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Abstract
Anomalies (or outliers) indicate a minority of data items that are quite different from the majority (inliers) of a dataset in a
certain aspect. Unsupervised anomaly detection (UAD) is an important but not yet extensively studied research topic. Recent
deep learning based methods exploit the reconstruction gap between inliers and outliers to discriminate them. However, it is
observed that the reconstruction gap often decreases rapidly as the training process goes. And there is no reasonable way to
set the training stop point. To support effective UAD, we propose a new UAD framework by introducing a Latent Feature
Reconstruction (LFR) layer that can be applied to recent UAD methods. The LFR layer acts as a regularizer to constrain the
latent features in a low-rank subspace from which inliers can be reconstructed well while outliers cannot. We develop two
new UAD methods by implementing the proposed framework with autoencoder architecture and geometric transformation
scheme. Experiments on five benchmarks show that our proposed methods can achieve state-of-the-art performance in most
cases.

Keywords Unsupervised anomaly detection · Latent feature reconstruction · Autoencoder · Geometric transformation

1 Introduction

Anomaly detection (AD), sometimes also referred to as
outlier detection or novelty detection [1], is to identify a rel-
atively small number of special data points (outliers) from a
noisy dataset that deviates from the majority (inliers) of the
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dataset. It has various applications such as financial fraud
detection [2], intrusion detection [3], anomalous behavior
discovery in social networks [4] etc. Anomalies exist ubiq-
uitously in various types of data. For example, searching for
novel techniques from patent databases, detecting cancers in
medical images, and identifying accidents in traffic moni-
toring videos. Recently, a number of deep neural network
based methods have been proposed for anomaly detection,
including reconstruction-based [5, 6], GAN-based [7, 8],
discrimination-based [9, 10], and density-based [11].

In the context of machine learning, anomaly detection can
be supervised (SAD), semi-supervised (SSAD), and unsu-
pervised (UAD), depending on how many labeled data are
available [12]. Note that in some previous works [9, 13],
“unsupervised anomaly detection” refers to the setting where
the training set consists of only normal samples, which is
actually SSAD, rather than UAD. Differently, UAD in this
paper refers to that the training set is completely unlabeled,
and normal data are the majority, but mixed up with some
outliers. This paper addresses the UAD problem.

Currently, autoencoders (AEs) and convolutional autoen-
coders (CAEs) are widely-used for anomaly detection. They
seek a low-dimensional latent feature space, from which
the input can be reconstructed. The intuition behind these
methods is that the inliers (normal data) are reconstructed
better from the latent space than the outliers (abnormal data).
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However, in the UAD setting, it is observed that AEs/CAEs
usually reconstruct outliers as well as inliers, and the recon-
struction gap between inliers and outliers decreases as the
training process goes. To illustrate this phenomenon, we give
an example inFig. 1,which shows the inlier andoutlier recon-
struction errors of a CAE trained on Fashion-MNIST. When
the number of epochs reaches 1000, the two curves coincide,
which means that the trained model can no longer discrimi-
nate outliers from inliers.

Though some existing works have tried to handle this
problem to some extent, they also have their own limita-
tions. For example, RSRAE [14] proposes a robust subspace
recovery (RSR) layer for AEs to regularize inliers into a
low-rank subspace, from which the outliers stay far away.
However, RSRAE is designed specifically for AEs, and AEs
are ineffective in handling high-dimensional and complex
datasets like CIFAR10. To do SSAD over complex datasets,
GEOM [9] employs ResNet for powerful feature represen-
tation and geometric transformations for data augmentation.
And E3Outlier extends the transformations to RSRAE for
UAD, it can retard the reduction of the loss gap between
inliers and outliers. But both of them are applicable only to
images, and the additional transformations incur much com-
putational cost in training/testing.

In this paper, we propose a new and more general frame-
work for UAD by introducing a latent feature reconstruction
(LFR) layer as a plug-in module that can be embedded in
the two types of existing UAD methods: autoencoder based
methods (e.g. RSRAE) and geometric transformation based
methods (e.g. GEOM and E3Outlier) to effectively handle
the above-mentioned problem. In the training phase, the LFR

Fig. 1 Averaged inliers and outliers reconstruction errors of a CAE
trained on Fashion-MNIST. Inliers (green) are sampled from class “T-
shirt", and outliers (red) are sampled from the rest classes. The ratio of
outliers over inliers is 0.1. As training goes on, the error gap between
inliers and outliers steadily decreases, and two curves coincide at around
the 1000-th epoch

layer linearly maps the latent features into a low-dimensional
subspace that keeps the significant information, and from
which the latent feature space can be reconstructed so that for
inliers the reconstructed features are close to the original fea-
tures while for outliers are not. We implement the proposed
framework based on bothAE and geometric transformations,
and consequently develop two newUADmethods, which are
called AE-LFR andGT-LFR, respectively.We also propose a
novel yet simple anomaly scoring strategy by connecting the
LFR layer and the backbone network in testing.We show that
this strategy can get a large gap in anomaly scores between
inliers and outliers.

