
Vol.:(0123456789)1 3

Applied Intelligence (2023) 53:24963–24990
https://doi.org/10.1007/s10489-023-04745-8

Hierarchical multi‑scale parametric optimization of deep neural
networks

Sushen Zhang1 · Vassilios S. Vassiliadis2 · Bogdan Dorneanu3  · Harvey Arellano‑Garcia3

Accepted: 28 May 2023 / Published online: 31 July 2023
© The Author(s) 2023

Abstract
Traditionally, sensitivity analysis has been utilized to determine the importance of input variables to a deep neural network
(DNN). However, the quantification of sensitivity for each neuron in a network presents a significant challenge. In this arti-
cle, a selective method for calculating neuron sensitivity in layers of neurons concerning network output is proposed. This
approach incorporates scaling factors that facilitate the evaluation and comparison of neuron importance. Additionally, a
hierarchical multi-scale optimization framework is proposed, where layers with high-importance neurons are selectively
optimized. Unlike the traditional backpropagation method that optimizes the whole network at once, this alternative approach
focuses on optimizing the more important layers. This paper provides fundamental theoretical analysis and motivating case
study results for the proposed neural network treatment. The framework is shown to be effective in network optimization
when applied to simulated and UCI Machine Learning Repository datasets. This alternative training generates local minima
close to or even better than those obtained with the backpropagation method, utilizing the same starting points for compara-
tive purposes within a multi-start optimization procedure. Moreover, the proposed approach is observed to be more efficient
for large-scale DNNs. These results validate the proposed algorithmic framework as a rigorous and robust new optimization
methodology for training (fitting) neural networks to input/output data series of any given system.

Keywords  Deep neural networks · Hierarchical multi-scale search · Scaling factor · Sensitivity analysis · Finite difference ·
Automatic differentiation

1  Introduction

Due to their superior capabilities of extracting capabili-
ties of extracting information from big sets of data in an
automatic way [1, 2], deep neural networks (DNNs) are
currently applied in many domains, ranging from material
synthesis and manufacturing [3, 4], biomedical applications
[5], health and safety [6], to waste valorization [7], power
supply [8, 9] or process industry and Internet of Things
[10–12]. The framework for their training has remained fixed
and stable since their introduction and it mainly involves

the optimization of all the neurons through the process of
backpropagation [2, 13], often coupled with well-known
algorithms based on gradient descent [14–17] or Leven-
berg–Marquardt approaches [18–21]. Seldom posed is the
question of whether all layers of neurons should be opti-
mized together in one run.

A major constraint in the deployment of DNNs in real-
time applications relates to the limited computation power,
storage capacity, energy and time available in practice in
real-world industrial systems for decision-making [22].
Key approaches for the deployment of DNN-based solu-
tions under these low-resource conditions are often split into
two categories [23]: a) the design of hardware architecture
able to handle efficient data flow mapping strategies and
memory hierarchy, and b) the design of software approaches
for trade-off optimization of the DNN models, with the aim
to reduce the number of model parameters and operations.

These techniques focused on the software development
are known as compression and acceleration methods in
literature, with the main approaches focusing on pruning,

 *	 Bogdan Dorneanu
	 dorneanu@b-tu.de

1	 Department of Chemical Engineering and Biotechnology,
University of Cambridge, Cambridge, UK

2	 Cambridge Simulation Solutions LTD., Waterbeach,
Cambridge, UK

3	 LS Prozess‑ Und Anlagentechnik, Brandenburg University
of Technology Cottbus-Senftenberg, Cottbus, Germany

http://orcid.org/0000-0003-3553-6625
http://crossmark.crossref.org/dialog/?doi=10.1007/s10489-023-04745-8&domain=pdf

24964	 S. Zhang et al.

1 3

quantization, low-rank factorization and knowledge distil-
lation. A detailed overview of these approaches, as well as
the main challenges in their development and application,
can be found in recent survey papers [22, 24–28].

Of these, pruning is a demonstrated powerful technique
that removes redundant parameters and connections, while
retaining highly important features of the DNN, which can
be applied either during or after training. Among the vari-
ous options, pruning can be used for removing unimportant
weight connections (weight pruning), individual redundant
neurons (neuron pruning), least important filters (filter
pruning) and redundant layers of neurons (layer pruning).
An important challenge in the application of pruning in
the development of efficient sparse model architectures for
DNNs relates to the fact that the pruning percentage is man-
ual, and more sophisticated approaches are required where
the pruning is decided automatically by tuning some hyper-
parameters [22, 28]. Furthermore, more structured pruning
techniques are required for deciding the importance of the
layers that can be removed [22].

Assuming the network is optimized partially in each itera-
tion, there is the need to determine which layer to optimize
first. A criterion suitable in this situation is the adoption of
neural sensitivity analysis.

Neural sensitivity analysis has been widely adopted in the
analysis of DNNs with the aim to demystify the’black-box’
nature and add further metrics to identify how the network
reacts to changes in the explanatory variables [29, 30]. Early
stages of research put emphasis exclusively on how the out-
put or the objective change with a perturbation in the input
[13, 31, 32]. While this is an important step in understanding
how a network responds to different data sets, the analysis is
limited by only looking at the sensitivity of the explanatory
variables. Moreover, research on neural sensitivity analysis
often concentrates on the relative values of the weights or
inputs manipulated to become a sensitivity measure [13, 31,
33, 34].

The sensitivity is an important measure when perform-
ing analysis on a neural network because it is indicative of
the component importance for a neuron, a layer, or a block
of layers [22, 30]. In particular, the sensitivity sets out the
change in the value of the output or the objective function
caused by a perturbation in the value of the component [35,
36].

This paper presents the development of a novel hierar-
chical multi-scale framework for the training of DNNs that
incorporates neural sensitivity analysis for the automatic and
selective training of neurons evaluated to be the most effec-
tive, based on the work in [37]. This contribution improves
the description of the proposed algorithm, as well as utilizes
more examples for illustrating the application and benefits
of the training approach. Overall, the novel elements of this
contribution include:

•	 The use of neural sensitivity analysis to evaluate the
importance of the neuron. For this purpose, two methods
for evaluating the sensitivity are used: the automatic dif-
ferentiation and the finite difference method. The former
is more rigorously developed, but more computationally
expensive. The latter is easy to implement and highly
flexible, but requires more parameter settings to obtain
sensible results.

•	 The use of both first- (first derivatives) and second-order
(second derivatives) information for the computation of
the sensitivity measures is investigated.

•	 The adoption of a new definition of the sensitivity meas-
ure through a scaling factor that enables the evaluation
of the sensitivity of the individual components of the
network.

The present work focuses on the theoretical presentation
and the introduction of the mathematical development of the
proposed approach. In the following sections the neural sen-
sitivity analysis approach is introduced. The analysis extends
to all neurons in the network and can achieve its selective
tuning. Subsequently, a novel framework for the training of
DNNs, of moderate complexity, is proposed, where the sen-
sitivity values guide a hierarchical multi-scale search down
a binary tree representing the importance of the layer. This
efficient algorithm to search for the most sensitive layer to
tune during training is thereafter applied on several case
studies, to illustrate the implementation and the characteris-
tics of the proposed approach. The remainder of the paper is
organized as follows: Section 2 provides an overview of the
use of neural sensitivity analysis for the identification of the
importance of the neurons, while the sensitivity analysis pro-
cedure based on scaling factors is introduced in Section 3.
The implementations of the proposed hierarchical multi-
scale approach based on the first- and second-order infor-
mation are presented in Sections 4 and 5, respectively, and
the two algorithms are compared in Section 6. The applica-
tion of the approach to various case studies is illustrated in
Section 7, while Section 8 discusses the main conclusions
of this study, as well as provides some directions for future
improvement and use of the proposed approach.

2 � Background

2.1 � Developments in neural sensitivity analysis

Early stages of research in neural sensitivity analysis focus
either on the values of the weights of the network [38–40],
or on the sensitivity of the input values [13, 31, 32]. The
aim is to observe the influence of the input on the output or
the objective function, i.e., the explanatory capacity of the
network [31, 35, 36].

24965Hierarchical multi‑scale parametric optimization of deep neural networks﻿	

1 3

There are several key measures that have been used in
the context of neural sensitivity analysis, as demonstrated
in Table 1. While a variety of measures have been proposed,
the sensitivities are often based exclusively on the values of
the weights. A more practical method is to provide pertur-
bations in the inputs and observe the effects on the outputs
[29, 30, 46]. A sensitivity analysis on the weights has been
demonstrated to be ineffective in measuring the functionality
of the network [32]. Sensitivity analysis on the input values
is more widely adopted in image recognition [47–49] and
engineering [32, 36, 50] research, but is limited in its appli-
cation for cases with discrete inputs [32, 51].

More recent work in image processing demystifies the con-
volutional neural network (CNN) by perturbing a pixel or a
small region in an image and observing its effect on the objec-
tive [52]. Other studies seek to find partial derivatives of the
image classification results with regard to individual pixels and
visualize it in a graph, as a measure of input sensitivity [53, 54].

The advantages of the perturbation method relate to the
fact that it is simple to implement and communicates a clear
message on how each variable interacts to give the objec-
tive value. In the case of the partial derivatives method, the
advantage is that it is a more rigorously developed compu-
tational algorithm that can be easily interpreted.

However, while these methods all merit in their own
design, the sensitivity analysis is exclusively focused on the
input importance. Furthermore, an important challenge in
the case of the perturbation methods is the combinatorial
explosion that would occur when assessing the impact on
the output of all the elements of the input and all their pos-
sible combinations [46]. As such, approaches that focus on
determining the importance of individual neurons can be
used to tackling this complexity issue.

2.2 � Identification of layer/neuron importance

The objective of producing faster and more efficient
network models can be achieved by developing new
approaches for revealing hidden information such as
importance of individual or layer of neurons [55]. Several
methods have been proposed to identify the importance

of neurons through Neural Interpretation Diagrams
(NIDs) [56–58], which represent the relative magnitude
of each connection weight by line thickness. The positive
weights are viewed as”excitator signals” while the nega-
tive weights are viewed as”inhibitor signals”. The diagram
assumes that by tracking the path with thicker lines (higher
positive weight values), it is possible to find input vari-
ables and neurons that are more important. However, such
diagrams will be difficult to visualize when the amount of
connections is large, i.e., with a large number of neurons.

Other studies focus on visualizing the importance of
neurons through a relevance score [59–61], calculated
from the Layer-wise Relevance Propagation [62, 63]. This
method is developed because images used as inputs con-
tain a large number of pixels in each entry, thus making it
impossible to disturb single pixels for sensitivity.

While these methods focus exclusively on visualization
of the neural importance, they are either too simplistic
(by constructing graphs based on raw weight values) or
highly complicated (by defining an equation of the rel-
evance score). The framework proposed in this work has a
moderate complexity that allows for the neural importance
to be evaluated for the purpose of selective tuning.

3 � Sensitivity analysis based on scaling
factors

With a variety of definitions of sensitivity values, most of
the state-of-the-art focuses on the sensitivity of the input
features. In this section a scaling factor is formulated into
the structure of DNNs and two methods to perform the
sensitivity analysis are proposed.

The scaling factor can be viewed as a controller of the
significance of a network component (neurons, layers, or
blocks of layers). The sensitivity of that component is
defined to be equal to the partial derivative of the objective
against the scaling factor associated with that component.
Two approaches are considered for the calculation of the
partial derivatives: the finite difference and the automatic

Table 1   Sensitivity measures
adopted in literature

* Notations are described in Sect. 9

Sensitivity measure Equation Reference

Numerical sensitivity measure �yk

�xi
= f

��

netk
�

L
∑

j=1

vjkf
��

netk
�

wij

[32, 41]

Weight product
WPik =

xi

yk

L
∑

j=1

wijvjk

[38, 42, 43]

Q factor
Qik =

∑L

j=1

�

wij
∑N
r=1

wrj

vjk

�

∑N

i=1

�

∑L

j=1

�

wij
∑N
r=1

wrj

vjk

��

[39, 44, 45]

24966	 S. Zhang et al.

1 3

differentiation methods, which will be briefly discussed in
the following sections.

