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Abstract
Convolutional neural networks (CNNs) have shown good performance in many practical applications. However, their high
computational and storage requirements make them difficult to deploy on resource-constrained devices. To address this issue,
in this paper, we propose a novel iterative structured pruning algorithm for CNNs based on the recursive least squares (RLS)
optimization. Our algorithm combines inverse input autocorrelation matrices with weight matrices to evaluate and prune
unimportant input channels or nodes in each CNN layer and performs the next pruning operation when the testing loss is
tuned down to the last unpruned level. Our algorithm can be used to prune feedforward neural networks (FNNs) as well.
The fast convergence speed of the RLS optimization allows our algorithm to prune CNNs and FNNs multiple times in a
small number of epochs. We validate its effectiveness in pruning VGG-16 and ResNet-50 on CIFAR-10 and CIFAR-100 and
pruning a three-layer FNN on MNIST. Compared with four popular pruning algorithms, our algorithm can adaptively prune
CNNs according to the learning task difficulty and can effectively prune CNNs and FNNs with a small or even no reduction
in accuracy. In addition, our algorithm can prune the original sample features in the input layer.

Keywords Convolutional neural network · Model compression · Structured pruning · Iterative pruning · Recursive least
squares

1 Introduction

Convolutional neural networks (CNNs) are the most widely
used class of deep neural networks (DNNs) [1–3]. CNNs
are well suited for handling computer vision tasks [4–7]
since they can extract sample features from images at dif-
ferent abstract levels through convolutional and pooling
mechanisms [8]. However, CNNs generally have high com-
putational and storage costs, which hinder their widespread
applications to some extent [9, 10]. In particular, in the
past decade, mobile devices, such as smartphones, wear-
able devices and drones, have been increasingly used. There
remains a growing demand to deploy CNNs with these
devices, but their computational and storage capacities are
much lower than those of conventional computers [11].
Therefore, how to compress CNNs has become an impor-
tant research focus in deep learning.
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At present, five categories of model compression algo-
rithms have been proposed for CNNs [12]. The first category
is network pruning, which prunes redundant channels or
nodes [13, 14]. The second category is parameter quanti-
zation, which reduces the bits of all parameters to reduce
the computational and storage costs [15, 16]. The third
category is low-rank factorization, which decomposes three-
dimensional filters into two-dimensional filters [17]. The
fourth category is filter compacting, which uses compact fil-
ters to replace loose and overparameterized filters [18]. The
last category is knowledge distillation, in which knowledge
is acquired from the original network and used to generate a
smaller network [19, 20]. Among these categories, network
pruning has received the most research attention [21].Thus,
we focus on this type of model compression algorithms in
this paper.

Network pruning methods can be further classified into
unstructured and structured pruning methods [22]. In theory,
unstructured pruning methods can prune arbitrary redundant
nodes in convolutional layers and achieve high compression
ratios. However, unstructured pruning methods are difficult
to implement since they destroy the form of weight matrices.
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To address this issue, almost all existing unstructured prun-
ing algorithms, such as Optimal Brain Damage [23], Soft
Channel Pruning [24] and �0 Minimization [25], zero out
the unimportant weights instead of really pruning the redun-
dant nodes in simulation experiments. In contrast, structured
pruningmethods aim to remove unimportant channels. These
methods preserve the structure of weight matrices and are
thus more practical and popular, although their pruning gran-
ularity is coarse.

Structured pruning methods usually include three stages:
training, pruning and fine-tuning (also called retraining in
some papers) [26, 27]. According to the number of prun-
ing operations, these methods can be divided into one-shot
structured pruning and iterative structured pruning [28]. The
former performs pruning and fine-tuning only once and thus
requires fewer epochs to obtain the compressedmodel. How-
ever, its compression ratio and accuracy rely heavily on the
given pruning ratio. In other words, it is often difficult to
obtain the optimal compressed model with one-shot pruning.
In contrast, the latter performs multiple pruning and fine-
tuning operations, which may lead to better results; however,
multiple operations are very time-consuming, especially for
large-scale neural networks. There is still much debate about
what kind of structured pruning approach is best for different
scenarios.

