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Abstract
We address the issue of detecting changes of models that lie behind a data stream. The model refers to an integer-valued
structural information such as the number of free parameters in a parametric model. Specifically we are concerned with the
problem of how we can detect signs of model changes earlier than they are actualized. To this end, we employ continuous
model selection on the basis of the notion of descriptive dimensionality (Ddim). It is a real-valued model dimensionality,
which is designed for quantifying the model dimensionality in the model transition period. Continuous model selection is to
determine the real-valued model dimensionality in terms of Ddim from a given data. We propose a novel methodology for
detecting signs of model changes by tracking the rise-up/descent of Ddim in a data stream. We apply this methodology to
detecting signs of changes of the number of clusters in a Gaussian mixture model and those of the order in an auto regression
model. With synthetic and real data sets, we empirically demonstrate its effectiveness by showing that it is able to visualize
well how rapidly model dimensionality moves in the transition period and to raise early warning signals of model changes
earlier than they are detected with existing methods.

Keywords Model change detection · Change sign detection · Minimum description length principle · Model selection ·
Continuous model selection · Descriptive dimension · Clustering

1 Introduction

1.1 Motivation

This paper is concerned with the issue of detecting changes
of a model that lies behind a data stream. The model refers
to the discrete structural information such as the number of
free parameters in the mechanism for generating the data.
We consider the situation where a model changes over time.
Under this environment, it is important to detect the model
changes as accurately as possible. This is because the model
changes may correspond to important events. For example,
it is reported in [14] that when customers’ behaviors are
modeled using a Gaussian mixture model, the change of
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the number of mixture components corresponds to the emer-
gence or disappearance of a cluster of customers’ behaviors.
In this case a model change implies a change of the market
trend. For another example, it is reported in [35] that when
the syslog behaviors are modeled using a mixture of hid-
den Markov models, the change of the number of mixture
components may correspond to a system failure.

The issue of model change detection has extensively been
explored. This paper is rather concerned with the issue of
detecting signs or early warning signals of model changes.
Why is it important to detect such signs? One reason is that
if they were detected earlier than the changes themselves, we
could predict the changes before they were actualized. The
other reason is that if they were detected after the change
themselves, we could analyze the cause of the changes in a
retrospective way.

A model, say, the number of parameters, is an integer-
valued index, in general. Therefore, it appears that the model
change abruptly occurs. However, it is reasonable to suppose
that some intrinsic change,whichwe call latent change, grad-
ually occurs at the back of the model change. Then we may
define a sign of the model change as the starting point of the
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latent change. Therefore, if we properly define a real-valued
index to quantify the model dimensionality in the transition
period, we can understand how rapidly the latent change is
going on and we can detect signs of model changes by track-
ing the rise-up/descent of the index (Fig. 1).

The key idea of this paper is to employ the notion of
descriptive dimensionality (Ddim) for the quantification of
a model in the transition period. Ddim is a real-valued
index, which quantifies themodel dimensionality for the case
where a number of models are mixed. We thereby estab-
lish a methodology of continuous model selection. It is
to determine the optimal real-valued model dimensionality
from data on the basis of Ddim. In the transition period of
model changes, the mixing structure of models may change
over time. Hence, by tracking the rise-up/descent of Ddim,
we will be able to track the latent changes behind model
changes.

The purpose of this paper is twofold: One is to establish a
novel methodology for detecting signs (or early warning sig-
nals) of model changes from a data stream. We realize this
by using Ddim for the quantification of model dimensional-
ity in its transition period. The theory of Ddim is developed
on the basis of the minimum description length (MDL) prin-
ciple [24] in combination with the theory of box counting
dimension. The other is to empirically validate the effective-
ness of the methodology using synthetic and real data sets.

Fig. 1 Transition period of dimensionality change. We consider the
situation where the clustering structure changes over time so that the
number k of clusters changes from k = 2 to k = 3.Here k can be thought
of as an integer-valued model dimensionality, called the parametric
dimensionality. If we define a real-valued intrinsic model dimension-
ality, called the descriptive dimensionality, then we can quantify the
dimensionality in the transition period. For example, k becomes 2.5 at
some time point. By tracking the rise-up/descent of such a real-valued
model dimensionality, we are able to detect signs of increase of the
number of clusters

We evaluate how early and how reliably it is able to make
alarms of signs of model changes.

1.2 Related work

Model change detection has been studied in the scenario
of dynamic model selection (DMS) developed in [34, 35].
Model change detection is different from the classical con-
tinuous parameter change detection. Taking an example of
finite mixture models, the former is to detect changes in
the number of components, while the latter is to detect
those in the real-valued parameters of individual compo-
nents or mixing parameters. In [34, 35], they proposed the
DMS algorithm, which outputs a model sequence of the
shortest description length, on the basis of the MDL prin-
ciple [24]. They demonstrated its effectiveness from the
empirical and information-theoretic aspects. TheMDLbased
model change detection has been further theoretically justi-
fied in [33]. The problems similar to model change detection
have been discussed in the scenarios of switching distribu-
tions [8], tracking best experts [13], on-line clustering [27],
cluster evolution [21], Bayesian change detection [29], and
structure break detection for autoregression model [3]. In all
of these previous studies, however, a model change was con-
sidered to be an abrupt change of a discrete structure. The
transition period of changes has never been analyzed there.
In the conventional state-space model, change detection of
continuous states is addressed (see e.g.[5]). Then the state
itself has not the same meaning as a model which we define
in this paper. The number of states is amodelwhichwemean.

Changes that do not occur abruptly but incrementally
occur were discussed in the context of detecting incremental
changes in concept drift [10], gradual changes [36], volatility
shift [17], etc. However, it has never been quantitatively ana-
lyzed how rapidly a model changes in the transition period.

Recently, the indices of structural entropy [16] and graph-
based entropy [22] have been developed for measuring the
uncertainty associated with model changes. Although they
can be thought of as early warning signals of model changes,
they cannot quantify the intrinsic model dimensionality nor
explain how rapidly a model changes in the transition period.
Change sign detectionmethod usng differentialMDL change
statistics has been proposed in [37]. However, it is applied
to change sign detection for parameters only. We summarize
the related work in Table 1 from the viewpoints of abrupt
model change detection, model change sign detection, and
quantification of model dimensionality.

This paper proposes a methodology for analyzing model
transition in terms of real-valued dimensionality. A number
of notions of dimensionality have been proposed in the areas
of physics and statistics. Themetric dimension was proposed
byKolmogorov and Tihomirov [18] tomeasure the complex-
ity of a given set of points in terms of the notion of covering
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Table 1 Comparison of related works on model change detection

methods abrupt model model change quantification of
change detection sign detetion model dimensionality

dynamic model selection [34, 35], ◦ × ×
tracking best experts [13],

on-line clustering [27],

Bayesian change detection [29],

cluster evolution [21],

structure break detection [3]

MDL change statistics [33, 36]

concept drift [10], volatility shift [17]

structural entropy [16], × ◦ ×
graph-based entropy [22]

Ddim based method (this study) ◦ ◦ ◦

numbers. This was evolved into the notion of the box count-
ing dimension, equivalently, the fractal dimension [20]. It is
a real-valued index for quantifying the complexity of a given
set. It is also related to the capacity [7]. Vapnik Chervonenkis
dimension was proposed to measure the power of represen-
tation for a given class of functions [28]. It was also related
to the rate of uniform convergence of estimating functions.
See [12] for relations between dimensionality and learning.
The dimensionality as a power of representation is conven-
tionally integer-valued, but when it changes over time, there
is no effective non-integer valued quantification of its transi-
tion. The previous notions of dimensionality are summarized
in Table 2 from the viewpoints of integer/real-valued, charac-
terizatio of learning rate, and quantification ofmodel change.

Preliminary versions of this paper appeared in Arxiv [31,
32].