3.1 � Scaling factors

Before demonstrating the mathematical formulation of
the sensitivity analysis, the scaling factors are introduced.
The idea of a scaling factor for the training of DNNs is
inspired from [67], where it is adopted for the sensitiv-
ity analysis of the predictive modification of biochemical
pathways to optimize the selection of reaction steps. The
scaling factor effectively allows the sensitivity ranking
of each reaction step and the resulting analysis greatly
simplifies the selection process. The advantage of this
procedure is that it is fast to determine a minimal set of
reaction steps. Under this framework, the scaling factor
acts to determine the most sensitive pathways with regard
to the overall performance of the biochemical process.

A similar analysis set is adopted for an Artificial Neu-
ral Network (ANN). The terminology ANN is used here
instead of DNN because the analysis is applicable to
all forms of ANNs, both shallow and deep. Further, the
mathematical details of the approach are detailed.

Firstly, the ANN is defined as the following process:

where z is the output from a neuron, y is the input to the
neuron, l = 1,… ,NL is the layer index, i = 1,… ,NNl is the
neuron index within layer l , and k = 1,… ,NK is the data
point index.

In the next step, a scaling factor is introduced into the
formulation of the ANN such that it pre-multiplies the
output value of a particular neuron. The factor can effec-
tively serve to represent the sensitivity of the neuron in
the optimization process.

where

The artificial parameters �l,i ∈ [0, 1] are the scaling
factors.

Subsequently, the sensitivity of the neuron of the neuron
layer is calculated from the partial derivatives of the objec-
tive function with regard to the scaling factor introduced, to
determine its existence. The mean square of errors ( MSE )
will be used as an objective function for the purpose of
this study. In the following, the two procedures (based on
numerical and automatic differentiation, respectively) will
be used for determining the sensitivity value.

(1)zl,i,k = f (yl,i,k)

(2)zl,i,k = �l,i ∙ f
(

yl,i,k
)

�l,i =

{

1,

0,

neuron exists

neuron does not exist

3.2 � Sensitivity analysis through automatic
differentiation

The automatic differentiation is an intuitive, rigorous method
that calculates the value of the partial derivative of the objec-
tive function with respect to individual network components at
machine precision [64, [65]. Although often difficult to derive,
the automatic differentiation is efficient in its implementation.
It can be applied to regular code with minimal change, and it
allows branching, loops, and recursion [64]. Capabilities for
automatic differentiation are well-implemented in most deep
learning frameworks, and avoid the use of tedious derivations
or numerical discretization during the computation of deriva-
tives of all orders in space–time [66].

The sensitivity analysis procedure implies the solution of an
optimization problem involving a set of parameters � ∈ RN� ,
N� ≥ 1 . The optimization problem is defined as follows:

Other constraints, equalities and/or inequalities, that none-
theless do not depend on � , will be ignored.

For the solution of the optimization problem defined above,
the Lagrangian function is considered as:

where x is the set of tuning parameters (primal variables) of
the optimization problem, � is the set of Lagrange multipli-
ers associated with the constraints h(⋅;⋅) , and θ is the set of
scaling parameters introduced in the formulation to facilitate
the calculation of sensitivities associated with the presence
of individual or subsets of nodes, for example entire layers
of an ANN, and their impact on the quality of the training
fitting function.

At the optimal solution (x∗, �∗) , the Lagrangian function
becomes:

The total derivative/gradient of the objective function with
respect to � at the optimal point (x∗(�), �∗(�)) , for a given value
of the vector of parameters � is calculated as follows:

� = min
x∈X

f (x; �)

s.t. h(x; �) = 0

(3)L(x, �;�) = f (x;�) + �Th(x;�)

(4)L(x∗, �∗;�) = f (x∗;�) + 0

Df

D�

�

�

�

�⌈x∗(�),�∗(�),�⌉

=
DL

D�

�

�

�

�⌈x∗(�),�∗(�),�⌉

=

�

�f

�x

�x

��
+ �T

�

�h

�x

�x

��
+

�h

��

�

�

�

�

�

�

�⌈x∗(�),�∗(�),�⌉

=

�

�f

�x

�x

��

�

�

�

�

�

�⌈x∗(�),�∗(�),�⌉

24967Hierarchical multi‑scale parametric optimization of deep neural networks﻿	

1 3

Subsequently, the form of the ANN neuron fitting con-
straints adopting the scaling factor in [67] is considered as:

where zl,i,k is the set of neurons outputs for each data point
in our dataset, y is the set of variables in other equality con-
straints of the general form g(y, z) = 0.

The variables z are the ones being modified with the artifi-
cially introduced scaling parameters �.

Other equations that are considered relate specifically to the
influence of the node (l, i) at data point (k):

where l = 2, ...,NL , i, j = 1, ...,NNl , and k = 1, ...,NK.
An example formulation of the neural sensitivity analysis

through automatic differentiation is provided in the Supple-
mentary Material. In addition, other practical aspects includ-
ing the implementation into simple matrix multiplication are
described. Moreover, the CPU time and memory analysis of
running neural sensitivity analysis using automatic differentia-
tion are provided.

3.3 � Sensitivity analysis through finite differences

An alternative to gauge the sensitivity of neurons is the finite
difference method. This approach is less rigorous and produces
less accurate results when applied to DNNs [68]. However, it
is easy in terms of implementation into more sophisticated
forms. Moreover, it can serve as a reference to the results
obtained from automatic differentiation.

In the following, the mathematical formulation for the
procedure adopting the finite difference method is described.
In order to generate more accurate results, the central differ-
ences approach is used in this case. Thus, the finite differences
method is defined to be:

For the illustration of the procedure, an example formula-
tion will be utilized and then extended to a generalized cases.
Assuming a network with the architecture [2, 2, 2], the sen-
sitivity of each neuron is calculated by first solving the opti-
mization problem described in the previous section with the
following constraints:

(5)hl,i,k = zl,i,k − �l,i ∙ f
(

yl,i,k
)

(6)yl,i,k =

NNl−1
∑

j=1

zl,j,k ∙Wl,j,i

(7)f
�

(x) = lim
�→0

f
(

x +
1

2
�

)

− f
(

x −
1

2
�

)

�

(8)z1,1,k − f
(

y1,1,k
)

= 0

(9)y1,1,k −W1,1,0 +W1,1,1 ∙ x1,k +W1,2,1 ∙ x2,k

Thereafter, the following preliminary optimized weight
matrices are obtained:

The matrices of the scaling factor for each layer are
constructed to be of the same size as the weight matrices.

The values of the scaling factors � control the impact of
the weights on the objective function.

To find the sensitivity of the � ’s with regard to the
objective function, their values are individually perturbed
by

(

±
1

2
h
)

 , and the changes in the objective function are
observed. The perturbation resulting in the largest objec-
tive function change corresponds to the most sensitive
neuron and vice versa.

During the process implementation, all the scaling
factors are initially set to � = 1 +

1

2
� , where � is a small

user-defined value, and the value of the objective func-
tion is determined. In the next step, the value of the � ’s
is changed to � = 1 −

1

2
� . Finally, the scaling factors are

multiplied element-wise with the weights in each layer to
gain a new objective value. This is effectively an element-
wise matrix optimization.

To find the sensitivity for blocks of layers, all the
values of the scaling factors, � connected with the
block of layers are perturbed at the same time, and the
value of the objective function is evaluated. In this
way, the sensitivities of any number of layers can be
identified in combination through finite differences.
This is easier compared with the automatic differ-
entiation, where complicated derivatives need to be
derived in order to evaluate the sensitivities of blocks
of layers.

(10)z1,2,k − f
(

y1,2,k
)

= 0

(11)y1,2,k −W1,2,0 +W1,2,1 ∙ x1,k +W1,2,2 ∙ x2,k

(12)v1,k −W2,1,0 +W2,1,1 ∙ z2,1,k +W2,1,2 ∙ z2,2,k

(13)v2,k −W2,2,0 +W2,2,1 ∙ z2,1,k +W2,2,2 ∙ z2,2,k

For Layer1 ∶

[

W1,1,0 W1,1,1 W1,2,1

W1,2,0 W1,2,1 W1,2,2

]

For Layer2 ∶
[

W2,1,0 W2,1,1 W2,1,2

]

For Layer1 ∶

[

�1,1,0 �1,1,1 �1,2,1
�1,2,0 �1,2,1 �1,2,2

]

For Layer2 ∶
[

�2,1,0 �2,1,1 �2,1,2
]

24968	 S. Zhang et al.

1 3

In the following the formulation of the approach based
on finite differences is generalized. For k = 1, ...,NK data
points, the output of layer l given input form layer l − 1 is:

where:

for l = 1, 2, ...,NL , i = 1, 2, ...,NNl , and j = 1, 2, ...,NNl−1 . In
Eq. (14), Wl,i,0 is the bias term.

The weights are subsequently obtained through the opti-
mization of Eqs. (14) and (15), and the following matrices
of � ’s are defined for each layer of weights:

where � = 0 or 1.
The values of �MSE

��
l
′
,i
′
 are found by perturbing the scaling

factors θ based on Eq. (7).
An example formulation of the neural sensitivity analysis

and the tuning of a small network through finite differences
is provided in the Supplementary Material.

3.4 � Validation with automatic differentiation

As discussed in the previous sections, the results from finite
differences are less rigorously derived and calculated com-
pared to the ones obtained from automatic differentiation.
However, both methods serve to produce the same evalu-
ation of sensitivities of individual neurons with respect to
the objective. Thus, the two methods can serve to validate
each other.

In both cases, for the example presented in the Sup-
plementary Material, it was identified that the last layer
has the highest sensitivity values, followed by layer 2,
then by layer 1. Both results corroborate with each other
in terms of neuron importance. The difference is that
in the second and in the last layer, the calculated raw
sensitivity values are different. For example, the sen-
sitivities of the Layer 2 calculated using the automatic
differentiation approach are of the order 10−3, whereas
in the case of the finite differences, they are of the order
10−5 − 10−4. This result can be attributed to the finite
difference method being less rigorous, which can intro-
duce errors based on the shape of the objective function.

It can be assumed that the deviation from the original
point is minimal such that an accurate estimator of the gra-
dient can be determined. Thus, under this assumption, the

(14)zl,i,k = f
(

yl,i,k
)

(15)yl,i,k =

NNl−1
∑

j=1

Wl,i,j ∙ zl−1,j,k +Wl,i,0

For Layer 1 ∶

⎡

⎢

⎢

⎣

�l,1,0 … �l,1,NNL−1

⋮ ⋱ ⋮

�l,NNl,0
… �l,NNl,NNL−1

⎤

⎥

⎥

⎦

finite difference approach is as effective as the automatic
differentiation method when used to perform ranking of
neurons.

Further, the advantages of the two methods are compared.
The key advantages of the automatic differentiation are:

•	 It does not rely on approximations and the calculated
results are rigorously proved.

•	 It is faster than the finite difference method for a small
network, when not counting the optimization step.

•	 All � values are set to 1 or 0, hence easier to optimize or
calculate.

Whereas in the case of the finite difference method, the
following key advantages can be listed:

•	 It does not require an optimization run in order to gener-
ate the sensitivity values.

•	 It is easy to formulate, i.e., no complicated mathematical
derivations are required to find the sensitivity values.

•	 It is possible, without further derivations, to calculate the
sensitivity values of a whole layer.

•	 The sensitivity values do not need to be limited to one
neuron or one layer. Any block of layers or sub-layers can
be evaluated for sensitivity with respect to the objective
function.

