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Abstract
Pattern classification has always been essential in computer vision. Transformer paradigm having attention mechanism with 
global receptive field in computer vision improves the efficiency and effectiveness of visual object detection and recognition. 
The primary purpose of this article is to achieve the accurate ripeness classification of various types of fruits. We create 
fruit datasets to train, test, and evaluate multiple Transformer models. Transformers are fundamentally composed of encod-
ing and decoding procedures. The encoder is to stack the blocks, like convolutional neural networks (CNN or ConvNet). 
Vision Transformer (ViT), Swin Transformer, and multilayer perceptron (MLP) are considered in this paper. We examine 
the advantages of these three models for accurately analyzing fruit ripeness. We find that Swin Transformer achieves more 
significant outcomes than ViT Transformer for both pears and apples from our dataset.
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1 Introduction

In recent years, deep learning has been increased expo-
nentially, with a profession of breakthroughs in theory and 
architecture [1]. As a branch of deep learning, visual object 
detection from digital images has also achieved great out-
comes in development. Visual object detection is essentially 
with classification problem [2]. So far, visual object detec-
tion has been able to accurately locate and identify multiple 
targets. Before using deep learning for visual object detec-
tion, conventional machine learning algorithms usually have 
three stages: Region selection, feature extraction, and clas-
sification. Traditional algorithms usually take use of sliding 
window algorithms, but the algorithms have a huge number 
of redundant bounding boxes, correspondingly computa-
tional complexity is high.

Visual object detection [3, 4] usually refers to detect the 
location of a visual object in an image and assign the label 
of corresponding class. The detector is required to output 
5-tuple: Label of object class, the coordinates of the four 
corners of the bounding box [5].

The motivation of this article stems from the news that we 
usually lack professional labors picking up fruits in mature 
season. In absence of workers, how to efficiently complete 
fruit selection and pickup is a problem. In this paper, we 
chose apples and pears as the representatives of fruits, 
implemented the classification of fruits by classifying the 
maturity of different fruits [6].

The purpose of this paper is to locate and classify fruits 
in the given images [7]. As the name implies, the model is 
required to accurately locate fruits in the given image and 
identify whether the fruit is ripe or overripe [8, 9].

Compared with Region Proposal Network (RPN) of 
Faster R-CNN (region-based CNN) [10, 11], Transformer 
is completely based on self-attention mechanism [12, 13]. 
The complexity of a Transformer model ensures that the 
accuracy of the model is higher than that of R-CNN net. 
Therefore, we employed Transformer model to conduct our 
experiments. According to the characteristics of Transformer 
model in visual object detection, we select Swin Trans-
former [14] and Vision Transformer (ViT) for experimental 
evaluations. During our experimenting, we found that the 
MLP block is an integral part of the Transformer model. 
Therefore, in this paper, MLP-based object detection model 
is implemented with axial displacement for comparative 
experiments.

As shown in Fig. 1, visual object detection using a bound-
ing box to mark fruits and label the classes is implemented, 
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the coordinates are sent to Transformer model for the pro-
cess of encoding and decoding [15]. In the experiments, we 
analyze the difference between attention mechanisms of ViT 
and Swin Transformer, introduce Mask R-CNN weights to 
get the best accuracy. Overall, the contributions of this paper 
are:

(1) We created our own dataset and adopted Swin Trans-
former model to achieve fruit object detection and 
achieve 87.43% precision.

(2) We combined Transformer module with YOLO module 
together to achieve accurate classification of fruits, so 
that the model can distinguish the maturity of apples 
or pears.

In the second part of this paper, we depict previous 
research work related to Transformers including embedding, 
attention mechanism, and MLP. In the third part, we will 
detail our proposed models and related work. The results are 
then presented in the fourth section. Our conclusion regard-
ing the experiments and inspiration for future work will be 
drawn in Section 5.

2  Literature review

2.1  Fruit recognition

Fruit recognition in deep learning is use of mathemati-
cal models to detect the position and class label of fruits 
based on given digital images. Fruit recognition based 

on pixel intensities is an initial idea [16]. R-CNN model 
extracts region of interest for locating fruits [17]. Seg-
mentation provides image regions of interest for wide 
selection [18].

