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Abstract
Generative Adversarial Networks (GAN) show excellent performance in various problems of computer vision, computer 
graphics, and machine learning, but require large amounts of data and huge computational resources. There is also the issue of 
unstable training. If the generator and discriminator diverge during the training process, the GAN is subsequently difficult to 
converge. In order to tackle these problems, various transfer learning methods have been introduced; however, mode collapse, 
which is a form of overfitting, often arises. Moreover, there were limitations in learning the distribution of the training data. 
In this paper, we provide a comprehensive review of the latest transfer learning methods as a solution to the problem, propose 
the most effective method of fixing some layers of the generator and discriminator, and discuss future prospects. The model 
to be used for the experiment is StyleGAN, and the performance evaluation uses Fréchet Inception Distance (FID), coverage, 
and density. Results of the experiment revealed that the proposed method did not overfit. The model was able to learn the 
distribution of the training data relatively well compared to the previously proposed methods. Moreover, it outperformed 
existing methods at the Stanford Cars, Stanford Dogs, Oxford Flower, Caltech-256, CUB-200–2011, and Insect-30 datasets.
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1  Introduction

Generative Adversarial Networks (GAN) have been suc-
cessfully applied to various applications in computer vision, 
computer graphics, and machine learning [1–7]. However, it 
is not easy to apply the GAN to an actual scene, because the 
recently announced GAN requires large data and huge com-
putational resources. Several methods have been proposed to 
solve this problem. One method transfers the knowledge of 
a well-trained model, while another method acquires meta 
knowledge for quick adaptation to the target domain [8–13]. 
One auxiliary task facilitates training, while another task 
improves the inference procedure of the suboptimal model 
[14–21]. A priori distributions with expressive expressions, 

active selection of samples to provide supervision for con-
ditional synthesis, or active sampling of mini-batches for 
training can also be used [22, 23]. The a priori distribution is 
the distribution of parameters that are already known, while 
the a posteriori distribution is the distribution of the param-
eters changed by the sample, that is, the answer to be found.

Transfer learning is the most promising way to train mod-
els on limited data and resources [24]. The recent success 
of deep learning utilizes a backbone pre-trained with super-
vised or self-supervised learning for large datasets [25, 26]. 
Self-supervised learning is a machine learning method that 
can be considered an intermediate form between supervised 
learning and unsupervised learning. As a type of autono-
mous learning using artificial neural networks, sample data 
classified in advance by humans is not necessarily required, 
and it is achieved by training the neural network in two steps. 
Another way is to after successfully transmitting the clas-
sifier in the recognition task, use the well-trained backbone 
of the GAN for downstream synthesis. Downstream is data 
transmitted from the upper layer to the lower layer. For 
example, the convolutional layer output of a discriminator 
can be used as a feature extractor, and a linear model, such 
as a support vector machine (SVM), can be combined as a 
classifier. GAN frequently experience mode collapse, which 
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is a form of overfitting, for a variety of reasons [27–29]. 
For these reasons, even the transfer learning methods pro-
posed so far may not be robust enough to handle the prob-
lems of overfitting or small distribution shift when applied 
to GAN. Therefore, we comprehensively review the latest 
transfer learning methods as part of a solution to the problem 
and propose a simple yet highly effective transfer learning 
method for GAN.

The lower layer of the GAN using convolutional opera-
tion learns the general features of the image, while the upper 
layer trains how to classify whether the image is real or syn-
thetic, based on the extracted features. The dichotomous 
view of feature extractor and classifier and fixing the feature 
extractor for fine-tuning are not new, but the effectiveness 
of the proposed method using various datasets is verified by 
comparison with the existing method.

The model uses StyleGAN pre-trained with the Flickr 
Faces High Quality (FFHQ) dataset [30]. The datasets are 
Stanford Cars, Stanford Dogs, Oxford Flower, Caltech-256, 
Caltech-University of California San Diego Birds (CUB)-
200–2011, and Insect-30.

The contributions of this paper are as follows:

•	 It is possible to check how various transfer learning 
methods affect the GAN model training results.

•	 By providing experimental results of various datasets, 
service improvement and performance in related fields 
can be achieved.

•	 We analyzed the issues with major GAN evaluation met-
rics and suggested careful consideration in the selection 
of evaluation metrics as an appropriate solution.

A comprehensive review of the latest transfer learning 
methods can provide valuable insights for future research 
and identify areas for further investigation, making a sig-
nificant contribution to the academic community. While the 
proposed methods, such as selecting the appropriate combi-
nation of Freezing for the generator and discriminator, may 
vary depending on the architecture and dataset character-
istics, we offer insights that can minimize experimentation 
and trial-and-error to determine the most effective method 
in a given scenario.

Section 1 of this paper describes the problems and solu-
tions of GAN. Section 2, we introduced the latest transfer 
learning methods of GAN, such as fine-tuning, freezing, 
scale/shift, Generative Latent Optimization (GLO), Mine-
GAN, L2-Starting Point (SP), and Feature Distillation (FD). 
Section 3 describes the dataset and experimental environ-
ment configuration. Section 4 compares the experimental 
results to see how the proposed method differs from the pre-
viously published method. Section 5 provides a final sum-
mary of what has been described above, and the prospects 
for future work. The last section includes the results of the 

ablation study of the proposed method, and images synthe-
sized by various transfer learning methods.

2 � Methods

Transfer Learning is a method that takes trained weights 
from a specific dataset of tens of thousands, and uses them 
in a user’s project; it is mainly useful when the size of the 
dataset is small. Currently, in various fields, such as com-
puter vision and natural language processing, the prediction 
rate is increasing with transfer learning methods.

In the case of Convolutional Neural Network (CNN), 
training starts by identifying which pixel combination is a 
line, and which type of group becomes a plane. If image 
discrimination starts without any information, training takes 
some time, so the transfer learning method is used. Transfer 
learning first loads an existing network trained on a large 
dataset. After that, the front side of the CNN is filled with 
the loaded network, and connected with the user project in 
the back layer. Finally, the above two networks are tuned, so 
that they mesh well. GAN is also like CNN except that it has 
two neural networks, and the mechanism is shown in Fig. 1. 
We assume that the pre-trained generator and discrimina-
tor can be fully utilized and compare it with the previously 
proposed method.

Fine-tuning: First, fine-tuning is the simplest and most 
effective way to transfer trained knowledge and initializes 
the parameters of the target model with the pre-trained 
weights of the source model. The fine-tuning method 
retrains the weights of all layers of the neural network. 
That is, the method sets the weights of the pre-trained 
model as initial values, and retrains from the beginning. 
At this time, it is important to set the learning rate low. 
If the learning rate is high, it is difficult to expect good 
performance, because the existing weights of the model 
are greatly damaged. Because the learning rate is low and 
the target to be learned is changed, the fine-tuning method 
takes more time to train the parameters of the output layer 
than the freezing method. The fine-tuning method can be 
implemented by passing the variable list of all layers to 
the optimizer. Note that it often suffers from overfitting, 
and requires regularization. Regularization is a technique 
for solving an ill-posed problem or preventing overfitting 
in machine learning; and an ill-posed problem means a 
rogue condition problem, in which there is no single cor-
rect answer. In this paper, we compare the performance 
when the entire layer is fine-tuned, and when only a part of 
the layer is fine-tuned; and propose a method of fine-tuning 
only some layers. In general, the deeper the layer, the more 
specialized the CNN.

The first few layers learn simple, general features that can 
be considered in any type of image, and the higher the layer, 
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the more specific the unique features found in the training 
dataset. The goal of fine-tuning is to tune these unique fea-
tures so that they work well on new datasets, without being 
overwritten by general features. Since the weights within the 
layers are set at random, trying to train all layers will cause 
the gradient updates to become too large, and the pre-trained 
model may forget what it has learned. Therefore, to reduce 
the possibility of learning failure, we propose a method of 
fine-tuning only some layers. The fine-tuning method is 
shown in Fig. 2.

In general, if a dataset is large and the similarity to the 
pre-trained model is small, Fig. 2c is used. Due to the large 
dataset size, retraining the entire model would be a good 
strategy. If the dataset is large and the similarity to the pre-
trained model is large, Fig. 2b is used. Figure 2b describes 
the case of training the rear part of the convolutional layer 
and the image generator or classifier. Since the dataset is 

similar, it is possible to achieve an optimal performance 
even if only the latter part of the convolutional layer, which 
shows strong features, and the image generator or classifier 
is newly trained rather than training the whole. Figure 2b 
is also used when the dataset is small and the similarity 
to the pre-trained model is small. Because of the small 
amount of data, applying a fine-tuning technique to some 
layers might not be effective. Therefore, it is necessary to 
appropriately set the level of the convolutional layer to be 
newly trained. If the dataset is small and the similarity to 
the pre-trained model is large, Fig. 2a is used. Figure 2a 
describes the case where only the image generator or clas-
sifier is trained. Since the dataset is small, applying the 
fine-tuning technique to many layers can lead to overfit-
ting. In this paper, the performance of the Fig. 2b method 
was the best. In the case of fine-tuning, if a large change is 
made to a parameter during the parameter update process, 

Fig. 1   Architecture and the principle of transfer learning

Fig. 2   Types of fine-tuning 
techniques
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an overfitting problem might occur. Thus, a sophisticated 
and fine parameter update is required.

Freezing  The freezing method is also widely used, and the 
weights up to the output layer are fixed and reused. The 
convolutional layer responsible for feature extraction of the 
existing pre-trained model is trained to detect low-level fea-
tures in the image, so it is useful for other image classifica-
tion and synthesizing tasks. Therefore, the weights of the 
corresponding layer are fixed to their initial values, and then 
reused. This method is the freezing method. If the freezing 
method is used, it is easy to train the weights of the output 
layer, because the object to be learned does not change. At 
this time, the output layer of the original model may be dif-
ferent from the new work, and the number of output units 
is not the same, so it is usually added after deletion. The 
freezing method can be implemented by passing the list of 
variables of the output layer to be trained to the optimizer, 
excluding the variables of the corresponding layer.