In recent years, researchers have proposed many struc-
tured pruning algorithms. For example, Li et al. proposed a
one-shot pruning algorithm called the �1-norm [29], which
evaluates and prunes unimportant output channels by using
�1 regularization for the weights of the convolutional lay-
ers. Liu et al. proposed another one-shot pruning algorithm
called Network Slimming [30], which prunes channels by
using �1 regularization for the scaling factors in the batch
normalization layers. Molchanov et al. proposed two itera-
tive pruning algorithms called Taylor FO [31] and Taylor SO
[32], which use the first- and second-order Taylor expansions
to estimate the contribution of each channel to the final loss,
respectively, and remove the channels with scores smaller
than a given threshold. Chen et al. proposed another itera-
tive pruning algorithm called Collaborative Channel Pruning
[33], which evaluates and removes unimportant channels by
combining the convolution layer weights and batch normal-
ization layer scaling factors.

Although researchers claim that these algorithms can
effectively compress CNNs, they still have three common
shortcomings. The first shortcoming is that they use stochas-
tic gradient descent (SGD) to optimize CNNs during the
training and fine-tuning stages. It is well known that SGD
converges slowly and can be difficult to tune [34], which
results in these algorithms requiring more training epochs.
The second shortcoming is that they mainly use the weight
magnitude to prune unimportant output channels. In fact,
the training and fine-tuning results are influenced by the

dataset, and the redundancy of the input features in each
layer is the main reason to prune channels. Therefore, the
weight magnitude cannot be used to evaluate the redundancy
accurately. The third shortcoming is that the pruning ratio
is manually and empirically set to a fixed value by users,
whichmay cause underpruning or overpruning. In addition to
these three shortcomings, existing iterative structured prun-
ing algorithms have another shortcoming in that the pruning
times and the repruning timing are manually set by users.

To overcome the above shortcomings, we propose a novel
iterative structured pruning algorithm in this paper. In our
previous work [35], we proposed a recursive least squares
(RLS) optimization algorithm, which can be viewed as a
special SGD algorithm with the inverse input autocorrela-
tion matrix as the learning rate. Compared with SGD and
Adam optimization, the RLS optimization has better conver-
gence speed and quality. Our proposed algorithm is based
on this optimization algorithm. In addition to using the RLS
optimization to train and fine-tuneCNNs, it combines inverse
input autocorrelation matrices with weight matrices to eval-
uate and prune unimportant input channels or nodes and
automatically performs the next pruning operation when the
testing loss is tuned down to the last unpruned level. Our
algorithm can also be used for pruning feedforward neural
networks (FNNs). We validate its effectiveness in pruning
VGG-16, ResNet-50 and an FNN on the CIFAR-10, CIFAR-
100 and MNIST datasets. Compared with existing iterative
pruning algorithms, our algorithm can prune CNNs and
FNNsmultiple times in a smaller number of epochs andmore
effectively prune CNNs and FNNs with a smaller accuracy
loss. In addition, it can adaptively prune CNNs according to
the difficulty of the learning task.

The key contributions of this paper can be summarized as
follows:

1) We use the RLS optimization rather than SGD to acceler-
ate our algorithm and all comparative pruning algorithms
used in the experiments.

2) We present a novel iterative structured pruning algorithm
that combines inverse input autocorrelation matrices and
weight matrices to evaluate and prune unimportant input
channels or nodes.

3) We suggest the testing loss as the repruning criterion of
our algorithm and all comparative iterative pruning algo-
rithms. Each repruning operation is performed when the
testing loss is tuned down to the last unpruned level.

4) We conduct extensive experiments to verify the effec-
tiveness of our algorithm. Our algorithm can effectively
reduce both the number of floating-point operations
(FLOPs) and number of parameters for CNNs and FNNs
with a small accuracy loss. In particular, the experiments
on FNNs show that our algorithm can prune the original
sample features.
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The remainder of this paper is organized as follows: In
Section 2, we review the RLS algorithm and the RLS opti-
mization for CNNs. In Section 3, we introduce our algorithm
in detail. In Section 4, we present the experimental settings
and results. Finally, we summarize this paper in Section 5.

2 Background

In this section, we introduce the background knowledge
and some notations used in this paper. We first review the
derivation of the RLS algorithm and then review the learning
mechanism of CNNs with the RLS optimization.