In practical applications of fruit recognition, visual 
object has a small area in the image, or mutual occlu-
sion between the targets [19, 20]. For example, in fruit 
images we have collected, we have clearly separated 
pears from the images, there may also be dense apples 
piled on the trees that are difficult to be distinguished. 
Faster R-CNN takes use of the overlapping ground truth 
and predicted bounding boxes to achieve the detection of 
small objects [21]. Fruit surface disease detection [22] is 
associate with fruit ripeness detection. In actual experi-
ment, we locate the position of fruits in the input image 
and determine the located fruit class. Finally, we analyze 
the ripeness of fruits by using the fruit appearance in the 
input images.

Traditional feature extraction methods were applied to 
identify diseases of fruits such as tomato [23]. Wu et al. 
experimented two Transformers to obtain feature informa-
tion, and took advantage of patches of multiple resolutions 
for multi-granularity feature extraction. Jia et al. improved 
DenseNet by using residual network (ResNet), optimized 
the training parameters, and made the model identify 
apples with an accuracy rate of 97.31% [24]. Regarding 
the Transformers, more encoding modules are encapsu-
lated to extract effective feature information. Therefore, in 
this paper, a multi-level attention feature extraction mod-
ule was created. Compared with visual features that CNN 
can capture, the Transformers can identify details.

Transformer’s multi-head self-attention.

Encoder

Linear Projection of Flattened Patches

0 1 2 3 4 5 6 7 8 9
Extra learnable

class embedding

MLP Head

R ip e a p p le

Output

Input fruit imageLabelled data

Fig. 1  The flowchart of object detection using Vision Transformer
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2.2  Transformer and mask R‑CNN model

Transformer is based on self-attention mechanism, which 
has virally spanned in the field of Natural Language Process-
ing (NLP). Multilayer Perceptron (MLP) is the earliest and 
simplest neural network in the NLP. In order to handle more 
complex problems, the mainstream architecture of artificial 
neural networks has undergone the evolution of MLP-CNN 
[25, 26] and recurrent neural network (RNN).

Similar to the research work in fruit recognition, the pro-
ject was initialized with Swin Transformer [27]. Similar to 
the models that automatically recognize pests encountered 
in rice growth, an experiment essentially was conducted that 
the model can identify the maturity of fruits, and ultimately 
achieved the goal of agricultural automation. Sliding win-
dows of Swin Transformer model were taken advantage for 
hierarchical design, which achieved the accuracy 93.4%.

Han, et al. also studied the use of Transformer model 
to realize the control of machines [28]. The robot grasping 
frame takes use of tactile and visual information to achieve 
safe grasping of visual objects. Similar to our experiments, 
Han's team also made use of the characteristics of predefined 
objects to perform training on the Transformer model by 
comparing with CNN + LSTM model.

Small object detection by using deep learning has been 
taken into account in practice [29]. Transformer and CNN 
models were employed for local perception network of Swin 
Transformer, a Spatial Attention Interleaved Execution Cas-
cade (SAIEC) network was designed to enhance the segmen-
tation of digital images. The final model is 1.7% more than 
the base Swin Transformer network. The multi-perceptual 
design of Transformer model outperforms residual network 
to realize the cross-channel transfer of each feature of visual 
object [30]. If the data is massively enhanced or distillable, 
the Transformer model does not need to make global adjust-
ments to the convolutional layer, maximum pooling layer, 
and global average pooling layer (GAP) like the CNN model 
[31] or Mask R-CNN model [32].

The mainstream algorithms [33] of visual object detection 
were explored. Unlike CNN, which completes the extraction 
of local image information and constructs global informa-
tion by stacking convolutional layers, Transformer models 
obtain complete global information from the beginning, it 
has stronger long-term dependence. In the ViT model, the 
average attention distance increases from small to large with 
the deepening increases of the layers, which has a similar 
paradigm of CNN [34]. In ViT, if the scaling ability of the 
Transformer is stronger, the transmission effect will be bet-
ter [35]. However, because the Transformer does not have 
bionic characteristics like CNN, in the learning process, the 
training set of the Transformer model needs to be enhanced 
or the number of datasets can be increased so as to acquire 
better results.