1.3 Significance of this paper

The significance of this paper is summarized as follows: (1)
Proposal of a novel methodology for detecting signs of model
changes with continuous model selection. This paper pro-
poses a novel methodology for detecting signs of model
changes. The key idea is to track model transitions with

continuous model selection using the notion of descriptive
dimensionality (Ddim). It measures the model dimension-
ality in the case where a number of models with different
dimensionalities are mixed.

For example, we employ the Gaussian mixture model
(GMM) to consider the situation where the number of mix-
ture components changes over time. We suppose that in the
transition period of model change, a number of probabilis-
tic models with various mixture sizes are fused. We give
a method for calculating Ddim for this case. The transition
period of model change can be visualized by drawing a Ddim
graph versus time. Once a Ddim graph is obtained, we can
understand how rapidly the model changes over time. We
eventually detect signs of model changes by tracking the
rise-up/descent of Ddim. This methodology is significantly
important in data mining since it helps us predict model
changes in earlier stages.

(2)Empirical demonstration of effectiveness of model
change sign detection via Ddim. We empirically validate
how early we are able to detect signs of model changes
with continuous model selection, for GMMs and auto-
regression (AR) models. With synthetic data sets and real
data sets, we illustrate that our method is able to effectively
visualize the transition period of model change using Ddim.
We further empirically demonstrate that our methodology

Table 2 Comparison of related
works on dimensionality

methods real-valued/ characterization of quantification of
integer-valued learning rate model change

metric dimension [18], integer-valued ◦ ×
VC dimension [28],

fractal dimension [20], capacity [7] real-valued × ×
descriptive dimension (this study) real-valued ◦ ◦
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is able to detect signs of model changes significantly ear-
lier than any existing dynamic model selection algorithms
and is comparable to structural entropy in [16]. Through our
empirical analysis, we demonstrate that Ddim is an effective
index for measuring the model dimensionality in the model
transition period.

(3)Giving theoretical foundations for Ddim. In this paper,
Ddim plays a central role in continuous model selection.
We introduce this notion from an information-theoretic view
based on the MDL principle [24] (see also [11]). We show
that Ddim coincides with the number of free parameters in
the case where the model consists of a single parametric
class. We also derive Ddim for the case where a number of
models with different dimensionalities are mixed. We char-
acterize Ddim by demonstrating that it governs the rate of
convergence of theMDL-based learning algorithm. This cor-
responds to the fact that the metric dimensionality governs
the rate of convergence of the empirical risk minimization
algorithm in statistical learning theory [12].

The rest of this paper is organized as follows: Section 2
introduces the notion of Ddim. Section 3 gives a method-
ology for model change sign detection via Ddim. Section
4 shows experimental results. Section 5 characterizes Ddim
by relating it to the rate of convergence of the MDL learning
algorithm. Section 6 gives conclusion. Source codes and data
sets are available at a Github repository [38].

2 Descriptive dimensionality

2.1 NML and parametric complexity

This section introduces the theory of Ddim. This theory is
based on the MDL principle (see [24] for the original paper
and [25] for the recent advances) from the viewpoint of
information theory. We start by introducing a number of fun-
damental notions of the MDL principle.

Let X be the data domain where X is either discrete or
continuous. Without loss of generality, we assume that X
is discrete. Let x = x1, . . . , xn ∈ X n be a data sequence of
length n. We assume that each xi is independently generated.
P = {p(x)} be a class of probabilistic models where p(x) is
a probability mass function or a probability density function.
Hereafter, we asssume that for any x, the maximum of p(x)
with respect to p exists.

Under the MDL principle, the information of a datum x is
measured in terms of description length, i.e, the codelength
required for encoding the datumwith a prefix codingmethod.
We may encode xwith help of a classP of probability distri-
butions. One of the most important methods for calculating
the codelength x using P is the normalized maximum likeli-
hood (NML) coding [25]. This is defined as the codelength
associated with the NML distribution as follows:

Definition 1 We define the normalized maximum likelihood
(NML) distribution over X n with respect to P by

pNML(x;P)
def= maxp∈P p(x)
∑

y maxp∈P p(y)
. (1)

The normalized maximum likelihood (NML) codelength of
x relative to P , which we denote as LNML(x;P), is given as
follows:

LNML(x;P)
def= − log pNML(x;P)

= − logmax
p∈P

p(x) + log Cn(P),
(2)

where

log Cn(P)
def= log

∑

y

max
p∈P

p(y). (3)

The first term in (2) is the negative logarithm of maxi-
mum likelihood while the second term (3) is the logarithm
of the normalization term. The latter is called the parametric
complexity of P [25]. This means the information-theoretic
complexity for the model class P relative to the length n of
data sequence. The NML codelength can be thought of as an
extension of Shannon information − log p(x) into the case
where the true model p is unknown but only P is known.

In order to understand themeaning of theNMLcodelength
and the parametric complexity, we define theminimax regret
as follows:

Rn(P)
def= min

q
max
x

{

− log q(x) − min
p∈P

(− log p(x))
}

,

where the minimum is taken over the set of all probabil-
ity distributions. The minimax regret means the descriptive
complexity of the model class, indicating how largely any
codelength is deviated from the smallest negative log-
likelihood over themodel class. Shtarkov [26] proved that the
NML distribution (1) is optimal in the sense that it attains the
minimumof theminimax regret. In this sense theNML code-
length is the optimal codelength for encoding x for given P .
Then we can immediately see that the minimax regret coin-
cides with the parametric complexity. That is,

Rn(P) = Cn(P). (4)

We next consider how to calculate the parametric com-
plexity. According to [25] (pp:43-44), the parametric com-
plexity can be rewritten using a variable transformation
technique as follows:

Cn(P) =
∑

y

max
p∈P

p(y) =
∫

g( p̂, p̂)d p̂, (5)
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where g( p̂, p) is defined as

g( p̂, p)
def=

∑

y:max p̄∈P p̄(y)= p̂(y)

p(y). (6)

2.2 Definition of descriptive dimension

Below we give the definition of Ddim from a view of
approximation of the parametric complexity, equivalently,
the minimax regret (by (4)). The scenario of defining Ddim
is as follows: We first count how many points are required
to approximate the parametric complexity (5) with quantiza-
tion.Weconsider that count as information-theoretic richness
of representation for a model class. We then employ that
count to define Ddim in a similar manner with the box count-
ing dimension.

We consider to approximate (5) with a finite sum of partial
integrals of g( p̂, p̂).Let P = {p1, p2, . . . } ⊂ P be a finite
subset of P . Let ε be the parameter for defining the diameter
of the neighborhood of a given probability distribution. For

ε > 0, for pi ∈ P , let Dn
ε (i)

def= {p ∈ P : dn(pi , p) ≤
ε2}where dn(pi , p) is the Kullback-Leibler (KL) divergence
between p and pi :

dn(p, pi ) = 1

n

∑

x

pi (x) log
pi (x)
p(x)

.

Then we approximate C̄n(P̄) by

Cn(P)
def=
∑

i

Qε(i), (7)

where

Qε(i)
def=
∫

p̂∈Dn
ε (i)

g( p̂, p̂)d p̂. (8)

That is, (7) gives an approximation to Cn(P) with a finite
sum of integrals of g( p̂, p̂) over the ε2−neighborhood of a
point pi . We define mn(ε : P) as the smallest number of
points | P | with respect to P such that Cn(P) ≤ Cn(P).
More precisely,

mn(ε : P)
def= min

P
| P | subject to Cn(P) ≤ Cn(P). (9)

We are now led to the definition of descriptive dimension.

Definition 2 [31] Let P be a class of probability distribu-
tions. We let m(ε : P) be the one obtained by choosing
ε2n = O(1) in mn(ε : P) as in (9). We define the descrip-
tive dimension (Ddim) of P by

Ddim(P)
def= lim

ε→0

logm(ε : P)

log(1/ε)
, (10)

when the limit exists.