2.1 Recursive least squares

RLS is a popular adaptive filtering algorithm with fast con-
vergence speed. This algorithm recursively determines the
weights that minimize the weighted linear least squares loss
function based on the input signal [36]. Compared with the
linear least squares algorithm, it is more suitable for online
learning.

Let Xt = {x1, · · · , xt } denote all sample inputs from the
starting step to the current step, and let Y∗

t = {y∗
1 , · · · , y∗

t }
denote the corresponding target outputs. On this basis, the
quadratic minimization problem solved by the RLS algo-
rithm over time t is defined as

wt = argmin
w

1

2

t∑

i=1

λt−i (y∗
i − wTxi )

2
(1)

where w is the weight vector, and λ ∈ (0, 1] is the forget-
ting factor which enhances the importance of recent data
over older data [37]. Let ∇w

1
2

∑t
i=1 λt−i (y∗

i − wTxi )
2 = 0.

Then, we easily obtain

w = (

t∑

i=1

λt−i xi xTi )−1
t∑

i=1

λt−i xi y∗
i (2)

We define At and bt as follows:

At =
t∑

i=1

λt−ixixTi (3)

bt =
t∑

i=1

λt−ixi y∗
i (4)

Based on (2), the solution wt to (1) can be derived as

wt = A−1
t bt (5)

To avoid calculating the inverse of At in (5), we define the
inverse input autocorrelation matrix Pt = (At )

−1. Equations

(3) and (4) show that At and bt can be computed recursively
as follows:

At = λAt−1 + xtxTt (6)

bt = λbt−1 + xt y∗
t (7)

Using Sherman-Morrisonmatrix inversion formula [38]with
(6), we obtain

Pt = 1

λ
Pt−1 − 1

λht
ut (ut )T (8)

where ut and ht are defined as follows:

ut = Pt−1xt (9)

ht = λ + uTt xt (10)

Substituting (7) and (8) into (5), we obtain

wt = wt−1 − 1

ht
ut et (11)

where et is defined as

et = wT
t−1xt − y∗

t (12)

Finally, we obtain the RLS algorithm, which is defined by
(8) to (12).

2.2 CNNs with RLS optimization

The RLS optimization is a special type of SGD algorithm
with the inverse input autocorrelation matrix as the learning
rate [35]. Due to the fast convergence speed of the RLS algo-
rithm, it can efficiently optimize CNNs. A CNN generally
consists of an input layer followed by some number of con-
volutional layers, pooling layers and fully-connected layers
[39]. Since the pooling layers have no learnable weights, we
need to review the RLS optimization only for the convolu-
tional and fully-connected layers.

Let Y0
t and Y∗

t denote the input and the target output of
the current training minibatch, respectively, and let L denote
the total number of convolutional and fully-connected layers.
The forward-propagation learning of the mth sample in the
current minibatch in the lth CNN layer is illustrated in Fig. 1.
For brevity, we omit the bias term in each layer. Based on
these notations, we briefly introduce the RLS optimization
rules for CNNs. According to [35], the recursive update rule
of the inverse input autocorrelation matrix Plt in the l

th layer
is defined as

Plt ≈ 1

λ
Plt−1 − k

λhlt
ult (u

l
t )
T (13)
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(a) A convolutional layer (b) A fully-connected layer

Fig. 1 Forward-propagation learning of the mth sample in the cur-
rent minibatch in the lth CNN layer. (a): Yl−1

t(m,i) and Yl
t(m, j) are the

i th channel input and the j th channel output, Wl
t−1(i, j) is the filter

weight matrix between the i th input channel and the j th output chan-
nel, Rl−1

t(m,i,u,v) is the receptive field matrix in the i th input channel for

the output Yl
t(m, j,u,v), Cl−1 and Cl are the number of input and output

channels, and fl (·) is the activation function. (b): Yl−1
t(m,i) and Yl

t(m, j)

are the i th node input and the j th node output, Wl
t−1(i, j) is the weight

between the i th input node and the j th output node, and Nl−1 and Nl
are the number of input and output nodes

where k > 0 is the average scaling factor and ult and hlt are
defined as follows:

ult = Plt−1x
l
t (14)

hlt = λ + k(xlt )
Tult (15)

where xlt is the average vector. If the l
th layer is a convolu-

tional layer, xlt ∈ R
Cl−1HlWl is defined as

xlt = 1

MtUlVl

Mt∑

m=1

Ul∑

u=1

Vl∑

v=1

( f latten(Rl−1
t(m,:,u,v,:,:)))

