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Abstract
Traditionally, sensitivity analysis has been utilized to determine the importance of input variables to a deep neural network 
(DNN). However, the quantification of sensitivity for each neuron in a network presents a significant challenge. In this arti-
cle, a selective method for calculating neuron sensitivity in layers of neurons concerning network output is proposed. This 
approach incorporates scaling factors that facilitate the evaluation and comparison of neuron importance. Additionally, a 
hierarchical multi-scale optimization framework is proposed, where layers with high-importance neurons are selectively 
optimized. Unlike the traditional backpropagation method that optimizes the whole network at once, this alternative approach 
focuses on optimizing the more important layers. This paper provides fundamental theoretical analysis and motivating case 
study results for the proposed neural network treatment. The framework is shown to be effective in network optimization 
when applied to simulated and UCI Machine Learning Repository datasets. This alternative training generates local minima 
close to or even better than those obtained with the backpropagation method, utilizing the same starting points for compara-
tive purposes within a multi-start optimization procedure. Moreover, the proposed approach is observed to be more efficient 
for large-scale DNNs. These results validate the proposed algorithmic framework as a rigorous and robust new optimization 
methodology for training (fitting) neural networks to input/output data series of any given system.

Keywords Deep neural networks · Hierarchical multi-scale search · Scaling factor · Sensitivity analysis · Finite difference · 
Automatic differentiation

1 Introduction

Due to their superior capabilities of extracting capabili-
ties of extracting information from big sets of data in an 
automatic way [1, 2], deep neural networks (DNNs) are 
currently applied in many domains, ranging from material 
synthesis and manufacturing [3, 4], biomedical applications 
[5], health and safety [6], to waste valorization [7], power 
supply [8, 9] or process industry and Internet of Things 
[10–12]. The framework for their training has remained fixed 
and stable since their introduction and it mainly involves 

the optimization of all the neurons through the process of 
backpropagation [2, 13], often coupled with well-known 
algorithms based on gradient descent [14–17] or Leven-
berg–Marquardt approaches [18–21]. Seldom posed is the 
question of whether all layers of neurons should be opti-
mized together in one run.

A major constraint in the deployment of DNNs in real-
time applications relates to the limited computation power, 
storage capacity, energy and time available in practice in 
real-world industrial systems for decision-making [22]. 
Key approaches for the deployment of DNN-based solu-
tions under these low-resource conditions are often split into 
two categories [23]: a) the design of hardware architecture 
able to handle efficient data flow mapping strategies and 
memory hierarchy, and b) the design of software approaches 
for trade-off optimization of the DNN models, with the aim 
to reduce the number of model parameters and operations.

These techniques focused on the software development 
are known as compression and acceleration methods in 
literature, with the main approaches focusing on pruning, 
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quantization, low-rank factorization and knowledge distil-
lation. A detailed overview of these approaches, as well as 
the main challenges in their development and application, 
can be found in recent survey papers [22, 24–28].

Of these, pruning is a demonstrated powerful technique 
that removes redundant parameters and connections, while 
retaining highly important features of the DNN, which can 
be applied either during or after training. Among the vari-
ous options, pruning can be used for removing unimportant 
weight connections (weight pruning), individual redundant 
neurons (neuron pruning), least important filters (filter 
pruning) and redundant layers of neurons (layer pruning). 
An important challenge in the application of pruning in 
the development of efficient sparse model architectures for 
DNNs relates to the fact that the pruning percentage is man-
ual, and more sophisticated approaches are required where 
the pruning is decided automatically by tuning some hyper-
parameters [22, 28]. Furthermore, more structured pruning 
techniques are required for deciding the importance of the 
layers that can be removed [22].

Assuming the network is optimized partially in each itera-
tion, there is the need to determine which layer to optimize 
first. A criterion suitable in this situation is the adoption of 
neural sensitivity analysis.

Neural sensitivity analysis has been widely adopted in the 
analysis of DNNs with the aim to demystify the’black-box’ 
nature and add further metrics to identify how the network 
reacts to changes in the explanatory variables [29, 30]. Early 
stages of research put emphasis exclusively on how the out-
put or the objective change with a perturbation in the input 
[13, 31, 32]. While this is an important step in understanding 
how a network responds to different data sets, the analysis is 
limited by only looking at the sensitivity of the explanatory 
variables. Moreover, research on neural sensitivity analysis 
often concentrates on the relative values of the weights or 
inputs manipulated to become a sensitivity measure [13, 31, 
33, 34].

The sensitivity is an important measure when perform-
ing analysis on a neural network because it is indicative of 
the component importance for a neuron, a layer, or a block 
of layers [22, 30]. In particular, the sensitivity sets out the 
change in the value of the output or the objective function 
caused by a perturbation in the value of the component [35, 
36].

This paper presents the development of a novel hierar-
chical multi-scale framework for the training of DNNs that 
incorporates neural sensitivity analysis for the automatic and 
selective training of neurons evaluated to be the most effec-
tive, based on the work in [37]. This contribution improves 
the description of the proposed algorithm, as well as utilizes 
more examples for illustrating the application and benefits 
of the training approach. Overall, the novel elements of this 
contribution include:

• The use of neural sensitivity analysis to evaluate the 
importance of the neuron. For this purpose, two methods 
for evaluating the sensitivity are used: the automatic dif-
ferentiation and the finite difference method. The former 
is more rigorously developed, but more computationally 
expensive. The latter is easy to implement and highly 
flexible, but requires more parameter settings to obtain 
sensible results.

• The use of both first- (first derivatives) and second-order 
(second derivatives) information for the computation of 
the sensitivity measures is investigated.

• The adoption of a new definition of the sensitivity meas-
ure through a scaling factor that enables the evaluation 
of the sensitivity of the individual components of the 
network.

The present work focuses on the theoretical presentation 
and the introduction of the mathematical development of the 
proposed approach. In the following sections the neural sen-
sitivity analysis approach is introduced. The analysis extends 
to all neurons in the network and can achieve its selective 
tuning. Subsequently, a novel framework for the training of 
DNNs, of moderate complexity, is proposed, where the sen-
sitivity values guide a hierarchical multi-scale search down 
a binary tree representing the importance of the layer. This 
efficient algorithm to search for the most sensitive layer to 
tune during training is thereafter applied on several case 
studies, to illustrate the implementation and the characteris-
tics of the proposed approach. The remainder of the paper is 
organized as follows: Section 2 provides an overview of the 
use of neural sensitivity analysis for the identification of the 
importance of the neurons, while the sensitivity analysis pro-
cedure based on scaling factors is introduced in Section 3. 
The implementations of the proposed hierarchical multi-
scale approach based on the first- and second-order infor-
mation are presented in Sections 4 and 5, respectively, and 
the two algorithms are compared in Section 6. The applica-
tion of the approach to various case studies is illustrated in 
Section 7, while Section 8 discusses the main conclusions 
of this study, as well as provides some directions for future 
improvement and use of the proposed approach.

2  Background

2.1  Developments in neural sensitivity analysis

Early stages of research in neural sensitivity analysis focus 
either on the values of the weights of the network [38–40], 
or on the sensitivity of the input values [13, 31, 32]. The 
aim is to observe the influence of the input on the output or 
the objective function, i.e., the explanatory capacity of the 
network [31, 35, 36].
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There are several key measures that have been used in 
the context of neural sensitivity analysis, as demonstrated 
in Table 1. While a variety of measures have been proposed, 
the sensitivities are often based exclusively on the values of 
the weights. A more practical method is to provide pertur-
bations in the inputs and observe the effects on the outputs 
[29, 30, 46]. A sensitivity analysis on the weights has been 
demonstrated to be ineffective in measuring the functionality 
of the network [32]. Sensitivity analysis on the input values 
is more widely adopted in image recognition [47–49] and 
engineering [32, 36, 50] research, but is limited in its appli-
cation for cases with discrete inputs [32, 51].

More recent work in image processing demystifies the con-
volutional neural network (CNN) by perturbing a pixel or a 
small region in an image and observing its effect on the objec-
tive [52]. Other studies seek to find partial derivatives of the 
image classification results with regard to individual pixels and 
visualize it in a graph, as a measure of input sensitivity [53, 54].

The advantages of the perturbation method relate to the 
fact that it is simple to implement and communicates a clear 
message on how each variable interacts to give the objec-
tive value. In the case of the partial derivatives method, the 
advantage is that it is a more rigorously developed compu-
tational algorithm that can be easily interpreted.

However, while these methods all merit in their own 
design, the sensitivity analysis is exclusively focused on the 
input importance. Furthermore, an important challenge in 
the case of the perturbation methods is the combinatorial 
explosion that would occur when assessing the impact on 
the output of all the elements of the input and all their pos-
sible combinations [46]. As such, approaches that focus on 
determining the importance of individual neurons can be 
used to tackling this complexity issue.

