used
to observe how each evaluation metric changed until 50,000
epochs. In Fig. 10a, at epoch 1, the FID of fine-tuning was
22.05, Freeze D was 21.91, Freeze G was 22.06, and partial

fine-tuning was 21.95. In epoch 1, Freeze D showed the
highest performance, while Freeze G showed the lowest
performance. There was a performance difference of 0.15
between Freeze D and Freeze G . At 50,000 epochs, fine-
tuning’s FID was 14.60, showing an upward trend of 7.45,
while Freeze D ’s was 14.30, showing an upward trend of
7.61. Freeze G was 14.18, which was 7.88, while partial fine-
tuning was 14.27, showing an upward trend of 7.68. When
the expressive ability of the generator is limited, or when
pre-trained models are biased toward certain types of data,
freezing the generator and training the discriminator can
help the generator learn more complex expressions. How-
ever, when dealing with complex datasets, fixing only the
generator may not be sufficient to capture all the nuances of
the data distribution. In addition, there may be cases where
freezing the discriminator may not effectively capture the
difference between the distribution to be trained and the dis-
tribution to be learned.

In Fig. 10b, at epoch 1, the coverage of fine-tuning was
0.628, Freeze D was 0.627, Freeze G was 0.629, and par-
tial fine-tuning was 0.625. In epoch 1, Freeze G showed the
highest performance, while partial fine-tuning showed the
lowest performance. There was a performance difference of
0.004 between Freeze G and partial fine-tuning. At 50,000
epochs, the coverage of fine-tuning was 0.781, showing an
upward trend of 0.153, while that of Freeze D was 0.775,
showing an upward trend of 0.148. Freeze G showed an
upward trend of 0.148 with 0.777, while partial fine-tuning
showed an upward trend of 0.151 with 0.776. Because some
layers of the generator are frozen and do not update their

(a) Oxford Flower (Freeze) (b) Oxford Flower (Freeze)

Fig. 9   Samples synthesized by StyleGAN trained by (a) Freeze D , and (b) Freeze G , under the Oxford Flower dataset. Each row indicates the
same class. Freeze G generates more class-consistent samples than does Freeze D

Table 6   Coverage and density scores under StyleGAN architecture.
Left and right values indicate the best coverage and density scores

Bold items mean the highest performance

Method Oxford Flower CUB-200–2011 Caltech-256

Fine-tuning 0.781/12.670 0.697/4.082 0.353/58.324
FreezeD 0.783/11.746 0.708/4.090 0.348/58.398
FreezeG 0.779/12.585 0.693/4.133 0.361/59.272
Partial fine-tuning 0.783/12.447 0.700/3.977 0.353/59.717

27014 S.-W. Park et al.

1 3

weights, the existing dataset features remain static and may
be limited in their ability to capture new features of the tar-
get dataset during training.

In Fig. 10c, at epoch 1, the density of fine-tuning was
12.670, Freeze D was 11.746, Freeze G was 12.585, and par-
tial fine-tuning was 12.447. In epoch 1, fine-tuning showed
the highest performance, while Freeze D showed the lowest
performance. There was a performance difference of 0.924
between fine-tuning and Freeze D . At 50,000 epochs, the
density of fine-tuning was 6.358, showing a downward trend
of 6.312, while in the case of Freeze D , 6.141, showing a
downward trend of 5.605. Freeze G ’s density fell 6.29 per-
cent to 6.295, while partial fine-tuning fell 6.011percent to
6.436. While there may be several reasons for performance
degradation, the main problems are considered to be com-
patibility with the used model, insufficient training time, and
inappropriate hyperparameter settings.

Figure 11 shows the (a) FID, (b) Coverage, and (c) Den-
sity values for each epoch of the existing method and the
proposed method. The early stopping algorithm was not used
to observe how each evaluation metric changed until 50,000
epochs. In Fig. 11a, at epoch 1, the FID of fine-tuning was
34.04, Freeze D was 33.9, Freeze G was 34.11, and partial
fine-tuning was 33.63. In epoch 1, partial fine-tuning showed
the highest performance, while Freeze G showed the lowest

performance. There was a performance difference of 0.48
between partial fine-tuning and Freeze G . At 50,000 epochs,
fine-tuning’s FID was 15.14, showing an upward trend of
18.9, while Freeze D ’s was 14.82, showing an upward trend
of 19.08. Freeze G ’s FID was 14.95, showing an upward
trend of 19.16, while partial fine-tuning was 15.01, showing
an upward trend of 18.62. Like this, Freeze D can specialize
in distinguishing between real and synthetic images when
not exposed to new information during training.

In Fig. 11b, at epoch 1, the coverage of fine-tuning was
0.246, Freeze D was 0.241, Freeze G was 0.241, and par-
tial fine-tuning was 0.253. In epoch 1, partial fine-tuning
showed the highest performance, while Freeze D and Freeze
G showed the lowest performance. There was a performance
difference of 0.012 between partial fine-tuning and Freeze D
and Freeze G . At 50,000 epochs, the coverage of fine-tuning
was 0.695, showing an upward trend of 0.449, while that
of Freeze D was 0.707, showing an upward trend of 0.466.
Freeze G showed an upward trend of 0.439 with 0.680, while
partial fine-tuning showed an upward trend of 0.687 with
0.434. Assuming that the discriminator has learned how to
distinguish features and patterns of a wide range of images,
using a frozen discriminator can lead to better performance
than fine-tuning. In this case, the generator can synthesize
more diverse and representative samples without overfitting.

Fig. 10   Trends of FID, coverage, and density scores of freeze-based methods on the Oxford Flower dataset

Fig. 11   Trends of FID, coverage, and density scores of freeze-based methods on the CUB-200–2011 dataset

27015How to train your pre-trained GAN models

1 3

In Fig. 11c, at epoch 1, the density of fine-tuning was
4.082, Freeze D was 4.090, Freeze G was 4.133, and partial
fine-tuning was 3.977. In epoch 1, Freeze G showed the
highest performance, while partial fine-tuning showed the
lowest performance. There was a performance difference of
0.156 between Freeze G and partial fine-tuning. At 50,000
epochs, the density of fine-tuning was 3.408, showing a
decline of 0.674, and Freeze D of 3.333, showing a decline
of 0.75. Freeze G ’s density fell 0.711 to 3.422, and partial
fine-tuning fell 0.616 to 3.361. Overfitting may be the cause,
such as in the CUB-200–2011 dataset, but the starting point
may be different. The biggest difference between the two
datasets is complexity. Unlike the Oxford Flower dataset,
the CUB-200–2011 dataset contains 200 species of birds
with more variability in terms of pose and perspective, mak-
ing it difficult for the model to learn generalizable features.
This is because the Oxford Flower Dataset contains 17 types
of flowers with 8,189 images, while the CUB-200–2011
Dataset contains 200 species of birds with 11,000 images.