Overall, the two methods have their own advantages.
However, for more advanced applications, the finite differ-
ence method is easier to implement and more flexible to be
adopted for different scenarios.

4 � Hierarchical multi‑scale topological
and parametric optimization of DNNs

4.1 � Hierarchical multi‑scale structural contribution
analysis of DNN’s

The key idea behind the hierarchical multi-scale analysis of
mathematical models of any type of system is to start from
the highest level of abstraction, i.e., the entire structure as
an Input/Output (I/O) system. Then from this view-point,
to effectively employ a set bisection approach that proceeds
each time downwards in terms of the scale of detail consid-
ered at the nodes of an ever-expanding binary search tree.
This continues with a bisection to refine the level of detail
considered to be optimized during the major iterations of the
proposed design algorithm.

Refinement of the binary search-tree sub-levels (nodes)
continues until user-defined criteria are met or the final level
of mathematical detail is reached during the refinement iter-
ations of the algorithm.

24969Hierarchical multi‑scale parametric optimization of deep neural networks﻿	

1 3

To illustrate the approach, an example DNN is consid-
ered, with the following set of layers: an Input layer, an Out-
put layer, and 7 hidden layers:

The structural optimization of the DNN topology
(architecture) is going to be based on evaluating the
novel structural sensitivity measures described in Sec-
tion 3. Furthermore, to facilitate an efficient multi-scale
maneuver of identifying rapidly large parts of the DNN
that require structural optimization, it is necessary to
introduce an arbitrary and yet a very natural way of
viewing the hierarchically partitioning/decomposing
decisions within the algorithm for the automated design
optimization of the network. The binary tree partitioning
of the DNN and the artificial �-parameters for the struc-
tural sensitivity calculations are illustrated in Fig. 1.

Thus, following the proposed structural sensitivities cal-
culation scheme, in 3 finite difference steps, the most sensi-
tive/important layer in the DNN can be identified from the
original 7 hidden layers set, as illustrated in Fig. 2.

Generally speaking, as an upper bound on the number
of steps required to identify the most contributing layer in
the DNN, at the most a number of log2NL steps must be
performed, where NL is the number of hidden layers in

DNN Layer Set = { Input, 1, 2, 3, 4, 5, 6, 7, Output}

the network. Similarly, if each layer has a fixed number of
neurons, the identification of the most sensitive neuron in
the previously identified hidden layer will require at the
most log2NN finite difference steps, where NN refers to the
number of neurons in a particular layer.

Overall, the effort to identify a single artificial neuron
is given by:

Noticeably, the hierarchical multi-scale analysis of
the DNN system requires a logarithmic number of steps
to reach any level of”scale” of encapsulation based on a
binary, set bisection analysis tree.

It is noted that, for very large-scale DNNs, descend-
ing to the level of individual neurons or even layers is
not required. In fact, in these situations, entire blocks of
neurons within a layer, as well as entire blocks of hidden
layers can be added or removed at a time according to the
values of the structural sensitivity at any level of analysis
using the binary tree set partitioning. In this case, each
level of the binary tree signifies a different block size for
local removal or addition in the topology/architecture of
the DNNs designed and structurally optimized with the
proposed scheme.

(16)∝
[

log2NL
]

+
[

log2NN
]

Fig. 1   The binary tree partition-
ing of the DNN with � sensitiv-
ity parameters

Fig. 2   Identification of the most
important layer by assessing the
structural sensitivity within the
binary tree

24970	 S. Zhang et al.

1 3

With this scheme, the entire process can be fully auto-
mated in a real-time implementation of what is in essence
a true “unsupervised” Machine Learning, a highly efficient
and novel DNN design algorithm.

4.2 � Network tuning

In the following section, an implementation of the pro-
posed hierarchical scheme is used to tune the weights of
the network. During tuning, the value of other weights
is kept constant and the network is re-optimized only by
changing the values of the neurons identified to be “most
sensitive”. An iterative process follows, where new sensi-
tivity values are determined and the network is re-tuned,
until a satisfactory objective value is found. Any method
can be utilized for the optimization of the network, i.e.,
backpropagation [69] or derivative-free algorithms (e.g.,
Genetic Algorithms) [70].

In the following, the backpropagation method will
be applied as an illustrative example. This choice is
justified by the fact that this algorithm is the most
often used to train DNNs, being accepted as the most
successful learning procedure for these type of net-
works [71]. The parameters are updated using a rule
corresponding to the optimization scheme. For the
simplest Stochastic Gradient Descent method, the
update rule is:

where W  ’s are the weights, � is the learning rate, and MSE
is the objective function.

The number of iterations used in each optimization step
can be arbitrarily small, as empirical implementation has
demonstrated that even a small number of iterations can
bring good optimization results by iteratively focusing
only on the most sensitive layers. This is demonstrated in
Section 4.2.1.

To find the most sensitive neuron layer to optimize, the
binary tree search method is implemented. Starting from
the first level of division, where the whole network is split
into two parts, the focus is on the section of the network
that has a higher sensitivity. Subsequently, the most sensi-
tive block of layers is divided into two blocks, and so on
until the smallest unit has a single layer, always choosing
the higher sensitivity value along the path. In this way, the
most sensitive layer can be found efficiently with O

(

log2N
)

steps, where N is the total number of layers of the network.

At each iteration, the layer is optimized only by using
the backpropagation method. After the optimization,
another binary tree search is performed, and the proce-
dure is repeated until the convergence criterion is fulfilled.

(17)W
�

= W − � ∙
dMSE

dW

Initial implementation showed that the selection of the
layers is often trapped in a loop, where the neuron hav-
ing the highest sensitivity is always the same and is opti-
mized repeatedly. To overcome this hurdle, a randomized
algorithm is implemented, utilizing a probabilistic random
factor in the selection of the neuron to optimize, similar to
the �-greedy algorithm in reinforcement learning [72–74].
This implementation of the random factor is a trade-off
between”exploration” and”exploitation”, as the neuron
with lower sensitivity is allowed to have the chance to be
optimized.

Another issue that is solved by introducing the random
factor is related to the search when the left branch and
the right branch of the binary tree have roughly the same
sensitivity, which makes the selection process difficult.
This is also frequently observed and requires a level of
randomness in the selection of the layer to optimize.

When practically equal sensitivities are obtained at
a branching point, this indicates the same influence for
the left and right branches, respectively. This means that,
to choose to branch left or right, the fact that the weight
indicated by the structural sensitivity of a branching point
should reflect the”probability” of that branch to be chosen
must be taken into account. Overall, the proposed algo-
rithm is deterministic, and will remain so with a judicious
choice of a randomization step to break the problem of
having to choose numerically equal branching at points.

The algorithm is developed as such:
Suppose Sleft and Sright are the respective absolute val-

ues of the structural sensitivities at a branching point cal-
culated during the level exploration phase. These sensi-
tivities are used to arrive at the next layer whose tuning
weights are to be optimized together, while holding all
other weights of all other layers constant, i.e.,:

where sleft and sright are the sensitivity values on the left and
right branch at the branching point.

Using the absolute values of the structural sensitivities
at a branching binary search tree exploration step, choose
the left or right branch based on a randomized algorithm
which is applied irrespective of the values of the structural
sensitivities. The following steps must be followed:

1.	 Generate a random real number (the random factor)
between 0 and 1:

2.	 Calculate the probability for the left and right branch,
respectively:

(18)Sleft = AbsoluteValue(sleft)

(19)Sright = AbsoluteValue(sright)

(20)r = RandomReal([0, 1])

24971Hierarchical multi‑scale parametric optimization of deep neural networks﻿	

1 3

3.	 Make use of the random factor. If branch left probability
is greater than the random factor, branch left. If not,
branch right.

The random factor is used throughout the binary search
process and when used for a sufficiently long time, it will be
able to break”ties” among the branching points in the binary
search tree. The pseudo-code of the algorithm is presented in
Table 2. Furthermore, the hierarchical multi-scale training
procedure is illustrated in Fig. 3.

4.2.1 � Example tuning

In this section, the proposed procedure is run for an example
of the tuning of a DNN. As the focus is only on the tuning
functionality, no changing of architecture is involved yet,
and the adopted architecture is arbitrary.

In this case, an architecture of [4, 5, 5, 5, 5, 5, 5, 5, 5, 2]
is adopted. The optimization is performed with the hyper-
parameters tabulated in Table 3. The total number of data
points used is 10,000.

The parameters in Table 3 have the following meaning:
the Learning rate determines how fast the gradient is reduced
in each step, the Number of epochs is the number of times
the optimization is run during each iteration. The Maxi-
mum number of iterations determines the total number of
iterations the algorithm performs, while � is the trust region
bound.

Figure 4 demonstrates the change in sensitivity values
over the process of optimizing the network one layer at a
time. The 3D bar chart on the top of each figure illustrates
how the sensitivity values change for each division along
the architecture. Thus, 2 values are observed in the first level
of division, 4 in the second level, etc. This is because the
total number of layers are divided by 2 each time. The line
plot on the bottom represents the variations in the value of
the objective function. The figures represent the optimized
results at iterations 1, 20, 40, 60, 80 and 100, respectively.

From Fig. 4, it can be observed that the sensitivities are
quickly equilibrated with a minimal number of iterations.
In the first iteration (Fig. 4a), the sensitivity value is quite
high for division on the right-hand-sides. Only three bars
are visible in this case because their sensitivity values are
so high that the display for the other bars is suppressed. This
demonstrates that the sensitivity values are significantly dif-
ferent at the initiation stage.

At iteration 20 (Fig. 4b), the sensitivity values have been
equilibrated, i.e., the values are very similar (although in

(21)ProbabilityBranchLeft = Sleft∕
(

Sleft + Sright
)

(22)ProbabilityBranchRight = 1 − ProbabilityBranchLeft

raw numbers they are different). The values of the objec-
tive has been decreasing and there are three plateaus in
the objective value. These plateaus correspond to local
minima and this result demonstrates that the proposed
algorithm is capable of overcoming the local minima. A
local minima that takes a long time to be overcome is dis-
played in Fig. 4d, where a large plateau is observed after
17 iterations, which is shown to be overcome in Fig. 4e.

At iteration 100 (Fig. 4e), the objective value keeps
decreasing while the sensitivity values are roughly similar.
This demonstrates that all neurons are playing an impor-
tant part in the optimization process and the objective
value is decreasing with further optimizations.

With the introduction of the random factor, the layers that
are optimized rotate among available layers instead of loop-
ing around a few. The distribution of the layers being opti-
mized during the 100 iterations is plotted in Fig. 5. It can be
observed that there is a reasonable distribution of layers being
optimized and the optimization is no longer stuck in a loop
and only optimizing a single layer with the highest sensitivity.

4.2.2 � Comparison with the end‑to‑end backpropagation
algorithm

As mentioned previously, the conventional method to
optimize DNNs is using backpropagation methods [75,
76]. These methods are considered essential and the de
facto solution for the efficient training and good generali-
zation of large-scale DNNs [77]. Thus, the performance
of the proposed algorithm is compared with the end-to-
end backpropagation method. The iterations for both the
end-to-end backpropagation and the hierarchical multi-
scale search algorithms are set with the same values of
the hyperparameters (Table 4). Each time, the end-to-end
backpropagation algorithm optimizes all layers instead of
one selected layer, as in the case of the proposed algo-
rithm. The same architecture of the network ([4, 5, 5, 5, 5,
5, 5, 5, 5, 2]) is used as the one proposed for the example
tuning in Section 4.2.1.

The end-to-end backpropagation algorithm is run for
1,000 number of epochs in each iteration. The number of
epochs is arbitrarily set this large to ensure optimization to
the optimal point. Having the same settings for the two algo-
rithm allows comparison between them.

In backpropagation, the derivative of the objective func-
tion with regard to the weights is calculated at every epoch
[78]. Therefore, the check is performed every round instead
of for every 50 rounds.