2.2  Identification of layer/neuron importance

The objective of producing faster and more efficient 
network models can be achieved by developing new 
approaches for revealing hidden information such as 
importance of individual or layer of neurons [55]. Several 
methods have been proposed to identify the importance 

of neurons through Neural Interpretation Diagrams 
(NIDs) [56–58], which represent the relative magnitude 
of each connection weight by line thickness. The positive 
weights are viewed as”excitator signals” while the nega-
tive weights are viewed as”inhibitor signals”. The diagram 
assumes that by tracking the path with thicker lines (higher 
positive weight values), it is possible to find input vari-
ables and neurons that are more important. However, such 
diagrams will be difficult to visualize when the amount of 
connections is large, i.e., with a large number of neurons.

Other studies focus on visualizing the importance of 
neurons through a relevance score [59–61], calculated 
from the Layer-wise Relevance Propagation [62, 63]. This 
method is developed because images used as inputs con-
tain a large number of pixels in each entry, thus making it 
impossible to disturb single pixels for sensitivity.

While these methods focus exclusively on visualization 
of the neural importance, they are either too simplistic 
(by constructing graphs based on raw weight values) or 
highly complicated (by defining an equation of the rel-
evance score). The framework proposed in this work has a 
moderate complexity that allows for the neural importance 
to be evaluated for the purpose of selective tuning.

3  Sensitivity analysis based on scaling 
factors

With a variety of definitions of sensitivity values, most of 
the state-of-the-art focuses on the sensitivity of the input 
features. In this section a scaling factor is formulated into 
the structure of DNNs and two methods to perform the 
sensitivity analysis are proposed.

The scaling factor can be viewed as a controller of the 
significance of a network component (neurons, layers, or 
blocks of layers). The sensitivity of that component is 
defined to be equal to the partial derivative of the objective 
against the scaling factor associated with that component. 
Two approaches are considered for the calculation of the 
partial derivatives: the finite difference and the automatic 

Table 1  Sensitivity measures 
adopted in literature

* Notations are described in Sect. 9

Sensitivity measure Equation Reference

Numerical sensitivity measure �yk

�xi
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�
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[32, 41]
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[39, 44, 45]
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differentiation methods, which will be briefly discussed in 
the following sections.

3.1  Scaling factors

Before demonstrating the mathematical formulation of 
the sensitivity analysis, the scaling factors are introduced. 
The idea of a scaling factor for the training of DNNs is 
inspired from [67], where it is adopted for the sensitiv-
ity analysis of the predictive modification of biochemical 
pathways to optimize the selection of reaction steps. The 
scaling factor effectively allows the sensitivity ranking 
of each reaction step and the resulting analysis greatly 
simplifies the selection process. The advantage of this 
procedure is that it is fast to determine a minimal set of 
reaction steps. Under this framework, the scaling factor 
acts to determine the most sensitive pathways with regard 
to the overall performance of the biochemical process.

A similar analysis set is adopted for an Artificial Neu-
ral Network (ANN). The terminology ANN is used here 
instead of DNN because the analysis is applicable to 
all forms of ANNs, both shallow and deep. Further, the 
mathematical details of the approach are detailed.

Firstly, the ANN is defined as the following process:

where z is the output from a neuron, y is the input to the 
neuron, l = 1,… ,NL is the layer index, i = 1,… ,NNl is the 
neuron index within layer l , and k = 1,… ,NK is the data 
point index.

In the next step, a scaling factor is introduced into the 
formulation of the ANN such that it pre-multiplies the 
output value of a particular neuron. The factor can effec-
tively serve to represent the sensitivity of the neuron in 
the optimization process.

where

The artificial parameters �l,i ∈ [0, 1] are the scaling 
factors.

Subsequently, the sensitivity of the neuron of the neuron 
layer is calculated from the partial derivatives of the objec-
tive function with regard to the scaling factor introduced, to 
determine its existence. The mean square of errors ( MSE ) 
will be used as an objective function for the purpose of 
this study. In the following, the two procedures (based on 
numerical and automatic differentiation, respectively) will 
be used for determining the sensitivity value.

(1)zl,i,k = f (yl,i,k)

(2)zl,i,k = �l,i ∙ f
(

yl,i,k
)

�l,i =

{

1,

0,

neuron exists

neuron does not exist

3.2  Sensitivity analysis through automatic 
differentiation

The automatic differentiation is an intuitive, rigorous method 
that calculates the value of the partial derivative of the objec-
tive function with respect to individual network components at 
machine precision [64, [65]. Although often difficult to derive, 
the automatic differentiation is efficient in its implementation. 
It can be applied to regular code with minimal change, and it 
allows branching, loops, and recursion [64]. Capabilities for 
automatic differentiation are well-implemented in most deep 
learning frameworks, and avoid the use of tedious derivations 
or numerical discretization during the computation of deriva-
tives of all orders in space–time [66].

The sensitivity analysis procedure implies the solution of an 
optimization problem involving a set of parameters � ∈ RN� , 
N� ≥ 1 . The optimization problem is defined as follows:

Other constraints, equalities and/or inequalities, that none-
theless do not depend on � , will be ignored.

For the solution of the optimization problem defined above, 
the Lagrangian function is considered as:

where x is the set of tuning parameters (primal variables) of 
the optimization problem, � is the set of Lagrange multipli-
ers associated with the constraints h(⋅;⋅) , and θ is the set of 
scaling parameters introduced in the formulation to facilitate 
the calculation of sensitivities associated with the presence 
of individual or subsets of nodes, for example entire layers 
of an ANN, and their impact on the quality of the training 
fitting function.

At the optimal solution (x∗, �∗) , the Lagrangian function 
becomes:

The total derivative/gradient of the objective function with 
respect to � at the optimal point (x∗(�), �∗(�)) , for a given value 
of the vector of parameters � is calculated as follows:

� = min
x∈X

f (x; �)

s.t. h(x; �) = 0

(3)L(x, �;�) = f (x;�) + �Th(x;�)
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Subsequently, the form of the ANN neuron fitting con-
straints adopting the scaling factor in [67] is considered as:

where zl,i,k is the set of neurons outputs for each data point 
in our dataset, y is the set of variables in other equality con-
straints of the general form g(y, z) = 0.

The variables z are the ones being modified with the artifi-
cially introduced scaling parameters �.

Other equations that are considered relate specifically to the 
influence of the node (l, i) at data point (k):

where l = 2, ...,NL , i, j = 1, ...,NNl , and k = 1, ...,NK.
An example formulation of the neural sensitivity analysis 

through automatic differentiation is provided in the Supple-
mentary Material. In addition, other practical aspects includ-
ing the implementation into simple matrix multiplication are 
described. Moreover, the CPU time and memory analysis of 
running neural sensitivity analysis using automatic differentia-
tion are provided.

3.3  Sensitivity analysis through finite differences

An alternative to gauge the sensitivity of neurons is the finite 
difference method. This approach is less rigorous and produces 
less accurate results when applied to DNNs [68]. However, it 
is easy in terms of implementation into more sophisticated 
forms. Moreover, it can serve as a reference to the results 
obtained from automatic differentiation.

In the following, the mathematical formulation for the 
procedure adopting the finite difference method is described. 
In order to generate more accurate results, the central differ-
ences approach is used in this case. Thus, the finite differences 
method is defined to be:

For the illustration of the procedure, an example formula-
tion will be utilized and then extended to a generalized cases. 
Assuming a network with the architecture [2, 2, 2], the sen-
sitivity of each neuron is calculated by first solving the opti-
mization problem described in the previous section with the 
following constraints:

(5)hl,i,k = zl,i,k − �l,i ∙ f
(

yl,i,k
)

(6)yl,i,k =

NNl−1
∑

j=1

zl,j,k ∙Wl,j,i

(7)f
�

(x) = lim
�→0

f
(

x +
1

2
�

)

− f
(

x −
1

2
�

)

�

(8)z1,1,k − f
(

y1,1,k
)

= 0

(9)y1,1,k −W1,1,0 +W1,1,1 ∙ x1,k +W1,2,1 ∙ x2,k

Thereafter, the following preliminary optimized weight 
matrices are obtained:

The matrices of the scaling factor for each layer are 
constructed to be of the same size as the weight matrices.

The values of the scaling factors � control the impact of 
the weights on the objective function.

To find the sensitivity of the � ’s with regard to the 
objective function, their values are individually perturbed 
by 

(

±
1

2
h
)

 , and the changes in the objective function are 
observed. The perturbation resulting in the largest objec-
tive function change corresponds to the most sensitive 
neuron and vice versa.

During the process implementation, all the scaling 
factors are initially set to � = 1 +

1

2
� , where � is a small 

user-defined value, and the value of the objective func-
tion is determined. In the next step, the value of the � ’s 
is changed to � = 1 −

1

2
� . Finally, the scaling factors are 

multiplied element-wise with the weights in each layer to 
gain a new objective value. This is effectively an element-
wise matrix optimization.