Mask R-CNN was combined with ResNet-50 to detect 
wheat diseases and achieved an accuracy 88.19% [36]. In 
Mask R-CNN model, ResNet-50 was employed to extract 
RPN and generate various anchors. During anchor box 
extraction, mask loss and bounding box loss are taken into 
consideration. RPN generated a binary mask for each visual 
object. Anchor box regions were applied to ROI alignment 
features [37]. After ROI alignment, fully-connected layers 
are employed for bounding boxes regression and classifica-
tion, each object is detected by using a mask-form convo-
lutional layer.

An axially displaced AS-MLP architecture [38] was 
employed to encode global spatial features. In the experi-
ments, the axial displacement of the feature maps enabled 
MLP model to achieve the same function of local feature 
extraction as CNN architecture. The MLP-Mixer [39] pays 
much attention to the changes of the ViT based on the MLP 
architecture. MLP-Mixer splits the image into multiple non-
overlapping patches, and then takes use of the fully con-
nected layer to convert each patch into feature embedding 
and sends it to the mixer layer. The MLP-Mixer model can 
be understood to replace the blocks of ViT with the Mixer 
layer.

Inspired by the previous work, we adopted Swin Trans-
former combined with Mask R-CNN [40] and ViT model to 
achieve fruit ripeness classification [41–43]. We also have 
the MLP object detection model to compare with MLP block 
in the Transformer model.

3  Methodology

3.1  Fruit ripeness identification

Fruit ripeness identification is essentially an object detection 
task. The object detection task is to describe the whole input 
image as the content, and then detect the specified object. 
As shown in Fig. 2, the input is a given image. We are use 
of bounding boxes to segment the fruit of interest from the 
background and determine the class and location. After the 
model has been trained along with the Transformer model, 
the output is a list, each item in the list includes the fruit 
class and location of the detected object.

3.2  Swin transformer

Swin Transformer has four stages in Fig. 2, each of which 
is similar. As shown in Fig. 3, the red box represents a 
window to perform self-attention, and the black box shows 
each patch. The input size of the image for the Swin Trans-
former is W × H × C , and the image is grouped into a patch 
collection of H

4
×

W

4
 by using 4 × 4 patch. The first stage 

of Swin model is to use a linear embedding and convert 
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the input patch features into C, then send them to a Swin 
Transformer block. Stages 2 to 4 are the same, using a 
patch merging to merge adjacent patches and feed them 

into the next Swin Transformer block. As shown in Fig. 2, 
the role of patch merging is to complete the down sam-
pling of features.

W

H Patch
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Swin
Transformer

Block

Stage 1

Patch
Merging
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Transformer

Block

Stage 2

Patch
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Fig. 2  The architecture of Swin Transformer
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The original feature size of Swin Transformer is 
[H1,W1,C1] . Window partition progress is based on the 
original size of the reshape, the size is,

The Swin Transformer Block is characterized by using a 
shift window to replace the standard Multi-head Self-Atten-
tion (MSA) module. The attention of Swin Transformer is,

where B stands for position code, Q means query vector, K 
represents a vector representing the queried information, V 
shows queried information of vector. The variance is d.

Mask R-CNN is a two-stage framework [44, 45]. In the 
first stage, the proposals are generated. In the second stage, 
the proposals are classified, bounding boxes and masks are 
generated. Mask R-CNN includes FPN to solve the degrade 
of training process. FPN adopts the top-down structure and 
horizontal connection to conduct the fusion of the feature 
map from the bottom to the top, which can implement fast 
connection and extraction of all scales. FPN is also a sliding 

(1)

Reshape Size = [
H1 ×W1

windowsize × windowsize

,windowsize,windowsize,C1]

(2)Attention(Q,K,V) = SoftMax

�

QKT

√

d
+ B

�

V

window with a fixed window size. Feature extraction is con-
ducted through the backbone network, the generated feature 
map is input into the Region Proposal Network (RPN) for 
sub-network selection.

