
https://doi.org/10.1007/s10489-023-04752-9

Fusion of energy sensors with missing values

Amedeo Buonanno1 · Giovanni Di Gennaro2 · Giorgio Graditi3 · Antonio Nogarotto2 · Francesco A N Palmieri2 ·
Maria Valenti1

Accepted: 2 June 2023
© The Author(s) 2023

Abstract
In Smart EnergyGrids, the information flow used tomake decisions is the result of fusion of different sources. Communication
latency, possible sensor faults and inaccuracies, may negatively impact the data quality and hence the taken decisions. For
these reasons, the construction of a robust representation of the input signals that replaces and/or corrects the inaccurate data
is crucial for effective classification, anomaly detection and planning. Recent works on Data Fusion and data imputation
suggest that the usage of other signals in the same context can empower the representation and can be a useful preprocessing
task. In this work we describe an Autoencoder-based data fusion architecture with convolutional layers, skip connections and
ad-hoc augmented training sets for data imputation applied to the power consumption measurements obtained by different
sub-meters. Among the investigated architectures, the approachwith the shared convolutional layers and an augmented dataset
that consider missing data in the random positions and located in the central part (AE-A-ALL-CNN), is the most promising
one. In presence of one half of the input signal, in the central part, completely erased, it improves the imputation capability,
respect to two most employed approaches (denoising autoencoder and MICE) in the average of 12 %.
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1 Introduction

We live in the Data Age, with many and different sensors
distributed all around us that measure different aspects of
our life. In this scenario efficient data fusion techniques are
becoming essential to improve our decision capacity in sev-
eral contexts [1, 2]. Unfortunately, the real word is all but
perfect and many measurements can be missed or corrupted
because of communication latency, line interruptions, sensor
malfunctioning, etc. In Smart Energy Grids various kinds
of sources, such as smart meters, sensors, etc., are used by
Smart Energy Managers to make decisions, but the errors in
the measure systems or in the communication are frequent
[3]. The consequential missing or corrupted measurements
impact negatively on the quality of the available informa-
tion and hence on the analysis phase or decisions taken. An
incorrect missing value handling, in fact, can impact nega-
tively the effectiveness of the other tasks as the forecasting
[4] or anomaly detection and, in the Smart Grid context, can
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lead to severe failures as the mismatch between supply and
demand for an incorrect scheduling, or to a voltage viola-
tion a wrong regulation may lead to [5]. In the presence of
multiple time-series with different characteristics and hence
possible issues, such as in Smart Grid context, the problem
of managing the data in an aggregated way emerge naturally
and it is at the base of the data fusion techniques. For this rea-
son we need a solution that fuses information coming from
different sources and that is robust to missing data leverag-
ing the intra- and inter- correlation present in the different
observed data. In this way we can have a robust method to
missing data for the next downstream tasks and, using more
information, can improve the decision making capability.

Regarding the missing data handling, a best practice used
in the power industry is to apply linear interpolation for miss-
ing or corrupted values in intervals shorter than two hours.
For intervals longer than two hours, a typical profile is used
considering historical data and taking into account the day
in the week and the presence of holidays [6]. Many other
approaches to impute missing data in time series have been
proposed over the years. Someof them leverage the similarity
of neighbors [7], others use Expectation-Maximization (EM)
methods, autoregressive-moving average models (ARIMA),
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or Kalman filter models [8]. More recently, Deep Learning
approaches have been applied to the problem of missing data
imputation in time series [9] such as the Recurrent Neu-
ral Networks [10] and the Generative Adversarial Networks
[11].

The handling of missing data in the fusion process has
been investigated in several works [12, 13]. The most used
approaches are based on classical data imputation, such as
interpolation, averages, etc., applied to the time series before
data combination.

In this work we improve the classical methods using a
machine learning approach based on data history. We pro-
pose a DaI-FeO/DaI-DaO Fusion architecture (based on the
Dasarathy classification [14]), where the data inputs, i.e. the
power consumption measured by different sub-meters, are
fused to build a representation robust to missing values (fea-
ture output) in order to improve the downstream tasks, and
to provide better imputation (data output).

In this work we focus on the Autoencoder-based model
because it is a very powerful and flexible approach to data
fusion and, at the same time, it can be designed and trained
to be robust to missing data. In this way it is possible to rep-
resent the observed data in a lower space that can be used for
downstream tasks such as clustering, classification, forecast-
ing, etc.