Moreover, for comparison purposes, the same con-
vergence criterion is adopted for the two algorithms
investigated.

24972	 S. Zhang et al.

1 3

Table 2   Pseudo-code of the algorithm for the network tuning

24973Hierarchical multi‑scale parametric optimization of deep neural networks﻿	

1 3

Table 2   (continued)

24974	 S. Zhang et al.

1 3

Hyperparameters  The values of the hyperparameters used
in the comparison studies of the two methods are listed in
Table 4. They are selected arbitrarily with a random search
for optimality.

Objective  The objective value obtained from the end-to-end
optimization is 0.992952, while for the hierarchical multi-
scale method the value is 0.992834. These values of the
objectives are comparable, with the hierarchical multi-scale
search method reaching a slightly lower objective value. The
objective function values are plotted against the number of
iterations in Fig. 6.

Optimization time  The CPU time taken for the end-to-end
optimization is 111.587 s, while 2,773.410 s are required
for the hierarchical multi-scale approach. Although optimiz-
ing to a smaller objective value, the hierarchical multi-scale
search method is taking longer.

Weight values  The values of the weights provide informa-
tion on whether the two algorithms arrive at the same local
minima. Their distribution is plotted in Fig. 7, where it can
be observed that the weights are distributed in a similar way.
This indicates that there is a high possibility that the two
methods optimize to the same local minima, which is further
corroborated with the fact that the values of the objective
function are very similar.

5 � Use of second‑order information
in the binary search tree

5.1 � Mathematical formulation

In this section, the hierarchical multi-scale approach is modi-
fied to include second order information on the structural sen-
sitivity. This is based on the local second order Taylor expan-
sion of a function f (x, y):

If second order information is recorded at least at the bot-
tom layer of the binary decomposition tree 2 variables can
be modified simultaneously if required during the simulation
and/or optimization tasks. Furthermore, the structural sen-
sitivity model is calculated to be quadratic at every branch-
ing point, e.g., by computing first and second order finite
differences to obtain the information for left (“1”) and right
(“2”), respectively:

In the following, the approach to exploit the second order
information in the binary tree-based decomposition search will
be demonstrated. To this end, in order to decide which branch
to follow, assuming that this happens only for a single branch,
and only in the last level of decomposition, one variable is
changed at a time, for consistency.

Given a quadratic model in �1 ≜ Δ�1 and �2 ≜ Δ�2:

and a trust region:

(23)

f (x + Δx, y + Δy) = f (x, y) +
�f

�x
Δx +

�f

�y
Δy +

1

2

�2f

�x2
(Δx)2 +

1

2

�2f

�y2
(Δy)2

+
�2

�x�y
(ΔxΔy) + Higher Order Terms (H.O.T .)

(24)

f
(

�1 + Δ�1, �2 + Δ�2
)

=f
(

�1, �2
)

+
�f

��1
Δ�1 +

�f

��2
Δ�2 +

1

2

�2f

��1
2

(

Δ�1
)2

+
1

2

�2f

��2
2

(

Δ�2
)2

+
�2

��1��2

(

Δ�1Δ�2
)

+ Higher Order Terms (H.O.T .)

(25)
f
(

�1 + �1, �2 + �2
)

= a + b�1 + c�2 + d�1�2 + e�1
2 + f �2

2

Fig. 3   Hierarchical multi-scale
training procedure of DNNs

Table 3   The hyperparameters used in formulation for the network
tuning example

Hyperparameter Value

Architecture [4, 5, 5, 5,
5, 5, 5, 5,
5, 2]

Trust region bound,
�

0.001
Learning rate 0.01
Number of epochs in each iteration 1,000
Upper limit on number of iterations 100

24975Hierarchical multi‑scale parametric optimization of deep neural networks﻿	

1 3

the above quadratic model (even considering only suf-
ficiently small quantized discrete-size steps: �1 = ±�1 ,

{

−�1 ≤ �1 ≤ �1
−�2 ≤ �2 ≤ �2

�2 = ±�2 ) can be optimized and targets can be assigned to
change the next sublevel values by �∗1 , �

∗
2
∶

�new
1

= �old
1

+ �∗
1

Fig. 4   Optimization results for the example formulation using 10,000 data points

24976	 S. Zhang et al.

1 3

Whether the optimal steps �∗1 , �
∗
2 are quantized or continu-

ously valued within the trust region, they require cascading
down the evaluation tree of the model. Coming to a point
where there is a multiple linked leaf, deciding on a simple
updating criterion will become very challenging due to this
coupling.

An alternative way is to use the quadratic model to extract
further information in computing the left-and-right selection
probabilities in the non-deterministic, randomised left-or-right
selector at the binary tree branching points.

Given:

a local approximation model for the two gradient elements
is obtained:

�new
1

= �old
2

+ �∗
2

(26)q
(

�1, �2
)

= a + b�1 + c�2 + d�1�2 + e�1
2 + f �2

2

(27)
�q

��1
= b + d�2 + 2e�1 Both expressions above are independent of the trust

region parameters.
To modify the selector (non-deterministic randomized

element) in a simple way, the selection is based on the aver-
age value of the above gradient elements within the trust
region of interest. Therefore:

where the
1

4�1�2
 term comes from ∫

A
∫ 1 ∙ d�2d�1 , for

A = {�1 − �1 ≤ �1 ≤ �1 + �1, �2 − �2 ≤ �2 ≤ �2 + �2}.

(28)
�q

��2
= c + d�1 + 2f �2

(29)
[

�q

��1

]

=
1

4�1�2∫
�1+�1

�1−�1
∫

�2+�2

�2−�2

(

b + d�2 + 2e�1
)

d�2d�1

Fig. 5   The distribution of the layers selected in the optimization pro-
cess

Table 4   The hyperparameters used for the performance comparison
between the end-to-end backpropagation and the hierarchical multi-
scale search methods

Hyperparameter Value

Architecture [4, 5, 5, 5,
5, 5, 5, 5,
5, 2]

Trust region bound,� 0.001
Learning rate 0.0001
Number of epochs in each iteration 1,000
Upper limit on number of iterations 200
Tolerance 0.001
Number of data points 10,000

Fig. 6   Comparison between the optimization performance of the end-
to-end backpropagation and the hierarchical multi-scale search meth-
ods

24977Hierarchical multi‑scale parametric optimization of deep neural networks﻿	

1 3

Thus, the end result is:

From Eq. (26), the following is obtained symmetrically:

Both Eqs. (32) and (33) are independent of the trust region
parameters. The perturbation of the � parameters is such that:

(30)

[

�q

��1

]

=
1

4�1�2 ∫
�1+�1

�1−�1

[

b + d�2 + 2e�1
]�2+�2

�2−�2
d�1

=
1

4�1�2 ∫
�1+�1

�1−�1

[

b
(

�2 + �2
)

+
1

2
d
(

�2 + �2
)2

+ 2e�1
(

�2 + �2
)

− b
(

�2 − �2
)

−
1

2
d
(

�2 − �2
)2

− 2e�1
(

�2 − �2
)

]

d�1

(31)

[

�q

��1

]

=
1

4�1�2 ∫
�1+�1

�1−�1

(

2b�2 + 2d�2�2 + 4e�1�2
)

d�1

=
1

4�1�2

[(

2b�2 + 2d�2�2
)

�1 + 2e�1
2
]�1+�1

�1−�1

=
1

4�1�2

[(

2b�2 + 2d�2�2
)

∙2�1 + 2e�2 ∙ 4�1�1
]

(32)
[

�q

��1

]

= b + d�2 + 2e�1

(33)
[

�q

��2

]

= b + d�1 + 2e�2

where � is an infinitesimal value.
From Eqs. (32) and (33) the following is obtained:

which are independent of the trust region parameters as well.
These equations are going to be used instead of the

point-wise gradient elements for �1 and �2 in order to select
which branch to follow, left or right.

The randomized selector step is then defined by Eq. (20)
and:

If r ≤ rg , the left branch ( �1 ) is selected. If r ≥ rg , the
right branch ( �2 ) is selected.

(34)�1 = �2 ≜ 1 + �

(35)
[

�q

��1

]

= b + d + 2e

(36)
[

�q

��2

]

= b + d + 2f

(37)rg =

|

|

|

�q

��1

|

|

|

|

|

|

�q

��1

|

|

|

+
|

|

|

�q

��2

|

|

|

Fig. 7   The distribution of weights obtained from end-to-end backpropagation and hierarchical multiscale optimization

24978	 S. Zhang et al.

1 3

The previous results on the average value of the gradi-
ents require the calculation of the second and first order
derivatives by finite differences.

The first order derivatives can be computed by:

or:

while the second order derivative:

In the same way the values of
�f

��2 and �
2f

��2
2 are obtained

symmetrically.
The second order mixed derivatives are:

In summary:

Furthermore, the heuristic:

is used for the finite difference calculations.

5.2 � Results and analysis

An example run of the optimization is performed adopting
the second-order information, as described in the previous
section, to select left or right at the branching point. Simi-
larly, the architecture of [4, 5, 5, 5, 5, 5, 5, 5, 5, 2] is adopted
for the network, as an example to investigate the effect of
incorporating second-order information. The number of data
points used is 10,000. The same set of hyperparameters are
adopted as enlisted in Table 3.

Figure 8 demonstrates the sensitivity and the objective
function values over the course of the optimization, at itera-
tions 1, 10, 20, 30, 40 and 50, respectively. The optimization
reaches the tolerance value at exactly 50 iterations.

(38)
�f
(

�1, �2
)

��1
≈

f
(

�1 + h1, �2
)

− f
(

�1, �2
)

h1
+ O

(

h1
)

(39)

�f
(

�1, �2
)

��1
≈

f
(

�1 + h1, �2
)

− f
(

�1 − h1, �2
)

2h1
+ O

(

h1
2
)

(40)
�2f

��1
2
≈

f (�1+h)
��1

−
f (�1−h)

��1

2h
≈

f (�1+h,�2)−f (�1,�2)
h

−
f (�1,�2)−f (�1−h,�2)

h

2h

≈
1

2h2

[

f
(

�1 + h, �2
)

− 2f
(

�1, �2
)

+ f
(

�1 − h, �2
)]

(41)
�2f

��1��2
≈

f (�1,�2+h2)
��1

−
f (�1,�2−h2)

��1

2h2

≈

f (�1+h1,�2+h2)−f (�1−h1,�2+h2)
2h1

−
f (�1+h1,�2−h2)−f (�1−h1,�2−h2)

2h1

2h2

(42)

�2f

��1��2
≈

1

4h1h2

[

f
(

�1 + h1, �2 + h2
)

− f
(

�1 − h1, �2 + h2
)

− f
(

�1 + h1, �2 − h2
)

+ f
(

�1 − h1, �2 − h2
)

]

(43)Δx = 100 ∙
√

MachinePrecision ∙ max{�x�, 1.0}

From these results, it can be observed that the objec-
tive value decreases over time, with convergence to a low
value within approximately 20 iterations. Moreover, a
quick equilibration of the sensitivity values is observed
with this tuning scheme. Within 10 iterations, the values
of the sensitivities become almost equal across layers, and
the equilibrium is maintained over further iterations.

The distribution of the layers selected in the optimiza-
tion process is plotted in Fig. 9. It can be observed that
the first and the last layers are more frequently updated.
However, with the addition of the random factor, other
layers have a possibility of being selected as well.

Compared to the optimization using only the first-order
information, for the proposed scheme, the same effect of
equilibration and fast convergence is observed. However,
in this case, the values of the sensitivities are higher due
to the introduction of �2 at the denominator, as shown in
Eq. (29).

The other difference is that the proposed approach con-
verges faster, within 50 rounds of iterations, indicating a
more direct search direction brought about by the utilization
of the second-order information.

5.3 � Comparison with end‑to‑end training

The results of including the second order information into
the multiscale hierarchical search approach is now compared
with the end-to-end backpropagation results.