To find the sensitivity for blocks of layers, all the 
values of the scaling factors, � connected with the 
block of layers are perturbed at the same time, and the 
value of the objective function is evaluated. In this 
way, the sensitivities of any number of layers can be 
identified in combination through finite differences. 
This is easier compared with the automatic differ-
entiation, where complicated derivatives need to be 
derived in order to evaluate the sensitivities of blocks 
of layers.

(10)z1,2,k − f
(

y1,2,k
)

= 0

(11)y1,2,k −W1,2,0 +W1,2,1 ∙ x1,k +W1,2,2 ∙ x2,k

(12)v1,k −W2,1,0 +W2,1,1 ∙ z2,1,k +W2,1,2 ∙ z2,2,k

(13)v2,k −W2,2,0 +W2,2,1 ∙ z2,1,k +W2,2,2 ∙ z2,2,k

For Layer1 ∶

[

W1,1,0 W1,1,1 W1,2,1

W1,2,0 W1,2,1 W1,2,2

]

For Layer2 ∶
[

W2,1,0 W2,1,1 W2,1,2

]

For Layer1 ∶

[

�1,1,0 �1,1,1 �1,2,1
�1,2,0 �1,2,1 �1,2,2

]

For Layer2 ∶
[

�2,1,0 �2,1,1 �2,1,2
]
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In the following the formulation of the approach based 
on finite differences is generalized. For k = 1, ...,NK data 
points, the output of layer l given input form layer l − 1 is:

where:

for l = 1, 2, ...,NL , i = 1, 2, ...,NNl , and j = 1, 2, ...,NNl−1 . In 
Eq. (14), Wl,i,0 is the bias term.

The weights are subsequently obtained through the opti-
mization of Eqs. (14) and (15), and the following matrices 
of � ’s are defined for each layer of weights:

where � = 0 or 1.
The values of �MSE

��
l
′
,i
′
 are found by perturbing the scaling 

factors θ based on Eq. (7).
An example formulation of the neural sensitivity analysis 

and the tuning of a small network through finite differences 
is provided in the Supplementary Material.

3.4  Validation with automatic differentiation

As discussed in the previous sections, the results from finite 
differences are less rigorously derived and calculated com-
pared to the ones obtained from automatic differentiation. 
However, both methods serve to produce the same evalu-
ation of sensitivities of individual neurons with respect to 
the objective. Thus, the two methods can serve to validate 
each other.

In both cases, for the example presented in the Sup-
plementary Material, it was identified that the last layer 
has the highest sensitivity values, followed by layer 2, 
then by layer 1. Both results corroborate with each other 
in terms of neuron importance. The difference is that 
in the second and in the last layer, the calculated raw 
sensitivity values are different. For example, the sen-
sitivities of the Layer 2 calculated using the automatic 
differentiation approach are of the order  10−3, whereas 
in the case of the finite differences, they are of the order 
 10−5 −  10−4. This result can be attributed to the finite 
difference method being less rigorous, which can intro-
duce errors based on the shape of the objective function.

It can be assumed that the deviation from the original 
point is minimal such that an accurate estimator of the gra-
dient can be determined. Thus, under this assumption, the 

(14)zl,i,k = f
(

yl,i,k
)

(15)yl,i,k =

NNl−1
∑

j=1

Wl,i,j ∙ zl−1,j,k +Wl,i,0

For Layer 1 ∶

⎡

⎢

⎢

⎣

�l,1,0 … �l,1,NNL−1

⋮ ⋱ ⋮

�l,NNl,0
… �l,NNl,NNL−1

⎤

⎥

⎥

⎦

finite difference approach is as effective as the automatic 
differentiation method when used to perform ranking of 
neurons.

Further, the advantages of the two methods are compared.
The key advantages of the automatic differentiation are:

• It does not rely on approximations and the calculated 
results are rigorously proved.

• It is faster than the finite difference method for a small 
network, when not counting the optimization step.

• All � values are set to 1 or 0, hence easier to optimize or 
calculate.

Whereas in the case of the finite difference method, the 
following key advantages can be listed:

• It does not require an optimization run in order to gener-
ate the sensitivity values.

• It is easy to formulate, i.e., no complicated mathematical 
derivations are required to find the sensitivity values.

• It is possible, without further derivations, to calculate the 
sensitivity values of a whole layer.

• The sensitivity values do not need to be limited to one 
neuron or one layer. Any block of layers or sub-layers can 
be evaluated for sensitivity with respect to the objective 
function.

Overall, the two methods have their own advantages. 
However, for more advanced applications, the finite differ-
ence method is easier to implement and more flexible to be 
adopted for different scenarios.

4  Hierarchical multi‑scale topological 
and parametric optimization of DNNs

4.1  Hierarchical multi‑scale structural contribution 
analysis of DNN’s

The key idea behind the hierarchical multi-scale analysis of 
mathematical models of any type of system is to start from 
the highest level of abstraction, i.e., the entire structure as 
an Input/Output (I/O) system. Then from this view-point, 
to effectively employ a set bisection approach that proceeds 
each time downwards in terms of the scale of detail consid-
ered at the nodes of an ever-expanding binary search tree. 
This continues with a bisection to refine the level of detail 
considered to be optimized during the major iterations of the 
proposed design algorithm.

Refinement of the binary search-tree sub-levels (nodes) 
continues until user-defined criteria are met or the final level 
of mathematical detail is reached during the refinement iter-
ations of the algorithm.
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To illustrate the approach, an example DNN is consid-
ered, with the following set of layers: an Input layer, an Out-
put layer, and 7 hidden layers:

The structural optimization of the DNN topology 
(architecture) is going to be based on evaluating the 
novel structural sensitivity measures described in Sec-
tion 3. Furthermore, to facilitate an efficient multi-scale 
maneuver of identifying rapidly large parts of the DNN 
that require structural optimization, it is necessary to 
introduce an arbitrary and yet a very natural way of 
viewing the hierarchically partitioning/decomposing 
decisions within the algorithm for the automated design 
optimization of the network. The binary tree partitioning 
of the DNN and the artificial �-parameters for the struc-
tural sensitivity calculations are illustrated in Fig. 1.

Thus, following the proposed structural sensitivities cal-
culation scheme, in 3 finite difference steps, the most sensi-
tive/important layer in the DNN can be identified from the 
original 7 hidden layers set, as illustrated in Fig. 2.

Generally speaking, as an upper bound on the number 
of steps required to identify the most contributing layer in 
the DNN, at the most a number of log2NL steps must be 
performed, where NL is the number of hidden layers in 

DNN Layer Set = { Input, 1, 2, 3, 4, 5, 6, 7, Output}

the network. Similarly, if each layer has a fixed number of 
neurons, the identification of the most sensitive neuron in 
the previously identified hidden layer will require at the 
most log2NN finite difference steps, where NN refers to the 
number of neurons in a particular layer.

Overall, the effort to identify a single artificial neuron 
is given by:

Noticeably, the hierarchical multi-scale analysis of 
the DNN system requires a logarithmic number of steps 
to reach any level of”scale” of encapsulation based on a 
binary, set bisection analysis tree.

It is noted that, for very large-scale DNNs, descend-
ing to the level of individual neurons or even layers is 
not required. In fact, in these situations, entire blocks of 
neurons within a layer, as well as entire blocks of hidden 
layers can be added or removed at a time according to the 
values of the structural sensitivity at any level of analysis 
using the binary tree set partitioning. In this case, each 
level of the binary tree signifies a different block size for 
local removal or addition in the topology/architecture of 
the DNNs designed and structurally optimized with the 
proposed scheme.

(16)∝
[

log2NL
]

+
[

log2NN
]

Fig. 1  The binary tree partition-
ing of the DNN with � sensitiv-
ity parameters

Fig. 2  Identification of the most 
important layer by assessing the 
structural sensitivity within the 
binary tree
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With this scheme, the entire process can be fully auto-
mated in a real-time implementation of what is in essence 
a true “unsupervised” Machine Learning, a highly efficient 
and novel DNN design algorithm.

4.2  Network tuning

In the following section, an implementation of the pro-
posed hierarchical scheme is used to tune the weights of 
the network. During tuning, the value of other weights 
is kept constant and the network is re-optimized only by 
changing the values of the neurons identified to be “most 
sensitive”. An iterative process follows, where new sensi-
tivity values are determined and the network is re-tuned, 
until a satisfactory objective value is found. Any method 
can be utilized for the optimization of the network, i.e., 
backpropagation [69] or derivative-free algorithms (e.g., 
Genetic Algorithms) [70].