Fusion models based on Autoencoders have been investi-
gated in different works [15–18], also in the energy context
[19–22]. The majority of them uses the Autoencoder as a
feature extractor inserted in a more complex architecture to
perform downstream supervised tasks.

In the presence of missing or corrupted data it is impor-
tant to learn a data representation which is robust to the
contamination. This can be achieved using the Denoising
Autoencoder [23]. When trained using a particular masking
noise, the model can learn to fill-in missing values thanks to
dependencies present in the input data.

The process of denoising has also an interesting geometric
interpretation based on the manifold assumption (the natural
high-dimensional data lay on a non-linear low-dimensional
manifold). Using the denoising criterion during training, we
learn to map corrupted examples (likely farther from embed-
ding manifold) to the uncorrupted version of them (on the
manifold). If the corrupted example is very far from the man-
ifold, the Denoising Autoencoder has to make a considerable
effort to generate a correct value [24]. The usage of Autoen-
coder as model to replace missing values has been already
suggested in [23] but, more recently, other works have used
a similar approach [25].

In [17] the authors have investigated a data fusion archi-
tecture for missing data imputation where the reconstruction
task can benefit from having other signals available. Con-
textual information, in fact, have demonstrated to be very
effective in various data processing applications, such as

scene understanding [26] or language models [27], and it
has been exploited in our previous work [28] where we have
investigated a Bayesian approach for FeI-DeO Fusion based
on theFactorGraphparadigm [29–31], showinghow to effec-
tively manage missing, or wrong values, also taking into
account sensor reliability in selected sensors, or in selected
measurements.

In this work, we propose a new architecture based on
Autoencoder model, convolutional layers, skip connections
and ad-hoc augmented training sets, to impute missing data
using a shared embedding space, that fuses information com-
ing from different sensors. A similar approach has also been
investigated in [17], but in our work, more signals to fuse
are considered, the convolutional architecture is employed
for the specific autoencoders and for the fusion layer, and an
ad-hoc augmented training set is considered.

The main contribution of this work is to show that the
imputation of missing data, in the energy context, in pres-
ence ofmultiple sensors, in very challengingbut real situation
where large portions of the signals are missing, can be helped
by a proper data augmentation scheme andby the information
carried out by other signals properly combined. Moreover,
the use of an Autoencoder approach allows to obtain a com-
pressed representation of the input signals which is robust to
the missing data and that can be used for other downstream
tasks such as clustering, forecasting, etc. To our knowledge
no previous work has used this type of architecture and per-
formed this type of analysis in the energy context.

The description of the architecture used for the fusion of
the sensor signals is presented in Section 2. The different
missing data patterns and the several types of augmentation
are presented in Section 3 and Section 4, respectively. The
datasets and evaluation method used in our work are pre-
sented in Section 5 and Section 6, respectively. The obtained
results and discussion of experiments are presented in Sec-
tion 7. Finally, in Section 8, conclusions and suggestions for
further work are presented.

2 Sensor FusionModel

The proposed feature fusion architecture is based on the
concept of sharing the intra- and inter-modal correlation of
several signals involved [17].

As depicted in Fig. 1, we have S different sensors, the
generic i-th sensor produces ni measurements (e.g. related
to ni contiguous timestamps) globally denoted as signal xi =
[xi,1, xi,2, ..., xi,ni ]. The dataset is composed by N records:

{x(n)
i }n=1:N

i=1:S .
For each record of the i-th sensor, the ni measurements

feed nEi specific Encoding Layers Ei = {Ei,1, Ei,2, ..., Ei,nEi
}

(blue boxes in Fig. 1).
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Fig. 1 Conceptual scheme of
Data Fusion Model based on
Autoencoder

The details of the encoding process for the generic i-th
signal are described in (1) where: βi, j is the bias for the j-th
Encoding Layer of the i-th signal and σe is the activation
function:

ei,1 = σe(Ei,1 · x1 + βi,1)

ei,2 = σe(Ei,2 · ei,1 + βi,2)
...

ei,nEi = σe(Ei,nEi
· ei,nEi−1 + βi,nEi

)

(1)

All the encoded signals, {ei,nEi }Si=1 are concatenated as
described in (2) where [·, ·] is the concatenation operator:

f0 = [e1,nE1 , e2,nE2 , . . . eS,nES
] (2)

Then f0 feedsnF sharedEncodingLayersFi = {F1, F2, ...,
FnF } (green box in Fig. 1). The process of the fused encoding
is described in (3) where β f , j is the bias for the j-th shared
Encoding Layer and σ f is the activation function:

f1 = σ f (F1 · f0 + β f ,1)

f2 = σ f (F2 · f1 + β f ,2)
...