Scale/shift  Scale/shift is a method that updates the nor-
malization layer only when the weights are frozen. It 
uses the knowledge of the pre-trained network to learn 
small datasets in other domains. As a representative 
normalization layer, there is batch normalization. The 
model synthesizes images using knowledge that cannot 
be acquired from small datasets. This method focuses on 
batch statistics of the network hidden layer, scale, and shift 
parameters. The network is trained stably while updating 
parameters in a supervised learning method. Even with 
small datasets, high-quality images can be synthesized 
and classes or domains can be added to the pre-trained 
network while maintaining the performance of the source 
domain. This means that the diversity of filters obtained in 
the pre-trained network is important for the performance 
of the target domain. However, if movement between the 
source and target distribution is frequent, inferior results 
can occur due to restrictions.

Generative Latent Optimization (GLO)  GLO defines the 
loss as the sum of the L2 loss and the perceptual, fine-
tuning the generator with a supervised learning method, 
and optimizing the generator and the latent code together 
to avoid overfitting [31]. The perceptual loss is defined 
using the feature reconstruction loss and the style recon-
struction loss [32]. A pre-trained Visual Geometry Group 
(VGG)-16 model is used to obtain the feature reconstruc-
tion loss and the style reconstruction loss. The purpose 
of the feature reconstruction loss is to make the same 
content and the style reconstruction loss the same style. 
The feature reconstruction loss is calculated by compar-
ing the activation map passed through the activation func-
tion existing for each layer. At this time, by making the 

low-dimensional expression synthesized by the convolu-
tion operation similar, we intend to synthesize a percep-
tually similar image that looks similar when we accept 
it, even if it is not exactly the same. Style reconstruction 
can identify which features are active at the same time as 
each other. GLO can perform the linear arithmetic opera-
tions with latent vector z without adversarial optimiza-
tion. Setting the latent vector z value during training is 
important because it tracks the correspondence between 
the sample and its representatives. Since the image syn-
thesized with a meaningful latent code in GLO matches 
the real image, the generator can generalize the image by 
interpolation. However, since there is no prior knowledge 
of adversarial loss and source discriminator, blurry and 
ambiguous images can be synthesized. For example, with 
the Large-scale Scene UNderstanding (LSUN) bedroom 
dataset, the adversarial optimization method performed 
better than the GLO. Of course, the visual quality can be 
improved by changing the loss function, architecture, pro-
gressive synthesis, post-training sampling method, and so 
on. This characteristic of GLO can be a strength in terms 
of possibility. However, it can also be interpreted as being 
sensitive to hyperparameter settings. Thus, it can also be 
considered a weakness.

MineGAN  MineGAN can mine the most meaningful knowl-
edge of a specific target domain from single or multiple pre-
trained GAN. The task is performed using a minor network 
that identifies which parts of the pre-trained GAN synthesis 
distribution output the closest samples in the target domain. 
That is, it is based on a mining task that identifies regions 
of the GAN manifold that have been trained closer to a 
given target domain. Mining adjusts the GAN sampling to 
an appropriate region of latent space to facilitate post-mor-
tem fine-tuning and avoid problems such as mode collapse 
and training instability. For this reason, mining can make 
efficient fine-tuning even when there are few images of the 
target domain. The minor network consists only of fully con-
nected layers. In the paper, it is optimal when four layers are 
stacked. MineGAN can be effective when the source and 
target distributions share support. However, it can be dif-
ficult to generalize when the source and target distributions 
do not share support. Support is a support set whose function 
is a closure of a set of non-zero points, and a closure is the 
smallest closed set containing a subset of a given topological 
space. Here, the phase space is a space that does not contain 
information about the distance, area, volume, etc. between 
points, and a closed set is a concept that contradicts an open 
set, a subset of the phase space, that does not contain any 
boundaries of its own.

L2‑Starting Point (SP)  L2-SP is a mechanism to keep fea-
tures learned from the source dataset well. The target model 
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is regularized so that it does not stray too far from the source 
model [33]. The source model and target model parameters 
use L2-norm regularization. The L2-SP grants an L2 penalty 
based on the starting point, which is more effective in learn-
ing than a typical L2 penalty. It also has the advantage of 
possessing an explicit inductive bias since it can explicitly 
promote similarity between the initial model and the final 
solution in this way. Inductive bias aims to construct an algo-
rithm that can learn how to predict a specific target output. 
It is noteworthy that the early stopping algorithm may work 
before convergence. However, the L2-SP is robust against 
such problems. Furthermore, it is easier to implement than 
freezing the initial layer in the network. We tried L2-SP as a 
generator, a discriminator, and both, but the results were not 
good. However, since freezing layers can be seen as provid-
ing an infinite weight of L2-SP for the selected layer and 
weight of ‘0’ for the unselected layer, it is considered that 
the appropriate weight for each layer can perform better.

Feature Distillation (FD)  FD is also one of the most widely 
used methods for the transfer learning of classifiers [34, 
35]. We distill the activation of the source model and the 
target model, and Fig. 3 shows the operation principle of 
vanilla FD.

In Fig. 3, the teacher model is a large and deep model 
with high prediction accuracy, while the student model is 
a small and shallow model that will receive the features of 
the teacher model. LSoft in Fig. 3 can be defined by Eq. (1), 
and LTask can be calculated by Eq. (2)

In Eq. (1), fT
(
xi
)
 is the logit value of the teacher model, 

and fS
(
xi
)
 is the logit value of the student model, while � is 

a hyperparameter that plays a scaling role. As � is larger, it 
has a softer probability distribution, and if it is 1, it is the 
same as the existing softmax function. The modified softmax 
function is equal to Eq. (3)

That is, the method of distilling the features of a large 
model into a small model is to designate the final softmax 
output of the large model as a soft target and use it in the 
training process of the small model. As a result, the small 
model has both the soft target, which is the output of the 
large model, and the hard target, which is the existing label 
value. The soft target means the probability for each class. 
The hard target is the result of one-hot encoding the prob-
ability of each class. Therefore, FD is applicable to the dis-
criminator model. Training proceeds by calculating the loss 
of both targets. A soft target is actually a value output by 
the model through training, and a value that the model can 
output sufficiently, so when training a new model, it can be 
adopted as a realistic target. Specifically, a large model is 

(1)

LSoft =
∑

xi∈X

KL

(
softmax

(
fT
(
xi
)

�

)
, softmax

(
fS
(
xi
)

�

))

(2)LTask = CrossEntropy(softmax
(
fS
(
xi
))
, ytrue)

(3)Softmax
�
zi
�
=

exp(zi∕�)∑
jexp(zi∕�)

Fig. 3   The architecture and principle of vanilla feature distillation (FD)
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trained using the training dataset, and after the large model 
has been sufficiently trained, a transfer dataset with the out-
put as a soft target is synthesized.

Then, a small model is trained using the transfer data-
set and the training dataset. Each loss function uses cross-
entropy, and as a result, the final loss function of the smaller 
model is equal to Eq. (4) multiplied by the weight � of LSoft ; 
� is used as a form of feedback control. Feedback control 
is a control function that compares the output result with 
the target value in automatic control, returns it to the previ-
ous step, and corrects it. FD showed similar results to the 
proposed method, but the calculation took one more time.

3 � Experimental setup

3.1 � Training and test environment

For hardware specification, the Central Processing Unit 
(CPU) used was Intel Core i9 11900 K Rocket LakeS; the 
graphics card was NVIDIA GeForce RTX 3090 24 GB, the 
RAM was G.Skill DDR4 64 GB, and the Solid State Drive 
(SSD) was FireCuda 530 Gaming Peripheral Component 
Interconnect express (PCIe) 4.0 Non Volatile Memory 
express (NVMe) 1 TB. Table 1 shows the hardware specifi-
cations for the experiment. We found that there was a limit 
in generating images with a resolution higher than 256 × 256 
due to hardware limitations.

For software specification, the operating system was 
ubuntu 20.04.3 Long Term Support (LTS); the Compute 
Unified Device Architecture (CUDA) was 11.2.67, the cuda 
Deep Neural Network library (cuDNN) was 8.1.0, Torch 
was 1.8.2, and python was 3.8.10. Torch is a framework for 
machine learning and deep learning. Table 2 presents the 
software specifications for the experiment:

3.2 � Model architecture

StyleGAN is the first model to use a combination of Progres-
sive Growing of Generative Adversarial Networks (PGGAN) 

(4)Ltotal = LTask + � ∙ LSoft

and neural style transfer technology [36, 37]. Its solution has 
been recognized and widely used. Of course, there are cur-
rently several applied models [38, 39]. However, in the case 
of the initial model, the number of layers that can be frozen 
in the generator and the discriminator is the same. Thus, an 
accurate comparative analysis is possible. For this reason, in 
this paper, StyleGAN was selected as the transfer learning 
method comparison model. StyleGAN drew attention for 
generating full high-definition quality results with few steps 
of control from detail to overall image. Figure 4 shows the 
generator architecture of StyleGAN:

A in Fig. 4 is a learned affine transformation. StyleGAN 
proposed a method called Adaptive Instance Normalization 
(AdaIN), and AdaIN uses reference style bias yb,i and scale 
ys,i . The mean and variance of the feature map xi output from 
the layers in the synthesis network are adjusted using yb,i and 
ys,i , respectively. AdaIN is given by Eq. (5):

A latent vector z is passed through the mapping network f  
to compute the style parameters, and an intermediate vector 
w is generated. Then, it passes through the fully connected 
layer, and synthesizes yb,i and ys,i vectors of length n . This 
is to separate the image style selection process. AdaIN pre-
vents style information from being lost between layers. The 
style vector added to each layer does not affect the feature of 
other layers. This latent vector w is better than the original 
vector z.

Using AdaIN, StyleGAN learns about interpretable dis-
entangled representations by solving the problem of entan-
glement in latent space. Generative models aim to capture 
generative factors in the training data. A disentangled rep-
resentation is associated with a symmetry transformation 
in which some properties are preserved, while other prop-
erties are changed. Symmetry transformation transforms 
certain properties, but preserves others. To realize a sym-
metry transformation in a neural network, neurons must have 
no connections with other neurons. That is, each neuron is 
in an isolated state. The concept of symmetry is broader 
than the scope of geometry and is mainly used in quantum 
mechanics.