In summary, our contributions include

1 We propose a new UAD framework with a latent feature
reconstruction (LFR) layer that can be applied to two
major types of existing UAD methods. The LFR layer
regularizes the latent features to a low-rank subspace for
inliers by back-propagation while outliers stay far away
from this subspace. We design a novel anomaly scor-
ing function that can maintain a score gap large between
inliers and outliers.

2 We develop two newUADmethods by implementing the
proposed framework based on AE and geometric trans-
formations.

3 We conduct extensive experiments on five datasets to
validate the proposed framework and methods, which
achieve state-of-the-art performance in most cases.

The most related work to our paper is the RSRAEmethod
[14]. It should be pointed out that our LFR framework is dif-
ferent from the RSRAE method in at least three aspects: (1)
Our LFR framework employs different structures for training
and testing, and in training the LFR layer is separated from
the backbone network, while RSRAE has a similar structure
for both training and testing, which is like that in our test-
ing phase. (2) Our LFR framework is more general and can
serve as a plug-in component to be applied to both AE based
methods and geometric transformation (GT) based methods,
while RSRAE is only a typical AE based method. (3) Our
methods clearly outperform RSRAE in most cases.

The rest of this paper is organized as follows: Section 2
reviews the related works. Section 3 presents our methods
in details. Section 4 is performance evaluation. Section 5
concludes this paper.

2 Related work

Most traditional works on anomaly (or novelty) detection
consider that the training set consists of only normal data
(inliers), so they treat the problem as one-class classification,
and propose SVM based method [15] and principle compo-
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nent analysis (PCA) based methods [16, 17] etc. They can be
subsumed to supervised anomaly detection (SAD in short).

Recently, more and more deep neural network based
methods are introduced for anomaly detection by exploit-
ing their powerful representations of high-dimensional data
(e.g. images and videos). A detailed review of deep learning
for anomaly detection can be referred to [18]. The major-
ity of such existing works treat anomaly detection as a
semi-supervised learning problem, that is, semi-supervised
anomaly detection (SSAD in short). Those SSAD methods
mainly fall into four types: reconstruction-based [5, 6],GAN-
based [7, 8], discrimination-based [9, 10], and density-based
[11] methods.

Unsupervised anomaly detection (UAD in short) is a more
challenging problem that has not yet been extensively stud-
ied, where the challenge lies in that no inlier or outlier labels
are provided in the training data. Up to now, only a few
deep learning-based methods are proposed for UAD, which
can be grouped into two categories: autoencoder (AE) based
and geometric transformation (GT) based methods. In [18],
they are also called reconstruction based and discrimination
based methods, respectively.

Among the AE based methods, [5] proposes an autoencoder-
based method that identifies the outliers by maximizing the
reconstruction loss difference between inliers and outliers
with a specifically designed loss function. [6] utilizes robust
principal component analysis (RPCA) that decomposes the
unlabelled input data matrix into a low-rank part and a sparse
part to separate the inliers and outliers. And [19] jointly opti-
mizes an AE and an estimation network in an end-to-end
manner. The estimation network is used to fit a Gaussian
mixture model. Inspired by robust subspace recovery (RSR),
the RSRAE method [14] introduces an RSR layer within
an AE to cope with the situation where a large portion of
data points are corrupted by exploiting the latent low-rank
subspace structure of the training data. UniAD [20] revis-
its the formulations of fully-connected layer, convolutional
layer, as well as attention layer, and confirms the important
role of query embedding in distinguishing normal and abnor-
mal samples. It first proposes a layer-wise query decoder to
model the normal distribution, and introduces a feature jit-
tering strategy that urges the model to recover the correct
message even with noisy input.

Up to now, the only GT based method is E3Outlier [10],
which is based on GEOM [9] by changing the original
pre-define self-supervised task in GEOM via extending the
regular affine transformation to irregular affine transforma-
tion and patch re-arranging. GEOM is an SSAD method,
which first applies different geometric transformations to
normal training images, and then trains classification models

for a pre-defined task (predicting the orientations of rotated
images) on the augmented data. At the evaluation phase, the
anomaly score of an instance is defined as the average of
softmax classification scores of all the corresponding trans-
formed images.