The definition of Ddim is similar with that of the box
counting dimension [7, 9, 20] .The main difference between
them is how to count the number of points. Ddim is cal-
culated on the basis of the number of points required for
approximating the parametric complexity, while the box
counting dimension is calculated on the basis of the num-
ber of points required for covering a given object with their
ε-neighborhoods.

Consider the case wherePk is a k-dimensional parametric
class, i.e., Pk = {p(x; θ) : θ ∈ �k ⊂ R

k}, where �k is a
k-dimensional real-valued parameter space. Let p(x; θ) =
f (x | θ̂ (x))g(θ̂(x); θ) for the conditional probabilistic mass
function f (x | θ̂ (x)). We then write g according to (6) as
follows

g(θ̂ , θ)=
∑

x:argmaxθ p(x;θ)=θ̂

p(x; θ). (11)

Assume that the central limit theoremholds for themaximum
likelihood estimator of a parameter vector θ . Then accord-
ing to [25], we can take a Gaussian density function as (11)
asymptotically. That is, for sufficiently large n, (11) can be
approximated as:

g(θ̂ , θ) �
( n

2π

) k
2 | In(θ) | 12 e−n(θ̂−θ)� In(θ)(θ̂−θ)/2, (12)

where In(θ)
def=(1/n)Eθ [−∂2 log p(x; θ)/∂θ∂θ�] is theFisher

information matrix.
The following theorem shows the basic property ofmn(ε :

Pk) for the parametric case.

Theorem 1 Suppose that p(x; θ) ∈ Pk is continuously three-
times differentiable with respect to θ . Under the assumption
of the central limit theorem so that (12) holds, for sufficiently
large n, we have

logCn(Pk) = logmn(1/
√
n : Pk) + O(1). (13)

The proof is given in Appendix.
It is known [25] (p.53) that under some regularity condi-

tion that the central limit theorem holds for the maximum
likelihood estimator for θ , the parametric complexity for Pk

is asymptotically expanded as

logCn(Pk) = k

2
log

n

2π
+ log

∫ √| I (θ) |dθ + o(1), (14)

where I (θ) is the Fisher information matrix: I (θ)
def=

limn→∞(1/n)× Eθ [−∂2 log p(x; θ)/∂θ∂θ�]. Plugging (13)
with (14) for ε2n = O(1) into (10) yields the following the-
orem.
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Theorem 2 For a k-dimensional parametric class Pk , under
the regularity condition for Pk as in Theorem 1, we have

Ddim(Pk) = k. (15)

Theorem 2 shows that when the model class is a single
parametric one, Ddim coincides with the conventional notion
of dimensionality (the number of free parameters), which we
call the parametric dimensionality in the rest of this paper.

Ddim can also be defined even for the case where the
model class is not a single parametric class. Hence Theorem
2 implies that Ddim is a natural extension of the parametric
dimensionality.

Let us consider model fusion where a number of model
classes are probabilistically mixed. Let F = {P1, . . . ,Ps}
be a family of model classes and assume a model class is
probabilistically distributed according to p(P) over F . We
denote the model fusion overF asF� = P1 �· · ·�Ps . We
may interpret the resulting distribution overX as a finitemix-
ture model [19] of a number of model classes with different
dimensionalities. Then Ddim of F� is calculated as

lim
ε→0

log EP [m(ε : P)]
log(1/ε)

≥ lim
ε→0

s∑

i=1

p(Pi )
logm(ε : Pi )

log(1/ε)

=
s∑

i=1

p(Pi )Ddim(Pi ), (16)

where we have used Jensen’s inequality to derive the first
inequality. We call the lower bound (16) the pseudo Ddim
for model fusion F�. In the rest of this paper, we adopt it
as Ddim value for model fusion. We write it as Ddim(F�).
Model fusion is a reasonable setting when we consider the
transition period of model changes. Then Ddim is no longer
integer-valued.

3 Model change sign detection

3.1 Continuousmodel selection for GMMs

This section proposes a methodology for detecting signs of
model changes with continuous model selection. We first
focus on the case where the model is a Gaussian mixture
model (GMM). The problem setting is as follows: At each
time we obtain a number of unlabeled multi-dimensional
examples. By observing such examples sequentially, we
obtain a data stream of the examples. At each time, we may
conduct clustering of the examples using GMMs. Assuming
that the number of components in GMM may change over
time, we aim at detecting their changes and the signs of them.

The key idea is to conduct continuous model selection,
which is to determine the real-valued model dimensionality

on the basis of Ddim. Below we give a scenario of continu-
ous model selection with applications to model change sign
detection. LetPk be a class ofGMMswith k components.We
consider the situation where the structure of GMM gradually
changes over time (Fig. 2), while the model k may abruptly
change. The key observation is that during the model transi-
tion period, model fusion occurs where a number of GMMs
with different ks are probabilistically mixed according to the
posterior probability distribution. Then model dimensional-
ity in the transition period can be calculated asDdimofmodel
fusion. Thus we can detect signs of model changes by track-
ing the rise-up/descent of Ddim.

Below let us formalize the above scenario. Let X be an
m-dimensional real-valued domain and let x ∈ X be an
observed datum. Let z ∈ {1, . . . , k} be a latent variable indi-
cating which component x comes from. Let μi ∈ R

m , �i ∈
R
m×m be themean vector and variance-covariancematrix for

the i th component, respectively. Let μ = (μ1, . . . , μk) and
� = (�1, . . . , �k). Let

∑
i πi = 1, πi ≥ 0 (i = 1, . . . , k).

Let θ = (μi , �i , πi ) |i=1,...,k . Then a complete variable
model of GMM with k-components is given by

p(x, z; θ, k) = p(x | z;μ,�)p(z;π),

where

p(x | z = i;μ,�) = 1

(2π)
m
2 · | �i | 12

exp

{

− 1

2
(x − μi )

��−1
i (x − μi )

}

,

p(z = i;π) = πi (i = 1, . . . , k). (17)

Let x = x1, . . . , xn be a sequence of observed variables of
length n. Let z j denote a latent variable which corresponds to
x j and z = z1, . . . , zn . Let y = (x, z) be a complete variable.

Fig. 2 Continuous model selection. We consider the situation where
the number k of clusters in a GMM changes from two to three as time
goes by. In the transition period, one cluster gradually collapses into two
clusters. Ddim is a continuous variant of the number of clusters, hence
Ddimmay change continuously in the transition period, taking the value
in (2, 3). It represents the gradual change of clustering structure well
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Let μ̂i , �̂i be the maximum likelihood estimators of μi , �i

(i = 1, . . . , k) for given y. Let π̂i = ni/n where ni is the
number of occurrences in z such that z = i (i = 1, . . . , k)
and

∑k
i=1 ni = n. z may be estimated by sampling from

the posterior probability obtained by the EM algorithm. Let
θ̂ (y) = (π̂i , μ̂i , �̂i ) |i=1,...,k .

The NML codelength of y for a complete variable model
of a GMM is given by

LNML(y; k) = − log pNML(y; k)
= − log p(y; θ̂ (y), k) + log Cn(k), (18)

where Cn(k) is a parametric complexity for a GMM. Accord-
ing to [15], an upper bound on Cn(k) is given as follows:

Cn(k) ≤ ∑

n1,··· ,nk
n!

n1!···nk ! ×
k∏

i=1

( ni
n

)ni B(m, R, ε)

× ( ni2e
)mni

2
(
�m

(
ni−1
2

))−1
, (19)

where

B(m, R, ε)
def= 2m+1R

m
2 ε−m2

2

mm+1 · �
(m
2

) ,

where R is a positive constant such that for all i , ‖ μ̂i ‖2≤ R,
and ε is a positive constant such that ε is the lower bound on
the smallest eigenvalue of�i for any i .�m is the multivariate

Gamma function defined as �m(x) = π
m(m−1)

4
∏m

j=1 �(x +
1− j
2 ) and� is the Gamma function.We use the bound (19) as

the value of Cn(k). It is known [14] that Cn(k) is computable
in time O(n2k).