In the following, the backpropagation method will 
be applied as an illustrative example. This choice is 
justified by the fact that this algorithm is the most 
often used to train DNNs, being accepted as the most 
successful learning procedure for these type of net-
works [71]. The parameters are updated using a rule 
corresponding to the optimization scheme. For the 
simplest Stochastic Gradient Descent method, the 
update rule is:

where W  ’s are the weights, � is the learning rate, and MSE 
is the objective function.

The number of iterations used in each optimization step 
can be arbitrarily small, as empirical implementation has 
demonstrated that even a small number of iterations can 
bring good optimization results by iteratively focusing 
only on the most sensitive layers. This is demonstrated in 
Section 4.2.1.

To find the most sensitive neuron layer to optimize, the 
binary tree search method is implemented. Starting from 
the first level of division, where the whole network is split 
into two parts, the focus is on the section of the network 
that has a higher sensitivity. Subsequently, the most sensi-
tive block of layers is divided into two blocks, and so on 
until the smallest unit has a single layer, always choosing 
the higher sensitivity value along the path. In this way, the 
most sensitive layer can be found efficiently with O

(

log2N
)

 
steps, where N is the total number of layers of the network.

At each iteration, the layer is optimized only by using 
the backpropagation method. After the optimization, 
another binary tree search is performed, and the proce-
dure is repeated until the convergence criterion is fulfilled.

(17)W
�

= W − � ∙
dMSE

dW

Initial implementation showed that the selection of the 
layers is often trapped in a loop, where the neuron hav-
ing the highest sensitivity is always the same and is opti-
mized repeatedly. To overcome this hurdle, a randomized 
algorithm is implemented, utilizing a probabilistic random 
factor in the selection of the neuron to optimize, similar to 
the �-greedy algorithm in reinforcement learning [72–74]. 
This implementation of the random factor is a trade-off 
between”exploration” and”exploitation”, as the neuron 
with lower sensitivity is allowed to have the chance to be 
optimized.

Another issue that is solved by introducing the random 
factor is related to the search when the left branch and 
the right branch of the binary tree have roughly the same 
sensitivity, which makes the selection process difficult. 
This is also frequently observed and requires a level of 
randomness in the selection of the layer to optimize.

When practically equal sensitivities are obtained at 
a branching point, this indicates the same influence for 
the left and right branches, respectively. This means that, 
to choose to branch left or right, the fact that the weight 
indicated by the structural sensitivity of a branching point 
should reflect the”probability” of that branch to be chosen 
must be taken into account. Overall, the proposed algo-
rithm is deterministic, and will remain so with a judicious 
choice of a randomization step to break the problem of 
having to choose numerically equal branching at points.

The algorithm is developed as such:
Suppose  Sleft and Sright are the respective absolute val-

ues of the structural sensitivities at a branching point cal-
culated during the level exploration phase. These sensi-
tivities are used to arrive at the next layer whose tuning 
weights are to be optimized together, while holding all 
other weights of all other layers constant, i.e.,:

where sleft and sright are the sensitivity values on the left and 
right branch at the branching point.

Using the absolute values of the structural sensitivities 
at a branching binary search tree exploration step, choose 
the left or right branch based on a randomized algorithm 
which is applied irrespective of the values of the structural 
sensitivities. The following steps must be followed:

1. Generate a random real number (the random factor) 
between 0 and 1:

2. Calculate the probability for the left and right branch, 
respectively:

(18)Sleft = AbsoluteValue(sleft)

(19)Sright = AbsoluteValue(sright)

(20)r = RandomReal([0, 1])
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3. Make use of the random factor. If branch left probability 
is greater than the random factor, branch left. If not, 
branch right.

The random factor is used throughout the binary search 
process and when used for a sufficiently long time, it will be 
able to break”ties” among the branching points in the binary 
search tree. The pseudo-code of the algorithm is presented in 
Table 2. Furthermore, the hierarchical multi-scale training 
procedure is illustrated in Fig. 3.

4.2.1  Example tuning

In this section, the proposed procedure is run for an example 
of the tuning of a DNN. As the focus is only on the tuning 
functionality, no changing of architecture is involved yet, 
and the adopted architecture is arbitrary.

In this case, an architecture of [4, 5, 5, 5, 5, 5, 5, 5, 5, 2] 
is adopted. The optimization is performed with the hyper-
parameters tabulated in Table 3. The total number of data 
points used is 10,000.

The parameters in Table 3 have the following meaning: 
the Learning rate determines how fast the gradient is reduced 
in each step, the Number of epochs is the number of times 
the optimization is run during each iteration. The Maxi-
mum number of iterations determines the total number of 
iterations the algorithm performs, while � is the trust region 
bound.

Figure 4 demonstrates the change in sensitivity values 
over the process of optimizing the network one layer at a 
time. The 3D bar chart on the top of each figure illustrates 
how the sensitivity values change for each division along 
the architecture. Thus, 2 values are observed in the first level 
of division, 4 in the second level, etc. This is because the 
total number of layers are divided by 2 each time. The line 
plot on the bottom represents the variations in the value of 
the objective function. The figures represent the optimized 
results at iterations 1, 20, 40, 60, 80 and 100, respectively.

From Fig. 4, it can be observed that the sensitivities are 
quickly equilibrated with a minimal number of iterations. 
In the first iteration (Fig. 4a), the sensitivity value is quite 
high for division on the right-hand-sides. Only three bars 
are visible in this case because their sensitivity values are 
so high that the display for the other bars is suppressed. This 
demonstrates that the sensitivity values are significantly dif-
ferent at the initiation stage.

At iteration 20 (Fig. 4b), the sensitivity values have been 
equilibrated, i.e., the values are very similar (although in 

(21)ProbabilityBranchLeft = Sleft∕
(

Sleft + Sright
)

(22)ProbabilityBranchRight = 1 − ProbabilityBranchLeft

raw numbers they are different). The values of the objec-
tive has been decreasing and there are three plateaus in 
the objective value. These plateaus correspond to local 
minima and this result demonstrates that the proposed 
algorithm is capable of overcoming the local minima. A 
local minima that takes a long time to be overcome is dis-
played in Fig. 4d, where a large plateau is observed after 
17 iterations, which is shown to be overcome in Fig. 4e.

At iteration 100 (Fig. 4e), the objective value keeps 
decreasing while the sensitivity values are roughly similar. 
This demonstrates that all neurons are playing an impor-
tant part in the optimization process and the objective 
value is decreasing with further optimizations.

With the introduction of the random factor, the layers that 
are optimized rotate among available layers instead of loop-
ing around a few. The distribution of the layers being opti-
mized during the 100 iterations is plotted in Fig. 5. It can be 
observed that there is a reasonable distribution of layers being 
optimized and the optimization is no longer stuck in a loop 
and only optimizing a single layer with the highest sensitivity.

4.2.2  Comparison with the end‑to‑end backpropagation 
algorithm

As mentioned previously, the conventional method to 
optimize DNNs is using backpropagation methods [75, 
76]. These methods are considered essential and the de 
facto solution for the efficient training and good generali-
zation of large-scale DNNs [77]. Thus, the performance 
of the proposed algorithm is compared with the end-to-
end backpropagation method. The iterations for both the 
end-to-end backpropagation and the hierarchical multi-
scale search algorithms are set with the same values of 
the hyperparameters (Table 4). Each time, the end-to-end 
backpropagation algorithm optimizes all layers instead of 
one selected layer, as in the case of the proposed algo-
rithm. The same architecture of the network ([4, 5, 5, 5, 5, 
5, 5, 5, 5, 2]) is used as the one proposed for the example 
tuning in Section 4.2.1.

The end-to-end backpropagation algorithm is run for 
1,000 number of epochs in each iteration. The number of 
epochs is arbitrarily set this large to ensure optimization to 
the optimal point. Having the same settings for the two algo-
rithm allows comparison between them.

In backpropagation, the derivative of the objective func-
tion with regard to the weights is calculated at every epoch 
[78]. Therefore, the check is performed every round instead 
of for every 50 rounds.

Moreover, for comparison purposes, the same con-
vergence criterion is adopted for the two algorithms 
investigated.
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Table 2  Pseudo-code of the algorithm for the network tuning
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Table 2  (continued)
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Hyperparameters The values of the hyperparameters used 
in the comparison studies of the two methods are listed in 
Table 4. They are selected arbitrarily with a random search 
for optimality.

Objective The objective value obtained from the end-to-end 
optimization is 0.992952, while for the hierarchical multi-
scale method the value is 0.992834. These values of the 
objectives are comparable, with the hierarchical multi-scale 
search method reaching a slightly lower objective value. The 
objective function values are plotted against the number of 
iterations in Fig. 6.

Optimization time The CPU time taken for the end-to-end 
optimization is 111.587 s, while 2,773.410 s are required 
for the hierarchical multi-scale approach. Although optimiz-
ing to a smaller objective value, the hierarchical multi-scale 
search method is taking longer.