T (16)

where Hl and Wl denote the height and width of the fil-
ters, Mt denotes the current minibatch size,Ul and Vl denote
the height and width of the output channels, and f latten(·)
denotes reshaping the given matrix or tensor into a column
vector. If the lth layer is a fully-connected layer, xlt is defined
as

xlt = 1

Mt

Mt∑

m=1

(Yl−1
t(m,:))

T (17)

Note that if the preceding layer of this layer is a convo-
lutional or pooling layer, Yl−1

t(m,:) will denote the flattened
vector of the preceding layer’s output. In the RLS optimiza-
tion algorithm, tensorWl

t−1 is converted to matrixWl
t−1 by

definingWl
t−1(:, j) = f latten(Wl

t−1(:, j,:,:)). In addition, the
algorithm uses the momentum to accelerate the convergence
rate. Thus, regardless of whether the lth layer is a convolu-

tional layer or a fully-connected layer, the recursive update
rule of Wl

t−1 is defined as follows:

�l
t = α�l

t−1 − ηl

hlt
Plt−1∇Wl

t−1
(18)

Wl
t ≈ Wl

t−1 + �l
t (19)

where �l
t is the velocity matrix of the lth layer at step t , α is

the momentum factor, ηl > 0 is the gradient scaling factor,
and ∇Wl

t−1
is the equivalent gradient of the linear output loss

function Lt with respect toWl
t−1. Lt is defined as

Lt = 1

2Mt

∥∥∥ZL
t − Z∗

t

∥∥∥
2

F
(20)

where ZL
t = f −1

L (YL
t ) is the linear output matrix and Z∗

t =
f −1
L (Y∗

t ) is the desired linear output matrix corresponding
to ZL

t . Note that the RLS optimization assumes that fL(·)
is monotonic in the output layer [35]. In addition, the RLS
optimization can be used for FNNs, since the above equations
except for (16) can also be used for fully-connected layers
and the last part of a CNN can generally be viewed as an
FNN.

3 The proposed algorithm

In this section, we present our iterative structured pruning
algorithm. We first introduce the theoretical foundation of
our algorithm. Then, we describe our pruning strategy in
detail and show the overall pseudocode of our algorithm.
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3.1 Theoretical foundation

As discussed in Section 2.1, At is the input autocorrela-
tion matrix. Suppose that xt has n features, namely, xt =
[xt(1), xt(2), · · · , xt(n)]T. Then, xtxTt can be expressed as

xtxTt =

⎡

⎢⎢⎢⎣

xt(1)xt(1) xt(1)xt(2) · · · xt(1)xt(n)

xt(2)xt(1) xt(2)xt(2) · · · xt(2)xt(n)

...
...

. . .
...

xt(n)xt(1) xt(n)xt(2) · · · xt(n)xt(n)

⎤

⎥⎥⎥⎦ (21)

Let sAt(i) denote the sum of the i th row (or column) in At .
According to (3), (6) and (21), sAt(i) can be defined as

sAt(i) =
t∑

k=1

λt−kxk(i)sxk = λsAt−1(i) + xt(i)sxt (22)

where sxt is the sum of all features in xt . In deep learning, we
typically assume that all samples are independently and iden-
tically distributed [39]. CNNs are usually used for computer
vision tasks, and they often use the ReLU activation function
in the hidden layers; thus, we can suppose that xt(i) ≥ 0.
In addition, the forgetting factor λ is generally close to 1.
Therefore, sx1 , · · · , sxt are approximately equal, and sAt(i) is
approximately proportional to the sum of x1(i), · · · , xt(i). In
otherwords, if sAt(i) is small, the i th features in x1, · · · , xt are
probably small, and their influence on the outputs is probably
small. Since Pt is the inverse of At , we can easily draw the
following conclusion: If the sum of the i th row (or column)
in Pt is large, the importance of the i th features in x1, · · · , xt
will probably be small.