In addition to the advances in model structure and algo-
rithm perspectives, some recent works try to introduce
additional auxiliary information to improve the performance
of anomaly detection. FCDD [21] collects anomalous sam-
ples from 80 millions Tiny Image and ImageNet, and trains a
Fully Convolutional Data Description (FCDD), which maps
normal samples near to the center c of normal distribution
and the anomalous samples away from c. Salehi et al. [22]
perform distillation on the expert network pretrained on Ima-
geNet, detect and localize anomalies using the discrepancy
between the expert and cloner networks’ intermediate acti-
vation values. DRAEM [23] takes the auxiliary images as
anomaly texture sources to generate anomalous images, then
it learns a joint representation of an anomalous image and
its anomaly-free reconstruction, while learning a decision
boundary between normal and anomalous examples. Elite
[24] even introduces some labeled examples as thvalidation
set and leverages the gradient of the validation loss to predict
if one training sample is abnormal.

3 Method

3.1 Problem statement

Given an unlabeled data set X = {xi }Ni=1, where xi ∈ R
D

and N is the size of X, X implicitly consists of a subset of
inliers Xin and a subset of outliers Xout . Data in Xin and
data in Xout are sampled or generated from two completely
different distributions (or distribution mixtures). The goal of
UAD is to build a detector based on X such that for any data
point xi ∈ X, it can determine whether xi belongs to Xin or
belongs to Xout .

In what follows, we first introduce the LFR framework for
UAD, then present two implementations of the LFR frame-
work based on autoencoder and geometric transformation,
respectively. These two implementations correspond to two
new UAD methods, which are called AE-LFR and GT-LFR.

3.2 The LFR framework

Recent deep learning based methods for UAD learn the
feature representations of training data points mainly by a
generic feature learning method like autoencoder or ResNet
[25]. They pursue an underlying representation to distinguish
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anomalies from normal data. The process can be formally
represented as follows:

zi =φ(xi ; θ)

{
θ∗, ω∗} = argmin

θ,ω

N∑

i=1

Lori (ψ(zi ;ω))

sx = f (x, z, φθ∗ , ψω∗)

(1)

where φ(·; θ) is the feature extractor that maps xi ∈ R
D to its

latent feature zi ∈ R
d ,ψ(·;ω) is a surrogate task that takes zi

as input and learns a critical latent feature space for the input,
Lori (·) is a loss function depending on the backbone applied,
and f (·) is an anomaly scoring function that measures the
degree of abnormality sx . Outliers are usually identified by
choosing a proper threshold for sx .

In UAD, the model is optimized for outliers and inliers
simultaneously. Though the property “inlier priority” [10]
indicates that the model gives priority to reducing the inliers’
loss, the loss gap between inliers and outliers will decrease
after enough training epochs, as shown in Fig. 1. Usually, the
anomaly score is just the loss or a variant of the loss, so the
anomaly score gap will decrease as well. To keep the score
gap between inliers and outliers large, we introduce a new
and general framework for UAD, where the core component
is a latent feature reconstruction (LFR) layer embedded in
the training and testing phases. We call this new framework
LFR, which is illustrated in Fig. 2.

Here, the LFR layer is a plug-in component that can
be embedded in existing methods without changing their
backbone networks, it regularizes the latent features through
back-propagation. The LFR layer takes the latent feature zi
as input and outputs its reconstruction z′i , which can also be
used as the input of ψ(·;ω). In the testing phase, we just
simply embed the LFR layer into the backbone.

In the training phase, we regulate the learning of zi by the
LFR layer. Inspired by RSRAE [14], we introduce the robust
subspace recovery (RSR) loss to the LFR layer. Specifically,
the LFR layer seeks a low-rank latent feature subspace for
inliers. It applies a linear transformation A ∈ R

k×d that maps
the original latent feature zi into a k-dimensional space, from
which we reconstruct it in the original latent feature space by
the transpose of A. The loss function is as follows,

LRSR(θ, A) =λ1

N∑

i=1

∥∥zi − AT Azi
∥∥1
2

+ λ2
∥∥AAT − IkF

∥∥2 ,

(2)

where AT is the transpose of A, Id denotes the identitymatrix
and ‖.‖F denotes the Frobenius norm. As demonstrated in

Fig. 2 The framework of LFR. Here, the upper subfigure shows the
structure for training, and the lower subfigure shows the structure for
testing

[14], AT A is close to an orthogonal projector, and the loss
will guide the latent features to lie in a low-rank subspace.