Figure 12 shows the (a) FID, (b) Coverage, and (c) Den-
sity values for each epoch of the existing method and the
proposed method. The early stopping algorithm was not used
to observe how each evaluation metric changed until 50,000
epochs. In Fig. 12a, at epoch 1, the FID of fine-tuning was
42.82, Freeze D was 43.29, Freeze G was 42.76, and par-
tial fine-tuning was 43.28. In epoch 1, Freeze G showed the
highest performance, while Freeze D showed the lowest
performance. There was a performance difference of 0.53
between Freeze G and Freeze D . At 50,000 epochs, Fine-
tuning’s FID was 34.0, showing an upward trend of 8.82,
and Freeze D ’s was 33.65, showing an upward trend of 9.64.
Freeze G ’s FID was 33.51, showing an upward trend of 9.25,
and partial fine-tuning was 33.51, showing an upward trend
of 9.77. Partial fine-tuning can improve generalization per-
formance by adapting to specific features of the Caltech-256
dataset and utilizing representations learned from a pre-
trained model. Additionally, it can reduce the risk of over-
fitting by reducing the number of parameters that need to be
updated during training.

In Fig. 12b, at epoch 1, the coverage of fine-tuning was
0.320, Freeze D was 0.315, Freeze G was 0.319, and par-
tial fine-tuning was 0.316. In epoch 1, fine-tuning showed
the highest performance, while Freeze D showed the lowest
performance. There was a performance difference of 0.005
between fine-tuning and Freeze D . At 50,000 epochs, the cov-
erage of fine-tuning was 0.350, which showed an upward trend
of 0.03, while that of Freeze D was 0.346, showing an upward
trend of 0.031. Freeze G showed an upward trend of 0.042
with 0.361, while partial fine-tuning showed an upward trend
of 0.037 with 0.353. Freeze G may have preserved generator
capacity and prevented overfitting by focusing updates on the
discriminator. Fine-tuning can result in a significant decrease
in the quality of synthesized samples if the situation worsens
and the generator forgets the previously learned information.

In Fig. 12c, at epoch 1, the density of fine-tuning was
58.324, Freeze D was 58.398, Freeze G was 59.272, and
partial fine-tuning was 59.717. In epoch 1, partial fine-tuning
showed the highest performance, while fine-tuning showed
the lowest performance. Partial fine-tuning and fine-tuning
had a performance difference of 1.393. At 50,000 epochs,
fine-tuning's density fell 33.003 to 25.321, while Freeze D
fell 33.019 to 25.379. Freeze G fell 33.827 to 25.445, while
partial fine-tuning fell 35.617 to 24.1. If the dataset that the
model has previously learned, such as Caltech-256, has high
variability, it may be difficult to generalize as such. Addi-
tionally, since there are inherent limitations to the model, it
can be difficult to learn a new distribution if the objects or
attributes in the training dataset are significantly different
from what has been previously learned.

Table 7 evaluates the proposed method FID values of a
model trained with specific forest insect class data. The 16
forest insect classes selected and evaluated can be found
relatively easily in Jeollanam-do, Korea, and Fig. 14a-p of
Appendix 6.2 shows the synthetic images. As a result of the
analysis, when looking only at the FID values, Freeze D
best synthesized the 8 species Cabbage Butterfly, Comostola
Subtiliaria, Drepana Curvatula, Dynastid Beetle, Ground
Beetle, Short-tailed Blue Butterfly, Stinkbug, and Water

Fig. 12   Trends of FID, coverage, and density scores of freeze-based methods on the Caltech-256 dataset

27016 S.-W. Park et al.

1 3

Strider. Eight species of Actias Gnoma Butler, Apatura
Metis, Cicada, Nymphalid, Papilio Bianor, Peach Pyralid,
Stag Beetle, and Yellow Swallowtail Butterfly were best
synthesized by the partial fine-tuning method. Freeze G had
lower FID values for all experimental settings than Freeze D
and partial fine-tuning in 16 forest insect species. Both meth-
ods include various sizes and colors of species, but Freeze D
includes larger, more colorful, and more complex patterned
species. Freeze D includes more aquatic species, while par-
tial fine-tuning includes more terrestrial species. Partial
fine-tuning has more species that are active during the day,
as well as species that are restricted to certain ranges or
specific areas. The method of freezing both generators and
discriminators enables better class-specific synthesis, but
the method of freezing discriminators focuses on improv-
ing overall image quality. In terms of the results alone, there
seems to be a class that synthesizes the discriminator well,

but it is difficult to affirm when comparing the performance
with the method of freezing for both the generator and the
discriminator.

Table 8 evaluates the coverage and density values of the
proposed method of a model trained with specific forest
insect class data. As a result of the analysis, when looking
only at the coverage value, Freeze D synthesized the remain-
ing species relatively well, except for Cabbage Butterfly,
Papilio Bianor, and Water Strider types. Freeze G synthe-
sized the rest of the species relatively well, except for the 9
species of Actias Gnoma Butler, Cicada, Comostola Subtili-
aria, Ground Beetle, Nymphalid, Peach Pyralid, Stinkbug,
Water Strider, and Yellow Swallowtail Butterfly. Partial fine-
tuning synthesized the remaining 8 species relatively well,
except for Apatura Metis, Cicada, Comostola Subtiliaria,
Ground Beetle, Nymphalid, Papilio Bianor, Peach Pyralid,
and Yellow Swallowtail Butterfly. When using coverage as

Table 7   FID scores under
the Insect-30 dataset. Values
indicate the best FID scores.
For each value, the methods
are marked with the best
performance using gold
medals

Table 8   Coverage and density scores under the Insect-30 dataset. Left and right values indicate the best coverage and density scores

Bold items mean the highest performance

Actias Gnoma
Butler

Apatura
Metis

Cabbage But-
terfly

Cicada Comostola
Subtiliaria

Drepana Cur-
vatula

Dynastid
Beetle

Ground
Beetle

FreezeD 0.965/3.917 1.000/3.485 0.954/5.805 0.993/5.025 0.996/6.636 1.000/6.888 1.000/6.038 0.998/5.250
FreezeG 0.962/3.936 1.000/3.470 0.960/5.955 0.992/4.930 0.995/7.109 1.000/7.024 1.000/6.074 0.994/5.343
Partial
fine-tuning