Thus, we can use Plt to evaluate the importance of
the input nodes in the lth layer since Plt has the same
meaning as Pt . For fully-connected layers in CNNs, we
can directly use this conclusion. However, for convolu-
tional layers in CNNs, structured pruning methods aim
to prune unimportant channels rather than nodes. Fortu-
nately, according to (16) and Fig. 1(a), we know that
xt((i−1)HlWl+1), xt((i−1)HlWl+2), · · · , xt(i HlWl ) in xlt comes
from the i th input channel. Thus, we can use the sum of the
(i − 1)HlWl + 1 to i HlWl rows (columns) in Plt to evaluate
the importance of the i th input channel.

Based on the above analysis, we define a vector sPlt to
evaluate the importance of the input channels or nodes in the
lth layer. The i th element in sPlt is defined as

sPlt (i) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

Nce
l(i)∑

j=Ncb
l(i)

Nre
l∑

k=1

Plt(k, j) l ≤ Lc

Nl−1∑

k=1

Plt(k,i) l > Lc

(23)

where Ncb
l(i) = (i − 1)HlWl + 1, Nce

l(i) = i HlWl , Nre
l =

Cl−1HlWl , and Lc denotes the total number of convolutional
layers. Equation (23) can be explained as follows: If the lth

layer is a convolutional layer (i.e. l ≤ Lc), sPlt (i) denotes the

importance of the i th input channel. If the lth layer is a fully-
connected layer (i.e. l > Lc), sPlt (i) denotes the importance of

the i th input node. Furthermore, the larger the value of sPlt (i)
is, the more likely it is that the i th input channel or node is
unimportant.

Algorithm 1 RLS Method for Training and Pruning CNNs.

3.2 RLS-based pruning

As mentioned in Section 1, existing structured pruning
algorithms have some shortcomings. In this subsection, we
consider how to overcome these shortcomings and present
our pruning algorithm.

One shortcoming of existing algorithms is that they can-
not prune the unimportant channels accurately since most
algorithms use only the weight magnitude to evaluate the
channel importance. To address this problem, we combine
inverse input autocorrelation matrices with weight matri-
ces to evaluate and prune the unimportant input channels in
the convolutional layers and unimportant nodes in the fully-
connected layers.
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In Section 3.1, we defined sPlt by using the inverse input

autocorrelation matrix Plt . Next, we define another vector
sWl

t
by using the weight matrixWl

t . Li et al. proposed the �1-
normalgorithmanddemonstrated that the sumof the absolute
filter weights can be used to evaluate the importance of the
output channels [29]. It is well known that the output of the
(l − 1)th layer is the input of the lth layer in CNNs. Thus,
we can modify this approach to evaluate the importance of
the input channels or nodes in the lth layer. By using this
approach, the i th element in sWl

t
is defined as

sWl
t (i)

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Nre
l−1∑

k=1

|Wl−1
t(k,i)| 2 ≤ l ≤ Lc

Nre
l−1∑

k=1

|Wl−1
t(k,c(i))

| l = Lc + 1

Nl−1∑

k=1

|Wl−1
t(k,i)| l > Lc + 1

(24)

where Nre
l−1 = Cl−2Hl−1Wl−1, c(i) = �i/(Ul−1Vl−1)	 + 1,

and |·| denotes the absolute value of a real number. Accord-
ing to [29], the i th input channel or node is more likely to
be unimportant when sWl

t (i)
is smaller. Note that we only

consider the convolutional and fully-connected layers in this
paper since a pooling layer has no learnable weights and the
same number of output channels as its preceding convolu-
tional layer.

Next, we use sPlt and sWl
t
to select unimportant input chan-

nels and nodes. Let Al
t (sPlt , ξ) and B

l
t (sWl

t
, ξ) denote the

index sets of the top ξ unimportant input channels and nodes,
which are determined by sPlt and sWl

t
, respectively. Then, the

index set of the pruned input channels or nodes in the lth layer
can be defined as

I
l
t (ξ) =

{
A
l
t (sPlt , ξ) ∩ B

l
t (sWl

t
, ξ) l ≥ 2

A
l
t (sPlt , 0.5ξ) l = 1

(25)

where ξ is the preset pruning ratio. Note that we only use
A
l
t (sPlt , 0.5ξ) to prune the input channels in the first layer.