In Fig. 4, in order to implement the intersection of the upper 
window partition of each block, Swin Transformer adds 3 × 3 
shift window to 2 × 2 window to improve feature transfer. 
Since the size of shift window is not the same, the shift pro-
cessing is fulfilled. The cyclic shift modifies the size from 3 × 3 
to 2 × 2 , then the reverse cyclic shift is conducted according to 
the attention model so as to obtain the shift window attention 
[46, 47]. The 3 × 3 window feature map is shifted and becomes 
a 2 × 2 window, but the actual calculation is still expected to be 
carried out in 3 × 3 windows, that is, the results of 9 attentions 
are implemented with the help of masks.

Transformer self-attention is set up by using a specific mask. 
While performing attention analysis, only the effective part in 
one window is calculated, and the rest is masked. The original 
calculation method of attention can be changed. The shaded 
area B shown in Fig. 3 is the part that needs to be masked out.

Window-based local self-attention (W-MSA) segments 
the input image into non-overlapping windows, and conducts 
self-attention calculations in different windows. Assume that 
an image has h × w patches, each window contains M ×M 
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regions, then the computational complexities of MSA and 
W-MSA are respectively shown as:

3.3  Vision transformer

Transformer is employed in natural language processing [48, 
49]. The attention mechanism of Transformer is also broadly 
employed, such as Se module, CBAM module and other 
attention modules, these attention modules can improve 
network performance. The ViT model demonstrates that a 
structure that does not rely on CNNs can achieve perfect 
results for image classification, which is also very suitable 
for transfer learning. The ViT blocks of the original image 
are input into the encoder of the original Transformer model, 
and finally a fully-connected layer is applied to classify the 
image.

As shown in Fig. 1, ViT model is mainly composed of 
three modules: 1) Linear projection (i.e., Embedding layer 
of patch + position); 2) Transformer encoder; 3) MLP head 
(i.e., classification layer). The Transformer encoder module 
inputs the patch shown in the black box in Fig. 4. In ViT 
Transformer, each small image is regarded as a token (rep-
resenting a word in NLP), and the correlation between each 
token is calculated in the model.

In Fig. 5, the relative encoding of Swim Transformer 
model is mainly to solve the problem of arrangement invari-
ance in self-attention, that is, tokens input in different orders 
will get the same result. In ViT, it is not enough to just split 
the image into small patches. What the encoder module 
needs is a vector with a shape as [num_token, token_dim] . 
For the input image data, the shape [H,W,C] does not meet 
the input requirements, so it is necessary to convert the 
image data into tokens through the embedding layer. Trans-
former encoder module is to stack the encoder block several 
times, mainly composed of the following parts:

(3)Ω(MSA) = 4whC2 + 2(hw)2C

(4)Ω(W −MSA) = 4whC2 + 2M2hwC

1) Layer normalization

Layer normalization is to calculate the mean and vari-
ance of all feature maps of the sample, and then normalize 
it. ViT also splits the input image into patches. The process 
of using patch embedding is to compress each patch into a 
vector with a dimension through a fully-connected network.

2) Multi-head attention

In Fig. 4, ViT takes use of self-attention to express the rela-
tionship between each patch and other patches. ViT generates q, 

(5)
MultiHead(Q,K,V) = Attention(QW

Q

i
,KWK

i
,VWV

i
)

W-MSA

Classification
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Fig. 5  Swin Transformer and Vision Transformer calculate the self-
attention of regions in non-overlapping windows
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k, and v, it integrates q, k, and v into num_heads, and then per-
forms self-attention operations on each of them, finally merges 
them together. Multi-head self-attention isolates parameters and 
can better focus associated features together for training.

3) MLP block

A MLP block is an inverted bottleneck structure consist-
ing of connected layer, GELU activation function and Drop-
Out. It should be noted that there is no decoder module in 
ViT Transformer. Therefore, there is no need to calculate the 
cross-attention value of encoder and decoder.