Hyperparameters  The hyperparameters adopted for both
the end-to-end and the hierarchical multi-scale training are
enlisted in Table 3. It is the same set of hyperparameters
used in the case of the optimization using the first-order
information.

Objective  The objective value obtained from the end-to-end
optimization is 0.99283426, while for the hierarchical multi-
scale search method a value of 0.99283424 is obtained. The
values are comparable, with the hierarchical multi-scale
optimization arriving again at a slightly lower objective.

Optimization time  The CPU time required for the end-
to-end optimization is 358.165 s in this case. In compari-
son, the CPU time in the case of the hierarchical multi-
scale approach is 762.714 s. If the number of iterations
is compared, the backpropagation takes 99 iterations to
reach the convergence criterion, whereas the hierarchical
multi-scale method requires only 50 iterations. The plot
of the optimization process is shown in Fig. 10. Separate
graphs are drawn since the number of iterations is dif-
ferent and, thus, they are not directly comparable. One
iteration in the end-to-end backpropagation optimization

24979Hierarchical multi‑scale parametric optimization of deep neural networks﻿	

1 3

corresponds to one update of the weights across all lay-
ers, whereas one iteration in the hierarchical multi-scale
search approach corresponds to one update of a single
layer obtained from the binary tree search.

Weight values  Similarly, from the distribution plots pre-
sented in Fig. 11, it can be observed that the weights are
roughly similar, thus the two algorithms are highly likely
to optimize to the same local minima, conclusion further

Fig. 8   Optimization results for the example formulation adopting second-order information and using 10,000 data points

24980	 S. Zhang et al.

1 3

corroborated by the similarity in the values of the objective
function obtained.

6 � Comparison between the first‑
and the second‑order search algorithms

The performance of the binary tree search adopting first-
order information is compared against the search utiliz-
ing second-order information by assuming the same set of
hyperparameters to evaluate the search criterion. Overall,
the optimization adopting second-order information is faster,
with a total CPU time of 762.714 s and a total number of
iterations of 50. This draws comparison to the optimiza-
tion adopting first-order information, with a total CPU time
of 2,773.410 s and a total number of iterations of 200.In
the analysis above, the number of epochs in each iteration
(which means used to optimize each layer of the network)
is fixed to be 1,000.

To further compare how the incorporation of second-
order information improves the optimality search by reduc-
ing the operation time, a convergence criterion is inserted
during each optimization iteration. This convergence crite-
rion is defined as follows:

where Wlayer refers to the weights in the layer being opti-
mized, and the tolerance is a user-defined input value which
can be equal to the convergence criterion of the whole opti-
mization problem.

By comparing the infinity norm of the weights in the layer
tuned to a tolerance value, further optimization of the layer
is stopped if the value of this tolerance is met. Thus, the
number of epochs in each iteration will be less than 1,000.

In comparison, the convergence criterion for the whole
optimization problem is:

where Wnetwork refers to all the weights in the network.
Practical implementation shows that 10−4 is a better toler-

ance value for each iteration, while for the overall optimiza-
tion a 10−3 value should be used.

To demonstrate how the incorporation of second-order
information improves the optimization speed, the average
value of the number of epochs, the CPU time and the infinity
norm of the gradient values at each iteration are recorded.
The comparison results are shown in Table 5. The data is
split into two sets, one used for training the network (“Train-
ing set”) and one for a validation step (“Testing set”).The

(44)‖

𝜕MSE

𝜕Wlayer

‖

inf

< tolerance

(45)‖

𝜕MSE

𝜕Wnetwork

‖

inf

< tolerance

Fig. 9   The distribution of the layers selected in the optimization pro-
cess adopting second-order information

Fig. 10   Comparison between the optimization performance of the
end-to-end backpropagation and the hierarchical multi-scale search
methods

24981Hierarchical multi‑scale parametric optimization of deep neural networks﻿	

1 3

average values are obtained at each iteration. The total val-
ues are obtained for all iterations.

After adding a convergence criterion at each iteration, it is
observed that the adoption of the second-order sensitivity as
the selection benchmark requires less time compared to the
first-order. The average CPU time and the average number
of epochs in each iteration is smaller when the second-order
information is adopted. Although the total number of itera-
tions is higher for the second-order case, this is compensated
with less search time at each iteration.

Comparing with the classical backpropagation method,
the second-order approach requires a comparable, or even
less CPU time per iteration. However, routinely, the back-
propagation method is the fastest algorithm overall with

the second least total number of iterations. Although this
approach outperforms both the first- and the second-order
processes in CPU time, the first-order hierarchical multi-
scale search requires a lower number of iterations, while the
second-order is faster per iteration.

The convergence of ‖ �MSE

�Wnetwork

‖

inf
 is plotted across the

number of iterations in Fig. 12a, where it can be observed
that both methods converge almost roughly at the same time
(around 50 iterations). The only reason that the second-order
search takes longer is due to the fact that the tolerance value
has not been reached in exact numerical values. Relaxing the
value of the tolerance parameter can speed up the process.

In Fig. 12b, the scatter plot of the number of epochs at
each iteration against the number of iterations is presented. It
can be observed that the values are almost separated into two
categories: either reaching the maximum number of epochs
allowed in each iteration (1,000), or using only one epoch to
reach the tolerance, with the exception of only two points.
Some explanations for this behavior are that either the toler-
ance is difficult to reach, or the layer is already optimized so
a polarized distribution of the number of epochs is obtained.

Comparing with Fig. 12c, the distribution of the CPU time
is similar to the results presented in Fig. 11b for the num-
ber of epochs, indicating a close relationship between these

Fig. 11   The distribution of the weights obtained from the end-to-end backpropagation and hierarchical multi-scale search algorithms with sec-
ond-order information

Table 5   Comparison between the binary tree search based on first-
and second-order information, against backpropagation

Order First Second Backpropagation

Training set MSE 0.98809 0.83099 0.98177
Testing set MSE 0.98810 0.83009 0.98057
Average epochs 405.7 203.4 200.0
Total iterations 51 101 99
Total CPU time (s) 350.4 310.9 297.3
Average CPU time (s) 5.746 3.013 3.022

24982	 S. Zhang et al.

1 3

parameters during each iteration, with fluctuations due to the
speed of performing different calculations.

Overall, the second-order information-based approach per-
forms better than the first-order in terms of the total perfor-
mance, as well as the performance per iteration. It also has
the potential to converge in fewer iterations compared to the
first-order approach with a different definition of the tolerance.

7 � Application to large scale problems
and other datasets

The advantage of the hierarchical multi-scale method is not
obvious when the network size is small, as demonstrated in
the previous sections.

The complete process of automatic differentiation consists
of two steps:

1)	 An NLP optimization to obtain the weights and the neu-
ron outputs, and

2)	 Iterations to calculate the sensitivities.

For a network of 8 layers, the number of variables that need
to be adjusted is equal to the number of layers multiplied with
the number of weights (25) and biases (5), in total 30 vari-
ables. If the network is trained using the full backpropagation
approach, a number of 240 variables is adjusted during each
iteration, with the appropriate calculation of the gradients (240
elements). In the case of the multi-scale hierarchical approach,
if the optimization is performed layer-by-layer, only 30 vari-
ables is adjusted at every iteration, resulting in a much smaller
optimization problem.

For a structure of [4, 5, 3, 2, 2], the CPU times required for
the calculation of sensitivities of 100 data points are tabulated
in Table 6.

The operating system used to run the algorithm is a macOS
Big Sur version 11.0.1 (20B29) and the coding language is
Python. The processor used to run this code is a 2.3 GHz
Quad-Core Intel Core i5 with a memory of 8 GB 2133 MHz
LPDDR3.

It can be observed that most of the computation time is
spent on the optimization process (97.7% of CPU time). This
is an uncontrollable process as a standard optimizer is used in
these examples. The calculation of the sensitivities is fast, tak-
ing only ~ 0.03 s in total (2.30% of CPU time). Thus, this is
quite an effective method as long as the optimizer is suffi-
ciently efficient. A disadvantage of the algorithm is that it

Fig. 12   Comparison of the convergence rate of optimization using
first-order vs second-order information

Table 6   The CPU time for the sensitivity calculation of a neural network with the architecture [4, 5, 3, 2, 2] using 100 data points

Steps Optimization Iteration 1 Iteration 2 Iteration 3 Iteration 4 Total

CPU Time (s) 1.23300 0.00071 0.01920 0.00787 0.00073 1.26151

24983Hierarchical multi‑scale parametric optimization of deep neural networks﻿	

1 3

requires the storage of a matrix of size (NN,NN × NK) , where
NN is the total number of neurons and NK is the total number
of data points.

As for the small network used for the illustrative case
study, the benefits of utilizing the proposed approach
are not clear, the influence of a much larger network
will be investigated in this section. Moreover, as this is
a simulated case study, the advantages of the proposed
framework will be further demonstrated by applying it
to other datasets publicly available. For this purpose, the
well-known and widely-accepted University of Califor-
nia Irvine (UCI) Machine Learning Repository [79]1 is
chosen.

7.1 � Large scale problems

The hierarchical multi-scale search algorithm is imple-
mented to a network with 20 hidden layers of 5 neurons
each. The performance of the first-, the second-order and the
backpropagation methods is illustrated in Table 7. The aver-
age values are obtained at each iteration. The total values are
obtained for all iterations.

From these results, it can be observed that the backprop-
agation is still the fastest algorithm in terms of the total
CPU time and CPU time per iteration. The second-order
method is slightly faster than first in terms of the average
CPU time per iteration. The number of iterations is the same
for the first- and second-order methods in this case, both sig-
nificantly lower compared to the backpropagation method.
This demonstrates the effectiveness of the sensitivity-based
selection method in optimizing the network to a required
tolerance.

Figure 13 demonstrates the performance of the first-
against the second-order method. From Fig. 13a, the rate
of convergence is roughly similar for these two meth-
ods. Compared to the results from the smaller network

(Fig. 12), it can be observed that the training time and
the number of epochs are separated into two categories,
either costing the maximum to optimize a particular layer,
or immediately reaching the convergence criterion with
1 epoch. This is demonstrated in the polarization of data
points in Figs. 13b and 13c.

Table 7   The comparison between the binary tree search based on
first- and second-order information, against backpropagation, for a
network with 20 layers

Order First Second Backpropagation

Training set MSE 0.94697 0.94631 0.93835
Testing set MSE 0.97121 0.93880 0.86888
Average epochs 397.26 397.26 200.00
Total iterations 50 50 97
Total CPU time (s) 1,022.4 1,153.5 912.7
Average CPU time (s) 18.681 18.402 9.376

Fig. 13   Comparison of the convergence rate of optimization using
first- vs second-order information for a network with 20 layers

1  The repository can be found online at https://​archi​ve.​ics.​uci.​edu/​ml/​
datas​ets.​php

https://archive.ics.uci.edu/ml/datasets.php
https://archive.ics.uci.edu/ml/datasets.php

24984	 S. Zhang et al.

1 3

The number of layers is then increased to 50. The results
are summarized in Table 8 and Fig. 14. The average values
are obtained for each iteration. The total values are obtained
for all iterations.

From Table 8, it can be observed that the first-order
method is now the fastest in terms of average CPU time,
followed by the backpropagation method, demonstrating the
advantage of the multi-scale search for large-scale networks.
However, the second-order method has a key advantage with
the lower number of iterations.

Observing Fig. 14, the second-order method initially
seems to be converging more slowly compared to the first-
order, later reaching similar speeds of convergence after
several iterations. As the speed of convergence differs from
that of a 20-layer model, it can be inferred that there is no
fixed dominance of the first- over the second-order method
and vice versa.

Similarly, it can be concluded that there is a polarization
in terms of data points, indicating either immediate conver-
gence or very slow convergence of a particular layer. Based
on these results, it is postulated that the slow convergence
occurs on layers that contribute with significant changes
to the overall model performance, indicating the unequal
importance of different layers inside the network.