0.965/3.711 0.999/3.560 0.960/5.715 0.992/5.073 0.993/7.062 1.000/6.905 1.000/5.801 0.997/5.703

Nymphalid Papilio
Bianor

Peach
Pyralid

Short-tailed
Blue But-
terfly

Stag
Beetle

Stinkbug Water
Strider

Yellow
Swal-
lowtail
Butterfly

FreezeD 1.000/5.413 0.985/5.996 0.996/6.336 1.000/8.014 1.000/5.355 1.000/7.903 0.998/8.984 0.998/6.366
FreezeG 0.998/5.319 0.988/6.089 0.983/5.830 1.000/7.710 1.000/5.918 0.998/7.829 0.996/9.039 0.997/6.819
Partial
fine-tuning

0.999/5.148 0.979/5.864 0.992/5.920 1.000/8.153 1.000/5.427 1.000/8.045 0.999/8.451 0.996/6.384

27017How to train your pre-trained GAN models

1 3

an evaluation metric, it is difficult to rank well-synthesized
classes because many of them are common.

In terms of density values alone, Freeze D synthesized the
3 species Apatura Metis, Nymphalid, and Peach Pyralid best.
The 9 species of Actias Gnoma Butler, Cabbage Butterfly,
Comostola Subtiliaria, Drepana Curvatula, Dynastid Beetle,
Papilio Bianor, Stag Beetle, Water Strider, and Yellow Swal-
lowtail Butterfly were best synthesized by Freeze G . The 4
species Cicada, Ground Beetle, Short-tailed Blue Butterfly,
and Stinkbug were best synthesized by partial fine-tuning.
All three methods include insects with diverse appearances,
habitats, behaviors, and geographical distributions. However,
Freeze D includes three species of Lepidopteran insects, par-
tial fine-tuning includes species from different insect orders
and families, and Freeze G includes species from different
insect orders, families, and genera. As with the Insect-30
dataset, pinning only the generator of the GAN can also be
effective in improving the density performance if the dataset
is relatively small and there is a high risk of overfitting.

5 � Conclusion

The deep learning algorithms that led to the development of dis-
criminative modeling have also been applied to generative modeling.
Among them, GAN can map from latent space to data space, and
can train well on large unlabeled datasets. GAN are useful for image
synthesizing tasks, and to improve existing deep learning algorithms.
The performance of GAN is very surprising. For tasks that were dif-
ficult to perform with traditional methods, GAN showed excellent
results. GAN research related to computer vision includes image
super-resolution, high-resolution image synthesis, image synthesis
using text, painting style simulation, and image-to-image translation.
In addition, GAN are already being applied to music synthesis, video
games, game design, and the film industry. Recently, GAN have also
shown strong performance in image inversion and neural speech
synthesis [47–49]. It is anticipated that even fields that are currently
underdeveloped will soon make progress [50, 51].

GAN appeared in 2014, and although 7 years have passed,
the problem of training instability of GAN still remains.
Sometimes, when two neural networks diverge during train-
ing, the GAN does not converge at all. Many researchers
have tried to stabilize the training of GAN. Initially, solu-
tions such as conditional batch normalization, conditional
versions of adaptive instance normalization, mini-batch
discrimination, and one-sided label smoothing have been
proposed. After that, Feature Statistics Mixing Regulariza-
tion (FSMR), how to learn various distributions with linear
projection applied to synthetic and real distributions with
multi-discriminators, and how to provide visual guidelines
to generators have been proposed [52–54]. As GAN evolve,
we expect that this stabilization will ripen, and we will soon
be able to train our models without any problems.

We used coverage and density for various performance
evaluations, and found a problem. In all experiments, it is
difficult to accurately determine from the coverage and den-
sity values whether the model converges or collapses. For
example, in Fig. 7c, scale/shift with GLO showed the high-
est density performance, but in Fig. 13c of Appendix 6.2,
a blurry image was inserted. For this reason, to secure the
objectivity of the conclusion drawn, coverage and density
are excluded from the training method evaluation.

The proposed method divides the generator and discrimi-
nator, and then freezing or partially fine-tuning. Based on the
FID value alone, the proposed method was superior to the
existing method, and based on this, it is judged that the trans-
ferability of the generator and discriminator can be univer-
sally applied to the image to be synthesized [55]. However,
different results may be obtained, depending on the charac-
teristics of the data type used for training. This means that if
the synthesis target is significantly different from the present,
the optimization configuration can also be changed accord-
ingly. Therefore, the optimal method for the type of task to
be solved can so far only be confirmed through experiments.

Although we provide a partial solution to the instabil-
ity problem of GAN training, we can design a method with
better performance than the proposed method. In addi-
tion, if there is a higher-spec hardware infrastructure better
than ours, images with a resolution higher than 256 × 256
can be generated without restrictions. We believe that the
upgraded version of FD will be promising [56–58]. Addition-
ally, ensembles or large and deep models can be difficult to
deploy to mobile and Internet of Things (IoT) devices, but
this difficulty can be solved by distilling features into small
and shallow models. As 3D image synthesis technology is
also accelerating, research on how to effectively fine-tune a
pre-trained GAN on a 3D dataset is needed in the future [59].

Appendix

Ablation study on freezing layers

Table 9 shows the layer freezing result of the discriminator
using the StyleGAN model. Stanford Cars showed the highest
performance with FID 11.01 when trained and frozen up to

Table 9   Ablation study on freezing layers of D on StyleGAN archi-
tecture under the ‘Stanford Cars’ and ‘Stanford Dogs’ datasets. Layer
i indicates that the first i layers of the discriminator are frozen. Val-
ues indicate the best FID scores. For each value, the methods are
marked with the best performance using gold , silver , and bronze
 medals

27018 S.-W. Park et al.

1 3

layer 5. When trained with freezing up to layer 1, FID showed
the lowest performance at 13.71, and there was a performance
difference of 2.7, compared to when freezing up to layer 5.
Stanford Dogs also showed the highest performance with FID
30.10 when trained and frozen up to layer 5. When training
with freezing up to layer 1, FID showed the lowest perfor-
mance at 41.50, while there was a performance difference of
11.4 between freezing up to layer 5 and FID. The choice of
updating the weights of all layers was not a good method, and
it didn't always follow the law of large numbers.