fnF = σ f (FnF · fnF−1 + β f ,nF )

(3)

Finally, specific nDi DecodingLayersDi = {Di,1, Di,2, ...,

Di,nDi
} (red boxes inFig. 1), reconstruct theni measurements

of the generic i-th sensor: x̂i = [x̂i,1, x̂i,2, ..., x̂i,ni ]. In detail,
the encoded signal ei,nEi for each sensor is concatenated to
the fused encoded signal fnF as described in (4):

di,0 = [ei,nEi , fnF ] (4)

The process of the decoding is described in (5) where ζi, j
is the bias for the j-th Decoding Layer of the i-th signal and
σd is the activation function:

di,1 = σd(Di,1 · di,0 + ζi,1)

di,2 = σd(Di,2 · di,1 + ζi,2)
...

di,nDi = σd(Di,nDi
· di,nDi−1 + ζi,nDi

)

(5)

Both Ei and Fi can be Dense Layers, or Convolutional
Layers, while the various Di can be Dense Layers, or
Transpose Convolutional Layers. Skip connections (using
concatenation as inDenseNet [32]), are introduced to acceler-
ate the learningprocess, and for each signal, the lastDecoding
Layer Di,nDi

, is a dense layer with dimension ni .
The loss function is computed as weighted sum of the

MSE for each sensor between the reconstructed signal and
the ground truth. Since each sensor can suffer of specific
problems, and be corrupted following a particular pattern,
we define the indexes of the corrupted signal components as
Si = { j : j ∈ {1, .., ni }, xi, j i s corrupted}. Hence, the loss
function becomes:

L = ∑S
i=1 wi ·

(

α · 1
|Si |

( ∑
j∈Si

(xi, j − x̂i, j )2
)

+ β · 1
ni−|Si |

( ∑
j /∈Si

(xi, j − x̂i, j )2
)) (6)

where wi is the weight related to each sensor, and α and
β are the weights for the reconstruction error on components
that are, respectively, corrupted or not. If the weights wi are
equal for all sensors, and α and β are chosen properly (e.g.,
α = |Si | and β = ni −|Si |), we obtain a value that is propor-
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Fig. 2 Conceptual scheme of
the specialized Autoencoder for
each sensor. The blue and red
boxes contain, respectively, the
encoder and the decoder parts

Encoder Decoder

tional to the global MSE computed over all measurements of
all sensors.

For each sensor, there is a specialized Autoencoder, as
depicted in Fig. 2, composed by an Encoder and a Decoder
(respectively blue and red box in the Fig. 2). At the end of the
training process of eachAutoencoder, the learnedweights for

the Encoding Layers {E ′
i }
nE ′

i
i=1 are used as weights (or could

be used as initial weights in case of fine tuning) of the Encod-
ing Layers of the overall architecture (Fig. 1 and relative blue

boxes). The learnedweights for theDecodingLayers {D′
i }
nD′

i
i=1

are instead discarded. In this work we have used a symmet-
ric Autoencoder (nD′

i
= nE ′

i
− 1) and the same number of

neurons, or filters, used for the Encoding Layers have been
used for the Decoding Layers in the inverse order. When the
specialized Autoencoder is convolutional, the last layer is a
CONV 1D 1x1.

3 Missing data patterns

Figure 3 shows an example with three sensors with six mea-
surements each. The first row (Fig. 3(a)) has no missing data.
The other rows show typical missing patterns that can occur
in real data for a single sensor: randomly distributed (Fig.
3(b)), in the central part (Fig. 3(c)), in the last part (Fig.
3(d)), in the initial part (Fig. 3(e)).

The presence of missing data in real context is critical as
reported in [22] where in a real smart meter dataset of 50

million of load measurements, there are totally 420k miss-
ing points (1% of total), 34k isolated missing points and
38k missing contiguous blocks. Usually, random missing
patterns (Fig. 3(b)) are observed when there are communica-
tions, or sensor issues, of brief duration (intermittent failure).
Contiguous values may be missing when a sensor, or its
connection, stops working for a while before reconnection
(prolonged failure) [5].

These patterns should be seen as typical day data where
the central hoursmay correspond to peaks of energy demand,
or photovoltaic energy production. Having the central part of
these time series completely missing is, hence, one of the
worst situations to tackle.

