Applied Intelligence (2023) 53:27001-27026
https://doi.org/10.1007/5s10489-023-04807-x

=

Check for
updates

How to train your pre-trained GAN models

Sung-Wook Park'® - Jun-Yeong Kim'® . Jun Park'© . Se-Hoon Jung?® - Chun-Bo Sim’

Accepted: 18 June 2023 / Published online: 31 August 2023
© The Author(s) 2023

Abstract

Generative Adversarial Networks (GAN) show excellent performance in various problems of computer vision, computer
graphics, and machine learning, but require large amounts of data and huge computational resources. There is also the issue of
unstable training. If the generator and discriminator diverge during the training process, the GAN is subsequently difficult to
converge. In order to tackle these problems, various transfer learning methods have been introduced; however, mode collapse,
which is a form of overfitting, often arises. Moreover, there were limitations in learning the distribution of the training data.
In this paper, we provide a comprehensive review of the latest transfer learning methods as a solution to the problem, propose
the most effective method of fixing some layers of the generator and discriminator, and discuss future prospects. The model
to be used for the experiment is StyleGAN, and the performance evaluation uses Fréchet Inception Distance (FID), coverage,
and density. Results of the experiment revealed that the proposed method did not overfit. The model was able to learn the
distribution of the training data relatively well compared to the previously proposed methods. Moreover, it outperformed
existing methods at the Stanford Cars, Stanford Dogs, Oxford Flower, Caltech-256, CUB-200-2011, and Insect-30 datasets.

Keywords Deep learning - Generative adversarial networks (GAN) - Computer vision (CV) - Artificial intelligence (AI)

1 Introduction

Generative Adversarial Networks (GAN) have been suc-
cessfully applied to various applications in computer vision,
computer graphics, and machine learning [1-7]. However, it
is not easy to apply the GAN to an actual scene, because the
recently announced GAN requires large data and huge com-
putational resources. Several methods have been proposed to
solve this problem. One method transfers the knowledge of
a well-trained model, while another method acquires meta
knowledge for quick adaptation to the target domain [8—13].
One auxiliary task facilitates training, while another task
improves the inference procedure of the suboptimal model
[14-21]. A priori distributions with expressive expressions,

< Se-Hoon Jung
shjung @scnu.ac.kr

< Chun-Bo Sim
cbsim@scnu.ac.kr

Interdisciplinary Program in IT-Bio Convergence
System, Sunchon National University, Suncheon 57922,
Republic of Korea

Department of Computer Engineering, Sunchon National
University, Suncheon 57922, Republic of Korea

active selection of samples to provide supervision for con-
ditional synthesis, or active sampling of mini-batches for
training can also be used [22, 23]. The a priori distribution is
the distribution of parameters that are already known, while
the a posteriori distribution is the distribution of the param-
eters changed by the sample, that is, the answer to be found.

Transfer learning is the most promising way to train mod-
els on limited data and resources [24]. The recent success
of deep learning utilizes a backbone pre-trained with super-
vised or self-supervised learning for large datasets [25, 26].
Self-supervised learning is a machine learning method that
can be considered an intermediate form between supervised
learning and unsupervised learning. As a type of autono-
mous learning using artificial neural networks, sample data
classified in advance by humans is not necessarily required,
and it is achieved by training the neural network in two steps.
Another way is to after successfully transmitting the clas-
sifier in the recognition task, use the well-trained backbone
of the GAN for downstream synthesis. Downstream is data
transmitted from the upper layer to the lower layer. For
example, the convolutional layer output of a discriminator
can be used as a feature extractor, and a linear model, such
as a support vector machine (SVM), can be combined as a
classifier. GAN frequently experience mode collapse, which

@ Springer

http://orcid.org/0000-0003-1051-9263
http://orcid.org/0000-0002-5937-4571
http://orcid.org/0000-0001-6268-9593
http://orcid.org/0000-0002-1776-9823
http://orcid.org/0000-0003-0802-6355
http://crossmark.crossref.org/dialog/?doi=10.1007/s10489-023-04807-x&domain=pdf

27002

S.-W. Park et al.

is a form of overfitting, for a variety of reasons [27-29].
For these reasons, even the transfer learning methods pro-
posed so far may not be robust enough to handle the prob-
lems of overfitting or small distribution shift when applied
to GAN. Therefore, we comprehensively review the latest
transfer learning methods as part of a solution to the problem
and propose a simple yet highly effective transfer learning
method for GAN.

The lower layer of the GAN using convolutional opera-
tion learns the general features of the image, while the upper
layer trains how to classify whether the image is real or syn-
thetic, based on the extracted features. The dichotomous
view of feature extractor and classifier and fixing the feature
extractor for fine-tuning are not new, but the effectiveness
of the proposed method using various datasets is verified by
comparison with the existing method.

The model uses StyleGAN pre-trained with the Flickr
Faces High Quality (FFHQ) dataset [30]. The datasets are
Stanford Cars, Stanford Dogs, Oxford Flower, Caltech-256,
Caltech-University of California San Diego Birds (CUB)-
200-2011, and Insect-30.

The contributions of this paper are as follows:

e [t is possible to check how various transfer learning
methods affect the GAN model training results.

e By providing experimental results of various datasets,
service improvement and performance in related fields
can be achieved.

e We analyzed the issues with major GAN evaluation met-
rics and suggested careful consideration in the selection
of evaluation metrics as an appropriate solution.