Table 10 shows the layer freezing result of the dis-
criminator using the StyleGAN model. Stanford Cars
showed the highest performance with coverage of 0.941
when frozen up to layer 5, and showed the highest perfor-
mance with a density of 7.642 when frozen up to layer 6.
When only one layer was frozen and trained, the coverage
showed the lowest performance at 0.880; and when two
layers were frozen and trained, the coverage showed the
lowest performance at 6.245. In the case of coverage, the
difference between the highest and lowest performance
was 0.061; while in the case of density, the difference
between the highest and lowest performance was 1.397.

Stanford Dogs showed the highest performance with cov-
erage of 0.246 when 5 layers were frozen, and a density of
17.396 when only 1 layer was frozen. When only one layer
was frozen, the coverage showed the lowest performance at

0.160; and when 4 layers were frozen, the density showed
the lowest performance at 15.522. In the case of coverage,
the difference between the highest and lowest performance
was 0.086; while in the case of density, the difference
between the highest and lowest performance was 1.874.

Table 11 shows the layer freezing result of the generator
using the StyleGAN model. Stanford Cars had the highest
performance with FID 11.10 when 3 layers were frozen.
When 2 layers were frozen, FID showed the lowest perfor-
mance at 11.28, and there was a performance difference of
0.18, compared to when 3 layers were frozen. Stanford Dogs
had the highest performance with FID 29.83 when 2 layers
were frozen. When 5 layers were frozen, FID showed the
lowest performance at 30.86, and there was a performance
difference of 1.03, compared to when 2 layers were frozen.
The decision of whether to freeze a layer or not is not always
clear-cut in terms of achieving optimal performance.

Table 12 shows the layer freezing results of the discrimi-
nator using the StyleGAN model. Stanford Cars showed the
highest performance with coverage of 0.943 when frozen
up to layer 3, and showed the highest performance with a
density of 7.837 when frozen up to layer 5. When 2 layers
and 6 layers were frozen, the coverage showed the lowest
performance at 0.934; and when 7 layers were frozen, the
density showed the lowest performance at 7.173. In the case
of coverage, the difference between the highest and lowest
performance was 0.009; while in the case of density, the
difference between the highest and lowest performance was
0.664.

Stanford Dogs showed the highest performance with cov-
erage of 0.246 and density of 17.396 when frozen up to layer
2. When 4 layers were frozen, the coverage showed the low-
est performance at 0.241; and when only 1 layer was frozen,
the density showed the lowest performance at 17.163. In
the case of coverage, the difference between the highest and
lowest performance was 0.005; while in the case of density,

Table 10   Ablation study on freezing layers of D  on StyleGAN architecture under the ‘Stanford Cars’ and ‘Stanford Dogs’ datasets. Layer i indi-
cates that the first i layers of the discriminator are frozen. Left and right values indicate the best coverage and density scores

Bold items mean the highest performance

Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 Layer 6 Layer 7

Stanford Cars 0.880/6.843 0.914/6.245 0.932/6.666 0.937/6.968 0.941/7.225 0.935/7.642 0.940/7.500
Stanford Dogs 0.160/17.396 0.192/17.166 0.227/16.201 0.241/15.522 0.241/15.952 0.246/16.072 0.240/15.934

Table 11   Ablation study on freezing layers of G on StyleGAN archi-
tecture under the ‘Stanford Cars’ and ‘Stanford Dogs’ datasets. Layer
i indicates that the first i layers of the generator are frozen. Values
indicate the best FID scores. For each value, the methods are marked
with the best performance using gold , silver , and bronze medals

Table 12   Ablation study on freezing layers of G  on StyleGAN architecture under the ‘Stanford Cars’ and ‘Stanford Dogs’ datasets. Layer i indi-
cates that the first i layers of the generator are frozen. Left and right values indicate the best coverage and density scores

Bold items mean the highest performance

Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 Layer 6 Layer 7

Stanford Cars 0.939/7.727 0.934/7.726 0.943/7.593 0.938/7.462 0.937/7.837 0.934/7.242 0.938/7.173
Stanford Dogs 0.244/17.163 0.250/17.833 0.244/17.566 0.241/17.331 0.242/17.633 0.243/17.653 0.249/17.531

27019How to train your pre-trained GAN models

1 3

the difference between the highest and lowest performance
was 0.233.

Table 13 shows the layer freezing results of the generator
and discriminator using the StyleGAN model. Stanford Cars
showed the highest performance with FID 10.84 when frozen
and trained up to generator layer 4 and discriminator layer
4. When freezing and training up to generator layer 1 and
discriminator layer 5, FID showed the lowest performance
at 13.59, and there was a difference between the highest per-
formance and 2.75. In Table 9, the discriminator was optimal
when frozen to layer 5, while in Table 11, the generator was
optimal when frozen to layer 3, but in Table 13, the generator
and discriminator were all optimal when frozen to layer 4.
The optimal approach differed when either only the genera-
tor or discriminator was frozen compared to when both the
generator and discriminator were frozen.

Table 14 shows the layer freezing results of the generator
and discriminator using the StyleGAN model. Stanford Cars
showed the highest performance with coverage of 0.945 when
frozen and trained up to generator layer 7 and discriminator
layer 4; and showed the highest performance with a density
of 7.552 when frozen and trained up to generator layer 6 and

discriminator layer 2. When the generator layer 1 and discrimi-
nator layer 5 were frozen and trained, the coverage showed the
lowest performance with 0.882; and when frozen and trained
until the generator layer 2 and discriminator layer 7, the den-
sity showed the lowest performance with 5.779. In the case of
coverage, the difference between the highest and lowest perfor-
mance was 0.063; while in the case of density, the difference
between the highest and lowest performance was 1.773.