The total loss of our framework is the sum of the original
loss (the backbone loss) and the RSR loss in (2), i.e.,

L(θ, ω, A) = Lori (ψ(zi ;ω)) + LRSR(θ, A). (3)

In (1), sx = f (x, z, φθ∗ , ψω∗) is the original anomaly
score. Though it can also be used as the scoring function of
our framework, it cannot make full use of the learnt LFR
layer.

In the testing phase, we embed the LFR layer to the origi-
nal backbone, as shown in the lower subfigure of Fig. 2, and
thus have a new scoring function as follows:

sBx = f (x, AT Az, φθ∗ , ψω∗) (4)

The intuition behind this function is like this: with the loss
function of (2), the reconstruction z′ = AT Az for inliers is
close to the original latent feature z, but for the outliers, it is
not. Therefore, we replace z with z′ in the scoring function.
The anomaly score gap between inliers and outliers will be
enlarged, which is beneficial to discriminating outliers from
inliers.
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3.3 The AE-LFRmethod

We first implement the LFR framework by applying it to AE
based UAD methods, and get our first new method called
AE-LFR. That is, we plug the LFR layer in any AE based
UADmethod.AsAE is used as the backbone,φe(·) andψd(·)
are the encoder and the decoder, respectively. So we have,

zi =φe(xi ; θe),

x̂i =ψd(zi ;ωd),

Lrecon(θe, ωd) =
N∑

i=1

∥
∥xi − ψd

(
φe(xi ; θe);ωd

)∥∥1
2,

{
θ∗
e , ω∗

d

} = argmin
θe,ωd

Lrecon(θe, ωd),

sx =∥∥x − ψd
(
z;ω∗

d

)∥∥2,

(5)

Above, the encoder takes xi as input and outputs the
hidden feature zi , then the decoder maps zi to get the recon-
struction x̂i of xi . As a plug-in layer, the LFR layer can be
directly applied to any encoder-decoder architecture as illus-
trated in Fig. 2. In addition to the reconstruction loss of AE,
the RSR loss in (2) is also used as the supervision signal.
Accordingly, we have the following loss for the AE-LFR
method,

L(θe, ωd , A) = Lrecon(θe, ωd) + LRSR(θe, A). (6)

Then, by replacing z with z′ = AT Az in the scoring func-
tion sx in (5), we get the anomaly score function of AE-LFR
as follows:

sBx =∥∥x − ψd
(
AT Az;ω∗

d

)∥∥2. (7)

3.4 The GT-LFRmethod

Here, we apply our framework to geometric transformation
based methods. Concretely, we take GEOM as an example,
and get our second new method GT-LFR.

GEOM [9] first applies a set of geometric transforma-
tions {Tm}Mm=1, including rotations, reflections, and transla-
tions, to the training images. Then, it sets up a self-supervised
task that trains a multi-class classification model on the aug-
mented data to predict the transformations it applied. In
the evaluation phase, an image is applied with M given
transformations, and its anomaly score is the average of all
probability outputs of the learned classification model over

the M transformed images. Formally,

zTmi =φ f (Tm(xi ); θ f )

LGEOM (θ f , ωg) =
N∑

i=1

M∑

m=1

CE(ψg(z
Tm
i ;ωg), yTm )

{
θ∗
f , ω

∗
g

}
= argmin

θ f ,ωg

LGEOM (θ f , ωg)

sx = 1

M

M∑

m=1

PTm (zTm ; θ∗
f , ω

∗
g)

(8)

where φ f (Tm(·); θ f ) is a deep classification model like
ResNet [25] and Wide Resnet (WRN) [26], which extracts
the latent representations of input images augmented by
the pre-defined geometric transformation Tm . ψg(·; θg) is a
multi-class classifier and CE denotes the cross-entropy loss.
PTm (·; θ∗

f , ω
∗
g) is the softmax output ofψg on transformation

Tm .
Here, the LFR layer also regularizes the latent feature

learning of zTmi . But unlike AE-LFR, there are M distinct
subsets of the augmented image set, with which it is hard to
find a single low-rank latent feature subspace for the inliers.
To tackle this problem, we try to find a separate feature sub-
space for each transformation.Thus,we assign a linearmatrix
A(m) ∈ R

k×d for each transformation Tm to accommodate
the corresponding feature subspace, that is,

LRSRGEOM(θ f , A) = λ1

N∑

i=1

M∑

m=1

∥∥zTmi − AT
(m)A(m)z

Tm
i

∥∥1
2

+ λ2

M∑

m=1

∥∥A(m)A
T
(m) − Id

∥∥2
F .