To solve these problems, straightforward imputation
methods have been suggested, such as replace the missing
values with template values obtained from the training set,
or leveraging some statistics of the signal estimated on histor-
ical data (e.g. average, median, etc.) [6], or using algorithms
such as the popular MICE [33]. In our approach, instead, the
imputation is relying completely on the trained Autoencoder
that fills-in automatically the missing parts.

4 Augmented training set

In solving real problems usingmachine learning, the training
algorithms need to have available rich data sets that contain
with sufficient frequency the patterns of interest. When this

(a)

(d)

(b)

(c)

(e)

Fig. 3 Missing Data Patterns for a configuration composed by three
sensors with six measurements each. (a) No missing Data; (b) 33% of
missing data randomly distributed on measurements of first sensor; (c)
33% of missing data on the central part of measurements of second

sensor; (d) 33% of missing data on the last part of measurements of
third sensor; (e) 33% of missing data on the first part of measurements
of second sensor
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Fig. 4 Augmented training set
for a configuration composed by
three sensors with six
measurements each. (a) Original
Record; New record obtained
removing the central 33% of the
measurements for: (b) the first
signal; (c) the second signal; (d)
the third signal

(a)

(d)

(b)

(c)

is not possible, it is often necessary to use data augmenta-
tion, i.e. enrich the training set creating artificially the critical
situations to be addressed.

Following the discussion in Section 3, we focus on the
missing data in the central part. To reduce the dataset shift
[34], between the training data and the effective situations
that can occur, we have created an augmented training set as
depicted in Fig. 4: for each original record, we create S new
(synthetic) records containing, for each signal, the central
part completely removed keeping the rest. Then the original
record is used as the desired output (ground truth).

In the following sections we present the results using the
network architecture depicted in Fig. 1, with the main hyper-
parameters listed in Table 1, and trained using different types
of augmentation. Each type of augmentation defines a par-
ticular model to test:
• AE: original trainingset (the recordsasdepicted in Fig. 4(a))
• AE-A: augmented training set (the records as depicted in
Fig. 4(a), (b), (c), (d))

• AE-A-ALL: augmented training set (the records as
depicted in Fig. 4(a), (b), (c), (d)) and adding new records
with missing data randomly distributed for each signal
(Kall repetitions)

• AE-A-ONLY-SYNTH: training set composed only by the
synthetic records (the records as depicted in Fig. 4(b), (c),
(d))

• AE-A-CONTIG: training set composed only by the syn-
thetic records obtained removing contiguous samples for
each signal with center position randomly distributed
(Kcontig repetitions)

Other two models have been tested with main hyperpa-
rameters listed in Table 2:

• AE-A-ALL-CNN: augmented training set as for the
model AE-A-ALL

• AE-A-ONLY-SYNTH-CNN: training set composed as
for the model AE-A-ONLY-SYNTH

The following architectures have been tested as reference
models:

• AE-S: the model based on Stacked Sparse Autoencoder,
trained using the original training set (the records as
depicted in Fig. 4(a)) and with the main hyperparam-
eters listed in Table 3. This model is similar to model
described in [17] and some choices have been made to
make it comparable with other proposed architectures
(e.g., not use of the layer-wise pretraining, absence of
fine tuning procedure)

• AE-D: the model based on Denoising Autoencoder [23]
trainedusingtheoriginal trainingset (the recordsasdepicted
in Fig. 4(a)) and using the Dropout on input layer

• IMPUTER: the Multiple Iterative Imputer (MICE) [33]
• BASELINE: the baseline that substitutes themissing val-
ues with average of the signal computed on training set
for that time step

5 Dataset

The datasets we have used for experiments are: REFIT [35]
and the "Individual household electric power consumption
Data Set" in the UCI Machine Learning Repository [36].

Table 1 Configuration for the
tested architectures with dense
shared encoder

Hyperparameter Values

Ei Conv 1D [50, 25] - Kernel Size [1x3] - selu

Fi Dense [50] - sigmoid

Di Conv 1D Transpose [25, 50] - selu

Learning Rate 0.01, Reduced on Plateau

Batch Size 32

Optimizer SGD with momentum 0.9 (Nesterov)

Max. Num. Epoch 1000

Notes Early Stopping with Patience 10 steps and Refit
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Table 2 Configuration for the
tested architectures with
convolutional shared encoder

Hyperparameter Values

Ei Conv 1D [50, 25] - Kernel Size [1x3] - selu

Fi Conv 1D [10] - sigmoid

Di Conv 1D Transpose [25, 50] - selu

Learning Rate 1e-5, Reduced on Plateau

Batch Size 32

Optimizer Adam

Max. Num. Epoch 1000

Notes Early Stopping with Patience 10 steps and Refit

The first dataset includes cleaned electrical consumption
data in Watts for 20 households at aggregate and appliance
level, sampled each 8 second for the period from October
2013 to June 2015.We have focused on house 15 and the fol-
lowing appliances: Appliance2 (tumble dryer), Appliance3
(dishwasher), Appliance5 (computer site) and Appliance6
(television site).