Table 15 shows the layer freezing results of the gen-
erator and discriminator using the StyleGAN model.
Stanford Dogs showed the highest performance with FID
30.02 when frozen and trained up to generator layer 5 and
discriminator layer 7. When freezing and training up to
generator layer 1 and discriminator layer 1, FID showed
the lowest performance at 42.78, with a difference of 12.76
from the highest performance. In Table 9, the discrimina-
tor was optimal when it was frozen up to layer 5; while in
Table 11, the generator was optimal when it was frozen up
to layer 2; but in Table 15, when the generator was frozen
up to layer 5, the discriminator was optimal when it was
frozen up to layer 7. The optimal approach varied when
only the generator or discriminator was frozen compared

Table 13   Ablation study on freezing layers of G and D on StyleGAN
architecture under the ‘Stanford Cars’ dataset. Layer i indicates that
the first i layers of the generator and discriminator are frozen. Values
indicate the best FID scores. For each value, the methods are marked
with the best performance using gold , silver , and bronze medals

Table 14   Ablation study on
freezing layers ofGandD on
StyleGAN architecture under
the ‘Stanford Cars’ dataset.
Layeriindicates that the firsti
layers of the generator and
discriminator are frozen. Left
and right values indicate the
best coverage and density scores

Bold items mean the highest performance

Dis Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 Layer 6 Layer 7
Gen

Layer 1 0.887/6.373 0.883/6.942 0.888/6.463 0.885/6.770 0.882/6.167 0.884/6.448 0.890/6.421
Layer 2 0.914/5.967 0.909/6.264 0.910/6.056 0.916/6.139 0.913/5.874 0.918/6.318 0.905/5.779
Layer 3 0.933/6.545 0.932/6.363 0.937/6.721 0.934/6.483 0.935/6.587 0.934/6.407 0.934/6.660
Layer 4 0.941/6.865 0.940/6.774 0.938/6.957 0.937/6.776 0.942/7.022 0.939/7.026 0.939/7.044
Layer 5 0.938/7.315 0.940/7.543 0.943/7.453 0.938/7.276 0.941/7.089 0.938/7.206 0.938/7.286
Layer 6 0.937/7.229 0.938/7.552 0.937/7.194 0.938/6.973 0.934/7.306 0.940/7.433 0.937/7.106
Layer 7 0.941/7.470 0.938/7.259 0.940/7.266 0.945/7.453 0.940/7.266 0.940/7.376 0.940/7.192

Table 15   Ablation study on freezing layers of G and D on StyleGAN
architecture under the ‘Stanford Dogs’ dataset. Layer i indicates that
the first i layers of the generator and discriminator are frozen. Values
indicate the best FID scores. For each value, the methods are marked
with the best performance using gold , silver , and bronze medals

Dis.
Gen. Layer 1Layer 2Layer 3Layer 4Layer 5Layer 6Layer 7

Layer 142.78 ● 42.51 41.38 42.14 42.28 41.73 42.04

Layer 2 36.52 37.47 36.66 37.16 37.12 36.91 37.41

Layer 3 32.56 32.57 32.46 32.39 32.22 32.44 32.59

Layer 4 30.76 30.52 30.78 30.64 30.58 30.68 31.21

Layer 5 30.31 30.64 30.34 30.56 30.33 30.80 30.02 ●

Layer 6 30.40 30.48 30.51 30.67 30.23 30.69 30.51

Layer 730.21 ● 30.72 30.64 30.23 30.30 30.43 30.57

27020 S.-W. Park et al.

1 3

to when both the generator and discriminator were frozen.
In contrast to Table 13, Table 15 showed relatively large
differences between the highest and lowest performance.

Table 16 shows the layer freezing results of the generator
and discriminator using the StyleGAN model. Stanford Dogs
showed the highest performance with coverage of 0.246 when
frozen and trained up to generator layer 5, discriminator layer
4, generator layer 7, and discriminator layer 1. Density showed
the highest performance at 18.129 when freezing and train-
ing up to generator layer 1 and discriminator layer 6. When
the generator layer 1 and discriminator layer 2 were frozen
and trained, the coverage showed the lowest performance at
0.155; while when the generator layer 5 and discriminator
layer 6 were frozen and trained, the density showed the lowest
performance at 15.424. In the case of coverage, the difference
between the highest and lowest performance was 0.091; while

in the case of density, the difference between the highest and
lowest performance was 2.705.

Qualitative results for prior and proposed methods

In Fig. 13, scale/shift and L2-SP have some limitations, so
they synthesize images that when quantified, are low in diver-
sity, but when qualitatively evaluated, are plausible. GLO
synthesized blurry images due to adversarial losses and a
lack of knowledge of the source discriminator. MineGAN is
completely out of target distribution. MineGAN is not appli-
cable when the source distribution is said to contain the target
distribution, but the distribution has split support. As a result,
MineGAN did not learn the distribution shift well.

In Fig. 14, Caltech-256 was difficult to synthesize with
high quality using any freezing method, but CUB-200–2011,

Table 16   Ablation study on freezing layers of G and D  on StyleGAN architecture under the ‘Stanford Dogs’ dataset. Layer i indicates that the
first i layers of the generator and discriminator are frozen. Left and right values indicate the best coverage and density scores

Bold items mean the highest performance

Dis Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 Layer 6 Layer 7
Gen

Layer 1 0.158/17.757 0.155/17.630 0.161/17.964 0.160/17.785 0.162/17.759 0.158/18.129 0.159/18.058
Layer 2 0.192/16.881 0.195/17.036 0.194/17.497 0.194/17.162 0.192/17.029 0.191/17.363 0.190/17.267
Layer 3 0.224/16.011 0.226/15.884 0.224/16.598 0.226/16.351 0.225/16.244 0.226/16.354 0.226/16.619
Layer 4 0.238/15.583 0.239/15.910 0.236/15.753 0.238/15.608 0.243/15.877 0.240/15.815 0.235/15.662
Layer 5 0.245/15.724 0.238/16.102 0.241/15.825 0.246/15.935 0.241/15.961 0.237/15.424 0.243/15.447
Layer 6 0.242/16.068 0.241/16.414 0.238/16.022 0.240/16.235 0.245/15.812 0.245/15.983 0.240/15.879
Layer 7 0.246/16.097 0.242/16.022 0.244/16.096 0.242/16.290 0.245/16.282 0.240/16.174 0.238/16.371

(a) FD (b) Fine-tuning (c) GLO (d) L2-SP()

(e) L2-SP() (f) L2-SP(,) (g) MineGAN (h) Scale/shift

Fig. 13   Samples synthesized by prior methods under the ‘Stanford Cars’ dataset

27021How to train your pre-trained GAN models

1 3

(a) Actias Gnoma Butler (b) Apatura Metis (c) Cabbage Butterfly

(d) Cicada (e) Comostola Subtiliaria (f) Drepana Curvatula

(g) Dynastid Beetle (h) Ground Beetle (i) Nymphalid

(j) Papilio Bianor (k) Peach Pyralid (l) Short-tailed Blue Butterfly

Fig. 14   Samples synthesized by proposed methods

27022 S.-W. Park et al.

1 3

(m) Stag Beetle (n) Stinkbug (o) Water Strider

(p) Yellow Swallowtail Butterfly

(q) CUB-200-2011 (Freeze) (r) CUB-200-2011 (Partial fine-tuning)

(s) Caltech-256 (Freeze) (t) Caltech-256 (Freeze)

Fig. 14   (continued)

27023How to train your pre-trained GAN models

1 3

a fine-grained dataset, and Insect30, a coarse-grained data-
set, synthesized relatively well.