7.2 � Other datasets

A comparison between the end-to-end backpropagation
and the hierarchical approach is performed for three UCI
datasets:

	 I.	 The Combined Cycle Power Plant (CCPP). The input
dimension is 4 and the output dimension is 1. The
structure of the network is [4, 3, 2, 2, 1]. The total
number of data points is 9,568.

	 II.	 The Appliances Energy Prediction (AEP). The input
dimension is 24 and the output dimension is 2. The
structure of the network is [24, 10, 5, 5, 3, 2]. The
total number of data points is 10,000.

	 III.	 The Temperature Forecast (TF). The input dimension
is 21 and the output dimension is 2. The structure of
the network is [21, 10, 5, 5, 3, 2]. The total number
of data points is 10,000.

A more detailed description of these datasets is presented
in the Supplementary Material.

Table 8   Comparison between the binary tree search based on first-
and second-order information, against the backpropagation method,
for a network with 50 layers

Order First Second Backpropagation

Training set MSE 1.00000 1.00000 1.00001
Testing set MSE 1.00000 1.00000 1.04468
Average epochs 208.83 416.67 200.00
Total iterations 100 50 100
Total CPU Time (s) 3,271.9 3,746.6 2,529.4
Average CPU time (s) 24.519 48.912 25.206

Fig. 14   Comparison of the convergence rate of optimization using
first- vs second-order information in a network with 50 layers

24985Hierarchical multi‑scale parametric optimization of deep neural networks﻿	

1 3

The results of the comparison and the hyperparameters
used are tabulated in Tables 9, 10 and 11. In these tables, the
Learning rate determines how fast the gradient is reduced in
each step, the Tolerance determines the break-off value com-
pared to the sum of gradients to indicate the termination of
the algorithm, while the Inner tolerance is compared to the

value of the maximum gradient in the network at every itera-
tion to determine a stop criterion. The Number of epochs
is the number of times the optimization is run during each
iteration. The Maximum number of iterations determines the
total number of iterations the algorithm performs, while � is
the infinitesimal difference adopted in the finite difference
method. The values are optimized through trial-and-error
methods and are unified for a clear comparison.

From these results, several characteristics of the proposed
method can be extracted.

Firstly, with appropriate hyperparameters, the hierarchical
approach is able to optimize to a better solution compared
to the end-to-end backpropagation method. Although the
computation is not faster, in particular applications where a
trained model must be deployed, the speed is not always the
key. For example, in an industrial setting, the better solu-
tion will be always pursued, as it will often have significant
impact on the operation costs.

Secondly, in case of the hierarchical approach, there is
also a trade-off of accuracy with respect to the solution time.
When the number of epochs and the maximum number of
iterations is set high, more accurate results are obtained.
This is a significant difference compared to the end-to-end
backpropagation, where only the learning rate indirectly
determines both the speed and the accuracy of the results.

The framework, relying on sensitivity values of individual
neurons relative to the overall output, is simple to imple-
ment, efficient to run and successful in producing optimized
neural networks. In this case, the key advantage of the pro-
posed approach is that it is less affected by the vanishing
gradient problem, which occurs when optimizing very deep
neural networks using gradient-based methods, specifically

Table 9   Comparison between the multiscale hierarchical search
based on first- and second-order information, against end-to-end
backpropagation for the UCI Dataset I: CCPP 

Parameters and results First-order Second-order End-to-end

Learning rate 0.05 0.05 0.05
Tolerance 0.01 0.01 -
Inner tolerance 0.01 0.01 -
Number of epochs 20 20 -
Maximum number of itera-

tions
50 50 -

Trust region bound, � 0.001 0.001 -
Time of execution (s) 1.06170 2.49700 0.24170
Final MSE 0.22814 0.20021 0.20920

Table 10   Comparison between the multiscale hierarchical search
based on first- and second-order information, against end-to-end
backpropagation for the UCI Dataset II: AEP 

Parameters and results First-order Second-order End-to-end

Learning rate 0.05 0.05 0.05
Tolerance 0.005 0.005 -
Inner tolerance 0.005 0.005 -
Number of epochs 30 30 -
Maximum number of itera-

tions
60 60 -

Trust region bound, � 0.001 0.001 -
Time of execution (s) 2.80974 7.15047 0.47615
Final MSE 1.00010 0.99979 1.00006

Table 11   Comparison between the multiscale hierarchical search
based on first- and second-order information, against end-to-end
backpropagation for the UCI Dataset III: TF 

Parameters and results First-order Second-order End-to-end

Learning rate 0.05 0.05 0.05
Tolerance 0.005 0.005 -
Inner tolerance 0.005 0.005 -
Number of epochs 30 30 -
Maximum number of itera-

tions
60 60 -

Trust region bound, � 0.001 0.001 -
Time of execution (s) 1.50658 4.92685 0.29743
Final MSE 1.00000 1.00000 2.38036

Fig. 15   The evolution of the gradient values for the last layer, for a
network with 20 layers

24986	 S. Zhang et al.

1 3

during backpropagation [80–85]. In the case of the tradi-
tional methods, the gradients, when populated throughout
the layers, become so diminished that it affects the accuracy
of the optimization results.

Figure 15 presents the gradient values calculated over 200
iterations of the DNN with 20 layers. These results show that
the gradient decreases very slowly over the first 140 itera-
tions, while the solution is produced within 50 iterations, as
illustrated in Table 7.

Thus, by not involving populating the gradients during
the training procedure, the hierarchical approach has great
potential in achieving improved solutions at lower computa-
tional effort, by focusing the modification of the parameters
on the most sensitive parts of the DNN during the optimi-
zation phase, as illustrated in the case studies investigated
above. With further development the proposed optimization
framework can create a new paradigm shift in how profes-
sionals optimize neural networks.

8 � Conclusions and outlook

In this paper, a novel hierarchical multi-scale search
algorithm is introduced for the tuning of DNNs. The
approach utilizes a leveled method where, within each
level, the network is divided into left and right sides,
and the sensitivity of each side branch is evaluated using
the first- or second-order finite differences method. The
algorithm then progressively selects one side to further
divide the network until only one layer remains, resulting
in a binary tree search. The selected layer is optimized in
one iteration until a convergence criterion is achieved.
The selection process repeats until an overall tolerance
is reached, signaling the end of the network tuning. The
proposed algorithm offers a key advantage in optimiz-
ing large DNNs with numerous layers, due to its search
efficiency of O(logN).

The key innovation of the algorithm is its implementa-
tion of a binary search process that optimizes a single layer
at a time. The introduction of selective tuning enables rapid
convergence of the DNNs and efficient equilibration of the
sensitivity values, particularly in the context of large net-
works, where only critical layers are optimized. If the toler-
ance requirements are not stringent, the method potentially
achieve faster convergence than the optimization of all lay-
ers. As the sensitivity values of the scaling factor also cor-
respond to neuron importance, there is potential for future
research to explore how this method can be manipulated for
the structural evolution of DNNs.

The algorithm also incorporates a crucial element of ran-
domization through the binary selector, where a sensitivity-
based probability value is computed and utilized as the like-
lihood to choose between left and right. This random factor

contributes to the improved performance of the algorithm
by reducing repetition during the optimization process of a
single layer, ultimately resulting in a more efficient optimiza-
tion for large-scale networks. The results of the case studies
conducted to demonstrate the application of the procedure
show that the hierarchical multi-scale search algorithm can
generate solutions that are comparable or even better to
those produces by conventional approaches such as end-to-
end backpropagation.

Based on the results presented in Section 5, the newly
proposed sensitivity metric facilitates effective analysis,
evaluation, design, and, control of very large-to-enormous
scale systems, both mathematically and abstractly. This met-
ric can enhance the high-impact topic emphasized in Sec-
tion 5 through the following aspects:

1.	 The first-order structural sensitivities provide a linear
approximation of the investigated system from a hierar-
chical multi-scale perspective.

2.	 The second-order structural sensitivities quantitatively
measure the degree of local non-linearity of the system,
considering its interacting parts from the top level of
abstraction down to its finest modelling scale.

3.	 The mixed second-order sensitivities reveal the degree of
coupling within the underlying level sub-compartments
of the model, as the procedure moves down the levels of
the hierarchical multi-scale structure/framework.

This numerically quantitative system metric allows for:

1.	 The exploration of new self-adaptive local information,
simulation and system optimization algorithms within
the currently proposed framework.

2.	 A self-adaptive parallelization of nested computa-
tions that can reliably assign loosely interacting (or
loosely connected) components to different parallel
processors. As a result, new parallel algorithms can
be implemented on existing hardware, and new ded-
icated computational architectures can be designed
to be exploited fully by the novel computational
modelling and solution framework.

To ensure that the proposed framework can truly bring
about a real paradigm shift in the use of neural networks for
industrial (large scale) applications, additional efforts are nec-
essary to improve the implementation and optimize the code.

8.1 � Structural sensitivity equilibration

One important feature of the novel hierarchical multi-
scale optimization algorithm is its ability to equilibrate
the structural sensitivities and converge to at least a
local minimum. The algorithm employs a randomized

24987Hierarchical multi‑scale parametric optimization of deep neural networks﻿	

1 3

left-or-right non-deterministic selector criterion at the
binary multi-scale partitioning tree, which is statistically
designed to favor the side with the largest locally deter-
mined absolute structural sensitivity (derivative) value.
This results in iterations that are expected to achieve a
path not only to a local minimum, but also to exhibit
equilibration of left and right structural sensitivity values
at the branching points of the binary partitioning tree.

The use of compartments with arbitrary partitioning gen-
erates equilibrated values in terms of importance on the over-
all defined performance index criterion of the entire system
being modelled or even controlled online in real-time by the
novel hierarchical multi-scale optimization framework. This
property enables further novel considerations, as a system
that is equilibrated in the structural sensitivity sense can eas-
ily detect any small deviation at the top-level of the binary
tree and identify it at the finest structure of the embedded
model and underlying physical system in log2 steps of the
total number of the finest structure components of the system.

The proposed framework challenges the current status
quo through rounds of partial training and facilitates inno-
vation in the most fundamental steps of the DNNs devel-
opment, leading to the development of efficient automatic
compression and acceleration techniques.

This work raises interesting questions related to the mean-
ing and potential physical interpretation beyond from the
mathematical definition, as well as the physical interpreta-
tion of the system being modelled within the novel hierarchi-
cal multi-scale modelling framework proposed.

To answer these questions, it is essential to apply the
model to industrial scenarios and examine the implications
in a real-world setting.

8.2 � Inverse problem: Physical system laws analysis
and discovery

With an appropriately refined mathematical model of a sys-
tem, both parametric and structural analysis can be carried
out starting from the chosen performance index law and
investigating the partitioning obtained at that level. The struc-
tural sensitivity balance for left-and-right partition can be
achieved through recursive application of the model all the
way to the tuning of fixed parameters, leading to the develop-
ment of a highly equilibrated hierarchical multi-scale math-
ematical or other abstract model that can describe and predict
the behavior of the underlying physical or abstract system.