3.4  MLP object detection mechanism

Multi-layer perceptron (MLP) neural network is a kind of 
neural networks that are use of a combination of multiple 
perceptron to implement the segmentation and transmission 
of feature information. MLP neural network consists of an 
input layer, multiple hidden layers and an output layer. All 
neurons in an MLP are similar, each neuron has a number of 
inputs that connect to the previous layer and output neurons 
that connect to the next layer. Each neuron will pass the 
same value to multiple connected output neurons.

MLP network has less inductive bias, so MLP-based 
backbone can achieve visual object detection [50, 51]. The 
structures shown in Fig. 7 and Fig. 8 indicate the process 
of axial displacement using MLP object detection method.

Figure 6 shows the four stages of MLP. Similar to the Trans-
former model shown in Fig. 3, the MLP object detection model 
also splits the original image into multiple 4 × 4 patches.

As shown in the Fig. 7, MLP is an operation of a local 
receptive field, which is more suitable for extracting fea-
tures with local dependencies. For the fruit image in the 
experiment, the position of the apple is based on the posi-
tion of the given output, so MLP relies on the weighting 
of local features to better extract local features.

4  Results

4.1  Dataset and parameter settings

We collected apple and pear datasets by using our phone 
cameras, we intuitively compare the learned parameters 
with the parameters of real models. Figure 8 is the input 
image from our dataset. We labelled our samples with soft-
ware tool LabeleMe. We assign the number of samples in 

Padding

Padding

Horizontal shift

Padding

Padding

Horizontal shift process

Fig. 7  Horizontal displacement process of MLP object detection

Fig. 8  Samples of the image 
dataset. (a) A sample of input 
images, (b) A sample of output 
images

(a) A sample of input images.  (b) A sample of output images.

(x,y)
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the training set as 2,000, set the conventional parameter 
batch size to 1.0 and the learning rate to 0.0001 accord-
ing to the computer configuration for training. The size of 
images is 1920 × 1080.

In Fig. 8 (a), the green square box is bounding box, the 
four points represent the coordinates of the bounding box 
( x, y,w, h ). Figure 8 (b) shows the predicted result by using 
the trained detector. The experiment is analyzed with the 
accuracy of the model through observing the changes of 
iteration parameters. A diversity of fruits is defined as differ-
ent classes, and the same fruit defines ripeness according to 
the smoothness of the skin. A smooth peel is defined as the 
class “Ripe”, a folded or decayed surface is defined as the 
class “Overripe”. In multiclass classification, each class can 
be drawn as a curve according to recall and precision rate. 
The average precision is the area under the curve, the mean 
average precision refers to average the AP of each category. 
We take use of the value of mean average precision (mAP) 
to evaluate the quality of the proposed model.

4.2  Result analyze

We took use of two scales of ViT models: Base and large. 
vit_base_patch_16 represents the ViT base model; the size 
of image patch is 16 × 16 . vit_large_patch_32 means that 
the ViT large model is applied, and the image patch size 
is 32 × 32 . In Table 1, the ViT model does not show better 
performance. More iterations did not achieve better results, 
ViT model did not perform well in the trade-off between 
small datasets and large datasets. The ViT model is usually 
pre-trained based on large datasets. Compared with the ViT 
model, CNN can perform better in small datasets.

Although the accuracy of the ViT model in Table 1 is 
not high, in the training process, the model takes use of less 
computing resources that can better allocate computing 
resources. ViT performs structural pruning on the Trans-
former model, and then quantizes the pruned model to obtain 
the final optimized model. However, during the pruning pro-
cess, the ViT model requires an additional training process, 
which limits the practicability of the model. Although the 
memory usage and execution time are reduced in the process 
of ViT model pruning, it cuts off the accuracy of this model.