At each time t , we observe a data sequence: xt =
x1, . . . , xn ∈ X n of length n. We sequentially observe such a
datum as show in Fig. 2. Let xT = x1, . . . , xT (xt ∈ X n, t =
1, . . . , T ) be an observed data sequence. The length n may
vary over time. We denote the joint sequence of observed
variables and latent variables at time t as yt = (xt , zt ).

We suppose that a number of GMMs with different ks
are fused according to the probability distribution p(k | yt )
at each time. We define p(k | yt ) as the annealed posterior
probability of k for yt :

p(k | yt ) def= (pNML (yt ;k)p(k|kt−1))
β

∑
k′ (pNML (yt ;k′)p(k′|kt−1))β

(20)

= exp(−βLNML (xt ,zt ;k)+β log p(k|kt−1))∑
k′ exp(−βLNML (xt ,zt ;k′)+β log p(k′|kt−1))

,

where kt−1 is the dimensionality estimated at time t − 1,
and

p(k | kt−1)
def=
⎧
⎨

⎩

1 − γ if k = kt−1 and kt−1 �= 1, kmax,

1 − γ /2 if k = kt−1 and kt−1 = 1, kmax,

γ /2 if k = kt−1 ± 1.
(21)

γ (0 < γ < 1) is a parameter, and kmax is the maximum
value of k. We estimate γ using the MAP estimator with the
beta distribution Beta(a, b) being the prior where the density
function of Beta(a, b) is proportional to γ a−1(1− γ )b−1 for
hyper-parameters a and b. The MAP estimator of γ is given
as follows:

γ̂ = Nt + a − 1

t + a + b − 2
,

where Nt shows how many times the number of clusters has
changed until time t − 1. In the experiments to follow, we
set (a, b) = (2, 10). β(> 0) is the temperature parameter. In
our experiment, we set as β as

β = 1/
√
n. (22)

This is due to the PAC-Bayesian argument [1] for Gibbs pos-
teriors.

Note that (20) is calculated on the basis of the NML dis-
tribution. This is because the probability distribution with
unknown parameters should be estimated as the NML dis-
tribution since it is the optimal distribution in terms of the
minimax regret (see Section 2.1).

By (16), we can calculate Ddim ofmodel fusion of GMMs
with various ks at time t as

Ddim(F�)t =
∑

k

pt (Pk)Ddim(Pk), (23)

where pt (Pk) is the probability ofPk at time t , and pt (Pk) =
p(k | yt ) in this case. Note that Ddim for GMM with k
components is k(m2/2 + (5m/2)) − 1 ≈ k f (m) where
f (m) = m2/2 + (5m/2). However, in order to focus on the
mixture size, we divide the true Ddim by f (m) to consider
an alternative Ddim of the form of (24).

Ddim(F�)t
def=
∑

k

p(k | yt )Ddim(Pk)/ f (m)

≈
∑

k

p(k | yt )k. (24)

The calculation of real-valued k according to (24) is really
continuous model selection.

1 3

26460



Detecting signs of model change...

Suppose that there exists a true parametric dimensionality
k∗. Then because of the consistency of MDL model estima-
tion ([25], pp:63-69),

p(k̂ = k∗ | yt ) → 1

for k̂ minimizing the NML codelength as n increases, Hence
(24) will coincide with k∗ with probability 1 as n goes to
infinity.This implies that (24) is a natural extension of para-
metric dimensionality.

3.2 Model change sign detection algorithms

Consider the situation where we sequentially observe a com-
plete variable sequence: y1, y2, . . . , yT . We then obtain a
Ddim graph:

{(t,Ddim(F�)t ) : t = 1, 2, . . . , T },

as in Fig. 1.We can visualize the transition period by drawing
the Ddim graph versus time. In this paper we have defined
a sign of a model change as the starting point of the latent
gradual change associated with it. Thus we can detect signs
of model changes by looking at the rise-up/descent of Ddim.

More precisely, we propose the following two methods
for raising alarms of model change signs.

1) Thresholding method (TH): We raise an alarm if the
absolute difference betweenDdim and the baseline exceeds a
given threshold δ1. The baseline is the parametric dimension-
ality estimated by the sequential dynamic model selection
algorithm (SDMS) [14],which is a sequential variant ofDMS
in [34, 35]. It outputs a model k = k̂ with the shortest code-
length, i.e., for λ > 0,

k̂ = argmin
k

{LNML(yt ; k) − λ log p(k | kt−1)}, (25)

where LNML(yt ; k) is calculated as in (18). Letting k̂ be the
output of SDMS and Ddimt be Ddim of model fusion at time
t , we raise an alarm if

TH−Score
def=| Ddimt − k̂ |> δ1. (26)

2) Differential method (Diff): We raise an alarm if the time
difference of Ddim exceeds a given threshold δ2. That is, we
raise an alarm if

Diff−Score
def=| Ddimt − Ddimt−1 |> δ2. (27)

The computational complexity of THandDiff at each time
t is governed by that for computing the NML codelength
(18). The first term in (18) is computable in time O(nk). The
second term in (18) is computable in time O(n2k) [15], but it

does not depend on data, hence can be calculated for various
n and k beforehand. It can be referred when necessary. Hence
the computational complexity of TH and Diff at each time is
O(nK ) where K is an upper bound on k.

3.3 Continuousmodel selection for ARmodel

The above methodology can be applied to general classes
of finite mixture models other than GMMs. It can also be
applied to general classes of parametric probabilistic model
classes.We illustrate the case of auto-regression (AR) model
as an example. This model does not include latent variables.

Let a data sequence {xt }, xt ∈ R (t = 1, 2, . . . , T ) be
given. For the modeling of the data sequence, we consider
AR(k) (k-th order auto-regression) model of the form:

xt = a1xt−1 + · · · + akxt−k + ε,

where ai ∈ R (i = 1, . . . , k) are unknown parameters,
and ε is a random variable following the Gaussian dis-
tribution with mean 0 and unknown variance σ 2. We set
θ = (a1, . . . , ak, σ 2).

Let xt = xt , . . . , xt−w+1 be the t-th session for a window
sizew.We calculate the NML codelength LNML(xt ; k) for xt
associated with AR(k) in the following sequential manner:
Letting θ̂ be the maximum likelihood estimator,

LNML(xt ; k) =
t∑

j=t−w+1

(

− log
p(x j ; θ̂ (x j , x j−1))

∫
p(y j ; θ̂ (y, x j−1))dy

)

.

LettingPk = AR(k), similarly with (20) and (23), we can
calculate Ddim at time t and draw a Ddim graph.We thereby
detect model change signs by applying TH and Diff to the
graph.

4 Experimental results

4.1 Synthetic data: GMM

4.1.1 Data set

We employ synthetic data sets to evaluate how well we are
able to detect signs of model changes using Ddim. We let
n = 1000 at each time. We generated DataSet 1 according
to GMMs so that the number of components changed from
k = 2 to k = 3 as follows:

⎧
⎨

⎩

k = 2, μ = (μ1, μ2) if 0 ≤ t ≤ τ1,

k = 3, μ = (μ1, μ2, fα(t)) ifτ1 + 1 ≤ t ≤ τ2,

k = 3, μ = (μ1, μ2, μ3) ifτ2 + 1 ≤ t ≤ T ,
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Fig. 3 Graph of proportion of μ3 in the mean to μ2 versus time for various α

where letting α be a smoothness parameter,

fα(t)
def= (τ2 − t)αμ2 + (t − τ1)

αμ3

(τ2 − t)α + (t − τ1)α
(α > 0). (28)

In it, one component collapsed gradually in the transition
period from t = τ1 + 1 to t = τ2. fα(t) is the mean value
which switches from μ2 to μ3 where the speed of change is
specified by a parameter α. Figure 3 shows the graph of the
proportion of μ3 in the mean to μ2 versus time for various
α. The change becomes rapid as α approaches to zero. The
variance covariance matrix of each component is given by

� = (r AA� + (I − r)I ) × var, (29)

where r = 0.2, var = 3, and A is a randomly generated
m × m matrix. We set m = 3, τ1 = 9, τ2 = 29, T = 39. It
appears that the number of components of a GMM abruptly
changed at t = 20 since it takes a discrete value. However,
in the early stage of k = 3, the model is very close to k = 2
because the mean values of Gaussian components are very
close each other. It may be more natural to recognize the
model dimensionality at this stage as a value between k = 2
and k = 3.