This is because (24) shows that sWl
t
cannot be used to eval-

uate the importance of these channels. In addition, we find
that the size of Ilt (ξ) is approximately one half of the size of
A
l
t (sPlt , ξ) orBl

t (sWl
t
, ξ) if l ≥ 2 in the following experiments

presented in Section 4.2. Some readers may argue that our
preset pruning ratio ξ is also set to a fixed value. However,
according to (25), Ilt (ξ) is the intersection of Al

t (sPlt , ξ) and

B
l
t (sWl

t
, ξ), except for in the first layer. Hence, our actual

pruning ratio is lower than ξ during each pruning operation.
In fact, in our experiments, we find that our actual prun-
ing ratio gradually decreases as the iterative pruning process
continues, and the final compression ratio of the CNNs is
adaptively adjusted according to the difficulty of the learn-
ing task.

The remaining shortcomings of existing algorithms are
addressed with the following two approaches: 1) We use the
RLS optimization to improve the convergence rate of the

Fig. 2 Detail pruning of each layer in a five-layer CNN with our algorithm. The lth dashed border is to show how I
l
t (ξ) is computed and the input

channels or nodes are pruned in the lth layer
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training and fine-tuning stages. This is also convenient for
the implementation of our pruning strategy. 2) We use the
testing loss to determine the repruning timing at the end of a
training epoch. Each repruning operation is performed only
when the testing loss is tuned down to the last unpruned level.

Based on the above information, our iterative structured
pruning algorithm is summarized in Algorithm 1, where
epoch prune denotes the first pruning epoch, and loss denotes
the testing loss defined by themean squared error (MSE).Our
algorithm can also be used to prune FNNs since it includes
the training and pruning of the fully-connected layers. In
addition, the RLS optimization can be used in existing prun-
ing algorithms to replace the SGD optimization. To clarify
how our algorithm prunes CNNs, the detailed pruning pro-

cess of each layer in a five-layer CNN is illustrated in Fig. 2.
It clearly shows that our algorithm can prune the input layer
in theory. To the best of our knowledge, there is no existing
pruning algorithm that can do this.

4 Experiments

In this section, we validate the effectiveness of our algo-
rithm. We first introduce our experimental settings. Then,
we evaluate the influence of the preset pruning ratio ξ on the
performance of our algorithm. Finally, we present the com-
parison results of our algorithm versus four popular pruning
algorithms.

Table 1 Comparison on the reductions in FLOPs, parameters and testing accuracy for all models pruned by our algorithm with different ξ values
on different datasets

Pruning Ratio Pruned Acc(%) FLOPs↓(%) Parameters↓(%) Acc↓(%)