A comprehensive review of the latest transfer learning
methods can provide valuable insights for future research
and identify areas for further investigation, making a sig-
nificant contribution to the academic community. While the
proposed methods, such as selecting the appropriate combi-
nation of Freezing for the generator and discriminator, may
vary depending on the architecture and dataset character-
istics, we offer insights that can minimize experimentation
and trial-and-error to determine the most effective method
in a given scenario.

Section 1 of this paper describes the problems and solu-
tions of GAN. Section 2, we introduced the latest transfer
learning methods of GAN, such as fine-tuning, freezing,
scale/shift, Generative Latent Optimization (GLO), Mine-
GAN, L2-Starting Point (SP), and Feature Distillation (FD).
Section 3 describes the dataset and experimental environ-
ment configuration. Section 4 compares the experimental
results to see how the proposed method differs from the pre-
viously published method. Section 5 provides a final sum-
mary of what has been described above, and the prospects
for future work. The last section includes the results of the

@ Springer

ablation study of the proposed method, and images synthe-
sized by various transfer learning methods.

2 Methods

Transfer Learning is a method that takes trained weights
from a specific dataset of tens of thousands, and uses them
in a user’s project; it is mainly useful when the size of the
dataset is small. Currently, in various fields, such as com-
puter vision and natural language processing, the prediction
rate is increasing with transfer learning methods.

In the case of Convolutional Neural Network (CNN),
training starts by identifying which pixel combination is a
line, and which type of group becomes a plane. If image
discrimination starts without any information, training takes
some time, so the transfer learning method is used. Transfer
learning first loads an existing network trained on a large
dataset. After that, the front side of the CNN is filled with
the loaded network, and connected with the user project in
the back layer. Finally, the above two networks are tuned, so
that they mesh well. GAN is also like CNN except that it has
two neural networks, and the mechanism is shown in Fig. 1.
We assume that the pre-trained generator and discrimina-
tor can be fully utilized and compare it with the previously
proposed method.

Fine-tuning: First, fine-tuning is the simplest and most
effective way to transfer trained knowledge and initializes
the parameters of the target model with the pre-trained
weights of the source model. The fine-tuning method
retrains the weights of all layers of the neural network.
That is, the method sets the weights of the pre-trained
model as initial values, and retrains from the beginning.
At this time, it is important to set the learning rate low.
If the learning rate is high, it is difficult to expect good
performance, because the existing weights of the model
are greatly damaged. Because the learning rate is low and
the target to be learned is changed, the fine-tuning method
takes more time to train the parameters of the output layer
than the freezing method. The fine-tuning method can be
implemented by passing the variable list of all layers to
the optimizer. Note that it often suffers from overfitting,
and requires regularization. Regularization is a technique
for solving an ill-posed problem or preventing overfitting
in machine learning; and an ill-posed problem means a
rogue condition problem, in which there is no single cor-
rect answer. In this paper, we compare the performance
when the entire layer is fine-tuned, and when only a part of
the layer is fine-tuned; and propose a method of fine-tuning
only some layers. In general, the deeper the layer, the more
specialized the CNN.

The first few layers learn simple, general features that can
be considered in any type of image, and the higher the layer,

How to train your pre-trained GAN models

27003

Latent Vectorz € Z

(FFHQ)

Real Samples

[Transfer Learning Model |

g

Generated

Synthesized
Samples

Fig. 1 Architecture and the principle of transfer learning

the more specific the unique features found in the training
dataset. The goal of fine-tuning is to tune these unique fea-
tures so that they work well on new datasets, without being
overwritten by general features. Since the weights within the
layers are set at random, trying to train all layers will cause
the gradient updates to become too large, and the pre-trained
model may forget what it has learned. Therefore, to reduce
the possibility of learning failure, we propose a method of
fine-tuning only some layers. The fine-tuning method is
shown in Fig. 2.

In general, if a dataset is large and the similarity to the
pre-trained model is small, Fig. 2¢ is used. Due to the large
dataset size, retraining the entire model would be a good
strategy. If the dataset is large and the similarity to the pre-
trained model is large, Fig. 2b is used. Figure 2b describes
the case of training the rear part of the convolutional layer
and the image generator or classifier. Since the dataset is

Fig.2 Types of fine-tuning

Our Dataset

similar, it is possible to achieve an optimal performance
even if only the latter part of the convolutional layer, which
shows strong features, and the image generator or classifier
is newly trained rather than training the whole. Figure 2b
is also used when the dataset is small and the similarity
to the pre-trained model is small. Because of the small
amount of data, applying a fine-tuning technique to some
layers might not be effective. Therefore, it is necessary to
appropriately set the level of the convolutional layer to be
newly trained. If the dataset is small and the similarity to
the pre-trained model is large, Fig. 2a is used. Figure 2a
describes the case where only the image generator or clas-
sifier is trained. Since the dataset is small, applying the
fine-tuning technique to many layers can lead to overfit-
ting. In this paper, the performance of the Fig. 2b method
was the best. In the case of fine-tuning, if a large change is
made to a parameter during the parameter update process,

[Output] [Output]

techniques]
PR I N
3 1 1 1
a Pre-trained ‘= 1 Image Generator Image Generator Image Generator
<
S Layer E or Classifier or Classifier or Classifier
> H .l = 0]
(o)) s : 2 . .
T JEiE R, { Retraining
= S E
B 3 Area
') = T S T U
&-‘ Pre-trained w Pre-trained Pre-trained Pre-trained
Convolution Reuse Convolution Convolution Convolution

Input Image

FFHQ Dataset

T T -. T

[Input Image]

[Input Image] [Input Image]

@ (b) ©

@ Springer

27004

S.-W. Park et al.

an overfitting problem might occur. Thus, a sophisticated
and fine parameter update is required.