(5)AdaIN
(
xi, y

)
= ys,i

xi − �(xi)

�(xi)
+ yb,i

Table 1   Hardware specifications

Hardware Specifications

CPU Intel Core i9 11900 K
Graphics card NVIDIA RTX 3090 24 GB
RAM G.Skill DDR4 64 GB
SSD FireCuda 530 Gaming 

PCIe4.0 NVMe 1 TB

Table 2   Software versions

Software Version

Operating system Ubuntu Linux 20.04.3 LTS
Programming language Python 3.8.10
GPGPU CUDA 11.2.67
Deep neural network library cuDNN 8.1.0
Deep learning framework Torch 1.8.2
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The disentangled representation is the process of learn-
ing symmetry through training, and becoming disentangled, 
even starting from the fully connected layer. This means that 
the latent unit is sensitive to changes in the generative factor. 
From the point of view of information theory, disentangled 
representation is highly useful. Because it compresses infor-
mation, it is more efficient than other algorithms, and this 
is because small things can be increased into many things. 
However, disentangled representation is only effective for 
latent vectors.

The synthesis network was designed with inspiration 
from PGGAN. The more the style vector of the synthesis 
network is in the front layer, the larger the feature is. Style-
GAN completely controlled the synthesized image using the 
latent vector w , And by changing the position of the w vec-
tor in the synthesis network, different levels of style were 
synthesized.

StyleGAN passes the w vector of I through the synthesis 
network to combine different images I and I′ , and turns it 
into an I′ vector at a specific point. I and I′ were synthesized 
with different vectors. When the transformation occurs in 
the early stages, the posture, appearance, and styles, such as 
glasses, are transmitted to the I . If the transformation occurs 
later, styles, such as the color and micro-shape of a face, are 
transferred to I′ . All I image features are maintained. Style-
GAN adds noise behind each convolutional layer to capture 
parts such as the position of the hair or the background of 
the face. The noise injection location determines the fineness 
and coarseness of the image.

3.3 � Dataset description

We used the pre-trained StyleGAN model with the 
FFHQ dataset, and fine-tuned our six datasets: Stanford 

Cars, Stanford Dogs, Oxford Flower, Caltech-256, CUB-
200–2011, and Insect-30. There are 196 classes in the Stan-
ford Cars dataset, with a total of 8,144 images, while the 
Stanford Dogs dataset has 120 classes and a total of 20,580 
images. There are 102 classes in the Oxford Flower dataset, 
a total of 8,189 images, and 256 classes in the Caltech-256 
dataset, with a total of 30,609 images embedded. There are 
200 classes in the CUB-200–2011 dataset, a total of 11,788 
images, while the Insect-30 dataset has 30 classes, a total of 
28,896 images.

In the case of the Insect-30 dataset, 30 species of forest 
insects that are commonly observable were selected. Five 
types of images from the ImageNet and 25 types of images 
through Screen Scraping were collected and organized into 
datasets through a separate screening process. Screen scrap-
ing is a program designed to extract only necessary data 
from data displayed on the internet screen. The image of the 
insect dataset was cropped around the insect in the image, 
as Fig. 5 shows:

The model used was trained on 256 × 256 images, and 
the iteration was maintained at 50,000. Learning was 

Fig. 4   Generator G architecture of StyleGAN and Adaptive Instance Normalization (AdaIN) layer mechanism

Fig. 5   Example of a cropped insect image
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successful even without progressive training. Progres-
sive training is a method of synthesizing high-quality and 
high-resolution images by adding a new layer in the train-
ing process of the generator and discriminator. We train 
the generator and discriminator from a 4 × 4 pixel low-
resolution image. After that, the resolution is increased by 
adding a layer, and the added layer is continuously trained 
without being frozen.

3.4 � Implementation details

When injecting label information into the StyleGAN 
architecture generator, a conditional version of AdaIN 
was used. When injecting label information into the dis-
criminator, the PGGAN projection discriminator was used. 
The loss function used logistics and the activation function 
used softplus. The softplus function is a variant of the 
Rectified Linear Unit (ReLU) that can relax the criteria for 
creating zero. It can be differentiated across all intervals. 
Additionally, exponential moving average (EMA) was 
used for generator updates.

When using the L2-SP or FD method, the loss was 
defined as the sum of the existing loss and the Mean 
Squared Error (MSE). The supervised loss was defined 
as the sum of L2 loss and perceptual, with the perceptual 
and embedding scales set to be 0.1, the regularizer scale 
set to be 0.02, and the image and perceptual normalization 
set to be True.

For the optimizer, Adaptive moment estimation (Adam) 
was used. Adam can perform deflection correction of hyper-
parameters by fusion of momentum and Adaptive Gradient 
algorithm (AdaGrad). The initial learning rate was set to 
0.002. The coefficient for primary momentum �1 was set to 
0.0. The coefficient for secondary momentum �2 was set to 
0.99. Epsilon was set to 1e-08. Weight decay was set to 0. 
AMSGrad was set to False. Foreach was None. The maxi-
mum was set to False. The capability was also set to False. 
For weight initialization, the linear layer used the Xavier 
normal distribution, and the convolutional layer used Kaim-
ing normal distribution.

In a standard normal distribution with a mean of 0 and 
a variance of 1, the latent vector z is sampled and the z size 
is set to 512. The random seed was set to 0. The mini-batch 
was set to 8. The image size was set to 256. The number 
of samples for evaluation was set to 5,000. The number of 
samples used for each training phase was set to 50,000. The 
basic step size was set to 6. The step size for evaluation 
was set to 1,000 and the step size for model save was set to 
10,000.

In this paper, the above settings were applied equally to 
all experiments in order to secure objectivity when drawing 
conclusions.

3.5 � Evaluation metrics

Evaluation indicators such as how to evaluate the syn-
thesized image and whether the trained model can be 
compared with other models may vary depending on the 
learning goal [40]. Objective functions of generators and 
discriminators in GAN are measured by comparing how 
well they each perform their roles. For example, a par-
ticular objective function measures how well a generator 
deceives a discriminator. Methods of comparing the results 
of GAN models include the Inception Score (IS), and the 
Fréchet Inception Distance (FID) [41, 42].

IS represents two performances of GAN. The first is 
the quality of the synthesized image, and the second is 
the diversity. A good result is that the conditional prob-
ability p(y|x) is easy to predict. That is, when an image is 
input, it should be possible to easily identify the type of 
object. IS classifies the synthesized image using the Incep-
tionV3 model, and predicts p(y|x) . Here, y is the label, and 
x is the synthesized image. This reflects the quality of the 
image. Then, p(y) is the marginal probability calculated 
as in Eq. (6):

Marginal probability is the probability distribution of X 
or Y  when two random variables X and Y  pair, and have a 
joint probability distribution as ( X, Y  ). Equation (6) elimi-
nates the remaining probabilities through integral or sum-
mation. If the images synthesized in Eq. (7) are diverse, 
the data distribution for y should be uniform. That is, it 
must have high entropy:

When synthesizing only one image per class, IS may 
misrepresent performance. This is because p(y) can still 
be uniform, even with low diversity.

Introduced in 1957 by the French mathematician 
Maurice René Fréchet, FID was inspired by the metric. 
FID also uses Inception V3, and extracts features from 
the middle layer. FID models the data distribution of 
the extracted features using multi-variate normal dis-
tribution with mean � and covariance matrix 

∑
 added. 

The lower the FID value, the better, because the image 
quality and diversity increase. FID is sensitive to mode 
collapse. So, the more similar images, the higher the 
value. FID is resistant to noise, and can detect missing 
samples within a class.

Because IS improves performance by synthesizing only 
one kind of class, FID is better than IS. FID calculates the 
distance between images in pixel space, and is equivalent 
to Eq. (8):

(6)∫ z

p(y|x = G(z))dz

(7)IS(G) = exp(EX∼pdata
DKL(p(y|x) ∥ p(y)))
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In Eq. (8), � is the mean, 
∑

 is the covariance matrix, 
x is the real image, and g is the synthesized image. The 
Trace of a Matrix (Tr) is a summary of all elements of a 
diagonal, that is, the sum of the diagonals. In a covari-
ance matrix, the diagonal is an element with the same 
row and column indices in a square-shaped matrix. The 
key is to assume that the vector passing through Incep-
tionV3 follows a normal distribution. Without this 
assumption, the FID value cannot be calculated; and even 
so, it is not an accurate number. The FID can be trans-
formed into the Fréchet Audio Distance (FAD) in music 
synthesis, the Fréchet Video Distance (FVD) in video 
synthesis, and the Fréchet ChemNet Distance (FCD) in 
molecular synthesis.

Precision, recall, and F1 score are also used as evalua-
tion metrics [43]. The more similar the synthesized image 
is to the real image, the higher the precision. The more the 
generator synthesizes the samples from the training dataset 
without duplication, the higher the recall. Recall is also 
called hit rate, sensitivity, and true positive rate. The F1 
score is the harmonic mean of precision and recall. The 
harmonic mean is the reciprocal of the arithmetic mean of 
n positive numbers and their reciprocals.

There are also coverage and density [44]. The author 
of the paper first forms a manifold with k-Nearest Neigh-
borhood ( k NN), before defining fidelity and diversity. In 
other words, fidelity and diversity are defined after assum-
ing that the Euclidean distance that can contain k pieces 
of data closest to a specific vector V  is formed as the cor-
responding data manifold. Density is a ratio indicating 
how much density of synthetic image is included in the 
manifold synthesized with real image. If the density value 
is large, the synthetic image is distributed at high density 
in the manifold and does not deviate significantly from the 
distribution of the original dataset. The density is given 
by Eq. (9):

Coverage is a ratio indicating how many manifolds con-
tain the synthesized image on multiple manifolds synthe-
sized with the real image. If the model synthesizes images 
only in a part or a narrow space in the real image manifold, 
fidelity and diversity have a trade-off relationship; but if 
the synthesized distribution can cover the real image dis-
tribution as a whole, the trade-off problem can be solved. 
NVIDIA announced improved precision and recall, but 
claim that they are too sensitive to outliers, and that IS and 
FID cannot distinguish fidelity and diversity to evaluate, 

(8)

FID(x, g) = ||ux − ug||22 + Tr

(∑
x
+
∑

g
−2

(∑
x

∑
g

) 1

2

)

(9)Density ∶=
1
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but density and coverage are possible [45]. The Coverage 
is given by Eq. (10):

The IS, FID, precision, recall, F1 score, coverage, and 
density all use Inception V3, so it is a feature extraction-
based methodology. If the model is not good at feature 
extraction, the same value can be calculated, no matter 
which image is synthesized.