The second dataset containsminute-wise power consump-
tion measurements gathered from a house located in France
between December 2006 and November 2010 (47 months)
with 3 sub_meters:

• sub_metering_1 related to the kitchen, containingmainly
a dishwasher, an oven, and a microwave;

• sub_metering_2 related to the laundry room, containing
a washing-machine, a tumble-dryer, a refrigerator, and a
light;

• sub_metering_3 connected to electric water-heater and
an air-conditioner.

Theconsumptionof thehouse related tootherrooms/appliances
has been taken in account as difference between the global
active power and the active power measured by three
sub_meters,named sub_metering_4.

For both datasets we have resampled the original time
series on hour basis using the average as aggregationmethod.
Hence we have 4 sensors and each one contains 24 mea-

surements for each day. From the complete dataset we have
considered, for each month, 75% of data for training and the
25% for test. In this way the training set and test set contain
information coming from all available months.

6 Model evaluation

For the i-th sensor, each signal xi has been normalized using
standardization, that is subtracting the mean and dividing
by the standard deviation computed on all signals xi in the
training set.

After the training phase, the models have been tested to
reconstruct input signals belonging to the test set with and
without missing values. The desired behavior is the follow-
ing:

• For the input signals without missing values the model
should reconstruct the signal at best even though it has
not been seen during the training phase.

• For the input signalswithmissingvalues distributedusing
the patterns depicted in Fig. 3, the model should try to
impute the missing values obtaining results as close as
possible to the ground truth signal.

To simulate the situations that can happen in the real contexts,
we consider the erasureswith randompatterns (Fig. 3(b)) and

Table 3 Configuration for the
model based on Stacked Sparse
Autoencoder

Hyperparameter Values

Ei Dense [50, 25] - selu

Fi Dense [50] - sigmoid

Di Dense [25, 50] - selu

Learning Rate 0.01, Reduced on Plateau

Batch Size 32

Optimizer SGD with momentum 0.9 (Nesterov),

Sparse Weight: 0.1, Sparsity Parameter: 0.1

Max. Num. Epoch 1000

Notes Early Stopping with Patience 10 steps and Refit
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Fig. 5 Reconstruction results on
UCI Test set for 4 signals for
model AE. Only signal
sub_metering_3 contains
erasures on central part.
Reconstruction for signal: (a)
sub_metering_1; (b)
sub_metering_2; (c)
sub_metering_3; (d)
sub_metering_4

(a) (b)

(c) (d)

central patterns (Fig. 3(c)). The other two patterns (Fig. 3(d),
(e)) are similar and don’t add anything to our discussion.
During the following experiments the missing values have
been set to a fixed value that usually is zero (average value
when the signal is denormalized).

These experiments have been performed with the com-
plete information coming from other sensors, or with their
complete absence. In this waywe can observe the importance
of the fused representation in the shared Encoding Layers for
imputing tasks.

Fig. 6 Reconstruction results on
UCI Test set for 4 signals for
model AE-A. Only signal
sub_metering_3 contains
erasures on central part.
Reconstruction for signal: (a)
sub_metering_1; (b)
sub_metering_2; (c)
sub_metering_3; (d)
sub_metering_4

(a) (b)

(c) (d)
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Fig. 7 Reconstruction results on
UCI Test set for 4 signals for
model AE. Only signal
sub_metering_3 contains
random erasures.
Reconstruction for signal: (a)
sub_metering_1; (b)
sub_metering_2; (c)
sub_metering_3; (d)
sub_metering_4

(a) (b)

(c) (d)

7 Results and discussion

The simulations have been performed considering the weights
wi = 1 for all sensors, the weight for corrupted points in the
loss computation α = 0.7 and β = 1 − α. The number of
repetitions in the data augmentation are: Kall = 3, Kcontig =
10. The percentage of themissing data for augmented dataset

is 50% and the same percentage is used for dropout rate in
AE-D.