Weight values The values of the weights provide informa-
tion on whether the two algorithms arrive at the same local 
minima. Their distribution is plotted in Fig. 7, where it can 
be observed that the weights are distributed in a similar way. 
This indicates that there is a high possibility that the two 
methods optimize to the same local minima, which is further 
corroborated with the fact that the values of the objective 
function are very similar.

5  Use of second‑order information 
in the binary search tree

5.1  Mathematical formulation

In this section, the hierarchical multi-scale approach is modi-
fied to include second order information on the structural sen-
sitivity. This is based on the local second order Taylor expan-
sion of a function f (x, y):

If second order information is recorded at least at the bot-
tom layer of the binary decomposition tree 2 variables can 
be modified simultaneously if required during the simulation 
and/or optimization tasks. Furthermore, the structural sen-
sitivity model is calculated to be quadratic at every branch-
ing point, e.g., by computing first and second order finite 
differences to obtain the information for left (“1”) and right 
(“2”), respectively:

In the following, the approach to exploit the second order 
information in the binary tree-based decomposition search will 
be demonstrated. To this end, in order to decide which branch 
to follow, assuming that this happens only for a single branch, 
and only in the last level of decomposition, one variable is 
changed at a time, for consistency.

Given a quadratic model in �1 ≜ Δ�1 and �2 ≜ Δ�2:

and a trust region:

(23)

f (x + Δx, y + Δy) = f (x, y) +
�f

�x
Δx +

�f

�y
Δy +

1

2

�2f

�x2
(Δx)2 +

1

2

�2f

�y2
(Δy)2

+
�2

�x�y
(ΔxΔy) + Higher Order Terms (H.O.T .)

(24)

f
(

�1 + Δ�1, �2 + Δ�2
)

=f
(

�1, �2
)

+
�f

��1
Δ�1 +

�f

��2
Δ�2 +

1

2

�2f

��1
2

(

Δ�1
)2

+
1

2

�2f

��2
2

(

Δ�2
)2

+
�2

��1��2

(

Δ�1Δ�2
)

+ Higher Order Terms (H.O.T .)

(25)
f
(

�1 + �1, �2 + �2
)

= a + b�1 + c�2 + d�1�2 + e�1
2 + f �2

2

Fig. 3  Hierarchical multi-scale 
training procedure of DNNs

Table 3  The hyperparameters used in formulation for the network 
tuning example

Hyperparameter Value

Architecture [4, 5, 5, 5, 
5, 5, 5, 5, 
5, 2]

Trust region bound,
�

0.001
Learning rate 0.01
Number of epochs in each iteration 1,000
Upper limit on number of iterations 100
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the above quadratic model (even considering only suf-
ficiently small quantized discrete-size steps: �1 = ±�1 , 

{

−�1 ≤ �1 ≤ �1
−�2 ≤ �2 ≤ �2

�2 = ±�2 ) can be optimized and targets can be assigned to 
change the next sublevel values by �∗1 , �

∗
2
∶

�new
1

= �old
1

+ �∗
1

Fig. 4  Optimization results for the example formulation using 10,000 data points
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Whether the optimal steps �∗1 , �
∗
2 are quantized or continu-

ously valued within the trust region, they require cascading 
down the evaluation tree of the model. Coming to a point 
where there is a multiple linked leaf, deciding on a simple 
updating criterion will become very challenging due to this 
coupling.

An alternative way is to use the quadratic model to extract 
further information in computing the left-and-right selection 
probabilities in the non-deterministic, randomised left-or-right 
selector at the binary tree branching points.

Given:

a local approximation model for the two gradient elements 
is obtained:

�new
1

= �old
2

+ �∗
2

(26)q
(

�1, �2
)

= a + b�1 + c�2 + d�1�2 + e�1
2 + f �2

2

(27)
�q

��1
= b + d�2 + 2e�1 Both expressions above are independent of the trust 

region parameters.
To modify the selector (non-deterministic randomized 

element) in a simple way, the selection is based on the aver-
age value of the above gradient elements within the trust 
region of interest. Therefore:

where the 
1

4�1�2
 term comes from ∫

A
∫ 1 ∙ d�2d�1 , for 

A = {�1 − �1 ≤ �1 ≤ �1 + �1, �2 − �2 ≤ �2 ≤ �2 + �2}.

(28)
�q

��2
= c + d�1 + 2f �2

(29)
[

�q

��1

]

=
1

4�1�2∫
�1+�1

�1−�1
∫

�2+�2

�2−�2

(

b + d�2 + 2e�1
)

d�2d�1

Fig. 5  The distribution of the layers selected in the optimization pro-
cess

Table 4  The hyperparameters used for the performance comparison 
between the end-to-end backpropagation and the hierarchical multi-
scale search methods

Hyperparameter Value

Architecture [4, 5, 5, 5, 
5, 5, 5, 5, 
5, 2]

Trust region bound,� 0.001
Learning rate 0.0001
Number of epochs in each iteration 1,000
Upper limit on number of iterations 200
Tolerance 0.001
Number of data points 10,000

Fig. 6  Comparison between the optimization performance of the end-
to-end backpropagation and the hierarchical multi-scale search meth-
ods
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Thus, the end result is:

From Eq. (26), the following is obtained symmetrically:

Both Eqs. (32) and (33) are independent of the trust region 
parameters. The perturbation of the � parameters is such that:

(30)

[

�q

��1

]

=
1

4�1�2 ∫
�1+�1

�1−�1

[

b + d�2 + 2e�1
]�2+�2

�2−�2
d�1

=
1

4�1�2 ∫
�1+�1

�1−�1

[

b
(

�2 + �2
)

+
1

2
d
(

�2 + �2
)2

+ 2e�1
(

�2 + �2
)

− b
(

�2 − �2
)

−
1

2
d
(

�2 − �2
)2

− 2e�1
(

�2 − �2
)

]

d�1

(31)

[

�q

��1

]

=
1

4�1�2 ∫
�1+�1

�1−�1

(

2b�2 + 2d�2�2 + 4e�1�2
)

d�1

=
1

4�1�2

[(

2b�2 + 2d�2�2
)

�1 + 2e�1
2
]�1+�1

�1−�1

=
1

4�1�2

[(

2b�2 + 2d�2�2
)

∙2�1 + 2e�2 ∙ 4�1�1
]

(32)
[

�q

��1

]

= b + d�2 + 2e�1

(33)
[

�q

��2

]

= b + d�1 + 2e�2

where � is an infinitesimal value.
From Eqs. (32) and (33) the following is obtained:

which are independent of the trust region parameters as well.
These equations are going to be used instead of the 

point-wise gradient elements for �1 and �2 in order to select 
which branch to follow, left or right.

The randomized selector step is then defined by Eq. (20) 
and:

If r ≤ rg , the left branch ( �1 ) is selected. If r ≥ rg , the 
right branch ( �2 ) is selected.

(34)�1 = �2 ≜ 1 + �

(35)
[

�q

��1

]

= b + d + 2e

(36)
[

�q

��2

]

= b + d + 2f

(37)rg =

|

|

|

�q

��1

|

|

|

|

|

|

�q

��1

|

|

|

+
|
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|

�q

��2

|
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|

Fig. 7  The distribution of weights obtained from end-to-end backpropagation and hierarchical multiscale optimization
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The previous results on the average value of the gradi-
ents require the calculation of the second and first order 
derivatives by finite differences.

The first order derivatives can be computed by:

or:

while the second order derivative:

In the same way the values of 
�f

��2 and �
2f

��2
2 are obtained 

symmetrically.
The second order mixed derivatives are:

In summary:

Furthermore, the heuristic:

is used for the finite difference calculations.

5.2  Results and analysis

An example run of the optimization is performed adopting 
the second-order information, as described in the previous 
section, to select left or right at the branching point. Simi-
larly, the architecture of [4, 5, 5, 5, 5, 5, 5, 5, 5, 2] is adopted 
for the network, as an example to investigate the effect of 
incorporating second-order information. The number of data 
points used is 10,000. The same set of hyperparameters are 
adopted as enlisted in Table 3.

Figure 8 demonstrates the sensitivity and the objective 
function values over the course of the optimization, at itera-
tions 1, 10, 20, 30, 40 and 50, respectively. The optimization 
reaches the tolerance value at exactly 50 iterations.

(38)
�f
(

�1, �2
)

��1
≈

f
(

�1 + h1, �2
)

− f
(

�1, �2
)

h1
+ O

(

h1
)

(39)
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f (�1+h)
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2h

≈
1

2h2

[

f
(

�1 + h, �2
)

− 2f
(

�1, �2
)

+ f
(

�1 − h, �2
)]

(41)
�2f

��1��2
≈
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]

(43)Δx = 100 ∙
√

MachinePrecision ∙ max{�x�, 1.0}

From these results, it can be observed that the objec-
tive value decreases over time, with convergence to a low 
value within approximately 20 iterations. Moreover, a 
quick equilibration of the sensitivity values is observed 
with this tuning scheme. Within 10 iterations, the values 
of the sensitivities become almost equal across layers, and 
the equilibrium is maintained over further iterations.