Research is still ongoing regarding end-to-end evaluation 
metrics that can detect and prevent problems in GAN, such 
as earlier mode collapse, as well as cost optimization [46]. 
However, it is difficult to find a satisfactory solution. We use 
FID, coverage, and density, but we propose to find and apply 
an evaluation metrics suitable for the model to be used based 
on a theoretical basis, or through a lot of trial and error.

4 � Results

Figure 6 visualizes the synthesized image using the exist-
ing weights and fine-tuned weights for the FFHQ dataset. 
The similar latent code shared the similar meaning after 
fine-tuning.

Table 3 evaluates the FID values of the existing and pro-
posed methods of models trained with the Stanford Cars 
and Stanford Dogs datasets. For the Stanford Cars dataset, 
Freeze D fixed up to discriminator layer 5, and Freeze G 
fixed it up to generator layer 3. Partial fine-tuning method 
was fixed up to generator layer 4 and discriminator layer 4. 
For the Stanford Dogs dataset, Freeze D fixed up to discrimi-
nator layer 5, and Freeze G fixed it up to generator layer 2. 
Partial fine-tuning method was fixed up to generator layer 5 
and discriminator layer 7. All tables in Appendix 6.1 shows 
the rationale for layer freezing. The weights of L2-SP and 
FD were selected from {0.1, 1, 10}, and in the case of regu-
larization weights, ‘1’ was set for all experiments. FD lin-
earized the fifth activation of the discriminator, and matched 
the activation of the source and target discriminators. Since 
the activation size is different for each layer, L2 − norm nor-
malized to the feature dimension was used. The hyperparam-
eter of GLO was set to the value proposed by the author of 
the paper, and for the minor network, a 2-layer Multi-Layer 
Perceptron (MLP) and Rectified Linear Unit (ReLU) were 
used as the activation functions.

In Stanford Cars, the partial fine-tuning method showed 
the highest performance with FID 10.84. The FID of Min-
eGAN with GLO was 33.65, showing the lowest perfor-
mance, and there was a performance difference between 
partial fine-tuning and 22.81. In Stanford Dogs, the Freeze 
G method showed the highest performance with an FID of 

(10)Coverage ∶=
1

N

∑N

i=1
1∃js.t.Yj ∈ B(Xi,NNDk

(
Xi

)
)
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29.83. The FID of scale/shift with GLO was 57.30, showing 
the lowest performance, and there was a performance differ-
ence between Freeze G and 27.47. While MineGAN could 
potentially generate high-quality images with specific attrib-
utes, such as poses and lighting, it may not be able to cap-
ture the full range of diversity present in the training data. 
There can be several reasons for the performance degrada-
tion of FID in scale/shift with GLO. Firstly, updating only 
the normalization layer while keeping the weights frozen can 
make it difficult for the model to learn the target dataset and 
result in unstable training. Secondly, there may be a more 
appropriate layer than the current normalization layer that 

can improve performance. Thirdly, hyperparameters such 
as learning rates may also contribute to performance deg-
radation. Compared to methods other than fine-tuning, the 
proposed freezing and partial fine-tuning methods were both 
performance and stability solutions. We chose our method 
because FD has similar results to the proposed method, but 
it is twice as slow in speed.

Table 4 evaluates the coverage and density values of 
the previously published method and the proposed method 
of the model trained with the Stanford Cars and Stanford 
Dogs datasets. When evaluating the coverage of Stanford 
Cars, Freeze D fixed up to discriminator layer 5, and when 
evaluating density, Freeze D fixed up to discriminator layer 

(a) FFHQ (b) Stanford Cars (c) Stanford Dogs

Fig. 6   (a) was synthesized by StyleGAN trained on the FFHQ data-
set. (b) shows 100 car images synthesized by the partial fine-tuning 
method, which had the best performance in the ‘Stanford Cars’ data-
set. (c) shows 100 dog images synthesized by the Freeze G method, 

which had the best performance in the ‘Stanford Dogs’ dataset. As a 
result of the analysis, we found that each item represented a similar 
latent code and that similar latent codes shared similar meanings even 
after freezing

Table 3   Comparison of various methods under the ‘Stanford Cars’ 
and ‘Stanford Dogs’ datasets. Values indicate the best FID scores. 
‘ + ’ indicates the styleGAN is trained by GLO loss For each value, 
the methods are marked with the best performance using gold , sil-
ver , and bronze  medals

Table 4   Comparison of various methods under the ‘Stanford Cars’ 
and ‘Stanford Dogs’ datasets. Left and right values indicate the best 
coverage and density scores. ‘ + ’ indicates the styleGAN is trained by 
GLO loss

Bold items mean the highest performance

Method Stanford Cars Stanford Dogs

Fine-tuning 0.939/7.695 0.246/16.412
 + GLO 0.607/14.845 0.115/30.949
Scale/shift 0.938/7.197 0.241/15.901
 + GLO 0.564/9.472 0.108/29.929
MineGAN 0.434/2.668 0.118/27.374
 + GLO 0.431/2.714 0.118/27.360
L2-SP ( G) 0.937/7.702 0.243/16.086
L2-SP ( D) 0.934/7.443 0.235/15.450
L2-SP ( G,D) 0.936/7.430 0.236/16.055
FD 0.940/7.661 0.251/16.161
FreezeD 0.941/7.642 0.246/17.396
FreezeG 0.943/7.837 0.250/17.833
Partial fine-tuning 0.945/7.552 0.246/18.129
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6. Freeze G fixed up to generator layer 3 when evaluating 
coverage and fixed up to generator layer 5 when evaluating 
density. Partial fine-tuning fixed up to generator layer 7 and 
discriminator layer 4 when evaluating coverage and fixed up 
to generator layer 6 and discriminator layer 2 when evaluat-
ing density.

When evaluating the coverage of Stanford Dogs, Freeze 
D fixed up to discriminator layer 6, and when evaluating 
density, Freeze D fixed up to discriminator layer 1. In Freeze 
G , both coverage and density were fixed up to the generator 
layer 2 and evaluated. Partial fine-tuning fixed up to genera-
tor layer 7 and discriminator layer 1 when evaluating cover-
age, and fixed up to generator layer 1 and discriminator layer 
6 when evaluating density. Table 3 shows the hyperparam-
eter settings of the other methods that were set.

In Stanford Cars, partial fine-tuning showed the high-
est performance with a coverage of 0.945. The coverage 
of MineGAN with GLO showed the lowest performance 
at 0.431, and there was a performance difference between 
partial fine-tuning and 0.514. For density, fine-tuning with 
GLO showed the highest performance at 14.845. Density 
of MineGAN showed the lowest performance at 2.668, and 
there was a performance difference between fine-tuning 
with GLO and 12.177. In Stanford Dogs, FD showed the 
highest performance with coverage 0.251. The coverage 
of scale/shift with GLO showed the lowest performance at 
0.108, and there was a difference in performance between 

FD and 0.143. For density, fine-tuning with GLO showed 
the highest performance at 30.949. Density of L2-SP(D ) 
showed the lowest performance at 15.450, and there was 
a performance difference between fine-tuning with GLO 
and 15.499. If the size of the target dataset to be learned 
is smaller than the previously learned dataset, overfitting 
may occur. As a result, the synthesized images may not be 
diverse enough to represent the full range of the target data-
set, leading to degraded coverage performance. Addition-
ally, updating the normalization layer of GAN only in the 
freezing state can cause inconsistent normalization of inputs 
to the generator during training, leading to a degradation 
in coverage performance. These issues may arise because 
the normalization layer adapts to a specific distribution of 
the training data and may not be suitable for samples from 
the target dataset. If the previously learned dataset and the 
target dataset are significantly different, density performance 
may also be degraded. When using L2-SPs to control the 
distance between the target model and the source model, if 
the normalization strength is too weak, the target model may 
deviate too much from the source model during fine-tuning, 
leading to poor density performance.

Figure 7 shows the (a) FID, (b) Coverage, and (c) Density 
values for each epoch of the existing method and the pro-
posed method. The early stopping algorithm was not used 
to observe how each evaluation metric changed until 50,000 
epochs. In the first epoch of Fig. 7a, partial fine-tuning 

Fig. 7   Trends of FID, coverage, and density scores of the freeze-based methods in the Stanford Cars dataset
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showed the highest performance with FID 23.89, and the 
training speed was faster than Freeze D and Freeze G . Min-
eGAN showed the lowest performance with FID 34.32, and 
there was a performance difference between partial fine-
tuning and 10.43. Even at 50,000 epochs, partial fine-tuning 
showed the highest performance at 10.85, while MineGAN 
showed the lowest performance at 33.79. There was a per-
formance difference of 22.94 between partial fine-tuning and 
MineGAN. Looking at the graph change trend, the other 
methods, except MineGAN, showed a smooth upward trend 
up to 50,000 epochs.

At epoch 1 in Fig.  7b, Freeze D showed the highest 
performance with a coverage of 0.497, while MineGAN 
showed the lowest performance with a coverage of 0.409. 
There was a performance difference of 0.088 between Freeze 
D and MineGAN. FD and Freeze G started training with 
the second and fourth highest performance, respectively, 
but showed higher performance than partial fine-tuning at 
50,000 epochs. The increase in value was 0.011 higher in 
Freeze G than in FD. MineGAN still showed the lowest per-
formance with 0.418. There was a performance difference 
of 0.522 between Freeze G and MineGAN. Looking at the 
graph change trend, except for MineGAN, the other methods 
showed a smooth upward trend up to 50,000 epochs. The 
slow initial convergence of the FD-based freezing method 
may be due to insufficient capacity of the pre-trained genera-
tor to synthesize similar images within the target dataset, or 

limitations in the distillation loss used. In contrast, partial 
fine-tuning can lead to faster convergence because it only 
updates a fraction of the pre-trained generator.