(9)

So the loss function of GT-LFR can be formulated as follows:

L(θ f , θg, A) = LGEOM (θ f , θg) + LRSRGEOM(θ f , A). (10)

By replacing the latent feature of each transformed image
zTm with AT

(m)A(m)zTm in the scoring function sx of (8), we
have the anomaly score function of GT-LFR as follows:

sBx = 1

M

M∑

m=1

PTm (AT
(m)A(m)z

Tm ; θ∗
f , ω

∗
g). (11)
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4 Performance evaluation

4.1 Experiment setup

We evaluate our methods on five public datasets, includ-
ing three image datasets: Caltech101 [27], Fashion-MNIST
(FMNIST) [28], CIFAR10 [29], and two text datasets:
Reuters-21578 (Reuters) [30] and 20 Newsgroups (20News)
[31].

For fair comparison, we process the datasets by following
the settings of previous UAD methods [5, 6, 10, 14, 32]. For
example, we follow the settings in [14] to handle Caltech101:
taking 11 classes of Caltech101 and randomly choosing 100
images per class. Each training set with anomalies is con-
structed as follows: sampling the examples from a certain
class as inliers, and combing some samples from each of the
other classes as outliers. The ratio c of outliers/inliers is set
to {0.1, 0.3, 0.5, 0.7, 0.9} respectively. Note that in UAD, all
inlier/outlier labels are unknown to the model in the training
phase. For a given ratio c, we first evaluate the performance
of taking a certain class as inliers, then compute the average
of all classes’ results as the final performance.

And for each class, we do 5 trials with different random
seeds and report the averaged result. The Area under the
Receiver Operating Characteristic curve (AUROC) and the
Area under the Precision-Recall curve (AUPR) are used as
performance metrics. We treat the outliers as “positive” in
evaluation.

4.2 Comparedmethods

We compare our methods with seven existing methods:
AE/CAE [33], DRAE [5], RSRAE [14], GEOM[9], E3Outlier
[10], LVAD [34], and Elite [24]. AE/CAE, DRAE, and
RSRAE are AE-based methods, GEOM and E3Outlier
are geometric transformation-based methods, and LVAD is
density-based. Elite has two variants, Elite-AE is AE-based,
whileElite-SVDDis discrimination-based.AlthoughGEOM
was originally proposed for SSAD, it can be extended to
UAD. Among these methods, GEOM, E3Outlier, LVAD, and
Elite can only handle image data. As for RSRAE, LVAD, and
Elite, we use the official code1 and follow its original setting.
For the other methods, we utilize the implementations in the
site2 and adapt them to the settings of datasets used in our
paper.

4.3 Implementation detail

We use the same autoencoder structure for the compared
AE-based methods and our AE-LFR method. For the image

1 https://github.com/dmzou/RSRAE
2 https://github.com/demonzyj56/E3Outlier

datasets, the encoder in AE consists of three convolutional
layers and a fully connected layer with output channels
(32, 64, 128, 256) and the kernel sizes (5 × 5, 5 × 5, 3 × 3)
in convolutional layers, the output of encoder is a 256-
dimensional vector.

The decoder has an inverse architecture of the encoder,
and replaces the convolutional kernels with deconvolutional
kernels. For AE-LFR, we set k = 10, λ1 = 2, λ2 = 0.1 in
all experiments. The AE-based models are optimized with
Adam using a learning rate of 0.00025, a mini-batch size of
128, and 1000 epochs. The activation function is Tanh. All
images are normalized into [−1, 1].

For the GT-based methods, GEOM and E3Outlier are
implemented with a wide ResNet (WRN) with the widen
factor being 4. Our GT-LFR method follows the settings of
GEOM and uses its 72 transformations in self-supervised
learning. We set k = 20, λ1 = 0.0002, λ2 = 0.00001 for
GT-LFR in all experiments. As GT-based methods use pow-
erful feature extractors and the change in latent features has
significant impact on the downstream classification tasks, so
we reduce the values of λ1 and λ2.

Our methods are implemented in Pytorch and all experi-
ments are conducted on 8 RTX2080Ti GPUs.