The distribution of the layers selected in the optimiza-
tion process is plotted in Fig. 9. It can be observed that 
the first and the last layers are more frequently updated. 
However, with the addition of the random factor, other 
layers have a possibility of being selected as well.

Compared to the optimization using only the first-order 
information, for the proposed scheme, the same effect of 
equilibration and fast convergence is observed. However, 
in this case, the values of the sensitivities are higher due 
to the introduction of �2 at the denominator, as shown in 
Eq. (29).

The other difference is that the proposed approach con-
verges faster, within 50 rounds of iterations, indicating a 
more direct search direction brought about by the utilization 
of the second-order information.

5.3  Comparison with end‑to‑end training

The results of including the second order information into 
the multiscale hierarchical search approach is now compared 
with the end-to-end backpropagation results.

Hyperparameters The hyperparameters adopted for both 
the end-to-end and the hierarchical multi-scale training are 
enlisted in Table 3. It is the same set of hyperparameters 
used in the case of the optimization using the first-order 
information.

Objective The objective value obtained from the end-to-end 
optimization is 0.99283426, while for the hierarchical multi-
scale search method a value of 0.99283424 is obtained. The 
values are comparable, with the hierarchical multi-scale 
optimization arriving again at a slightly lower objective.

Optimization time The CPU time required for the end-
to-end optimization is 358.165 s in this case. In compari-
son, the CPU time in the case of the hierarchical multi-
scale approach is 762.714 s. If the number of iterations 
is compared, the backpropagation takes 99 iterations to 
reach the convergence criterion, whereas the hierarchical 
multi-scale method requires only 50 iterations. The plot 
of the optimization process is shown in Fig. 10. Separate 
graphs are drawn since the number of iterations is dif-
ferent and, thus, they are not directly comparable. One 
iteration in the end-to-end backpropagation optimization 
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corresponds to one update of the weights across all lay-
ers, whereas one iteration in the hierarchical multi-scale 
search approach corresponds to one update of a single 
layer obtained from the binary tree search.

Weight values Similarly, from the distribution plots pre-
sented in Fig. 11, it can be observed that the weights are 
roughly similar, thus the two algorithms are highly likely 
to optimize to the same local minima, conclusion further 

Fig. 8  Optimization results for the example formulation adopting second-order information and using 10,000 data points
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corroborated by the similarity in the values of the objective 
function obtained.

6  Comparison between the first‑ 
and the second‑order search algorithms

The performance of the binary tree search adopting first-
order information is compared against the search utiliz-
ing second-order information by assuming the same set of 
hyperparameters to evaluate the search criterion. Overall, 
the optimization adopting second-order information is faster, 
with a total CPU time of 762.714 s and a total number of 
iterations of 50. This draws comparison to the optimiza-
tion adopting first-order information, with a total CPU time 
of 2,773.410 s and a total number of iterations of 200.In 
the analysis above, the number of epochs in each iteration 
(which means used to optimize each layer of the network) 
is fixed to be 1,000.

To further compare how the incorporation of second-
order information improves the optimality search by reduc-
ing the operation time, a convergence criterion is inserted 
during each optimization iteration. This convergence crite-
rion is defined as follows:

where Wlayer refers to the weights in the layer being opti-
mized, and the tolerance is a user-defined input value which 
can be equal to the convergence criterion of the whole opti-
mization problem.

By comparing the infinity norm of the weights in the layer 
tuned to a tolerance value, further optimization of the layer 
is stopped if the value of this tolerance is met. Thus, the 
number of epochs in each iteration will be less than 1,000.

In comparison, the convergence criterion for the whole 
optimization problem is:

where Wnetwork refers to all the weights in the network.
Practical implementation shows that  10−4 is a better toler-

ance value for each iteration, while for the overall optimiza-
tion a  10−3 value should be used.

To demonstrate how the incorporation of second-order 
information improves the optimization speed, the average 
value of the number of epochs, the CPU time and the infinity 
norm of the gradient values at each iteration are recorded. 
The comparison results are shown in Table 5. The data is 
split into two sets, one used for training the network (“Train-
ing set”) and one for a validation step (“Testing set”).The 

(44)‖

𝜕MSE

𝜕Wlayer

‖

inf

< tolerance

(45)‖

𝜕MSE

𝜕Wnetwork

‖

inf

< tolerance

Fig. 9  The distribution of the layers selected in the optimization pro-
cess adopting second-order information

Fig. 10  Comparison between the optimization performance of the 
end-to-end backpropagation and the hierarchical multi-scale search 
methods
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average values are obtained at each iteration. The total val-
ues are obtained for all iterations.

After adding a convergence criterion at each iteration, it is 
observed that the adoption of the second-order sensitivity as 
the selection benchmark requires less time compared to the 
first-order. The average CPU time and the average number 
of epochs in each iteration is smaller when the second-order 
information is adopted. Although the total number of itera-
tions is higher for the second-order case, this is compensated 
with less search time at each iteration.

Comparing with the classical backpropagation method, 
the second-order approach requires a comparable, or even 
less CPU time per iteration. However, routinely, the back-
propagation method is the fastest algorithm overall with 

the second least total number of iterations. Although this 
approach outperforms both the first- and the second-order 
processes in CPU time, the first-order hierarchical multi-
scale search requires a lower number of iterations, while the 
second-order is faster per iteration.

The convergence of ‖ �MSE

�Wnetwork

‖

inf
 is plotted across the 

number of iterations in Fig. 12a, where it can be observed 
that both methods converge almost roughly at the same time 
(around 50 iterations). The only reason that the second-order 
search takes longer is due to the fact that the tolerance value 
has not been reached in exact numerical values. Relaxing the 
value of the tolerance parameter can speed up the process.

In Fig. 12b, the scatter plot of the number of epochs at 
each iteration against the number of iterations is presented. It 
can be observed that the values are almost separated into two 
categories: either reaching the maximum number of epochs 
allowed in each iteration (1,000), or using only one epoch to 
reach the tolerance, with the exception of only two points. 
Some explanations for this behavior are that either the toler-
ance is difficult to reach, or the layer is already optimized so 
a polarized distribution of the number of epochs is obtained.

Comparing with Fig. 12c, the distribution of the CPU time 
is similar to the results presented in Fig. 11b for the num-
ber of epochs, indicating a close relationship between these 

Fig. 11  The distribution of the weights obtained from the end-to-end backpropagation and hierarchical multi-scale search algorithms with sec-
ond-order information

Table 5  Comparison between the binary tree search based on first- 
and second-order information, against backpropagation

Order First Second Backpropagation

Training set MSE 0.98809 0.83099 0.98177
Testing set MSE 0.98810 0.83009 0.98057
Average epochs 405.7 203.4 200.0
Total iterations 51 101 99
Total CPU time (s) 350.4 310.9 297.3
Average CPU time (s) 5.746 3.013 3.022
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parameters during each iteration, with fluctuations due to the 
speed of performing different calculations.

Overall, the second-order information-based approach per-
forms better than the first-order in terms of the total perfor-
mance, as well as the performance per iteration. It also has 
the potential to converge in fewer iterations compared to the 
first-order approach with a different definition of the tolerance.

7  Application to large scale problems 
and other datasets

The advantage of the hierarchical multi-scale method is not 
obvious when the network size is small, as demonstrated in 
the previous sections.

The complete process of automatic differentiation consists 
of two steps:

1) An NLP optimization to obtain the weights and the neu-
ron outputs, and

2) Iterations to calculate the sensitivities.

For a network of 8 layers, the number of variables that need 
to be adjusted is equal to the number of layers multiplied with 
the number of weights (25) and biases (5), in total 30 vari-
ables. If the network is trained using the full backpropagation 
approach, a number of 240 variables is adjusted during each 
iteration, with the appropriate calculation of the gradients (240 
elements). In the case of the multi-scale hierarchical approach, 
if the optimization is performed layer-by-layer, only 30 vari-
ables is adjusted at every iteration, resulting in a much smaller 
optimization problem.

For a structure of [4, 5, 3, 2, 2], the CPU times required for 
the calculation of sensitivities of 100 data points are tabulated 
in Table 6.

The operating system used to run the algorithm is a macOS 
Big Sur version 11.0.1 (20B29) and the coding language is 
Python. The processor used to run this code is a 2.3 GHz 
Quad-Core Intel Core i5 with a memory of 8 GB 2133 MHz 
LPDDR3.