Moreover, the proposed novel algorithmic framework
allows for transparent interpretation of all its interactions and

Table 12   Table of notations
� Scaling factor
� Objective function minimiser

L Lagrangian function
Wij Connection weights between neuron i and neuron j

z Output of a neuron after activation (multiplied by the scaling factor)
y Input to a neuron, also the output from the previous layer

h Difference between the supposed output of a neuron and product of activated
neuron output and scaling factor

h is bounded to be zero
� The set of Lagrange multipliers associated with the constraints h(⋅;⋅)
f Activation function applied to the input to a neuron
Sleft, Sright Absolute values of the structural sensitivities at the left and right side of the

branching point, respectively

� Trust region bound
� A small disturbance in the value of sensitivity
q Quadratic model as a selector at the branching point
a, b, c, d, e, f Quadratic model coefficients

r Value of the randomized selector to determine the side of a branch to go down
wrj Weights between input neuron r and the hidden neuron j (Table 1)
vjk Connection weight between hidden neuron j and output neuron k (Table 1)
Qik Percentage of influence of the input variable xi and output yk (Table 1)
WPik Influence of the input variable xi on the output yk (Table 1)
f
�

(netj) Derivative of the activation function of the hidden neuron j (Table 1)

f
�

(netk) Derivative of the activation function of the output neuron k (Table 1)
Rd Layer-wise relevance score (Section 2.2)

24988	 S. Zhang et al.

1 3

machinery, which facilitates the identification of modelling
flaws and exploration of alternative propositions to correct or
complement any existing model in a minimal number of steps.
Additionally, it enables the correct identification and safe uti-
lization of degrees of freedom that ensure the satisfaction of
multiple desirable criteria in real-world applications such as
safety, profitability stability project longevity and continuity.

The proposed hierarchical multi-scale modelling framework
can be applied to explore various topics such as alternative
mathematical game theory models and imaginative solutions
methods, as well as solving currently difficult multi-objective
or other multilevel mathematical optimization formulations.

The next step in the development of the framework
involves using the sensitivities introduced in this work to
adapt the structure and size of DNNs in an unsupervised
way, leading to the deployment of highly flexible and plastic
neural networks within the field of AI.

9 � Table of notations

The notations are presented in Table 12.

Supplementary Information  The online version contains supplemen-
tary material available at https://​doi.​org/​10.​1007/​s10489-​023-​04745-8.

Funding  Open Access funding enabled and organized by Projekt
DEAL.

Data availability  The datasets generated during and/or analyzed dur-
ing the current study are available from the corresponding author on
reasonable request.

Declarations 

Conflict of interest  The authors declare that they have no conflict of
interest with respect to the research, authorship and/or publication of
this article.

Open Access  This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article's Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in
the article's Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

References

	 1.	 AbdElaziz M, Dahou A, Abualigah L, Yu L, Alshinwan M, Kha-
sawneh AM, Lu S (2021) Advanced metaheuristic optimization
techniques in applications of deep neural netowrks: a review. Neu-
ral Comput Appl 33:14079–14099

	 2.	 Shrestha A, Mahmood A (2019) Review of Deep Learning algo-
rithms and architectures. IEEE Access 7:53040–53065

	 3.	 Bhuvaneswari V, Priyadharshini M, Deepa C, Balaji D, Rajeshkumar L,
Ramesh M (2021) Deep learning for material synthesis and manufac-
turing systems: A review. Material Today Proc 46(part 9):3263–3269

	 4.	 Kapusuzoglu B, Mahadevan S (2020) Physics-informed and
hybrid machine learning in additive manufacturing: Application
to fused filament fabrication. JOM 72:4695–4705

	 5.	 Gavrishchaka V, Senyukova O, Koepke M (2019) Synergy of
physics-based reasoning and machine learning in biomedical
applications: towards unlimited deep learning with limited data.
Adv Physics X 4(1):1582361

	 6.	 Jiao Z, Hu P, Xu H, Wang Q (2020) Machine learning and deep
learning in chemical health and safety: A systematic review of tech-
niques and applications. ACS Chem Health Saf 27(6):316–334

	 7.	 Li J, Zhu X, Li Y, Tong YW, Ok YS, Wang X (2021) Multi-
task prediction and optimization of hydrochar properties from
high-moisture municipal solid-waste: Application of machine
learning on waste-to-resource. J Clean Prod 278:123928

	 8.	 Wang S, Ren P, Takyi-Aninakwa P, Jin S, Fernandez C (2022) A
critical review of improved deep convolutional neural network
for multi-timescale state prediction of Lithium-ion batteries.
Energies 15(14):5053

	 9.	 Wang S, Takyi-Aninakwa P, Jin S, Yu C, Fernandez C, Stroe DI
(2022) An improved feedforward-long short-term memory mod-
elling method for the whole-life-cycle state of charge prediction
of lithium-ion batteries considering current-voltage-temperature
variation. Energy 254(part A):124224

	10.	 Chen ZX, Iavarone S, Ghiasi G, Kannan V, D’Alessio G, Parente
A, Swaminathan N (2021) Application of machine learning for
filtered density function closure in MILD combustion. Combust
Flame 225:160–179

	11.	 Ruan H, Dorneanu B, Arellano-Garcia H, Xiao P, Zhang L
(2022) Deep learning-based fault prediction in wireless sensor
network embedded cyber-physical system for industrial pro-
cesses. IEEE Access 10:10867–10879

	12.	 Mishra R, Gupta H (2023) Transforming large-size to light-
weight deep neural networks for IoT applications. ACM Comput
Surv 55(11):1–35

	13.	 Groumpos PP (2016) Deep learning vs. wise learning: A critical
and challenging overview. IFAC-PapersOnLine 49(29):180–189

	14.	 Vasdevan S (2020) Mutual information based learning rate
decay for stochastic gradient descent training of deep neural
networks. Entropy 22(5):560

	15.	 Cheridito P, Jentzen A, Rossmannek F (2021) Non-convergence
of stochastic gradient descent in the training of deep neural
networks. J Complex 64:101540

	16.	 Le-Duc T, Nguyen QH, Lee J, Nguyen-Xuan H (2022) Strength-
ening gradient descent by sequential motion optimization for
deep neural networks. IEEE Trans Evol Comput 27(3):565–579

	17.	 Asher N (2021) Review on gradient descent algorithms in deep
learning approaches. J Innov Dev Pharm Tech Sci 4(3):91–95

	18.	 Alarfaj FK, Khan NA, Sulaiman M, Alomair AM (2022) Appli-
cation of a machine learning algorithm for evaluation of stiff
fractional modelling of polytropic gas spheres and electric cir-
cuits. Symmetry 14(12):2482

	19.	 Christou V, Arjmand A, Dimopoulos D, Varvarousis D, Tsou-
los I, Tzallas AT, Gogos C, Tsipouras MG, Glavas E, Ploumis
A, Giannakeas N (2022) Automatic hemiplegia type detection
(right or left) using the Levenberg-Marquardt backpropagation
method. Information 13(2):101

	20.	 Choudhary P, Singhai J, Yadav JS (2022) Skin lesion detec-
tion based on deep neural networks. Chemom Intell Lab Syst
230:104659

	21.	 Al-Shargabi AA, Almhafdy A, Ibrahim DM, Alghieth M, Chi-
clana F (2021) Tuning deep neural networks for predicting

https://doi.org/10.1007/s10489-023-04745-8
http://creativecommons.org/licenses/by/4.0/

24989Hierarchical multi‑scale parametric optimization of deep neural networks﻿	

1 3

energy consumption in arid climate based on building charac-
teristics. Sustainability 13(22):12442

	22.	 Choudhary T, Mishra V, Goswami A, Sarangapani J (2020) A
comprehensive survey on model compression and acceleration.
Artif Intell Rev 53:5113–5155

	23.	 Zhang Z, Kouzani AZ (2020) Implementation of DNNs on IoT
devices. Neural Comput Appl 32:1327–1356

	24.	 Mittal S (2020) A survey on modelling and improving reli-
ability of DNN algorithms and accelerators. J Syst Architect
104:101689

	25	 Dhouibi M, Ben Salem AK, Saidi A, Saoud SB (2021) Acceler-
ating deep neural networks: A survey. IET Comput Digit Tech
15(2):79–96

	26.	 Armeniakos G, Zervakis G, Soudris D, Henkel J (2022) Hard-
ware approximate techniques for deep neural network accelera-
tors: A survey. ACM Comput Surv 55(4):1–36

	27.	 Liu D, Kong H, Luo X, Liu W, Subramaniam R (2022) Bringing
AI to edge: From deep learning’s perspective. Neurocomputing
485:297–320

	28.	 Hussain H, Tamizharasan PS, Rahul CS (2022) Design possi-
bilities and challenges of DNN models: a review on the perspec-
tive end devices. Artif Intell Rev 55:5109–5167

	29.	 Zhang Y, Tiňo P, Leonardis A, Tang K (2021) A survey on
neural network interpretability. IEEE Trans Emerg Topics Com-
putat Intell 5(5):726–741

	30.	 Montavon G, Samek W, Müller K-R (2018) Methods for inter-
preting and understanding deep neural networks. Digit Signal
Process 73:1–15

	31.	 Gevrey M, Dimopoulos I, Lek S (2003) Review and comparison
of methods to study the contribution of variables in artificial
neural network models. Ecol Model 160(3):249–264

	32.	 Montaño J, Palmer A (2003) Numeric sensitivity analysis applied to
feedforward neural networks. Neural Comput Appl 12(2):119–125

	33.	 Lek S, Delacoste M, Baran P, Dimopoulos I, Lauga J, Aulagnier
S (1996) Application of neural networks to modelling nonlinear
relationships in ecology. Ecol Model 90(1):39–52

	34.	 Fawzi A, Moosavi-Dezfooli SM, Frossard P (2017) The robust-
ness of deep networks: A geometrical perspective. IEEE Signal
Process Mag 34(6):50–62

	35.	 Shu H, Zhu H (2019) Sensitivity analysis of deep neural net-
works, in Proceedings of the AAAI Conference on Artificial
Intelligence 33: 4943–4950

	36.	 Mrzygłód B, Hawryluk M, Janik M, Olejarczyk-Wożeńska I
(2020) Sensitivity analysis of the artificial neural networks in
a system for durability prediction of forging tools to forgings
made of C45 steel. Int J Adv Manuf Technol 109:1385–1395

	37.	 Zhang S (2021) Design of deep neural networks formulated as
optimisation problems,” Doctoral thesis, University of Cam-
bridge. https://​doi.​org/​10.​17863/​CAM.​82337

	38.	 Tchaban T, Taylor M, Griffin J (1998) Establishing impacts of
the inputs in a feedforward neural network. Neural Comput Appl
7(4):309–317

	39.	 Garson DG (1991) Interpreting neural network connection
weights. AI EXPERT 6(4): 47–51

	40.	 Oparaji U, Sheu R-J, Bankhead M, Austin J, Patelli E (2017)
Robust artificial neural network for reliability and sensitivity
analyses of complex non-linear systems. Neural Netw 96:80–90

	41.	 May Tzuc O, Bassam A, Ricalde LJ, Cruz May E (2019) Sen-
sitivity analysis with artificial neural networks for operation of
photovoltaic systems. Artif Neural Netw Eng Appl 10:127–138

	42.	 Zhang X, Xie Q, Song M (2021) Measuring the impact of nov-
elty, bibliometric, and academic-network factors on citation
count using a neural network. J Inform 15(2):101140

	43.	 Xie Q, Wang J, Kim G, Lee S, Song M (2021) A sensitivity
analysis of factors influential to the popularity of shared data in
repositories. J Inform 15(3):101142

	44.	 Mazidi MH, Eshghi M, Raoufy MR (2022) Premature ven-
tricular contraction (PVC) detection system based on tunable
Q-factor wavelet transform. J Biomed Phys Eng 12(1):61–74

	45.	 Liu X, Qiao S, Han G, Hang J, Ma Y (2022) Highly sensitive
HF detection based on absorption enhanced light-induced ther-
moelastic spectroscopy with a quartz tuning fork of receive and
shallow neural network fitting. Photoacustics 28:100422

	46.	 Ivanovs M, Kadikis R, Ozols K (2021) Perturbation-based meth-
ods for explaining deep neural networks: A survey. Pattern Recogn
Lett 150:228–234

	47.	 Teodoro G, Kurç TM, Taveira LFR, Melo ACMA, Gao Y, Kong
J, Saltz JH (2017) Algorithm sensitivity analysis and parameter
tuning for tissue image segmentation pipelines. Bioinformatics
33(7):1064–1072