4.4 Performance comparison with existingmethods

AsGEOM,E3Outlier, LVAD, Elite, GT-LFR can handle only
images, we evaluate them only on CIFAR10, FMNIST and
Caltech101. The AUROC and AUPR results for different
ratio c ∈ {0.1, 0.3, 0.5, 0.7, 0.9} are shown in Figs. 3 and 4
respectively.

We can see that our methods achieve state-of-the-art per-
formance in most cases, while DRAE and AE/CAE perform
worse than the other methods because of the consequence
of overfitting to outliers after being trained 1000 epochs.
For AE-based methods, our AE-LFR method performs best
on the two text datasets 20News and Reuters, and we gets
competitive performance against RSRAE in most datasets,
and outperforms RSRAE by 4% averaged AUROC on
FMNIST.

For the GT-based methods, our GT-LFR method signif-
icantly outperforms the others on the two image datasets
FMNIST and Caltech101, and is competitive to E3Outlier
on CIFAR10. Though GT-LFR is based on GEOM, it per-
forms considerably better than GEOM, which shows the
effectiveness of our LFR framework. E3Outlier outperforms
GEOM because it uses more geometric transformations.
However, E3Outlier consumes more computation than the
others because it uses more transformations, while our pro-
posed method needs just an additional matrix A, which
consumes a little additional computation cost, so it is much
faster than E3Outlier. LVAD is generally better than AE-
based methods and worse than GT-based method, because
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Fig. 3 AUROC comparison for
different c values (from 0.1 to
0.9)

20News
(a)

Reuters
(b)

FMNIST

(c)
Caltech101

(d)
CIFAR10

(e)

the density estimation method is not robust on the data with
complex distribution. Elite introduce some labeled samples
as the validation set, which makes its performance insen-
sitive to abnormal proportions. However, even if it uses
labeled samples, it is inferior to our method in the case of
fewer anomalies, which is also more consistent with the
data distribution of real application scenarios. In summary,
our proposed method achieves better or competitive perfor-
mance with additional parameters A and computation cost
(O(kd(k + d))). As we adopt low-rank reconstruction for
latent feature (k � d), the additional computation cost
approximates O(kd2).

4.5 Ablation study

Here, we consider different combination configurations of
the loss function and the anomaly scoring function in our
methods AE-LFR and GT-LFR, and get different variants
of our methods. We then compare these variants with two
baselines AE/CAE and GEOM respectively.

For convenience, we use the following notations of the
loss and scoring functions:

LA := Lori (ψ(z;ω)) + LRSR(θ, A)

LB := Lori (ψ(AT Az;ω)) + LRSR(θ, A)

SA := f (x, z, φθ∗ , ψω∗)

SB := f (x, AT Az, φθ∗ , ψω∗).

(12)

Note that the loss and scoring functions implicitly repre-
sent the model architecture. For example, LA means that the
decoder take z as input, corresponding to the architecture of
the training phase in Fig. 2, while LB means that the decoder
is fed with z′ = AT Az, corresponding to the architecture of
the testing phase in Fig. 2. Thus, we can use Li S j to represent
a combination configuration of loss and scoring functions in
the training and testing phases, where i, j ∈ {A, B}. For
example, LASA indicates that the model is optimized by the
loss function LA in the training phase and evaluated by the
scoring function SA in the testing phase. So our methods
can be denoted as L ASB . Meanwhile, the backbone model
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Fig. 4 UAD performance
(AUPR) comparison with
varying c from 0.1 to 0.9

20News
(a)

Reuters
(b)

FMNIST
(c)

Caltech101
(d)

CIFAR10
(e)

(AE/CAE) can be regarded as a deteriorated model trained
with only Lori (ψ(z;ω)), i.e., LRSR(θ, A) is not used.

Table 1 presents the results of performance comparison
between the baseline AE/CAE with AE-LFR (LASB) and its

Table 1 Comparison among AE/CAE and our AE-based variants

0.1 0.3 0.5 0.7 0.9

FMNIST AE/CAE 0.55 0.55 0.58 0.54 0.56

L ASA 0.74 0.70 0.67 0.65 0.63

LASB (AE-LFR) 0.88 0.85 0.83 0.80 0.78

LB SA 0.88 0.86 0.83 0.81 0.79

LB SB 0.81 0.75 0.71 0.69 0.67

CIFAR10 AE/CAE 0.53 0.53 0.52 0.52 0.51

L ASA 0.54 0.54 0.53 0.52 0.52

LASB (AE-LFR) 0.61 0.59 0.57 0.56 0.56

LB SA 0.60 0.58 0.57 0.56 0.55

LB SB 0.55 0.54 0.53 0.53 0.52

Caltech101 AE/CAE 0.45 0.51 0.45 0.47 0.48

L ASA 0.61 0.67 0.62 0.61 0.60

LASB (AE-LFR) 0.75 0.73 0.76 0.74 0.72

LB SA 0.75 0.72 0.72 0.71 0.70

LB SB 0.61 0.65 0.63 0.60 0.60

three variants (LASA, LBSA and LBSB). From Table 1, we
can see that

(1) The four variants significantly outperform AE/CAE,
which shows that the LFR layer is effective in regulariz-
ing the hidden features in the low-rank subspace.