It can be observed that most of the computation time is 
spent on the optimization process (97.7% of CPU time). This 
is an uncontrollable process as a standard optimizer is used in 
these examples. The calculation of the sensitivities is fast, tak-
ing only ~ 0.03 s in total (2.30% of CPU time). Thus, this is 
quite an effective method as long as the optimizer is suffi-
ciently efficient. A disadvantage of the algorithm is that it 

Fig. 12  Comparison of the convergence rate of optimization using 
first-order vs second-order information

Table 6  The CPU time for the sensitivity calculation of a neural network with the architecture [4, 5, 3, 2, 2] using 100 data points

Steps Optimization Iteration 1 Iteration 2 Iteration 3 Iteration 4 Total

CPU Time (s) 1.23300 0.00071 0.01920 0.00787 0.00073 1.26151



24983Hierarchical multi-scale parametric optimization of deep neural networks  

1 3

requires the storage of a matrix of size (NN,NN × NK) , where 
NN is the total number of neurons and NK is the total number 
of data points.

As for the small network used for the illustrative case 
study, the benefits of utilizing the proposed approach 
are not clear, the influence of a much larger network 
will be investigated in this section. Moreover, as this is 
a simulated case study, the advantages of the proposed 
framework will be further demonstrated by applying it 
to other datasets publicly available. For this purpose, the 
well-known and widely-accepted University of Califor-
nia Irvine (UCI) Machine Learning Repository [79]1 is 
chosen.

7.1  Large scale problems

The hierarchical multi-scale search algorithm is imple-
mented to a network with 20 hidden layers of 5 neurons 
each. The performance of the first-, the second-order and the 
backpropagation methods is illustrated in Table 7. The aver-
age values are obtained at each iteration. The total values are 
obtained for all iterations.

From these results, it can be observed that the backprop-
agation is still the fastest algorithm in terms of the total 
CPU time and CPU time per iteration. The second-order 
method is slightly faster than first in terms of the average 
CPU time per iteration. The number of iterations is the same 
for the first- and second-order methods in this case, both sig-
nificantly lower compared to the backpropagation method. 
This demonstrates the effectiveness of the sensitivity-based 
selection method in optimizing the network to a required 
tolerance.

Figure 13 demonstrates the performance of the first- 
against the second-order method. From Fig. 13a, the rate 
of convergence is roughly similar for these two meth-
ods. Compared to the results from the smaller network 

(Fig. 12), it can be observed that the training time and 
the number of epochs are separated into two categories, 
either costing the maximum to optimize a particular layer, 
or immediately reaching the convergence criterion with 
1 epoch. This is demonstrated in the polarization of data 
points in Figs. 13b and 13c.

Table 7  The comparison between the binary tree search based on 
first- and second-order information, against backpropagation, for a 
network with 20 layers

Order First Second Backpropagation

Training set MSE 0.94697 0.94631 0.93835
Testing set MSE 0.97121 0.93880 0.86888
Average epochs 397.26 397.26 200.00
Total iterations 50 50 97
Total CPU time (s) 1,022.4 1,153.5 912.7
Average CPU time (s) 18.681 18.402 9.376

Fig. 13  Comparison of the convergence rate of optimization using 
first- vs second-order information for a network with 20 layers

1 The repository can be found online at https:// archi ve. ics. uci. edu/ ml/ 
datas ets. php

https://archive.ics.uci.edu/ml/datasets.php
https://archive.ics.uci.edu/ml/datasets.php
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The number of layers is then increased to 50. The results 
are summarized in Table 8 and Fig. 14. The average values 
are obtained for each iteration. The total values are obtained 
for all iterations.

From Table 8, it can be observed that the first-order 
method is now the fastest in terms of average CPU time, 
followed by the backpropagation method, demonstrating the 
advantage of the multi-scale search for large-scale networks. 
However, the second-order method has a key advantage with 
the lower number of iterations.

Observing Fig. 14, the second-order method initially 
seems to be converging more slowly compared to the first-
order, later reaching similar speeds of convergence after 
several iterations. As the speed of convergence differs from 
that of a 20-layer model, it can be inferred that there is no 
fixed dominance of the first- over the second-order method 
and vice versa.

Similarly, it can be concluded that there is a polarization 
in terms of data points, indicating either immediate conver-
gence or very slow convergence of a particular layer. Based 
on these results, it is postulated that the slow convergence 
occurs on layers that contribute with significant changes 
to the overall model performance, indicating the unequal 
importance of different layers inside the network.

7.2  Other datasets

A comparison between the end-to-end backpropagation 
and the hierarchical approach is performed for three UCI 
datasets:

 I. The Combined Cycle Power Plant (CCPP). The input 
dimension is 4 and the output dimension is 1. The 
structure of the network is [4, 3, 2, 2, 1]. The total 
number of data points is 9,568.

 II. The Appliances Energy Prediction (AEP). The input 
dimension is 24 and the output dimension is 2. The 
structure of the network is [24, 10, 5, 5, 3, 2]. The 
total number of data points is 10,000.

 III. The Temperature Forecast (TF). The input dimension 
is 21 and the output dimension is 2. The structure of 
the network is [21, 10, 5, 5, 3, 2]. The total number 
of data points is 10,000.

A more detailed description of these datasets is presented 
in the Supplementary Material.

Table 8  Comparison between the binary tree search based on first- 
and second-order information, against the backpropagation method, 
for a network with 50 layers

Order First Second Backpropagation

Training set MSE 1.00000 1.00000 1.00001
Testing set MSE 1.00000 1.00000 1.04468
Average epochs 208.83 416.67 200.00
Total iterations 100 50 100
Total CPU Time (s) 3,271.9 3,746.6 2,529.4
Average CPU time (s) 24.519 48.912 25.206

Fig. 14  Comparison of the convergence rate of optimization using 
first- vs second-order information in a network with 50 layers
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The results of the comparison and the hyperparameters 
used are tabulated in Tables 9, 10 and 11. In these tables, the 
Learning rate determines how fast the gradient is reduced in 
each step, the Tolerance determines the break-off value com-
pared to the sum of gradients to indicate the termination of 
the algorithm, while the Inner tolerance is compared to the 

value of the maximum gradient in the network at every itera-
tion to determine a stop criterion. The Number of epochs 
is the number of times the optimization is run during each 
iteration. The Maximum number of iterations determines the 
total number of iterations the algorithm performs, while � is 
the infinitesimal difference adopted in the finite difference 
method. The values are optimized through trial-and-error 
methods and are unified for a clear comparison.

From these results, several characteristics of the proposed 
method can be extracted.

Firstly, with appropriate hyperparameters, the hierarchical 
approach is able to optimize to a better solution compared 
to the end-to-end backpropagation method. Although the 
computation is not faster, in particular applications where a 
trained model must be deployed, the speed is not always the 
key. For example, in an industrial setting, the better solu-
tion will be always pursued, as it will often have significant 
impact on the operation costs.

Secondly, in case of the hierarchical approach, there is 
also a trade-off of accuracy with respect to the solution time. 
When the number of epochs and the maximum number of 
iterations is set high, more accurate results are obtained. 
This is a significant difference compared to the end-to-end 
backpropagation, where only the learning rate indirectly 
determines both the speed and the accuracy of the results.

The framework, relying on sensitivity values of individual 
neurons relative to the overall output, is simple to imple-
ment, efficient to run and successful in producing optimized 
neural networks. In this case, the key advantage of the pro-
posed approach is that it is less affected by the vanishing 
gradient problem, which occurs when optimizing very deep 
neural networks using gradient-based methods, specifically 

Table 9  Comparison between the multiscale hierarchical search 
based on first- and second-order information, against end-to-end 
backpropagation for the UCI Dataset I: CCPP 

Parameters and results First-order Second-order End-to-end

Learning rate 0.05 0.05 0.05
Tolerance 0.01 0.01 -
Inner tolerance 0.01 0.01 -
Number of epochs 20 20 -
Maximum number of itera-

tions
50 50 -

Trust region bound, � 0.001 0.001 -
Time of execution (s) 1.06170 2.49700 0.24170
Final MSE 0.22814 0.20021 0.20920

Table 10  Comparison between the multiscale hierarchical search 
based on first- and second-order information, against end-to-end 
backpropagation for the UCI Dataset II: AEP 

Parameters and results First-order Second-order End-to-end

Learning rate 0.05 0.05 0.05
Tolerance 0.005 0.005 -
Inner tolerance 0.005 0.005 -
Number of epochs 30 30 -
Maximum number of itera-

tions
60 60 -

Trust region bound, � 0.001 0.001 -
Time of execution (s) 2.80974 7.15047 0.47615
Final MSE 1.00010 0.99979 1.00006

Table 11  Comparison between the multiscale hierarchical search 
based on first- and second-order information, against end-to-end 
backpropagation for the UCI Dataset III: TF 

Parameters and results First-order Second-order End-to-end

Learning rate 0.05 0.05 0.05
Tolerance 0.005 0.005 -
Inner tolerance 0.005 0.005 -
Number of epochs 30 30 -
Maximum number of itera-

tions
60 60 -

Trust region bound, � 0.001 0.001 -
Time of execution (s) 1.50658 4.92685 0.29743
Final MSE 1.00000 1.00000 2.38036

Fig. 15  The evolution of the gradient values for the last layer, for a 
network with 20 layers
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during backpropagation [80–85]. In the case of the tradi-
tional methods, the gradients, when populated throughout 
the layers, become so diminished that it affects the accuracy 
of the optimization results.