Freezing The freezing method is also widely used, and the
weights up to the output layer are fixed and reused. The
convolutional layer responsible for feature extraction of the
existing pre-trained model is trained to detect low-level fea-
tures in the image, so it is useful for other image classifica-
tion and synthesizing tasks. Therefore, the weights of the
corresponding layer are fixed to their initial values, and then
reused. This method is the freezing method. If the freezing
method is used, it is easy to train the weights of the output
layer, because the object to be learned does not change. At
this time, the output layer of the original model may be dif-
ferent from the new work, and the number of output units
is not the same, so it is usually added after deletion. The
freezing method can be implemented by passing the list of
variables of the output layer to be trained to the optimizer,
excluding the variables of the corresponding layer.

Scale/shift Scale/shift is a method that updates the nor-
malization layer only when the weights are frozen. It
uses the knowledge of the pre-trained network to learn
small datasets in other domains. As a representative
normalization layer, there is batch normalization. The
model synthesizes images using knowledge that cannot
be acquired from small datasets. This method focuses on
batch statistics of the network hidden layer, scale, and shift
parameters. The network is trained stably while updating
parameters in a supervised learning method. Even with
small datasets, high-quality images can be synthesized
and classes or domains can be added to the pre-trained
network while maintaining the performance of the source
domain. This means that the diversity of filters obtained in
the pre-trained network is important for the performance
of the target domain. However, if movement between the
source and target distribution is frequent, inferior results
can occur due to restrictions.

Generative Latent Optimization (GLO) GLO defines the
loss as the sum of the L2 loss and the perceptual, fine-
tuning the generator with a supervised learning method,
and optimizing the generator and the latent code together
to avoid overfitting [31]. The perceptual loss is defined
using the feature reconstruction loss and the style recon-
struction loss [32]. A pre-trained Visual Geometry Group
(VGG)-16 model is used to obtain the feature reconstruc-
tion loss and the style reconstruction loss. The purpose
of the feature reconstruction loss is to make the same
content and the style reconstruction loss the same style.
The feature reconstruction loss is calculated by compar-
ing the activation map passed through the activation func-
tion existing for each layer. At this time, by making the

@ Springer

low-dimensional expression synthesized by the convolu-
tion operation similar, we intend to synthesize a percep-
tually similar image that looks similar when we accept
it, even if it is not exactly the same. Style reconstruction
can identify which features are active at the same time as
each other. GLO can perform the linear arithmetic opera-
tions with latent vector z without adversarial optimiza-
tion. Setting the latent vector z value during training is
important because it tracks the correspondence between
the sample and its representatives. Since the image syn-
thesized with a meaningful latent code in GLO matches
the real image, the generator can generalize the image by
interpolation. However, since there is no prior knowledge
of adversarial loss and source discriminator, blurry and
ambiguous images can be synthesized. For example, with
the Large-scale Scene UNderstanding (LSUN) bedroom
dataset, the adversarial optimization method performed
better than the GLO. Of course, the visual quality can be
improved by changing the loss function, architecture, pro-
gressive synthesis, post-training sampling method, and so
on. This characteristic of GLO can be a strength in terms
of possibility. However, it can also be interpreted as being
sensitive to hyperparameter settings. Thus, it can also be
considered a weakness.

MineGAN MineGAN can mine the most meaningful knowl-
edge of a specific target domain from single or multiple pre-
trained GAN. The task is performed using a minor network
that identifies which parts of the pre-trained GAN synthesis
distribution output the closest samples in the target domain.
That is, it is based on a mining task that identifies regions
of the GAN manifold that have been trained closer to a
given target domain. Mining adjusts the GAN sampling to
an appropriate region of latent space to facilitate post-mor-
tem fine-tuning and avoid problems such as mode collapse
and training instability. For this reason, mining can make
efficient fine-tuning even when there are few images of the
target domain. The minor network consists only of fully con-
nected layers. In the paper, it is optimal when four layers are
stacked. MineGAN can be effective when the source and
target distributions share support. However, it can be dif-
ficult to generalize when the source and target distributions
do not share support. Support is a support set whose function
is a closure of a set of non-zero points, and a closure is the
smallest closed set containing a subset of a given topological
space. Here, the phase space is a space that does not contain
information about the distance, area, volume, etc. between
points, and a closed set is a concept that contradicts an open
set, a subset of the phase space, that does not contain any
boundaries of its own.

L2-Starting Point (SP) L2-SP is a mechanism to keep fea-
tures learned from the source dataset well. The target model

How to train your pre-trained GAN models

is regularized so that it does not stray too far from the source
model [33]. The source model and target model parameters
use L2-norm regularization. The L2-SP grants an L2 penalty
based on the starting point, which is more effective in learn-
ing than a typical L2 penalty. It also has the advantage of
possessing an explicit inductive bias since it can explicitly
promote similarity between the initial model and the final
solution in this way. Inductive bias aims to construct an algo-
rithm that can learn how to predict a specific target output.
It is noteworthy that the early stopping algorithm may work
before convergence. However, the L2-SP is robust against
such problems. Furthermore, it is easier to implement than
freezing the initial layer in the network. We tried L2-SP as a
generator, a discriminator, and both, but the results were not
good. However, since freezing layers can be seen as provid-
ing an infinite weight of L2-SP for the selected layer and
weight of ‘0’ for the unselected layer, it is considered that
the appropriate weight for each layer can perform better.