We evaluate how well Ddim tracked the transition period
of model change. The temperature parameter β was cho-
sen so that β = 0.0316 according to (22). Figure 4 shows
how Ddim gradually grows as time goes by for various α

values. The gray zone shows the transition period when the
model changes from k = 2 to k = 3. The blue line shows
the number of components of the GMM estimated by the
SDMS algorithm as in (25). The green curve shows the Ddim
graph. The red and purple curves show TH-Score and Diff-
Score as in (26) and (27), respectively. We show the time
points of their alarms of TH and Diff using the same colors.
Ddim successfully visualized how rapidly the GMM struc-
ture changed in the transition period from t = 10 to 29. The
true change occurs rapidly forα = 0.2,while it occurs slowly

for α = 1.0. Ddim was able to successfully track their tran-
sition process depending on α. Ddim detected signs earlier
than SDMS made an alarm of model change.

We next consider the case where there aremultiple change
points. We generated DataSet 2 according to GMMs so that
the number of components changed from k = 2 to k = 3,
then from k = 3 to k = 4. as follows:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

k = 2, μ = (μ1, μ2) if 1 ≤ t ≤ τ1,

k = 3, μ = (μ1, μ2,
(τ2−t)αμ2+(t−τ1)

αμ3
τ2−τ1

) ifτ1 + 1 ≤ t ≤ τ2,

k = 3, μ = (μ1, μ2, μ3) if τ2 ≤ t ≤ τ3,

k = 4, μ = (μ1, μ2, μ3,
(τ4−t)αμ3+(t−τ3)

αμ4
τ4−τ3

) ifτ3 + 1 ≤ t ≤ τ4,

k = 4, μ = (μ1, μ2, μ3, μ4) ifτ4 + 1 ≤ t ≤ T .

One component collapsed gradually over time from t =
10 to t = 29 and the other one collapsed from t = 50 to
t = 69. We set τ1 = 9, τ2 = 29, τ3 = 49, τ4 = 69, and
T = 79. In the transition periods the parameters varied as
with the single change point case.

Figure 5 shows theDdimgraph forα = 0.5. The gray zone
shows the transition periods when the model changes from
k = 2 to k = 3 and k = 3 to k = 4.The green curve shows the
Ddim graph. The blue line shows the number of components
of the GMM estimated by SDMS. The red and purple lines
show the times when alarms for signs of model changes are
raised using TH andDiff, respectively. TheDdimgraph helps
us understandwell how rapidly theGMMstructure gradually
changes in the transition periods from t = 10 to t = 29 and
from t = 50 to t = 69. The Ddim graph helps us understand
well how rapidly the model changes in the transition period.
TH detected the signs of model changes earlier than SDMS.

4.1.2 Evaluation metrics

Next we quantitatively evaluate how early we were able to
detect signs of model changes with Ddim. We measure the
performance of any algorithm in terms of benefit. Let t̂ be
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Fig. 4 Ddim graph (transition period: [τ1 = 9, τ2 = 29], T = 39). We
see how Ddim gradually grows as time goes by for various α values.
The gray zone shows the transition period when the model changes
from k = 2 to k = 3. The blue line shows the number of components
of the GMM estimated by the SDMS algorithm as in (25). The green
curve shows the Ddim graph. The red and purple curves show TH-
Score and Diff-Score as in (26) and (27), respectively. We show the
time points of their alarms of TH and Diff using the same colors. We
see that Ddim successfully visualized how rapidly the GMM structure
changes in the transition period from t = 10 to 29 for each α, where
the true change occurs rapidly for α = 0.2, while it occurs slowly for
α = 1.0. Furthermore, Ddim detected signs of model change earlier
than SDMS made an alarm of model change

the first time when an alarm is made and t∗ be the true sign,
which we define as the starting point of model change. Then
benefit is defined as

benefit =
{
1 − (t̂ − t∗)/U (t∗ ≤ t̂ < t∗ +U ),

0 otherwise,
(30)

where U is a given parameter. Benefit takes the maximum
value 1 when the alarm coincides with the true sign. It
decreases linearly as t goes by and becomes zero as t̂ exceeds
t∗ +U .

False alarm rate (FAR) is defined as the ratio of the num-
ber of alarms outside the transition period over the total
number of alarms.

We evaluate any method for model change sign detec-
tion algorithm in terms of Area Under Curve (AUC) of
Benefit-FAR curve that is obtained by varying the thresh-
old parameter δ such as in (26) and (27). We set U = 10 in
(30).

4.1.3 Methods for comparison

We consider the following methods for comparison.
1) The sequential DMS algorithm (SDMS) [14]: The SDMS
algorithm with λ = 1 outputs the estimated parametric
dimensionality as in (25). We raise an alarm when the output
of SDMS changes.
2)Fixed share algorithm (FS) [13]:We think of eachmodel k
as an expert, and performHerbster andWarmuth’s fixed share
algorithm, abbreviated as FS. It was originally designed to
make prediction by taking a weighted average over a number
of experts, where the weight is calculated as a linear combi-
nation of the exponential update weight and the sum of other
experts’ ones. In it the expert with the largest weight is the
best expert, which may change over time. We can think of
FS as a model change detection algorithm by tracking the
time-varying best expert.

Here is a summary of FS. Let k be the index of the expert.
Lk(zt−1) is the loss function for the kth expert for data zt−1,
which is the NML codelength in our setting. wu

t,k and ws
t,k

are tentative and final weights for the kth expert at time t . FS
conducts the following weight update rule: Letting α > 0 be
a sharing parameter and β be a learning ratio,

wu
t−1,k = ws

t−1,k · exp{−βLk(zt−1)},
ws
t,k = (1 − α)wu

t−1,k +
∑

��=k

α

n − 1
wu
t−1,�,

where n is the total number of experts.
Let k̂ be the best expert in which ws

t,k is maximum. FS
raises an alarm when the best expert changes. The learning
rate was set to be the same as our method.

1 3

26463



K. Yamanishi and S. Hirai

Fig. 5 Ddim graph (transition
periods:
[τ1 = 9, τ2 = 29], [τ3 =
49, τ4 = 59], T = 79) Ddim
successfully visualizes how
rapidly the GMM structure
changes in the transition periods
from t = 10 to 29 and from
t = 50 to t = 69. We see also
that Ddim detected signs of
model change earlier than
SDMS made an alarm of model
change

3) Fixed share weighted algorithm (FSW-TH, FSW-Diff):
We consider variants of TH and Diff where p(k | yt ) as in
(20) is replacedwith the normalizedweight for k calculated in
the process of FS. FSW-THandFSW-Diff calculate scores by
pluggingws

t,k to p(k | yt ) in (24) andmake alarms according
to (26) and (27), respectively. The learning rate was set to be
the same as our method.
4) Structural entropy (SE): It is a measure of uncertainty
for model selection, developed in [16]. It is calculated as the
entropy with respect to the model posterior probability dis-
tribution (20). SE makes alarms when it exceeds a threshold.