Figure 15 presents the gradient values calculated over 200 
iterations of the DNN with 20 layers. These results show that 
the gradient decreases very slowly over the first 140 itera-
tions, while the solution is produced within 50 iterations, as 
illustrated in Table 7.

Thus, by not involving populating the gradients during 
the training procedure, the hierarchical approach has great 
potential in achieving improved solutions at lower computa-
tional effort, by focusing the modification of the parameters 
on the most sensitive parts of the DNN during the optimi-
zation phase, as illustrated in the case studies investigated 
above. With further development the proposed optimization 
framework can create a new paradigm shift in how profes-
sionals optimize neural networks.

8  Conclusions and outlook

In this paper, a novel hierarchical multi-scale search 
algorithm is introduced for the tuning of DNNs. The 
approach utilizes a leveled method where, within each 
level, the network is divided into left and right sides, 
and the sensitivity of each side branch is evaluated using 
the first- or second-order finite differences method. The 
algorithm then progressively selects one side to further 
divide the network until only one layer remains, resulting 
in a binary tree search. The selected layer is optimized in 
one iteration until a convergence criterion is achieved. 
The selection process repeats until an overall tolerance 
is reached, signaling the end of the network tuning. The 
proposed algorithm offers a key advantage in optimiz-
ing large DNNs with numerous layers, due to its search 
efficiency of O(logN).

The key innovation of the algorithm is its implementa-
tion of a binary search process that optimizes a single layer 
at a time. The introduction of selective tuning enables rapid 
convergence of the DNNs and efficient equilibration of the 
sensitivity values, particularly in the context of large net-
works, where only critical layers are optimized. If the toler-
ance requirements are not stringent, the method potentially 
achieve faster convergence than the optimization of all lay-
ers. As the sensitivity values of the scaling factor also cor-
respond to neuron importance, there is potential for future 
research to explore how this method can be manipulated for 
the structural evolution of DNNs.

The algorithm also incorporates a crucial element of ran-
domization through the binary selector, where a sensitivity-
based probability value is computed and utilized as the like-
lihood to choose between left and right. This random factor 

contributes to the improved performance of the algorithm 
by reducing repetition during the optimization process of a 
single layer, ultimately resulting in a more efficient optimiza-
tion for large-scale networks. The results of the case studies 
conducted to demonstrate the application of the procedure 
show that the hierarchical multi-scale search algorithm can 
generate solutions that are comparable or even better to 
those produces by conventional approaches such as end-to-
end backpropagation.

Based on the results presented in Section 5, the newly 
proposed sensitivity metric facilitates effective analysis, 
evaluation, design, and, control of very large-to-enormous 
scale systems, both mathematically and abstractly. This met-
ric can enhance the high-impact topic emphasized in Sec-
tion 5 through the following aspects:

1. The first-order structural sensitivities provide a linear 
approximation of the investigated system from a hierar-
chical multi-scale perspective.

2. The second-order structural sensitivities quantitatively 
measure the degree of local non-linearity of the system, 
considering its interacting parts from the top level of 
abstraction down to its finest modelling scale.

3. The mixed second-order sensitivities reveal the degree of 
coupling within the underlying level sub-compartments 
of the model, as the procedure moves down the levels of 
the hierarchical multi-scale structure/framework.

This numerically quantitative system metric allows for:

1. The exploration of new self-adaptive local information, 
simulation and system optimization algorithms within 
the currently proposed framework.

2. A self-adaptive parallelization of nested computa-
tions that can reliably assign loosely interacting (or 
loosely connected) components to different parallel 
processors. As a result, new parallel algorithms can 
be implemented on existing hardware, and new ded-
icated computational architectures can be designed 
to be exploited fully by the novel computational 
modelling and solution framework.

To ensure that the proposed framework can truly bring 
about a real paradigm shift in the use of neural networks for 
industrial (large scale) applications, additional efforts are nec-
essary to improve the implementation and optimize the code.

8.1  Structural sensitivity equilibration

One important feature of the novel hierarchical multi-
scale optimization algorithm is its ability to equilibrate 
the structural sensitivities and converge to at least a 
local minimum. The algorithm employs a randomized 
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left-or-right non-deterministic selector criterion at the 
binary multi-scale partitioning tree, which is statistically 
designed to favor the side with the largest locally deter-
mined absolute structural sensitivity (derivative) value. 
This results in iterations that are expected to achieve a 
path not only to a local minimum, but also to exhibit 
equilibration of left and right structural sensitivity values 
at the branching points of the binary partitioning tree.

The use of compartments with arbitrary partitioning gen-
erates equilibrated values in terms of importance on the over-
all defined performance index criterion of the entire system 
being modelled or even controlled online in real-time by the 
novel hierarchical multi-scale optimization framework. This 
property enables further novel considerations, as a system 
that is equilibrated in the structural sensitivity sense can eas-
ily detect any small deviation at the top-level of the binary 
tree and identify it at the finest structure of the embedded 
model and underlying physical system in log2 steps of the 
total number of the finest structure components of the system.

The proposed framework challenges the current status 
quo through rounds of partial training and facilitates inno-
vation in the most fundamental steps of the DNNs devel-
opment, leading to the development of efficient automatic 
compression and acceleration techniques.

This work raises interesting questions related to the mean-
ing and potential physical interpretation beyond from the 
mathematical definition, as well as the physical interpreta-
tion of the system being modelled within the novel hierarchi-
cal multi-scale modelling framework proposed.

To answer these questions, it is essential to apply the 
model to industrial scenarios and examine the implications 
in a real-world setting.

8.2  Inverse problem: Physical system laws analysis 
and discovery

With an appropriately refined mathematical model of a sys-
tem, both parametric and structural analysis can be carried 
out starting from the chosen performance index law and 
investigating the partitioning obtained at that level. The struc-
tural sensitivity balance for left-and-right partition can be 
achieved through recursive application of the model all the 
way to the tuning of fixed parameters, leading to the develop-
ment of a highly equilibrated hierarchical multi-scale math-
ematical or other abstract model that can describe and predict 
the behavior of the underlying physical or abstract system.

Moreover, the proposed novel algorithmic framework 
allows for transparent interpretation of all its interactions and 

Table 12  Table of notations
� Scaling factor
� Objective function minimiser

L Lagrangian function
Wij Connection weights between neuron i and neuron j

z Output of a neuron after activation (multiplied by the scaling factor)
y Input to a neuron, also the output from the previous layer

h Difference between the supposed output of a neuron and product of activated 
neuron output and scaling factor

h is bounded to be zero
� The set of Lagrange multipliers associated with the constraints h(⋅;⋅)
f Activation function applied to the input to a neuron
Sleft, Sright Absolute values of the structural sensitivities at the left and right side of the 

branching point, respectively

� Trust region bound
� A small disturbance in the value of sensitivity
q Quadratic model as a selector at the branching point
a, b, c, d, e, f Quadratic model coefficients

r Value of the randomized selector to determine the side of a branch to go down
wrj Weights between input neuron r and the hidden neuron j (Table 1)
vjk Connection weight between hidden neuron j and output neuron k (Table 1)
Qik Percentage of influence of the input variable xi and output yk (Table 1)
WPik Influence of the input variable xi on the output yk (Table 1)
f
�

(netj) Derivative of the activation function of the hidden neuron j (Table 1)

f
�

(netk) Derivative of the activation function of the output neuron k (Table 1)
Rd Layer-wise relevance score (Section 2.2)
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machinery, which facilitates the identification of modelling 
flaws and exploration of alternative propositions to correct or 
complement any existing model in a minimal number of steps. 
Additionally, it enables the correct identification and safe uti-
lization of degrees of freedom that ensure the satisfaction of 
multiple desirable criteria in real-world applications such as 
safety, profitability stability project longevity and continuity.

The proposed hierarchical multi-scale modelling framework 
can be applied to explore various topics such as alternative 
mathematical game theory models and imaginative solutions 
methods, as well as solving currently difficult multi-objective 
or other multilevel mathematical optimization formulations.

The next step in the development of the framework 
involves using the sensitivities introduced in this work to 
adapt the structure and size of DNNs in an unsupervised 
way, leading to the deployment of highly flexible and plastic 
neural networks within the field of AI.

9  Table of notations

The notations are presented in Table 12.
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