Feature Distillation (FD) FD is also one of the most widely
used methods for the transfer learning of classifiers [34,
35]. We distill the activation of the source model and the
target model, and Fig. 3 shows the operation principle of
vanilla FD.

In Fig. 3, the teacher model is a large and deep model
with high prediction accuracy, while the student model is
a small and shallow model that will receive the features of
the teacher model. Ly, in Fig. 3 can be defined by Eq. (1),
and Ly, can be calculated by Eq. (2)

27005

LSoft = XZG‘;(KL<s0ftmax<fT (Txi) >, softmax<f S (Txi) >>
(D
Ly =C rossEntropy(softmax(s (xl.)) Vire) @

In Eq. (1), f7(x;) is the logit value of the teacher model,
and fg (xi) is the logit value of the student model, while 7 is
a hyperparameter that plays a scaling role. As 7 is larger, it
has a softer probability distribution, and if it is 1, it is the
same as the existing softmax function. The modified softmax
function is equal to Eq. (3)

exp(z;/7)

Softmax(z;) = Y exp(z;/7))
j 1

That is, the method of distilling the features of a large
model into a small model is to designate the final softmax
output of the large model as a soft target and use it in the
training process of the small model. As a result, the small
model has both the soft target, which is the output of the
large model, and the hard target, which is the existing label
value. The soft target means the probability for each class.
The hard target is the result of one-hot encoding the prob-
ability of each class. Therefore, FD is applicable to the dis-
criminator model. Training proceeds by calculating the loss
of both targets. A soft target is actually a value output by
the model through training, and a value that the model can
output sufficiently, so when training a new model, it can be
adopted as a realistic target. Specifically, a large model is

Soft Target

Distillation Lsogt

XEX

Fig.3 The architecture and principle of vanilla feature distillation (FD)

T

Lsope = Z KL(softmax (M)Softmax (fs—(rxi)>)

Dog 0.8

Bear 0.12

LTask

e

@ Springer

27006

S.-W. Park et al.

trained using the training dataset, and after the large model
has been sufficiently trained, a transfer dataset with the out-
put as a soft target is synthesized.

Then, a small model is trained using the transfer data-
set and the training dataset. Each loss function uses cross-
entropy, and as a result, the final loss function of the smaller
model is equal to Eq. (4) multiplied by the weight A of L,
Ais used as a form of feedback control. Feedback control
is a control function that compares the output result with
the target value in automatic control, returns it to the previ-
ous step, and corrects it. FD showed similar results to the
proposed method, but the calculation took one more time.

Ltm‘ul = LTask +Ae LSoft (4)

3 Experimental setup
3.1 Training and test environment

For hardware specification, the Central Processing Unit
(CPU) used was Intel Core 19 11900 K Rocket LakeS; the
graphics card was NVIDIA GeForce RTX 3090 24 GB, the
RAM was G.Skill DDR4 64 GB, and the Solid State Drive
(SSD) was FireCuda 530 Gaming Peripheral Component
Interconnect express (PCle) 4.0 Non Volatile Memory
express (NVMe) 1 TB. Table 1 shows the hardware specifi-
cations for the experiment. We found that there was a limit
in generating images with a resolution higher than 256 X256
due to hardware limitations.

For software specification, the operating system was
ubuntu 20.04.3 Long Term Support (LTS); the Compute
Unified Device Architecture (CUDA) was 11.2.67, the cuda
Deep Neural Network library (cuDNN) was 8.1.0, Torch
was 1.8.2, and python was 3.8.10. Torch is a framework for
machine learning and deep learning. Table 2 presents the
software specifications for the experiment:

3.2 Model architecture

StyleGAN is the first model to use a combination of Progres-
sive Growing of Generative Adversarial Networks (PGGAN)

Table 1 Hardware specifications

Hardware Specifications

CPU Intel Core 19 11900 K
Graphics card NVIDIA RTX 3090 24 GB
RAM G.Skill DDR4 64 GB

SSD FireCuda 530 Gaming

PCIe4.0 NVMe 1 TB

@ Springer

Table 2 Software versions

Software Version

Ubuntu Linux 20.04.3 LTS
Python 3.8.10

Operating system

Programming language

GPGPU CUDA 11.2.67
Deep neural network library cuDNN 8.1.0
Deep learning framework Torch 1.8.2

and neural style transfer technology [36, 37]. Its solution has
been recognized and widely used. Of course, there are cur-
rently several applied models [38, 39]. However, in the case
of the initial model, the number of layers that can be frozen
in the generator and the discriminator is the same. Thus, an
accurate comparative analysis is possible. For this reason, in
this paper, StyleGAN was selected as the transfer learning
method comparison model. StyleGAN drew attention for
generating full high-definition quality results with few steps
of control from detail to overall image. Figure 4 shows the
generator architecture of StyleGAN:

Ain Fig. 4 is a learned affine transformation. StyleGAN
proposed a method called Adaptive Instance Normalization
(AdalN), and AdalN uses reference style bias y, ; and scale
¥;.;- The mean and variance of the feature map x; output from
the layers in the synthesis network are adjusted using y, ; and
¥,.;» respectively. AdalN is given by Eq. (5):

x; — p(x;)

AdalN (x;,y) = ymW

+ Vi)

A latent vector z is passed through the mapping network f
to compute the style parameters, and an intermediate vector
w is generated. Then, it passes through the fully connected
layer, and synthesizes y,; and y,; vectors of length n. This
is to separate the image style selection process. AdalN pre-
vents style information from being lost between layers. The
style vector added to each layer does not affect the feature of
other layers. This latent vector w is better than the original
vector z.