The method 1) is the only existing work that performs
on-line dynamic model selection. The methods 2) and 3) are
the ones that are adapted to our problem setting. The meth-
ods 1) and 2) are model change detection algorithms while
the method 3) is an algorithm for quantifying latent gradual
changes in a similar way with TH or Diff. The method 4) is
to detect change signs from the view of model uncertainty,
but not to intend continuous model selection.

4.1.4 Results

Wegenerated randomdata 10 times and took an averagevalue
of benefit over 10 trials for eachmethod.Table 3 shows results
on comparison of all the methods in terms of AUC both for
single and multiple change cases. AUC was calculated for
the benefit-FAR curve obtained by varying a threshold. The
parameterα specifies the speed of change.As for themultiple
change cases, AUC was calculated as an average taken over
all change points. Both for the single and multiple change
cases, THandDiff hadmuch higher benefit than the FS-based
methods for all the cases. It was statistically significant via
t-test with p-values less than 5%. This implies that TH and
Diff were able to detect signs of model changes significantly
earlier than the FS-basedmethods. THworked almost as well
as Diff.

It is worthwhile noting that TH and Diff performed bet-
ter than FSW-TH and FSW-Diff. It implies that the posterior
based on the NML distribution is more suitable for track-
ing gradual model changes than that based on the FS-based
heuristics. As α becomes small, the superiority of TH and
Diff over the others becomes more remarkable. This implies
that Ddim is able to catch up the growth of a cluster much
more quickly than the others.

Both for the single and multiple change cases, THworked
slightly better than Diff, but they were almost comparable.

TH and Diff were comparable to SE in terms of change
sign detection alone. However, note that theDdim based ones
realize both model change sign detection and continuous

Table 3 AUC comparison results for GMMs. The bold values show
highest AUC records over all the methods

Method α =0.2 α =0.5 α =1.0 α =2.0

(a) Single change point

TH 0.995 0.920 0.845 0.802

Diff 0.995 0.907 0.830 0.797

SDMS 0.850 0.797 0.775 0.757

FS 0.755 0.715 0.710 0.710

FSW-TH 0.893 0.813 0.778 0.758

FSW-Diff 0.825 0.778 0.750 0.758

SE 0.995 0.927 0.853 0.801

(b) Multiple change point

TH 0.998 0.925 0.893 0.870

Diff 0.998 0.920 0.883 0.850

SDMS 0.905 0.831 0.804 0.773

FS 0.856 0.794 0.761 0.739

FSW-TH 0.945 0.874 0.816 0.780

FSW-Diff 0.899 0.855 0.834 0.835

SE 0.997 0.928 0.903 0.867
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model selection simultaneously. The latter function is specif-
ically important for understanding how fast model changes.
Meanwhile, SE can do only sign detection by measuring
the uncertainty in model selection. Therefore, Ddim has an
advantangeoverSE in the sense that it can continuously quan-
tify the model complexity in the transition period as well as
detects signs of model changes.

4.2 Synthetic data: Auto-regressionmodel

4.2.1 Data sets

We next examined continuous model selection for auto-
regression (AR) models as in Section 3.3. We let n = 1000
at each time.We generated DataSet 3 according to ARmodel
in the setting as in Section 3.3 where the number k of coef-
ficients in AR model changed over time as follows:

k =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1 if 1 ≤ t < τ1,

1 with prob. 1 − t−τ1
τ2−τ1

if τ1 ≤ t < τ2,

3 with prob. t−τ1
τ2−τ1

if τ1 ≤ t < τ2,

3 if τ2 ≤ t ≤ T ,

where τ1 = 100, τ2 = 200 and T = 300.

4.2.2 Results

We generated random data 10 times and took an average
value of benefit over 10 trials for eachmethod. Table 4 shows
results on comparison of all the methods in terms of AUC
for Benefit-FAR curves.

Table 4 shows that TH and Diff were comparable to SE
and obtained much larger values of AUC than other methods
except SE. This implies that TH andDiff could catch up signs
of model changes significantly earlier than the others except
SE.Note again that TH andDiff conduct not only change sign
detection but also continuous model selection meanwhile SE
only perform change sign detection.

Table 4 AUC comparison
results for AR models. The bold
value shows the highest AUC
over all the methods

Method AUC

TH 0.897

Diff 0.896

SDMS 0.771

FS 0.500

FSW-TH 0.771

FSW-Diff 0.500

SE 0.896

4.3 Real data: Market data

4.3.1 Data sets

We apply our method to real market data provided by
HAKUHODO,INC. (https://www.hakuhodo-global.com/)
and M-CUBE,INC. (https://www.m-cube.com/). This data
set consists of 912 customers’ beer purchase transactions
from Nov. 1st 2010 to Jan. 31st 2011. See [38]. Each cus-
tomer’s record is specified by a four-dimensional feature
vector, each component of which shows a consumption vol-
ume for a certain beer category. Categories are: {Beer(A),
Low-malt beer(B), Other brewed-alcohol(C), Liquor (D)}.

We constructed a sequence of customers’ feature vectors
as follows: A time unit is a day. At each time t(= τ, ..., T ),
we denote the feature vector of the i th customer as xit =
(xit,A, ..., xit,D) ∈ R

4. Each xit, j is the i th customer’s con-
sumption of the j th category from time t − τ + 1 to t . We
denote data at time t as xt = (x1t , ..., xnt ), where n = 912,
the number of customers. The total number of transactions is
13993. We set τ = 14 and T = 53. Since TH and DIFF have
turned out to outperform the other methods in the previous
section and we like to conduct continuous model selection
simultaneously, we focus on evaluating how well they work
for the real data sets.

4.3.2 Results

Figure 6 shows Ddim (green), estimated number of clusters
inGMM(blue) using SDMS, and time points of alarms raised
by TH and Diff (red and purple) with δ1 = δ2 = 0.1. Table 5
shows the clustering structures t = 24, 25, 26. Each number
in the (i, j)th cell shows the purchase volume of category
i (= A, B,C, D) for the customers in the j th cluster cj ( j =
1, 2, 3, 4). The last row shows the number of customers.

The purchase volume of categoryC in cluster c4 gradually
increased from t = 24 to t = 25, eventually c4 started to
collapse at t = 25 and was split into c4 and c5 at t = 26.
We confirm from Table 5 that c4 consisted of heavy users
in category C , at t = 26, some of them became dormant
users that did not purchase anything to form a new cluster.
The SDMS algorithm detected this market structure change
at t = 26. As shown in Fig. 6, TH and Diff successfully
raised an alarm at t = 25 as a sign of that market structure
change. The reason why we could detect the early warning
signal is that there were gradual changes among clusters as
well aswithin individual clusters before the clustering change
occurred. Our result shows that our method was effective in
detecting signs of model changes for such a case.
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Fig. 6 Change sign detection
for market data. Ddim
continuously increases from
t = 24 to = 26. TH and Diff
raised an alarm at t = 25 as a
sign of that market structure
change

4.4 Real Data: Electric power consumption data

4.4.1 Data sets

Next we apply our method to the household electric power
consumption dataset provided by [6]. This dataset contains
three categories of electric power consumption correspond-

Table 5 Market structure change

t = 24

cat. c1 c2 c3 c4

A 0 1 1993 0

B 0 2146 0 0

C 12 25 7 156

D 1768 1 7 0

� 211 126 138 437

t = 25

cat. c1 c2 c3 c4

A 0 1 1959 0

B 0 2201 0 0

C 11 21 8 184

D 1919 1 9 0

� 212 124 141 435

t = 26

cat. c1 c2 c3 c4 c5

A 0 0 2139 0 0

B 0 2199 1 0 0

C 12 19 8 2962 0

D 1916 1 12 0 0

� 213 123 148 283 145

ing to electricity consumed 1) in kitchen and laundry rooms,
2) by electric water heaters and 3) by air-conditioners. The
data were obtained every other minute from Dec. 17, 2006
to Dec. 10, 2010. We set xt = (x1, · · · , xn) and xi =
(xi1, xi2, xi3) where each xi denotes the value of consump-
tion per an hour for the three categories, respectively, and xt
is the value of consumption for two weeks (n = 336).