Acknowledgements  This work was supported by a Gwangju–Jeon-
nam local Energy Cluster Manpower training grant of the Korea
Institute of Energy Technology Evaluation and Planning (KETEP),
funded by the Korea government Ministry of Knowledge Economy
(20214000000560); and this research was also supported by the
Basic Science Research Program through the National Research
Foundation of Korea (NRF), funded by the Ministry of Education
(2020R1I1A3054843).

Funding  This work was supported by a Gwangju–Jeonnam local
Energy Cluster Manpower training grant of the Korea Insti-
tute of Energy Technology Evaluation and Planning (KETEP),
funded by the Korea government Ministry of Knowledge Economy
(20214000000560); and this research was also supported by the
Basic Science Research Program through the National Research
Foundation of Korea (NRF), funded by the Ministry of Education
(2020R1I1A3054843).

Data availability  Not applicable.

Declarations 

Conflict of interest  The Authors declares that there is no conflict of
interest.

Open Access  This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article's Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in
the article's Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

References

	 1.	 Goodfellow I, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley
D, Ozair S, Courville A, Bengio Y (2014) Generative adversar-
ial nets. In: Advances in neural information processing systems
(NIPS)

	 2.	 Brock A, Donahue J, Simonyan K (2019) Large scale GAN train-
ing for high fidelity natural image synthesis. In: International
Conference on Learning Representations (ICLR)

	 3.	 Mo S, Cho M, Shin J (2019) Instagan: Instance-aware image-
to-image translation. In: International Conference on Learning
Representations (ICLR)

	 4.	 Zhou T, Li Q, Lu H, Cheng Q, Zhang X (2023) GAN review:
Models and medical image fusion applications. Inf Fusion
91:134–148

	 5.	 Park S-W, Huh J-H, Kim J-C (2020) BEGAN v3: avoiding mode
collapse in GANs using variational inference. Electronics 9(4):688

	 6.	 Park S-W, Ko J-S, Huh J-H, Kim J-C (2021) Review on generative
adversarial networks: focusing on computer vision and its applica-
tions. Electronics 10(10):1216

	 7.	 Kim J-C, Lim S-C, Choi J, Huh J-H (2022) Review for Examining
the Oxidation Process of the Moon Using Generative Adversarial
Networks: Focusing on Landscape of Moon. Electronics 11(9):1303

	 8.	 Chatterjee S, Hazra D, Byun Y-C, Kim Y-W (2022) Enhancement
of Image Classification Using Transfer Learning and GAN-Based
Synthetic Data Augmentation. Mathematics 10(9):1541

	 9.	 Noguchi A, Harada T (2019) Image generation from small datasets
via batch statistics adaptation. In: Proceedings of the IEEE/CVF
International Conference on Computer Vision (ICCV). IEEE, pp.
2750–2758

	10.	 Wang Y, Gonzalez-Garcia A, Berga D, Herranz L, Khan F S, van
de Weijer J (2019) Minegan: effective knowledge transfer from
gans to target domains with few images. In: Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recogni-
tion (CVPR). IEEE, pp. 9332–9341

	11.	 Liu M-Y, Huang X, Mallya A, Karras T, Aila T, Lehtinen J, Kautz
J (2019) Few-shot unsupervised image-to-image translation. In:
Proceedings of the IEEE/CVF International Conference on Com-
puter Vision (ICCV). IEEE, pp. 10551–10560

	12.	 Zakharov E, Shysheya A, Burkov E, Lempitsky V (2019) Few-
shot adversarial learning of realistic neural talking head models.
In: Proceedings of the IEEE/CVF International Conference on
Computer Vision (ICCV). IEEE, pp. 9459–9468

	13.	 Wang T-C, Liu M-Y, Tao A, Liu G, Catanzaro B, Kautz J (2019)
Few-shot video-to-video synthesis. In: Advances in neural infor-
mation processing systems (NIPS). pp. 5014–5025

	14.	 Chen T, Zhai X, Ritter M, Lucic M, Houlsby N (2019) Self-
supervised gans via auxiliary rotation loss. In: Proceedings of the
IEEE/CVF conference on computer vision and pattern recognition
(CVPR). IEEE, pp. 12154–12163

	15.	 Lucic M, Tschannen M, Ritter M, Zhai X, Bachem O, Gelly S
(2019) High-fidelity image generation with fewer labels. In: Inter-
national conference on machine learning (ICML). pp. 4183–4192

	16.	 Zhang H, Zhang Z, Odena A, Lee H (2020) Consistency regu-
larization for generative adversarial networks. In: International
Conference on Learning Representations (ICLR)

	17.	 Zhao Z, Singh S, Lee H, Zhang Z, Odena A, Zhang H (2021)
Improved consistency regularization for gans. Proceedings of the
AAAI Conference on Artificial Intelligence 35(12):11033–11041

	18.	 Azadi S, Olsson C, Darrell T, Goodfellow I, Odena A (2018)
Discriminator rejection sampling. In: International Conference
on Learning Representations (ICLR)

	19.	 Fekri M-N, Ghosh A-M, Grolinger K (2019) Generating energy
data for machine learning with recurrent generative adversarial
networks. Energies 13(1):130

	20.	 Mo S, Kim C, Kim S, Cho M, Shin J (2019) Mining gold samples
for conditional gans. In: Advances in neural information process-
ing systems (NIPS)

	21.	 Tanaka A (2019) Discriminator optimal transport. In: Advances
in neural information processing systems (NIPS)

	22.	 Gurumurthy S, Kiran Sarvadevabhatla R, Venkatesh Babu R
(2017) Deligan: Generative adversarial networks for diverse and
limited data. In: Proceedings of the IEEE conference on computer
vision and pattern recognition (CVPR). IEEE, pp. 166–174

	23.	 Sinha S, Zhang H, Goyal A, Bengio Y, Larochelle H, Odena
A (2019) Small-gan: Speeding up gan training using coresets.
In: International Conference on Machine Learning (ICML). pp.
9005–9015