In the following figures we show the prediction results
of AE and AE-A models for UCI dataset, with three sig-
nals with no erasures (sub_metering_1, sub_metering_2 and
sub_metering_4), and sub_metering_3 signal with half sig-
nal completely removed:

Fig. 8 Reconstruction results on
UCI Test set for 4 signals for
model AE-A. Only signal
sub_metering_3 contains
random erasures.
Reconstruction for signal: (a)
sub_metering_1; (b)
sub_metering_2; (c)
sub_metering_3; (d)
sub_metering_4

(a) (b)

(c) (d)
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• In the central part (Figs. 5 and 6).
• In random positions (Figs. 7 and 8).

In Figs. 5, 6, 7, 8, and 9: the black solid line is the ground
truth; the blue line is the result of the prediction using the
ground truth as input; the black dashed line is the input con-
taining the erasures (if any); the red line is the result of the
prediction using the input containing the erasures; the cyan
dashed line is the average signal computed over all training
set.

The AE-A model has been trained using a training set
augmented using 50% of erased samples in the central zone,
hence the training set for AE-A model has been augmented
considering also signals with the 12 central hours completely
erased.

In the Fig. 6(c) we show that using the AE-A model,
with central part of sub_metering_3 input signal completely
removed, the reconstructed signal (red line) doesn’t follow
the black dashed line (representing the signal with erasures),
but tries to follow the black solid line that represents the
original signal without erasures (not provided as input to
the model). This means that the model is able to partially
impute themissing values andnot simply replicates the inputs
that contains the missing values as the AE model does (Fig.
5(c)). The same behavior is observed also in AE-A-ALL,
AE-A-ONLY-SYNTH,AE-A-ALL-CNN andAE-A-ONLY-
SYNTH-CNN models, not shown here for brevity.

The AE-A model leverages the behavior observed in
the central area during the training phase and hence the
estimation of the average of the corrupted sub_metering_3
signal (cyan line in Fig. 6(c)). Moreover, the erasure of

sub_metering_3 doesn’t impact too negatively on the recon-
struction of the other signals (red lines and blue lines in Fig.
6(a), (b), (d)).

In the Figs. 7(c) and 8(c) we show, respectively, the results
of AE and AE-A models when 50% of samples, randomly
distributed, of sub_metering_3 has been removed. For AE
model is confirmed an absence of robustness to the miss-
ing values, but now also the reconstruction results of AE-A
are not so good. The reason is that the erasures can occur
in configuration that the model didn’t see during the train-
ing process (AE-A has been trained using dataset containing
signals with only the central part deleted).

If we consider the result using AE-D model (Fig. 9(c)),
we can note that the model is more robust to the erasures as it
is filtering them out, but other signals are reconstructed with
more difficulty.

This behavior is confirmed also if we evaluate the recon-
struction error on all test set as described in Tables 4 and
5, where there are listed the RMSE values for models AE,
AE-A, AE-A-ONLY-SYNTH, AE-A-ALL, AE-CONTIG,
AE-A-ONLY-SYNTH-CNN, AE-A-ALL-CNN, AE-S, AE-
D, IMPUTER and BASELINE applied to, respectively, UCI
and REFIT datasets. The evaluation is performed on test set
records with the 50% of the central part of i-th signal com-
pletely removed. The RMSE between the reconstructed and
ground truth signals (without erasures) of the test set is com-
puted only considering the samples that have been erased.

In particular, the AE model is confirmed not being good
solution for obtaining a robust representation of the input
data with missing data in the central part.

Fig. 9 Reconstruction results on
UCI Test set for 4 signals for
model AE-D. Only signal
sub_metering_3 contains
random erasures.
Reconstruction for signal: (a)
sub_metering_1; (b)
sub_metering_2; (c)
sub_metering_3; (d)
sub_metering_4

(a) (b)

(c) (d)
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Table 4 Reconstruction error only on erased samples for UCI dataset
on Test set for the consideredmodels. One half of the input signal, in the
central part, has been erased before it has been presented to the network.
Column S_i stands for Sub_metering_i