4.4.2 Results

Figure 7 shows how Ddim (the green curve) and the number
of clusters (the blue line) changed over time. Here each clus-
ter shows a consumption pattern. The red dotted line shows
the alarm positions for TH and Diff with δ1 = δ2 = 0.1.
Let us focus on the duration from t = 18 to t = 22. At
t = 18, 19, there were three clusters, one of which collapsed
to two clusters at t = 21, eventually, produced the fourth
cluster. The Ddim graph in Fig.7 shows that Ddim gradually
increased from k = 3 to k = 4 during the period. The alarm
was made by TH and Diff at t = 20 while there were still
three clusters. This alarm can be thought of as a sign of the
emergence of a new cluster having a unique consumption
pattern.

Table 6 shows the contents of clusters on theweeks starting
fromMay 14th, 21st, and 28th in 2007. cmeans clusters, and
m1,m2,m3 mean the mean amounts of meter 1,2,3, respec-
tively. The last column shows the total amount of users in a
respective cluster.A sign of model change was detected on
May 21st. The model change was detected on May 28th. We
see from Table 6 that cluster 2 collapsed into clusters 2 and
3. Cluster 2 shows a pattern of homogeneous consumption
with a relatively highweight on category 3. Cluster 3 shows a
pattern of homogeneous consumption with a relatively high
weight on category 1. The sign of this collapse was success-
fully detected on May 21st by monitoring the Ddim value.
The reason why we could detect the early warning signal is
that there was a gradual change in the collapse of cluster 2
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Fig. 7 Change sign detection
for power consumption data.
Ddim continuously grows from
t = 19 and t = 21. TH and Diff
made an alarm at t = 20, which
can be thought of as a sign of the
emergence of a new cluster with
a unique consumption pattern

before the clustering change occurred. Our result shows that
ourmethodwas effective in detecting signs ofmodel changes
for such a case.

5 Relation of Ddim toMDL Learning

This section gives a theoretical foundation of Ddim by
relating it to the rate of convergence of the MDL learning
algorithm [2, 30]. It selects a model with the shortest total
codelength required for encoding the data as well as the
model itself. We give an NML-based version of the MDL
algorithm as follows.

Let F = {P1, . . . ,Ps} where | F |= s < ∞ and each
Pi is a class of probability distributions. For a given training

Table 6 Electric power consumption structure change

The week from May 14th

c m1 m2 m3 �

0 0.01 2.73 0.01 163

1 0.00 2.80 6.16 92

2 5.18 3.05 4.74 57

The week from May 21st

c m1 m2 m3 �

0 0.01 2.58 0.01 168

1 0.00 2.49 6.22 99

2 5.65 2.64 4.34 45

The week from May 28th

c m1 m2 m3 �

0 0.01 2.70 0.01 150

1 0.00 3.01 6.38 99

2 1.73 2.72 5.87 8

3 6.20 3.11 4.91 55

data sequence x = x1, . . . , xn where each xi is independently
drawn, the MDL learning algorithm selects P̂ such that

P̂ = argmin
P∈F

(− log pNML(x;P)) (31)

= argmin
P∈F

{

− logmax
p∈P

p(x) + log Cn(P)

}

,

where Cn(P) is the parametric complexity of P as in (5).
The MDL learning algorithm outputs the NML distribution
associated with P̂ as in (31): For a sequence y = y1, . . . , yn ,

p̂(y) =
maxp∈P̂ p(y)

Cn(P̂)
. (32)

Note that y is independent of the training sequence x used
to obtain P̂ . In previous work [2, 30], the MDL learning
algorithm has been designed so that it outputs the two-stage
shortest codelength distribution with quantized parameter
values, belonging to the model classes. Our algorithm dif-
fers from them in that it outputs the NML distribution (32),
which is not included in the model classes. The NML dis-
tribution and the MDL principle are the central notions in
deriving Ddim throughout this paper. Thus it is significant
to investigate the relation of Ddim to the NML distribution
estimated with the MDL learning algorithm.

We have the following theorem relating Ddim to the rate
of convergence of the MDL learning algorithm.

Theorem 3 Suppose that each x is generated according to
p∗ ∈ P∗ ∈ F = {P1, . . . ,Ps}. Let p̂ be the output of the
MDL learning algorithm as in (32). Let d(n)

B ( p̂, p∗) be the
Bhattacharyya distance between p̂ and p∗:

d(n)
B ( p̂, p∗) def= −1

n
log
∑

y

(p∗(y) p̂(y))
1
2 . (33)
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Then for any ε > 0, we have the following upper bound on
the probability that under the condition forP∗ as in Theorem
1,the Bhattacharyya distance between the output of the MDL
learning algorithm and the true distribution exceeds ε:

Prob[d(n)
B ( p̂, p∗) > ε] = O

(
nDdim(P∗)/4e−nε

)
. (34)

Suppose that P is chosen randomly according to the prob-
ability distribution π(P) over F = {P1, . . . ,Ps} and that
the unknown true distribution p∗ is chosen from P∗. Then
we have the following upper bound on the expected Bhat-
tacharyya distance between the output of the MDL learning
algorithm and the true distribution:

EP∗Ex∼p∗∈P∗ [d(n)
B ( p̂, p∗)] = O

(
Ddim(F�) log n

n

)

,

(35)

where Ddim(F�) is Ddim for model fusion as in (16).

The proof is given in Appendix. This result may be
generalized into the agnostic case where themodel class mis-
specifies the true distribution (see also [4] for this case). We
omit this result from this manuscript since our main concern
is how the expected generalization performance is related to
Ddim.

Theorem 3 implies that the NML distribution with model
of the shortest NML codelength converges exponentially to
the true distribution in probability as n increases and the rate
is governed byDdim for the truemodel. In conventional stud-
ies on PAC (probably approximately correct) learning [12],
the performance of the empirical riskminimization algorithm
has been analyzed using the technique of uniform conver-
gence, where the rate of convergence is governed by the
metric dimension. Meanwhile, the performance of the MDL
learning algorithm is analyzed using the non-uniform conver-
gence technique, since the non-uniform model complexity
is considered. In this case the rate of convergence of the
MDL algorithm is governed by Ddim. Then the expected
Bhattacharyya distance between the true distribution and the
output of the MDL learning algorithm is characterized by
Ddim for model fusion over F .

6 Conclusion

This paper has proposed a novel methodology for detecting
signs of model changes from a data stream. The key idea is
to conduct continuous model selection using the notion of
descriptive dimensionality (Ddim). Ddim quantifies the real-
valued model dimensionality in the model transition period.
We are able not only to visualize the model complexity in
the transition period of model changes, but also to detect

their signs by tracking the rise-up/descent of Ddim. Focusing
on the model changes in Gaussian mixture models, we have
shown that gradual structure changes of GMMs can be effec-
tively visualized by drawing a Ddim graph. Furthermore, we
have empirically demonstrated that our methodology was
able to detect signs of changes of the number of mixtures
in GMM and those of the order of AR model earlier than
they were actualized. Experimental results have shown that
it was able to detect them significantly earlier than any other
existing dynamic model selection methods.

This paper has offered the use of continuousmodel change
selection in the scenario ofmodel change sign detection only.
Exploring other scenarios of continuous model selection has
remained for future studies.

A Proof of Theorem 1

Let P be a k-dimensional parametric class, which we
denote as Pk = {p(x; θ) : θ ∈ �k} where �k

is a k-dimensional parametric space. In this case, we
denote g(θ̂ , θ) instead of g( p̂, p). Let the finite set of
k-dimensional real-valued parameters space be �k =
{θ1, θ2, . . . } and let Pk = {p(x; θ) : θ ∈ �k ⊂
R
k}. Let In(θ) be the Fisher information matrix at θ :

In(θ)
def= (1/n)Eθ [∂2(− log p(x; θ))/∂θ∂θ�] and suppose

that limn→∞ In(θ) = I (θ) for each θ . Below we denote
p(x; θ) as pθ . Consider ε2-neighborhood of θi with respect
to the KL divergence dn :

Dε(i)
def= {θ : dn(pθi , pθ ) ≤ ε2}.