	24.	 Xu H, Li W, Cai Z (2023) Analysis on methods to effectively
improve transfer learning performance. Theor Comput Sci
940:90–107

	25.	 Devlin J, Chang M-W, Lee K, Toutanova K (2019) Bert: Pre-train-
ing of deep bidirectional transformers for language understanding.
In: 2019 Annual Conference of the North American Chapter of
the Association for Computational Linguistics (NAACL)

27024 S.-W. Park et al.

http://creativecommons.org/licenses/by/4.0/

1 3

	26.	 He K, Fan H, Wu Y, Xie S, Girshick R (2020) Momentum contrast
for unsupervised visual representation learning. In: Proceedings
of the IEEE/CVF conference on computer vision and pattern rec-
ognition (CVPR). IEEE, pp. 9729–9738

	27.	 Metz L, Poole B, Pfau D, S-D J (2016) Unrolled generative
adversarial networks. arXiv preprint, arXiv:1611.02163

	28.	 Arjovsky M, Bottou L (2017) Towards principled methods
for training generative adversarial networks. arXiv preprint,
arXiv:1701.04862

	29.	 Arjovsky M, Chintala S, Bottou L (2017) Wasserstein gen-
erative adversarial networks. In International conference on
machine learning. PMLR, pp. 214–223

	30.	 Karras T, Laine S, Aila T (2019) A style-based generator archi-
tecture for generative adversarial networks. In: Proceedings of
the IEEE/CVF conference on computer vision and pattern rec-
ognition (CVPR). IEEE, pp. 4401–4410

	31.	 Oyelade O-N, Ezugwu A-E (2023) EOSA-GAN: Feature
enriched latent space optimized adversarial networks for syn-
thesization of histopathology images using Ebola optimization
search algorithm. Biomed Signal Process Control 84:104734

	32.	 Li Q, Wang X, Ma B, Wang X, Wang C, Gao S, Shi Y (2021)
Concealed attack for robust watermarking based on generative
model and perceptual loss. IEEE Trans Circuits Syst Video
Technol 32(8):5695–5706

	33.	 Li X, Grandvalet Y, Davoine F (2018) Explicit inductive bias for
transfer learning with convolutional networks. In: International
Conference on Machine Learning (ICML). pp. 2825–2834

	34.	 Hinton G, Vinyals O, Dean J (2014) Distilling the knowledge in
a neural network. In: Advances in neural information processing
systems (NIPS) Workshop

	35.	 Romero A, Ballas N, Kahou S E, Chassang A, Gatta C, Ben-
gio Y (2015) Fitnets: Hints for thin deep nets. In: International
Conference on Learning Representations (ICLR)

	36.	 Yang S, Jiang L, Liu Z, Loy C C (2022) Pastiche Master:
Exemplar-Based High-Resolution Portrait Style Transfer. In:
Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR). IEEE, pp. 7693–7702

	37.	 Zhang Y, Tang F, Dong W, Huang H, Ma C, Lee T-Y, Xu C
(2022) Domain enhanced arbitrary image style transfer via con-
trastive learning. In: ACM SIGGRAPH 2022 Conference Pro-
ceedings, pp 1–8

	38.	 Sauer A, Schwarz K, Geiger A (2022) Stylegan-xl: Scaling style-
gan to large diverse datasets. In: Special Interest Group on Com-
puter Graphics and Interactive Techniques Conference Proceed-
ings (SIGGRAPH). pp. 1–10

	39.	 Fu J, Li S, Jiang Y, Lin K-Y, Qian C, Loy C-C, Liu Z (2022)
Stylegan-human: a data-centric odyssey of human generation. In:
Computer Vision–ECCV 2022: 17th European Conference, pp
1–19

	40.	 Theis L, Oord A-V-D, Bethge M (2015) A note on the evaluation
of generative models. arXiv preprint, arXiv:1511.01844

	41.	 Barratt S, Sharma R (2018) A note on the inception score. arXiv
preprint, arXiv:1801.01973

	42.	 Heusel M, Ramsauer H, Unterthiner T, Nessler B, Hochreiter S
(2017) Gans trained by a two time-scale update rule converge
to a local nash equilibrium. In: Advances in neural information
processing systems (NIPS)

	43.	 Sajjadi M S, Bachem O, Lucic M, Bousquet O, Gelly S (2018)
Assessing generative models via precision and recall. In:
Advances in Neural Information Processing Systems (NIPS). pp.
5228–5237

	44.	 Naeem M F, Oh S J, Uh Y, Choi Y, Yoo J (2020) Reliable fidel-
ity and diversity metrics for generative models. In: International
Conference on Machine Learning (ICML). pp. 7176–7185

	45.	 Kynkäänniemi T, Karras T, Laine S, Lehtinen J, Aila T (2019)
Improved precision and recall metric for assessing generative
models. In: Advances in Neural Information Processing Systems
(NIPS). pp. 32–41

	46.	 Kang M, Shin J, Park J (2022) Studiogan: a taxonomy and
benchmark of gans for image synthesis. arXiv preprint,
arXiv:2206.09479

	47.	 Yin F, Zhang Y, Cun X, Cao M, Fan Y, Wang X, Yang Y (2022)
StyleHEAT: one-shot high-resolution editable talking face genera-
tion via pre-trained StyleGAN. In: Computer Vision–ECCV 2022:
17th European Conference, pp 85–101

	48.	 Parmar G, Li Y, Lu J, Zhang R, Zhu J Y, Singh K K (2022)
Spatially-Adaptive Multilayer Selection for GAN Inversion
and Editing. In: Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR). IEEE, pp.
11399–11409

	49.	 Lee S G, Ping W, Ginsburg B, Catanzaro B, Yoon S (2022) Big-
VGAN: A Universal Neural Vocoder with Large-Scale Training.
Accessed https://​arxiv.​org/​abs/​2206.​04658

	50.	 Tran D-T, Huh J-H (2023) New machine learning model based
on the time factor for e-commerce recommendation systems. J
Supercomput 79(6):6756–6801

	51.	 Tran D-T, Truong D-H, Le H-S, Huh J-H (2023) Mobile robot:
automatic speech recognition application for automation and
STEM education. Soft Comput 27:10789–10805

	52.	 Kim J, Choi Y, Uh Y (2022) Feature Statistics Mixing Regulariza-
tion for Generative Adversarial Networks. In: Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recogni-
tion (CVPR). IEEE, pp. 11294–11303