S_1 S_2 S_3 S_4

AE 2.741 3.447 7.807 5.250

AE-A 2.411 3.208 7.113 3.750

AE-A-ONLY-SYNTH 2.281 3.194 7.077 3.628

AE-A-ALL 2.350 3.165 7.164 3.997

AE-A-CONTIG 2.360 3.234 6.903 3.813

AE-A-ONLY-SYNTH-CNN 2.324 3.067 6.300 3.082

AE-A-ALL-CNN 2.430 3.108 6.125 3.465

AE-S 2.812 3.549 7.560 5.490

AE-D 2.517 3.410 7.438 4.537

IMPUTER 2.359 3.257 6.807 3.525

BASELINE 2.448 3.358 7.332 4.597

For UCI dataset, the models with shared convolutional
layers are the best choices. AE-A-ONLY-SYNTH-CNN out-
performs other models (except for Sub_metering_1 and
Sub_metering_3 where it is the second best model after
AE-A-ONLY-SYNTH and AE-A-ALL-CNNmodel, respec-
tively) and AE-A-ALL-CNN outperforms other models
for Sub_metering_3 and it is the second best model for
Sub_metering_2 and Sub_metering_4 after AE-A-ONLY-
SYNTH-CNN. Moreover, AE-A-ALL-CNNmodel presents
an average improvement over IMPUTER of about 3%, over
AE of about 19% and over AE-D of about 13%.

Also for REFIT dataset, the models with shared con-
volutional layers are the best choices. AE-A-ALL-CNN
outperforms other models (except for Appliance_2) and AE-
A-ONLY-SYNTH-CNN is in the top 5 models (except for

Table 5 Reconstruction error only on erased samples for REFIT dataset
on Test set for the consideredmodels. One half of the input signal, in the
central part, has been erased before it has been presented to the network.
Column A_i stands for Appliance_i

A_2 A_3 A_5 A_6

AE 56.169 73.840 3.319 22.871

AE-A 47.640 73.533 2.292 20.586

AE-A-ONLY-SYNTH 42.277 73.398 2.252 20.529

AE-A-ALL 44.270 69.980 2.532 20.575

AE-A-CONTIG 43.009 70.253 2.251 20.985

AE-A-ONLY-SYNTH-CNN 43.478 75.344 2.207 19.769

AE-A-ALL-CNN 45.913 66.988 1.750 19.751

AE-S 41.980 72.206 2.967 21.549

AE-D 50.212 75.212 3.144 22.137

IMPUTER 49.851 70.048 2.549 20.771

BASELINE 41.110 71.033 2.748 21.399

Table 6 Reconstruction error only on erased samples for UCI dataset
on Test set for the considered models. One half of the input signal, in
the random position, has been erased before it has been presented to the
network. Column S_i stands for Sub_metering_i

S_1 S_2 S_3 S_4

AE 2.811 2.849 6.643 6.060

AE-A 2.787 2.745 7.038 6.506

AE-A-ONLY-SYNTH 2.720 2.734 7.007 6.451

AE-A-ALL 2.509 2.618 5.854 5.116

AE-A-CONTIG 2.641 2.707 6.517 5.843

AE-A-ONLY-SYNTH-CNN 2.758 2.747 6.818 6.399

AE-A-ALL-CNN 2.375 2.502 5.250 4.505

AE-S 2.954 3.049 6.761 6.552

AE-D 2.488 2.597 5.625 4.743

IMPUTER 2.351 2.440 4.998 3.906

BASELINE 2.682 2.788 6.400 5.977

Appliance_3). AE-A-ALL-CNN model shows an average
improvement over IMPUTER of about 12%, over AE of
about 22% and over AE-D of about 19%. These results
show how a proper augmentation dataset, with missing val-
ues distributed as expected in a real situation (in this case in
the central part), together with a convolutional fusion layer,
is a preferable choice respect to other presented solutions.
In particular, if we focus only on the two most employed
approaches (AE-D and IMPUTER), in presence of one half
of the input signal, in the central part, completely erased,
AE-A-ALL-CNN presents an improvement of the imputa-
tion capability in the average of about 12%.

If the erasure pattern changes, for instance, the samples
are removed randomly (Tables 6 and 7), we can observe
an interesting behavior. For UCI dataset, AE-A-ALL-CNN,

Table 7 Reconstruction error only on erased samples for REFIT dataset
on Test set for the considered models. One half of the input signal, in
the random position, has been erased before it has been presented to the
network. Column A_i stands for Appliance_i