At epoch 1 in Fig. 7c, fine-tuning with GLO showed 
the highest performance with a density of 4.769, while 
L2-SP(G ) showed the lowest performance with a density of 
2.008. There was a performance difference of 2.761 between 
fine-tuning with GLO and L2-SP(G ). Fine-tuning with GLO 
showed the highest performance during epoch 1, but after a 
certain section, the performance continued to decline. Scale/
shift with GLO started training with the second highest per-
formance, but showed the highest performance of 8.076 at 
50,000 epochs. MineGAN with GLO showed the lowest 
performance at 2.491. Scale/shift with GLO and MineGAN 
with GLO had a performance difference of 5.585. When 
using supervised learning loss, the presence of noise in 
the training data labels or mislabeling can have a negative 
impact on the performance. Figure 13a-h of Appendix 6.2 
shows the image synthesized by the previously announced 
method.

Figure 8 shows the (a) FID, (b) Coverage, and (c) Den-
sity values for each epoch of the existing method and the 
proposed method. The early stopping algorithm was not 
used to observe how each evaluation metric changed until 
50,000 epochs. In epoch 1 of Fig. 8a, partial fine-tuning 
showed the highest performance with FID 52.08, while 
MineGAN with GLO showed the lowest performance with 

Fig. 8   Trends of FID, coverage, and density scores of the freeze-based methods on the Stanford Dogs dataset
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FID 57.23. There was a performance difference of 5.15 
between partial fine-tuning and MineGAN with GLO. 
Freeze G started training with the fourth highest perfor-
mance, but had the highest performance of 29.83 at 50,000 
epochs. MineGAN with GLO showed the lowest perfor-
mance at 57.46; in contrast, the performance decreased by 
0.23 compared to the 1st epoch. There was a performance 
difference of 27.63 between Freeze G and MineGAN with 
GLO. Because the pre-trained dataset may not represent 
the distribution of the dataset to be trained, the conver-
gence speed of Freeze G may be slow enough, and the 
discriminator may have better learning capabilities than 
the generator, making it difficult for the generator to syn-
thesize high-quality samples quickly. It is considered that 
MineGAN failed to train, and more efforts such as increas-
ing the training data or selecting better initialization in 
the step-by-step hyperparameter tuning process may be 
necessary.

At epoch 1 in Fig. 8b, MineGAN showed the highest per-
formance with a coverage of 0.118, while partial fine-tuning 
showed the lowest performance with a coverage of 0.111. 
There was a performance difference of 0.007 between Min-
eGAN and partial fine-tuning. However, MineGAN’s 50,000 
epoch coverage was 0.116, which was 0.002 lower than the 
1 epoch. Fine-tuning and Freeze G started training with the 
second highest performance, but at 50,000 epochs, Freeze G 
performed 0.009 higher. There was a performance difference 
of 0.132 between Freeze G and MineGAN.

At epoch 1 in Fig. 8c, MineGAN showed the highest per-
formance with density 26.086, while L2-SP(G ) showed the 
lowest performance with density 16.086. There was a perfor-
mance difference of 10.0 between MineGAN and L2-SP(G ). 
At epoch 1, MineGAN had the highest performance, but 
at epoch 50,000, scale/shift with GLO allowed inversion. 
Scale/shift with GLO started training with the second high-
est performance, but showed the highest performance of 
29.907 at 50,000 epochs. FD showed the lowest performance 
at 6.835, while there was a performance difference of 23.072 
with scale/shift with GLO. In the case of scale/shift with 
GLO, since no issues occurred when updating the normali-
zation layer each time, it can be naturally assumed that it led 
to performance improvement.

Table 5 evaluates the FID values of vanilla fine-tuning 
and the proposed method. Vanilla means original, with no 
added ingredients. For Oxford Flower, Freeze G showed the 
highest performance with FID 14.13. Fine-tuning’s FID was 
14.51, showing the lowest performance, and there was a per-
formance difference of 0.38 from Freeze G . CUB-200–2011 
showed the highest performance in partial fine-tuning with 
FID 14.66. Fine-tuning’s FID was 15.14, showing the lowest 
performance, and there was a performance difference of 0.48 
from partial fine-tuning. For Caltech-256, Freeze G showed 
the highest performance with 33.30. Fine-tuning’s FID was 

33.59, showing the lowest performance, while there was a 
performance difference of 0.29 from Freeze G.

As a result of the overall analysis, the proposed method 
secures performance and stability, but not in the case of the 
Caltech-256 dataset. Caltech-256 was more difficult to learn 
than Oxford Flower and CUB-200–2011, because of the 
large shift in distribution during training. To train a dataset 
with large distribution variations, it is necessary to minimize 
the constrains of the model. The point is, when looking only 
at the FID values, the proposed method showed better sta-
bility than the fine-tuning method for all datasets. Figure 9 
shows an Oxford Flower image synthesized by Freeze D 
and Freeze G , while Fig. 14q-t of Appendix 6.2 shows the 
CUB-200–2011 and Caltech-256 images.

Table 6 evaluates the coverage and density values of 
vanilla fine-tuning and the proposed method. For Oxford 
Flower, Freeze D and partial fine-tuning showed the high-
est performance with a coverage of 0.783. The coverage of 
Freeze G showed the lowest performance at 0.779, and there 
was a performance difference of 0.004 between Freeze D and 
partial fine-tuning. For density, fine-tuning showed the high-
est performance at 12.670. Freeze D showed the lowest per-
formance at 11.746, and there was a performance difference 
between fine-tuning and 0.924. The statistical properties of 
the Oxford Flower dataset are different from those of the 
previously learned dataset. Therefore, fine-tuning is better 
able to adapt to the specific properties of the target dataset 
than the freezing method. The difference between the Oxford 
Flower dataset and the CUB-200–2011 and Caltech-256 
datasets can be classified into five main categories: number 
of classes, number of images, image quality, object size and 
complexity, and annotation quality.

In CUB-200–2011, Freeze D showed the highest perfor-
mance with a coverage of 0.708. The coverage of Freeze 
G was 0.693, showing the lowest performance, while there 
was a performance difference of 0.015 from Freeze D . As 
for density, Freeze G showed the highest performance with 
4.133. Partial fine-tuning showed the lowest performance at 

Table 5   FID scores under StyleGAN architecture. Values indicate the 
best FID scores. For each value, the methods are marked with the best 
performance using gold , silver , and bronze  medals

27013How to train your pre-trained GAN models



1 3

3.977, while there was a performance difference of 0.156 
with Freeze G . When the discriminator was frozen, the cov-
erage performance was high, and when the generator was 
frozen, the density performance was high.

For Caltech-256, Freeze G showed the highest perfor-
mance with a coverage of 0.361. Freeze D showed the lowest 
performance at 0.348, and there was a performance differ-
ence of 0.013 from Freeze G . For density, partial fine-tun-
ing showed the highest performance at 59.717. Fine-tuning 
showed the lowest performance at 58.324, and there was 
a performance difference between partial fine-tuning and 
1.393. The partial fine-tuning method demonstrated excel-
lent density performance on datasets with large distribution 
shifts during training, such as Caltech-256.

Figure 10 shows the (a) FID, (b) Coverage, and (c) Den-
sity values for each epoch of the existing method and the 
proposed method. The early stopping algorithm was not used 
to observe how each evaluation metric changed until 50,000 
epochs. In Fig. 10a, at epoch 1, the FID of fine-tuning was 
22.05, Freeze D was 21.91, Freeze G was 22.06, and partial 

fine-tuning was 21.95. In epoch 1, Freeze D showed the 
highest performance, while Freeze G showed the lowest 
performance. There was a performance difference of 0.15 
between Freeze D and Freeze G . At 50,000 epochs, fine-
tuning’s FID was 14.60, showing an upward trend of 7.45, 
while Freeze D ’s was 14.30, showing an upward trend of 
7.61. Freeze G was 14.18, which was 7.88, while partial fine-
tuning was 14.27, showing an upward trend of 7.68. When 
the expressive ability of the generator is limited, or when 
pre-trained models are biased toward certain types of data, 
freezing the generator and training the discriminator can 
help the generator learn more complex expressions. How-
ever, when dealing with complex datasets, fixing only the 
generator may not be sufficient to capture all the nuances of 
the data distribution. In addition, there may be cases where 
freezing the discriminator may not effectively capture the 
difference between the distribution to be trained and the dis-
tribution to be learned.

In Fig. 10b, at epoch 1, the coverage of fine-tuning was 
0.628, Freeze D was 0.627, Freeze G was 0.629, and par-
tial fine-tuning was 0.625. In epoch 1, Freeze G showed the 
highest performance, while partial fine-tuning showed the 
lowest performance. There was a performance difference of 
0.004 between Freeze G and partial fine-tuning. At 50,000 
epochs, the coverage of fine-tuning was 0.781, showing an 
upward trend of 0.153, while that of Freeze D was 0.775, 
showing an upward trend of 0.148. Freeze G showed an 
upward trend of 0.148 with 0.777, while partial fine-tuning 
showed an upward trend of 0.151 with 0.776. Because some 
layers of the generator are frozen and do not update their 

(a) Oxford Flower (Freeze ) (b) Oxford Flower (Freeze )

Fig. 9   Samples synthesized by StyleGAN trained by (a) Freeze D , and (b) Freeze G , under the Oxford Flower dataset. Each row indicates the 
same class. Freeze G generates more class-consistent samples than does Freeze D

Table 6   Coverage and density scores under StyleGAN architecture. 
Left and right values indicate the best coverage and density scores

Bold items mean the highest performance

Method Oxford Flower CUB-200–2011 Caltech-256

Fine-tuning 0.781/12.670 0.697/4.082 0.353/58.324
FreezeD 0.783/11.746 0.708/4.090 0.348/58.398
FreezeG 0.779/12.585 0.693/4.133 0.361/59.272
Partial fine-tuning 0.783/12.447 0.700/3.977 0.353/59.717
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weights, the existing dataset features remain static and may 
be limited in their ability to capture new features of the tar-
get dataset during training.