Using AdalN, StyleGAN learns about interpretable dis-
entangled representations by solving the problem of entan-
glement in latent space. Generative models aim to capture
generative factors in the training data. A disentangled rep-
resentation is associated with a symmetry transformation
in which some properties are preserved, while other prop-
erties are changed. Symmetry transformation transforms
certain properties, but preserves others. To realize a sym-
metry transformation in a neural network, neurons must have
no connections with other neurons. That is, each neuron is
in an isolated state. The concept of symmetry is broader
than the scope of geometry and is mainly used in quantum
mechanics.

How to train your pre-trained GAN models

27007

L)
1 1 4] 4]
Style Style

Synthesis Network g

Synthetic Image

n channels

S
=
2
mdmg
uonnjoauo)

A
l »
2xXn §:
YS,L' =
Yb,i
xi — p(x)

AdalN (x;,y) = ys; + b

o(x)

Fig.4 Generator G architecture of StyleGAN and Adaptive Instance Normalization (AdalN) layer mechanism

The disentangled representation is the process of learn-
ing symmetry through training, and becoming disentangled,
even starting from the fully connected layer. This means that
the latent unit is sensitive to changes in the generative factor.
From the point of view of information theory, disentangled
representation is highly useful. Because it compresses infor-
mation, it is more efficient than other algorithms, and this
is because small things can be increased into many things.
However, disentangled representation is only effective for
latent vectors.

The synthesis network was designed with inspiration
from PGGAN. The more the style vector of the synthesis
network is in the front layer, the larger the feature is. Style-
GAN completely controlled the synthesized image using the
latent vector w, And by changing the position of the w vec-
tor in the synthesis network, different levels of style were
synthesized.

StyleGAN passes the w vector of 7 through the synthesis
network to combine different images 7 and I’, and turns it
into an I’ vector at a specific point. I and I’ were synthesized
with different vectors. When the transformation occurs in
the early stages, the posture, appearance, and styles, such as
glasses, are transmitted to the /. If the transformation occurs
later, styles, such as the color and micro-shape of a face, are
transferred to I’. All I image features are maintained. Style-
GAN adds noise behind each convolutional layer to capture
parts such as the position of the hair or the background of
the face. The noise injection location determines the fineness
and coarseness of the image.

3.3 Dataset description

We used the pre-trained StyleGAN model with the
FFHQ dataset, and fine-tuned our six datasets: Stanford

Cars, Stanford Dogs, Oxford Flower, Caltech-256, CUB-
200-2011, and Insect-30. There are 196 classes in the Stan-
ford Cars dataset, with a total of 8,144 images, while the
Stanford Dogs dataset has 120 classes and a total of 20,580
images. There are 102 classes in the Oxford Flower dataset,
a total of 8,189 images, and 256 classes in the Caltech-256
dataset, with a total of 30,609 images embedded. There are
200 classes in the CUB-200-2011 dataset, a total of 11,788
images, while the Insect-30 dataset has 30 classes, a total of
28,896 images.

In the case of the Insect-30 dataset, 30 species of forest
insects that are commonly observable were selected. Five
types of images from the ImageNet and 25 types of images
through Screen Scraping were collected and organized into
datasets through a separate screening process. Screen scrap-
ing is a program designed to extract only necessary data
from data displayed on the internet screen. The image of the
insect dataset was cropped around the insect in the image,
as Fig. 5 shows:

The model used was trained on 256 X 256 images, and
the iteration was maintained at 50,000. Learning was

Fig.5 Example of a cropped insect image

@ Springer

27008

S.-W. Park et al.

successful even without progressive training. Progres-
sive training is a method of synthesizing high-quality and
high-resolution images by adding a new layer in the train-
ing process of the generator and discriminator. We train
the generator and discriminator from a 4 x4 pixel low-
resolution image. After that, the resolution is increased by
adding a layer, and the added layer is continuously trained
without being frozen.

3.4 Implementation details

When injecting label information into the StyleGAN
architecture generator, a conditional version of AdaIN
was used. When injecting label information into the dis-
criminator, the PGGAN projection discriminator was used.
The loss function used logistics and the activation function
used softplus. The softplus function is a variant of the
Rectified Linear Unit (ReLU) that can relax the criteria for
creating zero. It can be differentiated across all intervals.
Additionally, exponential moving average (EMA) was
used for generator updates.

When using the L2-SP or FD method, the loss was
defined as the sum of the existing loss and the Mean
Squared Error (MSE). The supervised loss was defined
as the sum of L2 loss and perceptual, with the perceptual
and embedding scales set to be 0.1, the regularizer scale
set to be 0.02, and the image and perceptual normalization
set to be True.

For the optimizer, Adaptive moment estimation (Adam)
was used. Adam can perform deflection correction of hyper-
parameters by fusion of momentum and Adaptive Gradient
algorithm (AdaGrad). The initial learning rate was set to
0.002. The coefficient for primary momentum f, was set to
0.0. The coefficient for secondary momentum f, was set to
0.99. Epsilon was set to 1e-08. Weight decay was set to 0.
AMSGrad was set to False. Foreach was None. The maxi-
mum was set to False. The capability was also set to False.
For weight initialization, the linear layer used the Xavier
normal distribution, and the convolutional layer used Kaim-
ing normal distribution.