(2) LASB outperforms LASA in all settings, which shows
that our proposed scoring function can boost perfor-
mance.

(3) LBSA is better than LBSB . In LBSA, the input of the
decoder is the output of the LFR layer in training. The

Table 2 Comparison among GEOM and our GT-based variants

0.1 0.3 0.5 0.7 0.9

FMNIST GEOM 0.81 0.74 0.70 0.67 0.65

L ASA 0.83 0.75 0.71 0.69 0.67

L ASB (GT-LFR) 0.93 0.90 0.87 0.84 0.80

CIFAR10 GEOM 0.66 0.63 0.61 0.61 0.59

LASA 0.73 0.68 0.65 0.62 0.60

L ASB (GT-LFR) 0.74 0.71 0.69 0.65 0.65

Caltech101 GEOM 0.75 0.71 0.70 0.68 0.66

LASA 0.80 0.78 0.73 0.69 0.67

L ASB (GT-LFR) 0.87 0.88 0.85 0.81 0.80
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Fig. 5 Anomaly score (reconstruction error) histograms of inliers (green) and outliers (red) for AE-based variants (c=0.5)

learning goal of the LFR layer is to perfectly reconstruct
the latent features of inliers, instead of outliers. So even
if the autoencoder overfits the outliers after training, it
is still hard for the autoencoder to recover the outliers
when the LFR layer is removed.

Table 2 presents the results of GT-based variants. As it
is difficult for the models to converge when LB is applied,
here we report only L ASA and LASB . We can see that L ASB
(GT-LFR) performs better than LASA.

Figure 5 shows the inlier/outlier anomaly score histograms
of AE/CAE, L ASA and L ASB (AE-LFR) on class sneaker of
FMNIST, class 2 of Caltech101 and class deer of CIFAR10.
We can see that with AE-LFR, most inliers have smaller
anomaly scores while most outliers have larger ones. On
the contrary, we see quite different results with AE/CAE.
This conforms to our expectation: our LFR layer reconstructs
inliers much better than outliers. Figure 6 shows the anomaly
score histograms of GT-based variants, we can see patterns
similar to that of AE-based variants in Fig. 5.

Figure 7 shows how the anomaly score changes with the
number of training epochs in four methods. As expected,
our methods can still keep a large gap between the anomaly
scores of inliers and outliers as the number of training epochs
increases. However, for AE/CAE and GEOM, the anomaly
score gap decreases rapidly with the increase of training
epochs. This explains the good performance of our methods.

5 Conclusion

In this paper, we introduce a novel UAD framework with a
latent feature reconstruction (LFR) layer and a new anomaly
scoring function. The LFR layer is used as a plug-in compo-
nent to regularize the latent features of samples to a low-rank
subspace so that the inliers can be perfectly reconstructed
while the outliers cannot.We implement the proposed frame-
work by embedding the LFR layer into two major types of
existing UAD methods: AE based methods and GT based
methods, consequently deriving two new UAD methods
called AE-LFR and GT-LFR. Extensive experiments on five
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Fig. 6 Anomaly score (log of the averaged softmax output) histograms of inliers (green) and outliers (red) for GT-based variants (c=0.5)

Fig. 7 Anomaly score vs.
#Epochs for class “sneaker” of
FMNIST with c=0.5. Shadow
regions are the standard
deviation
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datasets show that the proposed methods outperform the
existing methods in most cases. As for future work, on the
one hand, we are to apply our methods to more datasets,
especially videos. On the other hand, we plan to extend the
proposed methods for SAD and SSAD tasks.

Acknowledgements This work was supported by Open Research Pro-
gram of Zhejiang Lab under Grant No. 2019KB0AB05. We would like
to thank Ding Xi for her contribution to the revision phase.

Data Availability Statements All data analysed during this study are
public, including three image datasets: Caltech101 [27], Fashion-
MNIST (FMNIST) [28], CIFAR10 [29], and two text datasets: Reuters-
21578 (Reuters) [30] and 20 Newsgroups (20News) [31].