In Fig. 10c, at epoch 1, the density of fine-tuning was 
12.670, Freeze D was 11.746, Freeze G was 12.585, and par-
tial fine-tuning was 12.447. In epoch 1, fine-tuning showed 
the highest performance, while Freeze D showed the lowest 
performance. There was a performance difference of 0.924 
between fine-tuning and Freeze D . At 50,000 epochs, the 
density of fine-tuning was 6.358, showing a downward trend 
of 6.312, while in the case of Freeze D , 6.141, showing a 
downward trend of 5.605. Freeze G ’s density fell 6.29 per-
cent to 6.295, while partial fine-tuning fell 6.011percent to 
6.436. While there may be several reasons for performance 
degradation, the main problems are considered to be com-
patibility with the used model, insufficient training time, and 
inappropriate hyperparameter settings.

Figure 11 shows the (a) FID, (b) Coverage, and (c) Den-
sity values for each epoch of the existing method and the 
proposed method. The early stopping algorithm was not used 
to observe how each evaluation metric changed until 50,000 
epochs. In Fig. 11a, at epoch 1, the FID of fine-tuning was 
34.04, Freeze D was 33.9, Freeze G was 34.11, and partial 
fine-tuning was 33.63. In epoch 1, partial fine-tuning showed 
the highest performance, while Freeze G showed the lowest 

performance. There was a performance difference of 0.48 
between partial fine-tuning and Freeze G . At 50,000 epochs, 
fine-tuning’s FID was 15.14, showing an upward trend of 
18.9, while Freeze D ’s was 14.82, showing an upward trend 
of 19.08. Freeze G ’s FID was 14.95, showing an upward 
trend of 19.16, while partial fine-tuning was 15.01, showing 
an upward trend of 18.62. Like this, Freeze D can specialize 
in distinguishing between real and synthetic images when 
not exposed to new information during training.

In Fig. 11b, at epoch 1, the coverage of fine-tuning was 
0.246, Freeze D was 0.241, Freeze G was 0.241, and par-
tial fine-tuning was 0.253. In epoch 1, partial fine-tuning 
showed the highest performance, while Freeze D and Freeze 
G showed the lowest performance. There was a performance 
difference of 0.012 between partial fine-tuning and Freeze D 
and Freeze G . At 50,000 epochs, the coverage of fine-tuning 
was 0.695, showing an upward trend of 0.449, while that 
of Freeze D was 0.707, showing an upward trend of 0.466. 
Freeze G showed an upward trend of 0.439 with 0.680, while 
partial fine-tuning showed an upward trend of 0.687 with 
0.434. Assuming that the discriminator has learned how to 
distinguish features and patterns of a wide range of images, 
using a frozen discriminator can lead to better performance 
than fine-tuning. In this case, the generator can synthesize 
more diverse and representative samples without overfitting.

Fig. 10   Trends of FID, coverage, and density scores of freeze-based methods on the Oxford Flower dataset

Fig. 11   Trends of FID, coverage, and density scores of freeze-based methods on the CUB-200–2011 dataset
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In Fig. 11c, at epoch 1, the density of fine-tuning was 
4.082, Freeze D was 4.090, Freeze G was 4.133, and partial 
fine-tuning was 3.977. In epoch 1, Freeze G showed the 
highest performance, while partial fine-tuning showed the 
lowest performance. There was a performance difference of 
0.156 between Freeze G and partial fine-tuning. At 50,000 
epochs, the density of fine-tuning was 3.408, showing a 
decline of 0.674, and Freeze D of 3.333, showing a decline 
of 0.75. Freeze G ’s density fell 0.711 to 3.422, and partial 
fine-tuning fell 0.616 to 3.361. Overfitting may be the cause, 
such as in the CUB-200–2011 dataset, but the starting point 
may be different. The biggest difference between the two 
datasets is complexity. Unlike the Oxford Flower dataset, 
the CUB-200–2011 dataset contains 200 species of birds 
with more variability in terms of pose and perspective, mak-
ing it difficult for the model to learn generalizable features. 
This is because the Oxford Flower Dataset contains 17 types 
of flowers with 8,189 images, while the CUB-200–2011 
Dataset contains 200 species of birds with 11,000 images.

Figure 12 shows the (a) FID, (b) Coverage, and (c) Den-
sity values for each epoch of the existing method and the 
proposed method. The early stopping algorithm was not used 
to observe how each evaluation metric changed until 50,000 
epochs. In Fig. 12a, at epoch 1, the FID of fine-tuning was 
42.82, Freeze D was 43.29, Freeze G was 42.76, and par-
tial fine-tuning was 43.28. In epoch 1, Freeze G showed the 
highest performance, while Freeze D showed the lowest 
performance. There was a performance difference of 0.53 
between Freeze G and Freeze D . At 50,000 epochs, Fine-
tuning’s FID was 34.0, showing an upward trend of 8.82, 
and Freeze D ’s was 33.65, showing an upward trend of 9.64. 
Freeze G ’s FID was 33.51, showing an upward trend of 9.25, 
and partial fine-tuning was 33.51, showing an upward trend 
of 9.77. Partial fine-tuning can improve generalization per-
formance by adapting to specific features of the Caltech-256 
dataset and utilizing representations learned from a pre-
trained model. Additionally, it can reduce the risk of over-
fitting by reducing the number of parameters that need to be 
updated during training.

In Fig. 12b, at epoch 1, the coverage of fine-tuning was 
0.320, Freeze D was 0.315, Freeze G was 0.319, and par-
tial fine-tuning was 0.316. In epoch 1, fine-tuning showed 
the highest performance, while Freeze D showed the lowest 
performance. There was a performance difference of 0.005 
between fine-tuning and Freeze D . At 50,000 epochs, the cov-
erage of fine-tuning was 0.350, which showed an upward trend 
of 0.03, while that of Freeze D was 0.346, showing an upward 
trend of 0.031. Freeze G showed an upward trend of 0.042 
with 0.361, while partial fine-tuning showed an upward trend 
of 0.037 with 0.353. Freeze G may have preserved generator 
capacity and prevented overfitting by focusing updates on the 
discriminator. Fine-tuning can result in a significant decrease 
in the quality of synthesized samples if the situation worsens 
and the generator forgets the previously learned information.

In Fig. 12c, at epoch 1, the density of fine-tuning was 
58.324, Freeze D was 58.398, Freeze G was 59.272, and 
partial fine-tuning was 59.717. In epoch 1, partial fine-tuning 
showed the highest performance, while fine-tuning showed 
the lowest performance. Partial fine-tuning and fine-tuning 
had a performance difference of 1.393. At 50,000 epochs, 
fine-tuning's density fell 33.003 to 25.321, while Freeze D 
fell 33.019 to 25.379. Freeze G fell 33.827 to 25.445, while 
partial fine-tuning fell 35.617 to 24.1. If the dataset that the 
model has previously learned, such as Caltech-256, has high 
variability, it may be difficult to generalize as such. Addi-
tionally, since there are inherent limitations to the model, it 
can be difficult to learn a new distribution if the objects or 
attributes in the training dataset are significantly different 
from what has been previously learned.

Table 7 evaluates the proposed method FID values of a 
model trained with specific forest insect class data. The 16 
forest insect classes selected and evaluated can be found 
relatively easily in Jeollanam-do, Korea, and Fig. 14a-p of 
Appendix 6.2 shows the synthetic images. As a result of the 
analysis, when looking only at the FID values, Freeze D 
best synthesized the 8 species Cabbage Butterfly, Comostola 
Subtiliaria, Drepana Curvatula, Dynastid Beetle, Ground 
Beetle, Short-tailed Blue Butterfly, Stinkbug, and Water 

Fig. 12   Trends of FID, coverage, and density scores of freeze-based methods on the Caltech-256 dataset
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Strider. Eight species of Actias Gnoma Butler, Apatura 
Metis, Cicada, Nymphalid, Papilio Bianor, Peach Pyralid, 
Stag Beetle, and Yellow Swallowtail Butterfly were best 
synthesized by the partial fine-tuning method. Freeze G had 
lower FID values for all experimental settings than Freeze D 
and partial fine-tuning in 16 forest insect species. Both meth-
ods include various sizes and colors of species, but Freeze D 
includes larger, more colorful, and more complex patterned 
species. Freeze D includes more aquatic species, while par-
tial fine-tuning includes more terrestrial species. Partial 
fine-tuning has more species that are active during the day, 
as well as species that are restricted to certain ranges or 
specific areas. The method of freezing both generators and 
discriminators enables better class-specific synthesis, but 
the method of freezing discriminators focuses on improv-
ing overall image quality. In terms of the results alone, there 
seems to be a class that synthesizes the discriminator well, 

but it is difficult to affirm when comparing the performance 
with the method of freezing for both the generator and the 
discriminator.