In a standard normal distribution with a mean of 0 and
a variance of 1, the latent vector z is sampled and the z size
is set to 512. The random seed was set to 0. The mini-batch
was set to 8. The image size was set to 256. The number
of samples for evaluation was set to 5,000. The number of
samples used for each training phase was set to 50,000. The
basic step size was set to 6. The step size for evaluation
was set to 1,000 and the step size for model save was set to
10,000.

In this paper, the above settings were applied equally to
all experiments in order to secure objectivity when drawing
conclusions.

@ Springer

3.5 Evaluation metrics

Evaluation indicators such as how to evaluate the syn-
thesized image and whether the trained model can be
compared with other models may vary depending on the
learning goal [40]. Objective functions of generators and
discriminators in GAN are measured by comparing how
well they each perform their roles. For example, a par-
ticular objective function measures how well a generator
deceives a discriminator. Methods of comparing the results
of GAN models include the Inception Score (IS), and the
Fréchet Inception Distance (FID) [41, 42].

IS represents two performances of GAN. The first is
the quality of the synthesized image, and the second is
the diversity. A good result is that the conditional prob-
ability p(y|x) is easy to predict. That is, when an image is
input, it should be possible to easily identify the type of
object. IS classifies the synthesized image using the Incep-
tionV3 model, and predicts p(y|x). Here, y is the label, and
x is the synthesized image. This reflects the quality of the
image. Then, p(y) is the marginal probability calculated
as in Eq. (6):

/ pOlx = G(2))dz (6)

Marginal probability is the probability distribution of X
or Y when two random variables X and Y pair, and have a
joint probability distribution as (X, Y). Equation (6) elimi-
nates the remaining probabilities through integral or sum-
mation. If the images synthesized in Eq. (7) are diverse,
the data distribution for y should be uniform. That is, it
must have high entropy:

1S(G) = exp(Ex..,, Dy (p(y1x) || p())) @)

When synthesizing only one image per class, IS may
misrepresent performance. This is because p(y) can still
be uniform, even with low diversity.

Introduced in 1957 by the French mathematician
Maurice René Fréchet, FID was inspired by the metric.
FID also uses Inception V3, and extracts features from
the middle layer. FID models the data distribution of
the extracted features using multi-variate normal dis-
tribution with mean y and covariance matrix Y. added.
The lower the FID value, the better, because the image
quality and diversity increase. FID is sensitive to mode
collapse. So, the more similar images, the higher the
value. FID is resistant to noise, and can detect missing
samples within a class.

Because IS improves performance by synthesizing only
one kind of class, FID is better than IS. FID calculates the
distance between images in pixel space, and is equivalent
to Eq. (8):

How to train your pre-trained GAN models

27009

1
FID(x,8) = ||u, — uglli + Tr<2x+ Zg —2(2)C Zg)z)
®)

In Eq. (8), u is the mean, Z is the covariance matrix,
x is the real image, and g is the synthesized image. The
Trace of a Matrix (7r) is a summary of all elements of a
diagonal, that is, the sum of the diagonals. In a covari-
ance matrix, the diagonal is an element with the same
row and column indices in a square-shaped matrix. The
key is to assume that the vector passing through Incep-
tionV3 follows a normal distribution. Without this
assumption, the FID value cannot be calculated; and even
so, it is not an accurate number. The FID can be trans-
formed into the Fréchet Audio Distance (FAD) in music
synthesis, the Fréchet Video Distance (FVD) in video
synthesis, and the Fréchet ChemNet Distance (FCD) in
molecular synthesis.

Precision, recall, and F1 score are also used as evalua-
tion metrics [43]. The more similar the synthesized image
is to the real image, the higher the precision. The more the
generator synthesizes the samples from the training dataset
without duplication, the higher the recall. Recall is also
called hit rate, sensitivity, and true positive rate. The F1
score is the harmonic mean of precision and recall. The
harmonic mean is the reciprocal of the arithmetic mean of
n positive numbers and their reciprocals.

There are also coverage and density [44]. The author
of the paper first forms a manifold with k-Nearest Neigh-
borhood (k NN), before defining fidelity and diversity. In
other words, fidelity and diversity are defined after assum-
ing that the Euclidean distance that can contain k pieces
of data closest to a specific vector V is formed as the cor-
responding data manifold. Density is a ratio indicating
how much density of synthetic image is included in the
manifold synthesized with real image. If the density value
is large, the synthetic image is distributed at high density
in the manifold and does not deviate significantly from the
distribution of the original dataset. The density is given
by Eq. (9):

. 1
Density 1= ol ZJA; Ziil Iy € BX;,NND(X;)) (9

Coverage is a ratio indicating how many manifolds con-
tain the synthesized image on multiple manifolds synthe-
sized with the real image. If the model synthesizes images
only in a part or a narrow space in the real image manifold,
fidelity and diversity have a trade-off relationship; but if
the synthesized distribution can cover the real image dis-
tribution as a whole, the trade-off problem can be solved.
NVIDIA announced improved precision and recall, but
claim that they are too sensitive to outliers, and that IS and
FID cannot distinguish fidelity and diversity to evaluate,

but density and coverage are possible [45]. The Coverage
is given by Eq. (10):

1 N
Coverage .= N 21:1 lys.t.Y; € B(Xl-,NNDk(Xl-)) (10)

The IS, FID, precision, recall, F1 score, coverage, and
density all use Inception V3, so it is a feature extraction-
based methodology. If the model is not good at feature
extraction, the same value can be calculated, no matter
which image is synthesized.