In Table 2, MLP object detection model has very strong 
performance in small models. MLP model pays much 
attention to local feature extraction, but if the model 
capacity is expanded, there will be overfitting problems. 
The overfitting problems will lead to a roadblock to the 
success of MLP. The self-attention structure of the ViT 
model also includes the MLP block. Self-attention is 
related to a sequence, which mainly emphasizes that each 
position of the sequence has the same set of MLP param-
eters, and then conducts a weighted average operation in 
the new space. The MLP model is a nonlinear mapping. 
We see from Table 1 and Table 2 that the MLP model can 
better capture the features of the model.

Different from ViT and MLP, Swin Transformer's self-
attention calculation based on moving window ensures that 
the model can extract more features of visual objects.

We chose three weights to train the Swin Transformer 
model. In Table 3 and Table 4, the patch can make up four 
windows after moving, it is impossible for the patch to slide 

Table 1  The results of precisions by training ViT model

Model Epoch Weights AP@0.5:0.95

Vision Transformer 10 vit_base_patch_16 0.4560
vit_base_patch_32 0.4060
vit_large_patch_16 0.4560
vit_large_patch_32 0.4120

20 vit_base_patch_16 0.4310
vit_base_patch_32 0.4310
vit_large_patch_16 0.3560
vit_large_patch_32 0.4250

30 vit_base_patch_16 0.4000
vit_base_patch_32 0.4190
vit_large_patch_16 0.3880
vit_large_patch_32 0.3880

50 vit_base_patch_16 0.3810
vit_base_patch_32 0.3940
vit_large_patch_16 0.4060
vit_large_patch_32 0.4000

Table 2  The results of MLP by training Mask R-CNN small weights

Model Epoch Weights AP50 AP@0.5:0.95 Average 
inference 
time(seconds)

MLP using Axial shift MLP block 10 mask_rcnn_small_patch4_1x 0.9450 0.8310 0.5850
30 0.9560 0.8430 0.5370
50 0.9600 0.8470 0.5400
10 mask_rcnn_tiny_patch4_1x 0.9330 0.8270 0.3820
30 0.9550 0.8440 0.3850
50 0.9580 0.8440 0.3760
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through each window, the mask is employed to contact and 
calculate the attention in each window. Therefore, Swin 
Transformer is a hierarchical representation that has the 
ability to perform complex linear calculations.

In Swin Transformer, shifting the window segmenta-
tion results in more windows, and leads to a large num-
ber of computations while filling smaller windows into 
larger ones. By setting a reasonable mask, shifted windows 
achieve equivalent calculation results under the same num-
ber of windows as window attention. We observe that Swin 
Transformer achieves better training results. In contrast, 
larger weights and more iterations allow the model to achieve 
better results.

MLP pays attention to feature transfer. The MLP model 
is use of axial displacement to arrange the features of spatial 
positions in the same position, so that the model can obtain 
local dependencies, the model can achieve performance 
comparable to that of the Transformer model. However, 
Eq. (3) and (4) show how many computations are required 
for MSA and WMSA. The complexity of MSA is related to 
(h × w)2 , and the complexity of W-MSA is related to (h × w) . 
Therefore, the amount of W-MSA calculation will be small. 
If the original image is large, the amount of W-MSA calcula-
tion has obvious advantages. Hence, in Table 2, Table 5, and 
Table 6, we observe more intuitively that experiments with 
the Swin Transformer module can achieve faster speeds.

As shown in Table 5 and Table 6, we harnessed different 
frameworks to implement the Swin Transformer. We see 
that with the increase of iterations, the results of classifica-
tion training gradually become better and tend to be stable. 
Conventional Transformers take use of pre-normalization at 
the beginning of each residual branch, which normalizes the 
magnitude of the input and has not restrictions on the out-
put. Under pre-normalization, the output activation values   of 
each residual branch are directly merged back into the main 

branch and accumulated layer by layer, so the amplitude of 
the main branch increases with depth.

Swin Transformer takes use of residual-post-normaliza-
tion. The normalization layer was moved from the begin-
ning to the end of each residual branch, so that the output 
of each residual branch is normalized before being merged 
back into the main branch, as the number of layers deepens, 
the magnitude of the main branch will not be accumulated.