Declarations

Conflict of Interests The authors have no competing interests to declare
that are relevant to the content of this article.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, youwill need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

References

1. Chandola V, Banerjee A, Kumar V (2009) Anomaly detection: A
survey. ACM Comput Surv (CSUR) 41(3):1–58

2. Phua C, Lee V, Smith K, Gayler R (2010) A comprehensive sur-
vey of data mining-based fraud detection research. arXiv preprint
arXiv:1009.6119

3. Davis JJ, Clark AJ (2011) Data preprocessing for anomaly based
network intrusion detection: A review. computers & security 30(6–
7):353–375

4. Portnoff RS (2018) The Dark Net: De-anonymization, Classifica-
tion and Analysis. University of California, Berkeley, ???

5. Xia Y, Cao X,Wen F, Hua G, Sun J (2015) Learning discriminative
reconstructions for unsupervised outlier removal. In: Proceedings
of the IEEE International Conference on Computer Vision, pp
1511–1519

6. ZhouC, Paffenroth RC (2017) Anomaly detectionwith robust deep
autoencoders. In: Proceedings of the 23rd ACM SIGKDD Interna-
tional Conference on Knowledge Discovery and Data Mining, pp
665–674

7. Schlegl T, Seeböck P, Waldstein SM, Langs G, Schmidt-Erfurth U
(2019) f-anogan: Fast unsupervised anomaly detection with gener-
ative adversarial networks. Med Image Anal 54:30–44

8. Schlegl T, Seeböck P, Waldstein SM, Schmidt-Erfurth U, Langs G
(2017) Unsupervised anomaly detection with generative adversar-
ial networks to guide marker discovery. In: Information Processing
in Medical Imaging: 25th International Conference, IPMI 2017,

Boone, NC, USA, June 25–30,2017, Proceedings, pp 146–157.
Springer

9. Golan I, El-Yaniv R (2018) Deep anomaly detection using geo-
metric transformations. Advances in neural information processing
systems 31

10. Wang S, Zeng Y, Liu X, Zhu E, Yin J, Xu C, Kloft M (2019) Effec-
tive end-to-end unsupervised outlier detection via inlier priority of
discriminative network.Advances in neural information processing
systems 32

11. Zhai S, Cheng Y, Lu W, Zhang Z (2016) Deep structured energy
based models for anomaly detection. In: International Conference
on Machine Learning, pp 1100–1109. PMLR

12. Chandola V, Banerjee A, Kumar V (2007) Outlier detection: A
survey. ACM Comput Surv 14:15

13. Kiran BR, Thomas DM, Parakkal R (2018) An overview of deep
learning based methods for unsupervised and semi-supervised
anomaly detection in videos. Journal of Imaging 4(2):36

14. Lai C-H, Zou D, Lerman G (2020) Robust subspace recovery layer
for unsupervised anomaly detection. In: Eighth International Con-
ference on Learning Representations

15. Scholkopf B, Williamson R, Smola A, Shawe-Taylor J, Platt J et al
(2000) Support vector method for novelty detection. Advances in
neural information processing systems 12(3):582–588

16. SHYU M-L (2003) A novel anomaly detection scheme based on
principal component classifier. In: Proc. of ICDM Foundation and
New Direction of Data Mining Workshop, 2003

17. Hoffmann H (2007) Kernel pca for novelty detection. Pattern
Recogn 40(3):863–874

18. Pang G, Shen C, Cao L, Hengel AVD (2021) Deep learning for
anomaly detection:A review.ACMComput Surv (CSUR) 54(2):1–
38

19. Zong B, Song Q, Min MR, Cheng W, Lumezanu C, Cho D, Chen
H (2018) Deep autoencoding gaussian mixture model for unsuper-
vised anomaly detection. In: International Conference on Learning
Representations

20. You Z, Cui L, Shen Y, Yang K, Lu X, Zheng Y, Le X (2022) A
unified model for multi-class anomaly detection. In: Advances in
Neural Information Processing Systems

21. Liznerski P, Ruff L, Vandermeulen RA, Franks BJ, KloftM,Muller
KR (2021) Explainable deep one-class classification. In: Interna-
tional Conference on Learning Representations

22. Salehi M, Sadjadi N, Baselizadeh S, Rohban MH, Rabiee HR
(2021) Multiresolution knowledge distillation for anomaly detec-
tion. In: Proceedings of the IEEE/CVF Conf Comput Vis Pattern
Recognit, pp 14902–14912
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