Research is still ongoing regarding end-to-end evaluation
metrics that can detect and prevent problems in GAN, such
as earlier mode collapse, as well as cost optimization [46].
However, it is difficult to find a satisfactory solution. We use
FID, coverage, and density, but we propose to find and apply
an evaluation metrics suitable for the model to be used based
on a theoretical basis, or through a lot of trial and error.

4 Results

Figure 6 visualizes the synthesized image using the exist-
ing weights and fine-tuned weights for the FFHQ dataset.
The similar latent code shared the similar meaning after
fine-tuning.

Table 3 evaluates the FID values of the existing and pro-
posed methods of models trained with the Stanford Cars
and Stanford Dogs datasets. For the Stanford Cars dataset,
Freeze D fixed up to discriminator layer 5, and Freeze G
fixed it up to generator layer 3. Partial fine-tuning method
was fixed up to generator layer 4 and discriminator layer 4.
For the Stanford Dogs dataset, Freeze D fixed up to discrimi-
nator layer 5, and Freeze G fixed it up to generator layer 2.
Partial fine-tuning method was fixed up to generator layer 5
and discriminator layer 7. All tables in Appendix 6.1 shows
the rationale for layer freezing. The weights of L2-SP and
FD were selected from {0.1, 1, 10}, and in the case of regu-
larization weights, ‘1’ was set for all experiments. FD lin-
earized the fifth activation of the discriminator, and matched
the activation of the source and target discriminators. Since
the activation size is different for each layer, L2 — norm nor-
malized to the feature dimension was used. The hyperparam-
eter of GLO was set to the value proposed by the author of
the paper, and for the minor network, a 2-layer Multi-Layer
Perceptron (MLP) and Rectified Linear Unit (ReLU) were
used as the activation functions.

In Stanford Cars, the partial fine-tuning method showed
the highest performance with FID 10.84. The FID of Min-
eGAN with GLO was 33.65, showing the lowest perfor-
mance, and there was a performance difference between
partial fine-tuning and 22.81. In Stanford Dogs, the Freeze
G method showed the highest performance with an FID of

@ Springer

27010

S.-W. Park et al.

|

Fig.6 (a) was synthesized by StyleGAN trained on the FFHQ data-
set. (b) shows 100 car images synthesized by the partial fine-tuning
method, which had the best performance in the ‘Stanford Cars’ data-
set. (c) shows 100 dog images synthesized by the Freeze G method,

29.83. The FID of scale/shift with GLO was 57.30, showing
the lowest performance, and there was a performance differ-
ence between Freeze G and 27.47. While MineGAN could
potentially generate high-quality images with specific attrib-
utes, such as poses and lighting, it may not be able to cap-
ture the full range of diversity present in the training data.
There can be several reasons for the performance degrada-
tion of FID in scale/shift with GLO. Firstly, updating only
the normalization layer while keeping the weights frozen can
make it difficult for the model to learn the target dataset and
result in unstable training. Secondly, there may be a more
appropriate layer than the current normalization layer that

Table 3 Comparison of various methods under the ‘Stanford Cars’
and ‘Stanford Dogs’ datasets. Values indicate the best FID scores.
‘4’ indicates the styleGAN is trained by GLO loss For each value,
the methods are marked with the best performance using gold «, sil-
ver , and bronze e medals

Method Stanford Cars Stanford Dogs
Fine-tuning 11.22 30.04
+GLO 25.68 55.65
Scale/shift 11.22 30.50
+GLO 28.45 5730 e
MineGAN 33.59 57.24
+GLO 33.65 e 57.15
L2-SP (G) 11.23 30.32
L2-SP (D) 11.18 31.06
L2-SP (G, D) 11.30 30.76
FD 11.04 30.01

@ Springer

(b) Stanford Cars

ol

(c) Stanford Dogs

which had the best performance in the ‘Stanford Dogs’ dataset. As a
result of the analysis, we found that each item represented a similar
latent code and that similar latent codes shared similar meanings even
after freezing

can improve performance. Thirdly, hyperparameters such
as learning rates may also contribute to performance deg-
radation. Compared to methods other than fine-tuning, the
proposed freezing and partial fine-tuning methods were both
performance and stability solutions. We chose our method
because FD has similar results to the proposed method, but
it is twice as slow in speed.

Table 4 evaluates the coverage and density values of
the previously published method and the proposed method
of the model trained with the Stanford Cars and Stanford
Dogs datasets. When evaluating the coverage of Stanford
Cars, Freeze D fixed up to discriminator layer 5, and when
evaluating density, Freeze D fixed up to discriminator layer

Table 4 Comparison of various methods under the ‘Stanford Cars’
and ‘Stanford Dogs’ datasets. Left and right values indicate the best
coverage and density scores. ‘+ indicates the styleGAN is trained by
GLO loss

Method Stanford Cars Stanford Dogs
Fine-tuning 0.939/7.695 0.246/16.412
+GLO 0.607/14.845 0.115/30.949
Scale/shift 0.938/7.197 0.241/15.901
+GLO 0.564/9.472 0.108/29.929
MineGAN 0.434/2.668 0.118/27.374
+GLO 0.431/2.714 0.118/27.360
L2-SP (G) 0.937/7.702 0.243/16.086
L2-SP (D) 0.934/7.443 0.235/15.450
L2-SP (G,D) 0.936/7.430 0.236/16.055
FD 0.940/7.661 0.251/16.161
FreezeD 0.941/7.642 0.246/17.396
FreezeG 0.943/7.837 0.250/17.833
Partial fine-tuning 0.945/7.552 0.246/18.129

Bold items mean the highest performance

How to train your pre-trained GAN models

27011

6. Freeze G fixed up to generator layer 3 when evaluating
coverage and fixed up to generator layer 5 when evaluating
density. Partial fine-tuning fixed up to generator layer 7 and
discriminator layer 4 when evaluating coverage and fixed up
to generator layer 6 and discriminator layer 2 when evaluat-
ing density.