	53.	 Sauer A, Chitta K, Müller J, Geiger A (2021) Projected gans con-
verge faster. Adv Neural Inf Process Syst (NIPS) 34:17480–17492

	54.	 Wang J, Yang C, Xu Y, Shen Y, Li H, Zhou B (2022) Improving
GAN Equilibrium by Raising Spatial Awareness. In: Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR). IEEE. pp. 11285–11293

	55.	 Wang S-Y, Wang O, Zhang R, Owens A, Efros AA (2020) Cnn-
generated images are surprisingly easy to spot... for now. In: Pro-
ceedings of the IEEE/CVF conference on computer vision and
pattern recognition (CVPR). IEEE, pp. 8695–8704

	56.	 Ahn S, Hu S X, Damianou A, Lawrence N D, Dai Z (2019) Vari-
ational information distillation for knowledge transfer. In: Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR). IEEE, pp. 9163–9171

	57.	 Jang Y, Lee H, Hwang S J, Shin J (2019) Learning what and
where to transfer. In: International Conference on Machine Learn-
ing (ICML). pp. 3030–3039

	58.	 Park W, Kim D, Lu Y, Cho M (2019) Relational knowledge
distillation. In: Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR). IEEE, pp.
3967–3976

	59.	 Chan E R, Lin C Z, Chan M A, Nagano K, Pan B, De Mello
S, Wetzstein G (2022) Efficient geometry-aware 3D generative
adversarial networks. In: Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition (CVPR). IEEE,
pp. 16123–16133

Publisher's note  Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

27025How to train your pre-trained GAN models

https://arxiv.org/abs/2206.04658

1 3

Sung‑Wook Park  received B.E.,
and M.E. degrees in computer engi-
neering from Sunchon National
University, Suncheon, Korea, in
2018, and 2020, respectively. He
received the Best Paper Award from
Korea Multimedia Society three
times (May. 2017, Nov. 2019, Jul.
2021). And he received Best Paper
Award from Korea Convergence
Software Society (Oct, 2020). Also,
he received Best Paper Award from
Korea Federation of Information
Technology Societies (Nov. 2020).

Jun‑Yeong Kim  received B.E., and
M.E. degrees in multimedia engi-
neering from Sunchon National
University, Suncheon, Korea, in
2019, and 2021, respectively. He
received the Best Paper Award from
Korea Multimedia Society three
times (Nov. 2018, Apr. 2021, Dec.
2021). And, he received Best Paper
Award from Korea Institute of Elec-
tronic Communication Sciences
(Jun, 2021). Also, he received Best
Paper Award from Korean Insti-
tute of Smart Media (May, 2020).

Jun Park  received B.E., and M.E.
degrees in multimedia engineering
from Sunchon National University,
Suncheon, Korea, in 2019, and 2021,
respectively. Currently, he is a Ph.D.
student with the Department of Mul-
timedia Engineering and Interdisci-
plinary Program in IT-Bio Conver-
gence System, Sunchon National
University, Suncheon, Korea. His
research interests include the com-
puter vision, deep learning, anomaly
detection, and big data analytics.

Also, he received Best Paper Award from Korea Electronics and Tel-
ecommunications Research Institute (Apr. 2021). Currently, he is a
Ph.D. student with the Department of Multimedia Engineering and
Interdisciplinary Program in IT-Bio Convergence System, Sunchon
National University, Suncheon, Korea. His research interests include
the computer vision, deep learning, generative models, explainable AI,
and adversarial attacks.

Currently, he is a Ph.D. student with the Department of Multimedia
Engineering and Interdisciplinary Program in IT-Bio Convergence
System, Sunchon National University, Suncheon, Korea. His research
interests include the computer vision, deep learning, object detection,
and anomaly detection.

Se‑Hoon Jung  received B.S., M.S.,
and Ph.D. degrees in multimedia
engineering from Sunchon National
University, Suncheon, Korea, in 2010,
2012, and 2017, respectively. He was
a Assistant Professor (Tenure Track)
at Youngsan University, Republic of
Korea, from September 2019 to Feb-
ruary 2020. And he was a Assistant
Professor (Tenure Track) at Andong
National University, Republic of
Korea, from March 2020 to August
2022. He was the role of Keynote
Speaker at the INCITEST held in

Bandung, West Java, Indonesia, on 18th July 2019. He was a Center
Chair (Director) of AI convergence education center at Andong National
University, from February 2020 to August 2022. He was a Center Chair
(Director) of SW industry-academic cooperation center, Andong National
University, from April 2021 to August 2022. Currently, he is an Assis-
tant Professor (Tenure Track) with the Department of Computer Engi-
neering, Sunchon National University, Suncheon, Korea. His research
interests include the software engineering, reinforcement learning, block
chain, artificial intelligence, data mining, big data analysis, and big data
prediction.

Chun‑Bo Sim  received B.S., M.S.,
and Ph.D. degrees in computer engi-
neering from Chonbuk National Uni-
versity, Jeonju, Republic of Korea, in
1996, 1998, and 2003, respectively.
From 2004 to 2005, he was Assistant
Professor Department of Computer
Engineering, Catholic University of
Pusan, Republic of Korea. Currently,
he is a Full Professor (Tenured)
with the Department of Artificial
Intelligence Engineering, Sunchon
National University, Republic of
Korea, from 2005 to Now. Also, he

is the head of the Industry-University Collaboration Team at Sunchon
National University, Republic of Korea. He was Invitational lecture at
the 53rd International Conference of the Korean Society of Japanese
Language and Literature, October 12, 2019 (Sat). Also, he was Invita-
tional lecture at the 54th International Conference of the Korean Society
of Japanese Language and Literature, October 17, 2020 (Sat). He was
the director of the Institute of Information and Computer Science at
Sunchon National University, August, 2021. He was an exchange pro-
fessor at North Carolina Central University, United States of America
(February, 2015-July, 2016). His research interests include the big data,
block chain, deep learning, generative models, natural language process-
ing, and reinforcement learning.

27026 S.-W. Park et al.

	How to train your pre-trained GAN models
	Abstract
	1 Introduction
	2 Methods
	3 Experimental setup
	3.1 Training and test environment
	3.2 Model architecture
	3.3 Dataset description
	3.4 Implementation details
	3.5 Evaluation metrics

	4 Results
	5 Conclusion
	Appendix
	Ablation study on freezing layers
	Qualitative results for prior and proposed methods

	Acknowledgements
	References