	48.	 Akenbrand MJ, Shainberg L, Hock M, Lohr D, Schreiber LM (2021)
Sensitivity analysis for interpretation of machine learning based seg-
mentation models in cardiac MRI. BMC Med Imaging 21:27

	49.	 Jeczmionek E, Kowalski PA (2022) Input reduction of convolu-
tional neural networks with global sensitivity analysis as a data-
centric approach. Neurocomputing 506:196–205

	50.	 Kim MK, Cha J, Lee E, Pham VH, Lee S, Theera-Umpon N
(2019) Simplified neural network model design with sensitivity
analysis and electricity consumption prediction in a commercial
building. Energies 12(7):1201

	51.	 Kowalski PA, Kusy M (2018) Determining significance of input
neurons for probabilistic neural network by sensitivity analysis
procedure. Comput Intell 34(3):895–916

	52.	 Samek W, Binder A, Montavon G, Lapuschkin S, Müller
K-R (2016) Evaluating the visualization of what a deep neu-
ral network has learned. IEEE Trans Neural Netw Learn Syst
28(11):2660–2673

	53.	 Buhrmester V, Münch D, Arens M (2021) Analysis of explainers
of black box deep neural networks for computer vision: A survey.
Mach Learn Knowl Extraction 3(4):966–989

	54.	 Meister S, Wermes M, Stüve J, Groves RM (2021) Cross-eval-
uation of a parallel operating SVM-CNN classifier for reliable
internal decision-making processes in composite inspection. J
Manuf Syst 60:620–639

	55.	 Li Z, Li H, Meng L (2023) Model compression for deep neural
networks: A survey. Computers 12(3):60

	56.	 Shin E, Park J, Yu J, Patra C (2018) Prediction of grouting effi-
ciency by injection of cement milk into sandy soil using an artifi-
cial neural network. Soil Mech Found Eng 55(5):305–311

	57.	 Mozumder RA, Laskar AI, Hussain M (2018) Penetrability
prediction of microfine cement grout in granular soil using
artificial intelligence techniques. Tunn Undergr Space Technol
72:131–144

	58.	 Chaurasia RC, Sahu D, Suresh N (2021) Prediction of ash content
and yield percent of clean coal in multi gravity separator using
artificial neural networks. Int J Coal Prep Util 41(5):362–369

	59.	 Bach S, Binder A, Montavon G, Klauschen F, Müller K-R,
Samek W (2015) On pixel-wise explanations for non-linear clas-
sifier decisions by layer-wise relevance propagation. PLoS ONE
10(7):e0130140

	60.	 Böhle M, Eitel F, Weygandt M, Ritter K (2019) Layer-wise rel-
evance propagation for explaining deep neural network decisions
in MRI-based Alzheimer’s disease classification. Front Aging
Neurosci 11:194

	61.	 Grezmak J, Zhang J, Wang P, Loparo KA, Gao RX (2019) Inter-
pretable convolutional neural network through layer-wise rel-
evance propagation for machine fault diagnosis. IEEE Sens J
20(6):3172–3181

	62.	 Montavon G, Binder A, Lapuschkin S, Samek W, Müller K-R
(2019) “Layer-wise relevance propagation: An overview,”
Explainable AI: interpreting, explaining and visualizing deep
learning, SpringerCham, pp. 193–209

https://doi.org/10.17863/CAM.82337

24990	 S. Zhang et al.

1 3

	63.	 Yeom SK, Seegerer P, Lapushkin S, Binder A, Wiedemann S, Mül-
ler KR, Samek W (2021) Pruning by explaining: A novel criterion
for deep neural network pruning. Pattern Recogn 115:107899

	64.	 Baydin AG, Pearlmutter BA, Radul AA, Siskind JM (2018) Auto-
matic differentiation in machine learning: A survey. J Mach Learn
Res 18:1–43

	65.	 Margossian CC (2019) A review of automatic differentiation and
its efficient implementation. Wiley Interdiscip Rev Data Min
Knowl Disc 9(4):e1305

	66.	 Cai S, Wang Z, Wang S, Perdikaris P, Karniadakis GE (2021)
Physics-informed neural networks for heat transfer problems.
ASME J Heat Transf 143(6):060801

	67.	 Conejeros R, Vassiliadis VS (2000) Dynamic biochemical reaction
process analysis and pathway modification predictions. Biotechnol
Bioeng 68(3):285–297

	68.	 Haghighat E, Raissi M, Moure A, Gomez H, Juanes R (2021)
A physics-informed deep learning framework for inversion and
surrogate modelling in solid mechanics. Comput Methods Appl
Mech Eng 379:113741

	69.	 Abdolrasol MGM, Hussain SMS, Ustun TS, Sarker MR, Hannan
MA, Mohamed R, Abd Ali J, Mekhilef S, Milad A (2021) Arti-
ficial neural networks based optimization techniques: A review.
Electronics 10(21):2689

	70.	 Aszemi NM, Dominic PDD (2019) Hyperparameter optimization
in convolutional neural network using genetic algorithms. Int J
Adv Comput Sci Appl 10(6):269–278

	71.	 Lillicrap TP, Santoro A, Marris L, Ackerman CJ, Hinton G (2020)
Backpropagation and the brain. Nat Rev Neurosci 21:335–346

	72.	 Sutton RS, Barto AG (2018) Reinforcement learning: An intro-
duction. MIT Press

	73.	 Hariharan N, Paavai PA (2022) A brief study of deep reinforce-
ment learning with epsilon-greedy exploration. Int J Comput Digit
Syst 11(1):541–551

	74.	 Yang T, Zhang S, Li C (2021) A multi-objective hyper-heuristic
algorithm based on adaptive epsilon-greedy selection. Complex
& Intelligent Systems 7:765–780

	75.	 Gong M, Liu J, Qin AK, Zhao K, Tan KC (2021) Evolving deep
neural networks via cooperative coevolution with backpropaga-
tion. IEEE Trans Neural Netw Learn Syst 32(1):420–434

	76.	 Gambella C, Ghaddar B, Naoum-Sawaya J (2021) Optimiza-
tion problems for machine learning: A survey. Eur J Oper Res
290(3):807–828

	77.	 Wright LG, Onodera T, Stein MM, Wang T, Schachter DT, Hu Z,
McMahon PL (2022) Deep physical neural networks trained with
backpropagation. Nature 601:549–555

	78.	 Zaras A, Passalis N, Tefas A (2022) Neural networks and
backpropagation. Deep Learning for Robot Perception and
Cognition 2:17–34

	79.	 Dua D, Graff C (2019) UCI machine learning repository, Irvine,
CA: University of California, School of Information and Com-
puter Science. [Online]. Available: http://​archi​ve.​ics.​uci.​edu/​
ml. Accessed Dec 2022

	80.	 Lillicrap TP, Santoro A (2019) Backpropagation through time and
the brain. Curr Opin Neurobiol 55:82–89

	81.	 Basodi HZS, Ji C, Pan Y (2020) Gradient amplification: An efficient
way to train deep neural networks. Big Data Min Analytics 3:196–207

	82.	 Scardapane S, Scarpinti M, Baccarelli E, Uncini A (2020) Why should
we add early exits to neural networks? Cogn Comput 12:954–966

	83.	 Van Houdt G, Mosquera C, Nápoles G (2020) A review on the
long short-term memory model. Artif Intell Rev 53:5929–5955

	84.	 Mishra RK, Sandesh Reddy GY, Pathak H (2021) The understand-
ing of deep learning: A comprehensive review. Math Probl Eng
2021:5548884

	85.	 Alzubaidi L, Zhang J, Humaidi AJ, Al-Dujaili A, Duan Y, Al-
Shamma O, Santamaría J, Fadhel MA, Al-Amidie M, Fahran L
(2021) Review of deep learning: concepts, CNN architectures,
challenges, applications, future directions. J Big Data 8:53

Publisher's Note  Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Sushen Zhang  is a Chemical Engineering graduate, at the MEng
level, from the University of Cambridge. Following her graduation
she pursued successfully a PhD degree in Chemical Engineering at
the University of Cambridge, working in the Process Systems Engi-
neering research group at the Department of Chemical Engineering
and Biotechnology. Her PhD research focused on novel formulations
and modeling of systems via Artificial Neural Networks and Artificial
Intelligence more broadly. Following completion of her studies, she has
returned to China where she presently pursues an independent career
in the commercial sector.

Vassilios S. Vassiliadis  received the Diploma degree in Chemical Engi-
neering (Masters of Engineering) from the School of Chemical Engi-
neering, National Technical University of Athens, Athens, Greece, in
1989 and the Ph.D. degree in Process Systems Engineering from the
Department of Chemical Engineering and Chemical Technology, Impe-
rial College London, London, U.K., in 1993. At Imperial College, he
was supervised for his Ph.D. studies by Professor Roger W. H. Sargent,
the founder of the PSE research area internationally, and by Professor
Costas C. Pantelides, a leading figure in the area of Dynamic Simula-
tion. He then spent a year working as a Postdoctoral Associate with the
Department of Chemical Engineering, Princeton University, Princeton,
NJ, USA. He is a retired Senior Lecturer with the University of Cam-
bridge, Cambridge, U.K. His research interests lie in the development
and application of optimization and simulation tools in engineering
and scientific domains.

Bogdan Dorneanu  studied Chemical Engineering at the Politehnica
University of Bucharest in Romania and received his doctorate from
the Technical University of Delft, The Netherlands. He is currently
a Postdoctoral Researcher with the Department of Process and Plant
Technology, Brandenburg University of Technology (BTU), leading the
Digitalization Group. His research interests include process and prod-
uct modeling and simulation, machine learning, model predictive control,
and optimization and design of systems and processes, including models
and decision-making tools for distributed energy resource networks.

Harvey Arellano‑Garcia  studied Energy and Process Engineering at the
TU Berlin in Germany. He then did his doctorate at the same Univer-
sity in the field of Process Systems Engineering with a focus on Pro-
cess Intensification and Optimization. Prof. Dr.-Ing. Arellano-Garcia
founded and headed the “Process and Energy Systems Engineering”
research group at the TU Berlin from 2007 to 2012. During this time
he carried out research stays at Imperial College London and MIT
in Boston. His work has been awarded various prizes, including the
EFCE (European Federation of Chemical Engineering) Excellence
Award in recognition of his outstanding PhD in CAPE (Computer-
Aided Process Engineering). Between 2012 and 2019 he was appointed
University Professor in the UK and lately Research Director and Pro-
fessor of Chemical Engineering at the University of Surrey. Prof. Dr.-
Ing. Arellano-Garcia head now the Department of Process and Plant
Engineering at the Brandenburg University of Technology in Germany.

http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml

	Hierarchical multi-scale parametric optimization of deep neural networks
	Abstract
	1 Introduction
	2 Background
	2.1 Developments in neural sensitivity analysis
	2.2 Identification of layerneuron importance

	3 Sensitivity analysis based on scaling factors
	3.1 Scaling factors
	3.2 Sensitivity analysis through automatic differentiation
	3.3 Sensitivity analysis through finite differences
	3.4 Validation with automatic differentiation

	4 Hierarchical multi-scale topological and parametric optimization of DNNs
	4.1 Hierarchical multi-scale structural contribution analysis of DNN’s
	4.2 Network tuning
	4.2.1 Example tuning
	4.2.2 Comparison with the end-to-end backpropagation algorithm

	5 Use of second-order information in the binary search tree
	5.1 Mathematical formulation
	5.2 Results and analysis
	5.3 Comparison with end-to-end training

	6 Comparison between the first- and the second-order search algorithms
	7 Application to large scale problems and other datasets
	7.1 Large scale problems
	7.2 Other datasets

	8 Conclusions and outlook
	8.1 Structural sensitivity equilibration
	8.2 Inverse problem: Physical system laws analysis and discovery

	9 Table of notations
	Anchor 29
	References