When evaluating the coverage of Stanford Dogs, Freeze
D fixed up to discriminator layer 6, and when evaluating
density, Freeze D fixed up to discriminator layer 1. In Freeze
G, both coverage and density were fixed up to the generator
layer 2 and evaluated. Partial fine-tuning fixed up to genera-
tor layer 7 and discriminator layer 1 when evaluating cover-
age, and fixed up to generator layer 1 and discriminator layer
6 when evaluating density. Table 3 shows the hyperparam-
eter settings of the other methods that were set.

In Stanford Cars, partial fine-tuning showed the high-
est performance with a coverage of 0.945. The coverage
of MineGAN with GLO showed the lowest performance
at 0.431, and there was a performance difference between
partial fine-tuning and 0.514. For density, fine-tuning with
GLO showed the highest performance at 14.845. Density
of MineGAN showed the lowest performance at 2.668, and
there was a performance difference between fine-tuning
with GLO and 12.177. In Stanford Dogs, FD showed the
highest performance with coverage 0.251. The coverage
of scale/shift with GLO showed the lowest performance at
0.108, and there was a difference in performance between

Fine-tuning(with GLO) Scale/shift(with GLO)

FD and 0.143. For density, fine-tuning with GLO showed
the highest performance at 30.949. Density of L2-SP(D)
showed the lowest performance at 15.450, and there was
a performance difference between fine-tuning with GLO
and 15.499. If the size of the target dataset to be learned
is smaller than the previously learned dataset, overfitting
may occur. As a result, the synthesized images may not be
diverse enough to represent the full range of the target data-
set, leading to degraded coverage performance. Addition-
ally, updating the normalization layer of GAN only in the
freezing state can cause inconsistent normalization of inputs
to the generator during training, leading to a degradation
in coverage performance. These issues may arise because
the normalization layer adapts to a specific distribution of
the training data and may not be suitable for samples from
the target dataset. If the previously learned dataset and the
target dataset are significantly different, density performance
may also be degraded. When using L2-SPs to control the
distance between the target model and the source model, if
the normalization strength is too weak, the target model may
deviate too much from the source model during fine-tuning,
leading to poor density performance.

Figure 7 shows the (a) FID, (b) Coverage, and (c) Density
values for each epoch of the existing method and the pro-
posed method. The early stopping algorithm was not used
to observe how each evaluation metric changed until 50,000
epochs. In the first epoch of Fig. 7a, partial fine-tuning

MineGAN(with GLO) L2-SP(G or D)

15.0

0.81

0.74

0.67

Coverage

0.61

Frechet Inception Distance

13.4

11.8

10.2

8.5

Density

6.9

0 10000 20000

Epoch

30000 40000 50000 [10000 20000

FreezeD

Epoch

FreezeG M Partial Fine-tuning

30000 40000 50000 o 10000 20000

Epoch

30000 40000 50000

0.83

0.77

0.71

Coverage

0.65

Frechet Inception Distance

0.59

0 10000 20000

Epoch

30000 40000 50000 o 10000 20000

(a)

Epoch

(b)

30000 40000 50000 0 10000 20000

Epoch

30000 40000 50000

()

Fig.7 Trends of FID, coverage, and density scores of the freeze-based methods in the Stanford Cars dataset

@ Springer

27012

S.-W. Park et al.

showed the highest performance with FID 23.89, and the
training speed was faster than Freeze D and Freeze G. Min-
eGAN showed the lowest performance with FID 34.32, and
there was a performance difference between partial fine-
tuning and 10.43. Even at 50,000 epochs, partial fine-tuning
showed the highest performance at 10.85, while MineGAN
showed the lowest performance at 33.79. There was a per-
formance difference of 22.94 between partial fine-tuning and
MineGAN. Looking at the graph change trend, the other
methods, except MineGAN, showed a smooth upward trend
up to 50,000 epochs.

At epoch 1 in Fig. 7b, Freeze D showed the highest
performance with a coverage of 0.497, while MineGAN
showed the lowest performance with a coverage of 0.409.
There was a performance difference of 0.088 between Freeze
D and MineGAN. FD and Freeze G started training with
the second and fourth highest performance, respectively,
but showed higher performance than partial fine-tuning at
50,000 epochs. The increase in value was 0.011 higher in
Freeze G than in FD. MineGAN still showed the lowest per-
formance with 0.418. There was a performance difference
of 0.522 between Freeze G and MineGAN. Looking at the
graph change trend, except for MineGAN, the other methods
showed a smooth upward trend up to 50,000 epochs. The
slow initial convergence of the FD-based freezing method
may be due to insufficient capacity of the pre-trained genera-
tor to synthesize similar images within the target dataset, or

Fine-tuning(with GLO) Scale/shift(with GLO)

@
-

0.26

limitations in the distillation loss used. In contrast, partial
fine-tuning can lead to faster convergence because it only
updates a fraction of the pre-trained generator.

At epoch 1 in Fig. 7c, fine-tuning with GLO showed
the highest performance with a density of 4.769,