4.3  Discussion

The advantage of our experiment lies in the better accuracy 
achieved. The Swin Transformer model reached an average 
precision of 87.43%. Our model is able to accurately locate 
an apple or pear in the input image and tell us whether the 
current fruit belongs to the class “Ripe” or “Overripe”. At 
the same time, the model also achieves fast and accurate 
recognition within 0.13 s.

Similar to our experiments, an average accuracy of 89.3% 
was achieved for Kiwifruit detection [7], while an average 
accuracy of 88.45% was obtained for banana detection, respec-
tively. Compared with previous experiments, the weakness of 
our experiment lies in the fact that in practical applications, the 
influence of the noise generated by the environment of differ-
ent fruits on the collection of data sets should be more con-
sidered. At the same time, we should consider changing more 
kinds of pixels in the dataset to simulate the actual growth 
environment of the fruit during the fruit picking process.

5  Conclusion and future work

In our experiments related to fruit ripeness classifica-
tion, we found that for small targets and small datasets, 
the Swin Transformer model showed its advantages and 

Table 3  The results of Swin 
Transformer by training Mask 
R-CNN small weights

Model Epoch Weights AP50 AP@0.5:0.95

Swin Transformer 10 mask_rcnn_small_patch4_1x 0.9390 0.8210
20 0.9400 0.8230
30 0.9480 0.8300
50 0.9510 0.8390
10 mask_rcnn_small_patch4_3x 0.8340 0.6810
50 0.9460 0.8350

Table 4  The results of Swin 
Transformer by training Mask 
R-CNN tiny weights

Model Epoch Weights AP50 AP@0.5:0.95

Swin Transformer 10 mask_rcnn_tiny_patch4_1x 0.9360 0.8090
20 0.9380 0.8230
30 0.9450 0.8220
50 0.9450 0.8230
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accuracy. We have implemented the classification of fruits 
of different maturity, and the model can be practically 
applied in warehouse management, agricultural automatic 
picking, etc.

The actual results show that in the ViT Transformer, the 
CNN responding to edges is weak. CNN can only compute 
correlations with adjacent pixels. Due to the characteristics 
of sliding window convolution, non-domain pixels cannot 

be jointly calculated, which makes spatial information unus-
able. Swin Transformer can provide hierarchical feature 
representation, self-attention based on moving window can 
effectively achieve feature extraction.

In future, we will further utilize the unique self-attention 
mechanism of Vision Transformer to capture the pixel infor-
mation between tokens to ensure that ViT model can obtain 
pretty rich features with the same parameters [1, 52].

Table 5  The results of each class by training Swin Transformer and YOLO module with small Mask R-CNN weights

Model Weights Epoch Class mAP Average 
inference 
time(seconds)

YOLOX + Swin Transformer mask_rcnn_small_patch4_3x 10 Ripe apple 0.0000 0.1217
Over apple 0.2200
Ripe pear 0.0200
Overripe pear 0.4600

20 Ripe apple 0.0000 0.1210
Over apple 0.0060
Ripe pear 0.0860
Overripe pear 0.4340

30 Ripe apple 0.7867 0.1205
Over apple 0.4687
Ripe pear 0.8404
Overripe pear 0.8416

50 Ripe apple 0.8889 0.1212
Over apple 0.6695
Ripe pear 0.8856
Overripe pear 0.9127

Table 6  The results of each class by training Swin Transformer moudel and tiny Mask R-CNN weights

Model Weights Epoch Class mAP Average inference 
time(seconds)

YOLOX + Swin Transformer mask_rcnn_tiny_patch4_3x 10 Ripe apple 0.1978 0.1288
Over apple 0.0100
Ripe pear 0.0000
Overripe pear 0.0061

20 Ripe apple 0.4142 0.1300
Over apple 0.1392
Ripe pear 0.1833
Overripe pear 0.6463

30 Ripe apple 0.8702 0.1320
Over apple 0.8270
Ripe pear 0.8322
Overripe pear 0.8426

50 Ripe apple 0.8791 0.1334
Over apple 0.8292
Ripe pear 0.8909
Overripe pear 0.8981
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