Note that dn(pθi , pθ ) is written using Taylor’s expansion
up to the second order as follows: Under the condi-
tion that log p is three-times differentiable, maxa,b,c |
∂3 log p(x; θ)/∂θa∂θb∂θc |< ∞,

dn(pθi , pθ ) = − 1

n
Eθi

[
∂ log p(x; θ)

∂θ
|θi
]

(θ − θi )

+ 1

2n
(θ − θi )

�Eθi

[

− ∂2 log p(x; θ)

∂θ∂θ� |θi
]

(θ − θi )

+O(‖ θ − θi ‖3)
= 1

2
(θ − θi )

� In(θi )(θ − θi ) + O(‖ θ − θi ‖3),

where we have used the fact:

Eθi

[
∂ log p(x; θ)

∂θ
|θi
]

=
∑

x

p(x; θi )
∂ log p(x; θ)

∂θ
|θi

= ∂
∑

x p(x; θ)

∂θ
|θi

= 0.
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Therefore, we may consider D̃ε(i) in place of Dε(i).

D̃ε(i) = {θ : (θ − θi )
� In(θi )(θ − θi ) ≤ Cε2},

where C does not depend on n nor ε. Let Bε(i) be the largest
hyper-rectangle within D̃ε(i) centered at θi . For some 1 ≤
C ′ < ∞, for any i , we have

| Bε(i) |≤| D̃ε(i) |≤ C ′ | Bε(i) | . (36)

Along with [25] (p.74), geometric analysis of Bε(i) yields
the Lebesgue volume of Bε(i) as follows:

| Bε(i) | =
(
4Cε2

k

) k
2

| In(θi ) |− 1
2 = 2k

k∏

j=1

√
Cε2

kλ j
,

where λ j is the j-th largest eigenvalue of In(θi ).
We choose �k so that the central limit theorem holds.

Then for sufficiently large n, as θ → θi ,

g(θi , θ) �
( n

2π

) k
2 | I (θi ) | 12 e−n(θ−θi )

� In(θi )(θ−θi )/2.

Thus for θ̂ ∈ Di (ε), for sufficiently large n, as θ → θi , we
obtain

g(θ̂ , θ̂ ) | Bε(i) |�
(
2Cε2n

kπ

) k
2

. (37)

Next define Qε(i) as

Qε(i)
def=
∫

θ̂∈D̃ε (i)
g(θ̂ , θ̂ )d θ̂ .

and let mn(ε : P) be the smallest number of elements in �k :

logCn(k) = log
mn(ε:P)∑

i=1

Qε(i) + O(1). (38)

Combining (37) and (36) with (38) yields

logCn(Pk) = logmn(ε : P) + sup
�k

{
k

2
log

(
2Cε2n

kπ

)}

+ O(1) (39)

= logmn(ε : P) + k

2
log(ε2n) + O(1). (40)

where C in (39) depends on �k , and the O(1) term in (40)
may depend on k, but both of them do not depend on n nor

ε. The supremum in (39) is taken with respect to �̄k so that
(37) holds. Setting ε2n = O(1) yields

logCn(Pk) = logmn(ε : Pk) + k

2
log(ε2n) + O(1)

= logmn(1/
√
n : Pk) + O(1).

This completes the proof of Theorem 1. ��

B Proof of Theorem 3

Let p∗ be the true distribution associated with the true model
P∗. Let P̂ be the model selected by the MDL learning algo-
rithm and let pNML(x; P̂) be the NML distribution associated
with P̂ . We write it as p̂. We employ the proof technique
similar to that for two-part code estimators in [2, 30].

By the definition of the MDL learning algorithm, we have

min
P

(− log pNML(x;P)) ≤ − log pNML(x;P∗)

= − log max
p∈P∗ p(x) + logCn(P∗)

≤ − log p∗(x) + logCn(P∗). (41)

Let pNML,P be the NML distribution pNML(x : P) associ-
ated with P. For ε > 0, the following inequalities hold:

Prob
[
d(n)
B ( p̂, p∗) > ε

]

≤ Prob
[
x : (41) holds under d(n)

B ( p̂, p∗) > ε
]

= Prob

[

x : min
P:dnB (pNML,P ,p∗)>ε

(− log pNML (x;P))

≤ − log p∗(x) + logCn(P∗)
]

= Prob

[

x : max
P:dnB (pNML,P ,p∗)>ε

pNML (x : P) ≥ p∗(x)
Cn(P∗)

]

≤
∑

P∈F,d(n)
B (pNML,P ,p∗)>ε

Prob

[

x : pNML (x : P) ≥ p∗(x)
Cn(P∗)

]

. (42)

Let En(P) be the event: pNML(x : P) ≥ p∗(x)/Cn(P∗).
Under En(P),

1 ≤
(
pNML(x;P)

p∗(x)

) 1
2

(Cn(P∗))
1
2 . (43)
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Then under the condition that d(n)
B (pNML,P , p∗) > ε, we have

Prob[En(P)] =
∑

x···En(P)

p∗(x)

≤
∑

x···En(P)

p∗(x)
(
pNML (x;P)

p∗(x)

) 1
2

(Cn(P∗))
1
2

≤
⎧
⎨

⎩

∑

y

(pNML (y;P)p∗(y))
1
2

⎫
⎬

⎭
(Cn(P∗))

1
2

< exp(−nε + (logCn(P∗))/2), (44)

where we have used the fact that under d(n)
B (pNML ,P, p∗) >

ε, it holds

∑

y

(pNML(y;P)p∗(y))
1
2 < e−nε .

Plugging (44) into (42) yields

Prob[d(n)
B ( p̂, p∗) > ε] ≤

∑

P∈F ,d(n)
B (p

NML,P ,p∗)>ε

Prob[En(P)]

<
∑

P∈F ,d(n)
B (p

NML,P ,p∗)>ε

exp
(−nε + (1/2) logCn(P∗)

)

≤
∑

P∈F
exp

(−nε + (1/2) logCn(P∗)
)

= exp
(−nε + (1/2) logCn(P∗) + log | F |) . (45)

Under the condition for P∗ as in Theorem 3, we have

1

2
logCn(P∗) + log | F |= 1

4
Ddim(P∗) log n + o(log n). (46)

Plugging (46) into (45) yields (34).

Let rn(P∗) def= {(1/2) log Cn(P∗) + log | F |}/n. For
fixedP∗, we have the following upper bound on the expected
Bhattacharyya distance:

Ex∼p∗∈P∗ [d(n)
B ( p̂, p∗) − rn(P∗)] =

∫ ∞

0
Prob[d(n)

B ( p̂, p∗) − rn(P∗) > ε]dε

≤
∫ ∞

0
e−nεdε = 1

n
, (47)

where we have used (34) to derive (47).Therefore, we have

Ex∼p∗∈P∗ [d(n)
B ( p̂, p∗)] ≤ rn(P∗) + 1

n
.

Taking the expectation with respect to P∗ yields

EP∗ [d(n)
B ( p̂, p∗)] ≤ EP∗Ex∼p∗∈P∗ [rn(P∗)] + 1

n

= O

(
EP∗ [logmn(1/

√
n : P∗)]

n

)

(48)

= O

(
EP∗ [Ddim(P∗)] log n

n

)

= O

(
Ddim(F�) log n

n

)

.

To derive (48), we have used the fact logCn(P∗) =
logmn(1/

√
n : P∗)+O(1) (by Theorem 1). This completes

the proof. ��
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