A_2 A_3 A_5 A_6

AE 34.676 65.353 2.519 20.120

AE-A 34.487 70.744 2.563 23.368

AE-A-ONLY-SYNTH 30.393 69.467 2.516 22.795

AE-A-ALL 30.818 64.690 2.241 19.112

AE-A-CONTIG 30.588 66.240 2.448 22.241

AE-A-ONLY-SYNTH-CNN 34.892 72.457 3.036 26.000

AE-A-ALL-CNN 34.039 55.018 1.651 15.226

AE-S 33.223 68.727 2.855 21.189

AE-D 31.526 65.174 2.340 17.793

IMPUTER 39.145 62.670 1.699 15.467

BASELINE 27.686 64.593 2.551 19.993
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is the second best model after IMPUTER, while in REFIT
dataset, it is able to outperform other approaches (except for
Appliance_2). Moreover, AE-A-ALL-CNN model, for UCI
dataset, presents an average improvement over UAE of about
19% and over UAE-D of about 5%, and for REFIT dataset, it
presents an average improvement over IMPUTER of about
7%, over UAE of about 19% and over UAE-D of about 13%.

These simulations seem to confirm that training the model
modifying the input patterns following the same percentage
and missing pattern that can be observed in the real context,
helps the imputation ofmissing values. The prior information
on the missing data process can help to construct a more
robust representation. Often this information is not available
and hence we can augment the dataset adding records that
contains erasures distributed following several patterns that,
eventually, can occur as with AE-A-ALL or AE-A-ALL-
CNN models. The latter emerges as a very good model in
both situations, when the missing patterns are distributed in
the central part or randomly.

These results suggest that, designing properly the data
augmentation phase, we can make the representation more
robust to some particular missing patterns than others. In this
way we can, for example, impute missing data that follow a

(a)

(b)

Fig. 10 Reconstruction error only on central erased samples for (a)
UCI dataset and (b) REFIT dataset without data augmentation (AE),
with data augmentation and the dense shared Encoder (AE-ALL), and
with data augmentation and convolutional shared Encoder (AE-ALL-
CNN)

particularmissing pattern, but be transparent to other types of
corruption that it is necessary to be “transmitted” to following
task in the pipeline (e.g. anomaly detector).

In order to assess the impact of the augmentation and of the
convolutional neural network as shared encoder, in the Fig.
10 we show the imputation results with the classical Autoen-
coder approach, then we introduce the data augmentation
and finally we employ the convolutional fusion layer. From
the graph it is evident how the proposed solutions improve
the imputation capability of the architecture and that both
convolutional shared encoder and the augmentation have an
important role in the final results.

The architecture is built in order to take advantage also
from other available signals. In the following we assess the
role of the other signals (not corrupted) in the reconstruc-
tion capability of the proposed architecture. In the Figs. 12
and 11 we show how RMSE values for AE, AE-A, AE-
A-ONLY-SYNTH, AE-ALL, AE-CONTIG, AE-A-ONLY-
SYNTH-CNN, AE-A-ALL-CNN, AE-D vary when the i-th
signal contains 50% of samples completely removed in the
central part and other signals are progressively completely
removed. These figures confirm how the usage of other
signals can improve the imputation performance of the con-
sidered models even though some signals are more sensitive
than others, probably because the correlation among the sig-
nal and other ones is not so high. Usually, the lowest value
of RMSE for all fours signals is obtained when other three
signals are available (0 signal erased) and the model can
leverage the information of other signals. Removing infor-
mation coming from other signals, the reconstruction error
on the i-th signal increases, confirming the importance of the
data fusion in the imputation of missing values.

8 Conclusion

The necessity of a robust method to fill-in missing data is
important in IoT context and in particular when we use infor-
mation coming from several sensors for making decision as
in the Smart Energy Grid. In this work we have proposed an
Autoencoder-based data fusion architecture that can achieve
these objectives. The model is completely data-driven and
leverages information coming from other sensors in order
to improve the imputation performance. Our technique has
been tested in very challenging situations where the most
important part of the signals may be completely lost. We
have shown that a dedicated data augmentation phase is a
crucial step inmaking the Autoencoder representation robust
to missing patterns. Specific augmentation patterns could be
effectively used for making this paradigm very versatile. The
proposed approach, as any data-driven solution, is dependent
on training data, their quality and quantity. If the training data
is biased, not representative of the population or of the miss-
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Fig. 11 Impact of other signals
to the reconstruction of the
signal on UCI dataset

(a) (b)

(c) (d)

Fig. 12 Impact of other signals
to the reconstruction of the
signal on REFIT dataset

(a) (b)

(c) (d)
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ing data pattern, the imputations generated by the model may
also be biased or inaccurate. In the future work we will eval-
uate to introduce the attention mechanism in the model in
order to improve the model’s ability to focus on important
parts of the input data that can help the imputation capability
of the overall architecture.
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