Table 8 evaluates the coverage and density values of the 
proposed method of a model trained with specific forest 
insect class data. As a result of the analysis, when looking 
only at the coverage value, Freeze D synthesized the remain-
ing species relatively well, except for Cabbage Butterfly, 
Papilio Bianor, and Water Strider types. Freeze G synthe-
sized the rest of the species relatively well, except for the 9 
species of Actias Gnoma Butler, Cicada, Comostola Subtili-
aria, Ground Beetle, Nymphalid, Peach Pyralid, Stinkbug, 
Water Strider, and Yellow Swallowtail Butterfly. Partial fine-
tuning synthesized the remaining 8 species relatively well, 
except for Apatura Metis, Cicada, Comostola Subtiliaria, 
Ground Beetle, Nymphalid, Papilio Bianor, Peach Pyralid, 
and Yellow Swallowtail Butterfly. When using coverage as 

Table 7   FID scores under 
the Insect-30 dataset. Values 
indicate the best FID scores. 
For each value, the methods 
are marked with the best 
performance using gold  
medals

Table 8   Coverage and density scores under the Insect-30 dataset. Left and right values indicate the best coverage and density scores

Bold items mean the highest performance

Actias Gnoma 
Butler

Apatura
Metis

Cabbage But-
terfly

Cicada Comostola 
Subtiliaria

Drepana Cur-
vatula

Dynastid
Beetle

Ground
Beetle

FreezeD 0.965/3.917 1.000/3.485 0.954/5.805 0.993/5.025 0.996/6.636 1.000/6.888 1.000/6.038 0.998/5.250
FreezeG 0.962/3.936 1.000/3.470 0.960/5.955 0.992/4.930 0.995/7.109 1.000/7.024 1.000/6.074 0.994/5.343
Partial
fine-tuning

0.965/3.711 0.999/3.560 0.960/5.715 0.992/5.073 0.993/7.062 1.000/6.905 1.000/5.801 0.997/5.703

Nymphalid Papilio
Bianor

Peach
Pyralid

Short-tailed 
Blue But-
terfly

Stag
Beetle

Stinkbug Water
Strider

Yellow 
Swal-
lowtail 
Butterfly

FreezeD 1.000/5.413 0.985/5.996 0.996/6.336 1.000/8.014 1.000/5.355 1.000/7.903 0.998/8.984 0.998/6.366
FreezeG 0.998/5.319 0.988/6.089 0.983/5.830 1.000/7.710 1.000/5.918 0.998/7.829 0.996/9.039 0.997/6.819
Partial
fine-tuning

0.999/5.148 0.979/5.864 0.992/5.920 1.000/8.153 1.000/5.427 1.000/8.045 0.999/8.451 0.996/6.384
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an evaluation metric, it is difficult to rank well-synthesized 
classes because many of them are common.

In terms of density values alone, Freeze D synthesized the 
3 species Apatura Metis, Nymphalid, and Peach Pyralid best. 
The 9 species of Actias Gnoma Butler, Cabbage Butterfly, 
Comostola Subtiliaria, Drepana Curvatula, Dynastid Beetle, 
Papilio Bianor, Stag Beetle, Water Strider, and Yellow Swal-
lowtail Butterfly were best synthesized by Freeze G . The 4 
species Cicada, Ground Beetle, Short-tailed Blue Butterfly, 
and Stinkbug were best synthesized by partial fine-tuning. 
All three methods include insects with diverse appearances, 
habitats, behaviors, and geographical distributions. However, 
Freeze D includes three species of Lepidopteran insects, par-
tial fine-tuning includes species from different insect orders 
and families, and Freeze G includes species from different 
insect orders, families, and genera. As with the Insect-30 
dataset, pinning only the generator of the GAN can also be 
effective in improving the density performance if the dataset 
is relatively small and there is a high risk of overfitting.

5 � Conclusion

The deep learning algorithms that led to the development of dis-
criminative modeling have also been applied to generative modeling. 
Among them, GAN can map from latent space to data space, and 
can train well on large unlabeled datasets. GAN are useful for image 
synthesizing tasks, and to improve existing deep learning algorithms. 
The performance of GAN is very surprising. For tasks that were dif-
ficult to perform with traditional methods, GAN showed excellent 
results. GAN research related to computer vision includes image 
super-resolution, high-resolution image synthesis, image synthesis 
using text, painting style simulation, and image-to-image translation. 
In addition, GAN are already being applied to music synthesis, video 
games, game design, and the film industry. Recently, GAN have also 
shown strong performance in image inversion and neural speech 
synthesis [47–49]. It is anticipated that even fields that are currently 
underdeveloped will soon make progress [50, 51].

GAN appeared in 2014, and although 7 years have passed, 
the problem of training instability of GAN still remains. 
Sometimes, when two neural networks diverge during train-
ing, the GAN does not converge at all. Many researchers 
have tried to stabilize the training of GAN. Initially, solu-
tions such as conditional batch normalization, conditional 
versions of adaptive instance normalization, mini-batch 
discrimination, and one-sided label smoothing have been 
proposed. After that, Feature Statistics Mixing Regulariza-
tion (FSMR), how to learn various distributions with linear 
projection applied to synthetic and real distributions with 
multi-discriminators, and how to provide visual guidelines 
to generators have been proposed [52–54]. As GAN evolve, 
we expect that this stabilization will ripen, and we will soon 
be able to train our models without any problems.

We used coverage and density for various performance 
evaluations, and found a problem. In all experiments, it is 
difficult to accurately determine from the coverage and den-
sity values whether the model converges or collapses. For 
example, in Fig. 7c, scale/shift with GLO showed the high-
est density performance, but in Fig. 13c of Appendix 6.2, 
a blurry image was inserted. For this reason, to secure the 
objectivity of the conclusion drawn, coverage and density 
are excluded from the training method evaluation.

The proposed method divides the generator and discrimi-
nator, and then freezing or partially fine-tuning. Based on the 
FID value alone, the proposed method was superior to the 
existing method, and based on this, it is judged that the trans-
ferability of the generator and discriminator can be univer-
sally applied to the image to be synthesized [55]. However, 
different results may be obtained, depending on the charac-
teristics of the data type used for training. This means that if 
the synthesis target is significantly different from the present, 
the optimization configuration can also be changed accord-
ingly. Therefore, the optimal method for the type of task to 
be solved can so far only be confirmed through experiments.

Although we provide a partial solution to the instabil-
ity problem of GAN training, we can design a method with 
better performance than the proposed method. In addi-
tion, if there is a higher-spec hardware infrastructure better 
than ours, images with a resolution higher than 256 × 256 
can be generated without restrictions. We believe that the 
upgraded version of FD will be promising [56–58]. Addition-
ally, ensembles or large and deep models can be difficult to 
deploy to mobile and Internet of Things (IoT) devices, but 
this difficulty can be solved by distilling features into small 
and shallow models. As 3D image synthesis technology is 
also accelerating, research on how to effectively fine-tune a 
pre-trained GAN on a 3D dataset is needed in the future [59].

Appendix

Ablation study on freezing layers

Table 9 shows the layer freezing result of the discriminator 
using the StyleGAN model. Stanford Cars showed the highest 
performance with FID 11.01 when trained and frozen up to 

Table 9   Ablation study on freezing layers of D on StyleGAN archi-
tecture under the ‘Stanford Cars’ and ‘Stanford Dogs’ datasets. Layer 
i indicates that the first i layers of the discriminator are frozen. Val-
ues indicate the best FID scores. For each value, the methods are 
marked with the best performance using gold , silver , and bronze 
 medals
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layer 5. When trained with freezing up to layer 1, FID showed 
the lowest performance at 13.71, and there was a performance 
difference of 2.7, compared to when freezing up to layer 5. 
Stanford Dogs also showed the highest performance with FID 
30.10 when trained and frozen up to layer 5. When training 
with freezing up to layer 1, FID showed the lowest perfor-
mance at 41.50, while there was a performance difference of 
11.4 between freezing up to layer 5 and FID. The choice of 
updating the weights of all layers was not a good method, and 
it didn't always follow the law of large numbers.

Table 10 shows the layer freezing result of the dis-
criminator using the StyleGAN model. Stanford Cars 
showed the highest performance with coverage of 0.941 
when frozen up to layer 5, and showed the highest perfor-
mance with a density of 7.642 when frozen up to layer 6. 
When only one layer was frozen and trained, the coverage 
showed the lowest performance at 0.880; and when two 
layers were frozen and trained, the coverage showed the 
lowest performance at 6.245. In the case of coverage, the 
difference between the highest and lowest performance 
was 0.061; while in the case of density, the difference 
between the highest and lowest performance was 1.397.

Stanford Dogs showed the highest performance with cov-
erage of 0.246 when 5 layers were frozen, and a density of 
17.396 when only 1 layer was frozen. When only one layer 
was frozen, the coverage showed the lowest performance at 

0.160; and when 4 layers were frozen, the density showed 
the lowest performance at 15.522. In the case of coverage, 
the difference between the highest and lowest performance 
was 0.086; while in the case of density, the difference 
between the highest and lowest performance was 1.874.

Table 11 shows the layer freezing result of the generator 
using the StyleGAN model. Stanford Cars had the highest 
performance with FID 11.10 when 3 layers were frozen. 
When 2 layers were frozen, FID showed the lowest perfor-
mance at 11.28, and there was a performance difference of 
0.18, compared to when 3 layers were frozen. Stanford Dogs 
had the highest performance with FID 29.83 when 2 layers 
were frozen. When 5 layers were frozen, FID showed the 
lowest performance at 30.86, and there was a performance 
difference of 1.03, compared to when 2 layers were frozen. 
The decision of whether to freeze a layer or not is not always 
clear-cut in terms of achieving optimal performance.

Table 12 shows the layer freezing results of the discrimi-
nator using the StyleGAN model. Stanford Cars showed the 
highest performance with coverage of 0.943 when frozen 
up to layer 3, and showed the highest performance with a 
density of 7.837 when frozen up to layer 5. When 2 layers 
and 6 layers were frozen, the coverage showed the lowest 
performance at 0.934; and when 7 layers were frozen, the 
density showed the lowest performance at 7.173. In the case 
of coverage, the difference between the highest and lowest 
performance was 0.009; while in the case of density, the 
difference between the highest and lowest performance was 
0.664.

Stanford Dogs showed the highest performance with cov-
erage of 0.246 and density of 17.396 when frozen up to layer 
2. When 4 layers were frozen, the coverage showed the low-
est performance at 0.241; and when only 1 layer was frozen, 
the density showed the lowest performance at 17.163. In 
the case of coverage, the difference between the highest and 
lowest performance was 0.005; while in the case of density, 

Table 10   Ablation study on freezing layers of D  on StyleGAN architecture under the ‘Stanford Cars’ and ‘Stanford Dogs’ datasets. Layer i indi-
cates that the first i layers of the discriminator are frozen. Left and right values indicate the best coverage and density scores

Bold items mean the highest performance

Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 Layer 6 Layer 7

Stanford Cars 0.880/6.843 0.914/6.245 0.932/6.666 0.937/6.968 0.941/7.225 0.935/7.642 0.940/7.500
Stanford Dogs 0.160/17.396 0.192/17.166 0.227/16.201 0.241/15.522 0.241/15.952 0.246/16.072 0.240/15.934

Table 11   Ablation study on freezing layers of G on StyleGAN archi-
tecture under the ‘Stanford Cars’ and ‘Stanford Dogs’ datasets. Layer 
i indicates that the first i layers of the generator are frozen. Values 
indicate the best FID scores. For each value, the methods are marked 
with the best performance using gold , silver , and bronze  medals

Table 12   Ablation study on freezing layers of G  on StyleGAN architecture under the ‘Stanford Cars’ and ‘Stanford Dogs’ datasets. Layer i indi-
cates that the first i layers of the generator are frozen. Left and right values indicate the best coverage and density scores

Bold items mean the highest performance

Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 Layer 6 Layer 7

Stanford Cars 0.939/7.727 0.934/7.726 0.943/7.593 0.938/7.462 0.937/7.837 0.934/7.242 0.938/7.173
Stanford Dogs 0.244/17.163 0.250/17.833 0.244/17.566 0.241/17.331 0.242/17.633 0.243/17.653 0.249/17.531
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the difference between the highest and lowest performance 
was 0.233.

Table 13 shows the layer freezing results of the generator 
and discriminator using the StyleGAN model. Stanford Cars 
showed the highest performance with FID 10.84 when frozen 
and trained up to generator layer 4 and discriminator layer 
4. When freezing and training up to generator layer 1 and 
discriminator layer 5, FID showed the lowest performance 
at 13.59, and there was a difference between the highest per-
formance and 2.75. In Table 9, the discriminator was optimal 
when frozen to layer 5, while in Table 11, the generator was 
optimal when frozen to layer 3, but in Table 13, the generator 
and discriminator were all optimal when frozen to layer 4. 
The optimal approach differed when either only the genera-
tor or discriminator was frozen compared to when both the 
generator and discriminator were frozen.

Table 14 shows the layer freezing results of the generator 
and discriminator using the StyleGAN model. Stanford Cars 
showed the highest performance with coverage of 0.945 when 
frozen and trained up to generator layer 7 and discriminator 
layer 4; and showed the highest performance with a density 
of 7.552 when frozen and trained up to generator layer 6 and 

discriminator layer 2. When the generator layer 1 and discrimi-
nator layer 5 were frozen and trained, the coverage showed the 
lowest performance with 0.882; and when frozen and trained 
until the generator layer 2 and discriminator layer 7, the den-
sity showed the lowest performance with 5.779. In the case of 
coverage, the difference between the highest and lowest perfor-
mance was 0.063; while in the case of density, the difference 
between the highest and lowest performance was 1.773.

Table 15 shows the layer freezing results of the gen-
erator and discriminator using the StyleGAN model. 
Stanford Dogs showed the highest performance with FID 
30.02 when frozen and trained up to generator layer 5 and 
discriminator layer 7. When freezing and training up to 
generator layer 1 and discriminator layer 1, FID showed 
the lowest performance at 42.78, with a difference of 12.76 
from the highest performance. In Table 9, the discrimina-
tor was optimal when it was frozen up to layer 5; while in 
Table 11, the generator was optimal when it was frozen up 
to layer 2; but in Table 15, when the generator was frozen 
up to layer 5, the discriminator was optimal when it was 
frozen up to layer 7. The optimal approach varied when 
only the generator or discriminator was frozen compared 

Table 13   Ablation study on freezing layers of G and D on StyleGAN 
architecture under the ‘Stanford Cars’ dataset. Layer i indicates that 
the first i layers of the generator and discriminator are frozen. Values 
indicate the best FID scores. For each value, the methods are marked 
with the best performance using gold , silver , and bronze  medals

Table 14   Ablation study on 
freezing layers ofGandD on 
StyleGAN architecture under 
the ‘Stanford Cars’ dataset. 
Layeriindicates that the firsti
layers of the generator and 
discriminator are frozen. Left 
and right values indicate the 
best coverage and density scores

Bold items mean the highest performance

Dis Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 Layer 6 Layer 7
Gen

Layer 1 0.887/6.373 0.883/6.942 0.888/6.463 0.885/6.770 0.882/6.167 0.884/6.448 0.890/6.421
Layer 2 0.914/5.967 0.909/6.264 0.910/6.056 0.916/6.139 0.913/5.874 0.918/6.318 0.905/5.779
Layer 3 0.933/6.545 0.932/6.363 0.937/6.721 0.934/6.483 0.935/6.587 0.934/6.407 0.934/6.660
Layer 4 0.941/6.865 0.940/6.774 0.938/6.957 0.937/6.776 0.942/7.022 0.939/7.026 0.939/7.044
Layer 5 0.938/7.315 0.940/7.543 0.943/7.453 0.938/7.276 0.941/7.089 0.938/7.206 0.938/7.286
Layer 6 0.937/7.229 0.938/7.552 0.937/7.194 0.938/6.973 0.934/7.306 0.940/7.433 0.937/7.106
Layer 7 0.941/7.470 0.938/7.259 0.940/7.266 0.945/7.453 0.940/7.266 0.940/7.376 0.940/7.192

Table 15   Ablation study on freezing layers of G and D on StyleGAN 
architecture under the ‘Stanford Dogs’ dataset. Layer i indicates that 
the first i layers of the generator and discriminator are frozen. Values 
indicate the best FID scores. For each value, the methods are marked 
with the best performance using gold , silver , and bronze  medals

Dis.
Gen. Layer 1Layer 2Layer 3Layer 4Layer 5Layer 6Layer 7

Layer 142.78 ● 42.51 41.38 42.14 42.28 41.73 42.04

Layer 2 36.52 37.47 36.66 37.16 37.12 36.91 37.41

Layer 3 32.56 32.57 32.46 32.39 32.22 32.44 32.59

Layer 4 30.76 30.52 30.78 30.64 30.58 30.68 31.21

Layer 5 30.31 30.64 30.34 30.56 30.33 30.80 30.02 ●

Layer 6 30.40 30.48 30.51 30.67 30.23 30.69 30.51

Layer 730.21 ● 30.72 30.64 30.23 30.30 30.43 30.57
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to when both the generator and discriminator were frozen. 
In contrast to Table 13, Table 15 showed relatively large 
differences between the highest and lowest performance.

Table 16 shows the layer freezing results of the generator 
and discriminator using the StyleGAN model. Stanford Dogs 
showed the highest performance with coverage of 0.246 when 
frozen and trained up to generator layer 5, discriminator layer 
4, generator layer 7, and discriminator layer 1. Density showed 
the highest performance at 18.129 when freezing and train-
ing up to generator layer 1 and discriminator layer 6. When 
the generator layer 1 and discriminator layer 2 were frozen 
and trained, the coverage showed the lowest performance at 
0.155; while when the generator layer 5 and discriminator 
layer 6 were frozen and trained, the density showed the lowest 
performance at 15.424. In the case of coverage, the difference 
between the highest and lowest performance was 0.091; while 

in the case of density, the difference between the highest and 
lowest performance was 2.705.

Qualitative results for prior and proposed methods

In Fig. 13, scale/shift and L2-SP have some limitations, so 
they synthesize images that when quantified, are low in diver-
sity, but when qualitatively evaluated, are plausible. GLO 
synthesized blurry images due to adversarial losses and a 
lack of knowledge of the source discriminator. MineGAN is 
completely out of target distribution. MineGAN is not appli-
cable when the source distribution is said to contain the target 
distribution, but the distribution has split support. As a result, 
MineGAN did not learn the distribution shift well.

In Fig. 14, Caltech-256 was difficult to synthesize with 
high quality using any freezing method, but CUB-200–2011, 

Table 16   Ablation study on freezing layers of G and D  on StyleGAN architecture under the ‘Stanford Dogs’ dataset. Layer i indicates that the 
first i layers of the generator and discriminator are frozen. Left and right values indicate the best coverage and density scores

Bold items mean the highest performance

Dis Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 Layer 6 Layer 7
Gen

Layer 1 0.158/17.757 0.155/17.630 0.161/17.964 0.160/17.785 0.162/17.759 0.158/18.129 0.159/18.058
Layer 2 0.192/16.881 0.195/17.036 0.194/17.497 0.194/17.162 0.192/17.029 0.191/17.363 0.190/17.267
Layer 3 0.224/16.011 0.226/15.884 0.224/16.598 0.226/16.351 0.225/16.244 0.226/16.354 0.226/16.619
Layer 4 0.238/15.583 0.239/15.910 0.236/15.753 0.238/15.608 0.243/15.877 0.240/15.815 0.235/15.662
Layer 5 0.245/15.724 0.238/16.102 0.241/15.825 0.246/15.935 0.241/15.961 0.237/15.424 0.243/15.447
Layer 6 0.242/16.068 0.241/16.414 0.238/16.022 0.240/16.235 0.245/15.812 0.245/15.983 0.240/15.879
Layer 7 0.246/16.097 0.242/16.022 0.244/16.096 0.242/16.290 0.245/16.282 0.240/16.174 0.238/16.371

(a) FD (b) Fine-tuning (c) GLO (d) L2-SP( )

(e) L2-SP( ) (f) L2-SP( , ) (g) MineGAN (h) Scale/shift

Fig. 13   Samples synthesized by prior methods under the ‘Stanford Cars’ dataset
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(a) Actias Gnoma Butler (b) Apatura Metis (c) Cabbage Butterfly

(d) Cicada (e) Comostola Subtiliaria (f) Drepana Curvatula

(g) Dynastid Beetle (h) Ground Beetle (i) Nymphalid

(j) Papilio Bianor (k) Peach Pyralid (l) Short-tailed Blue Butterfly

Fig. 14   Samples synthesized by proposed methods
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(m) Stag Beetle (n) Stinkbug (o) Water Strider

(p) Yellow Swallowtail Butterfly

(q) CUB-200-2011 (Freeze ) (r) CUB-200-2011 (Partial fine-tuning)

(s) Caltech-256 (Freeze ) (t) Caltech-256 (Freeze )

Fig. 14   (continued)
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a fine-grained dataset, and Insect30, a coarse-grained data-
set, synthesized relatively well.
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