(a) Pruning the VGG-16 model on CIFAR-10,
Baseline Acc(%)=91.63

ξ=0.2 92.13 48.09 56.43 -0.52

ξ=0.3 91.92 81.44 87.36 -0.31

ξ=0.4 91.73 84.87 88.74 -0.12

ξ=0.5 90.98 88.74 91.22 0.63

(b) Pruning the VGG-16 model on
CIFAR-100, Baseline Acc(%)=70.08

ξ=0.2 69.16 30.86 18.07 0.92

ξ=0.3 67.98 58.56 44.70 2.10

ξ=0.4 68.35 68.81 61.20 1.73

ξ=0.5 67.55 80.85 80.48 2.53

(c) Pruning the ResNet-50 model on
CIFAR-10, Baseline Acc(%)=94.11

ξ=0.2 93.40 27.96 25.53 0.71

ξ=0.3 93.55 31.88 30.36 0.56

ξ=0.4 93.42 55.29 54.15 0.69

ξ=0.5 93.09 64.79 64.27 1.02

(d) Pruning the ResNet-50 model on
CIFAR-100, Baseline Acc(%)=74.53

ξ=0.2 73.71 17.17 16.73 0.82

ξ=0.3 73.30 27.55 25.19 1.23

ξ=0.4 73.02 39.35 34.94 1.51

ξ=0.5 72.12 53.98 50.26 2.41

(e) Pruning the three-layer FNN model on
MNIST, Baseline Acc(%)=98.93

ξ=0.2 98.52 58.42 58.42 0.31

ξ=0.3 98.64 74.84 74.84 0.21

ξ=0.4 98.68 82.68 82.68 0.25

ξ=0.5 98.57 90.79 90.79 0.36

Baseline Acc and Pruned Acc denote the testing accuracies of the original model and the pruned model at the last epoch, the ↓ denotes the reduced
percentage between the pruned model and the original model, and the negative Acc↓ values denote the increases in the testing accuracy
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(c)  Retained parameters on CIFAR-100
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Fig. 3 Comparison on retained parameters and testing loss versus the number of epochs for the VGG-16 model pruned by our algorithm with
different ξ values on CIFAR-10 and CIFAR-100. The marker point denotes the model is pruned at the corresponding epoch

4.1 Experimental settings

In our experiments, we use three benchmark datasets:
CIFAR-10, CIFAR-100 [40] and MNIST [41]. CIFAR-10
and CIFAR-100 both include 60,000 32 × 32 three-channel
colour images, with 50,000 images used for training and
10,000 images used for testing. The CIFAR-100 classifica-
tion task is more difficult than the CIFAR-10 classification
task since CIFAR-100 has 100 image classes, while CIFAR-
10 has only 10 image classes. MNIST consists of 10 classes
of 70,000 28×28 greyscale images, with 60,000 images used
for training and 10,000 images used for testing.

For the CIFAR-10 and CIFAR-100 datasets, we use VGG-
16 andResNet-50models, which have the same architectures
as the models presented in [42] and [43], respectively. The
VGG-16 model has 3.4 × 107 parameters and requires
3.3 × 108 FLOPs, and the ResNet-50 model has 2.3 × 107

parameters and requires 1.3× 109 FLOPs. For using (20) as
the training loss function, we delete their Softmax activation
function. In addition, we prune only the second layer in each
residual block of the ResNet-50 model, since the first and
last layers use 1 × 1 filters to adjust the number of chan-
nels and have a small number of parameters and FLOPs.
For the MNIST dataset, we use a three-layer FNN model,
which has 1024 ReLU nodes, 512 ReLU nodes and 10 Iden-
tity nodes. The FNN model has 1.3 × 106 parameters and
requires 1.3 × 106 FLOPs.

We compare the performance of our algorithm with that
of four popular pruning algorithms: �1-norm, Network Slim-
ming, Taylor FO and Taylor SO. The first two algorithms
are one-shot pruning algorithms, and the last two are iter-
ative pruning algorithms. These algorithms originally used
SGD for training and fine-tuning and were designed to prune
only convolutional layers. In some CNNs, such as VGG-16,
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(c)  Retained parameters on CIFAR-100
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Fig. 4 Comparison on retained parameters and testing loss versus the number of epochs for the ResNet-50 model pruned by our algorithm with
different ξ values on CIFAR-10 and CIFAR-100
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Fig. 5 Comparison on retained parameters and testing loss versus the number of epochs for the three-layer FNN model pruned by our algorithm
with different ξ values on MNIST
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fully-connected layers have more parameters than convolu-
tional layers, and they are more likely to cause overfitting
than convolutional layers. To ensure a fair comparison, we
modify these algorithms to prune convolutional and fully-
connected layers and replace the SGD optimization with the
RLS optimization. In addition, for the Taylor FO and Taylor
SO algorithms, we also use the testing loss as the repruning
criterion.

All experiments are conducted by using PyTorch on an
NVIDIA GeForce 1080Ti GPU with a minibatch size of 64.
All algorithms use the RLS optimization, in whichWl

0 is ini-
tialized to the default value by PyTorch, and λ, k, α, ηl , �l

0
and Pl0 are set or initialized to 1, 0.1, 0.5, 1, the zero matrix
and the identity matrix, respectively. Their pruning ratios are
determined and presented in Section 4.2. For the VGG-16,
ResNet-50 and three-layer FNN models, all algorithms are
run for 200, 300 and 200 epochs, all the first or one-shot prun-
ing operations are performed at the end of the 30th , 60th and
30th epoch, and all the repruning operations are performed
before the 160th , 250th and 170th epoch, respectively. This is
because all iterative pruning algorithms require some epochs
to finely tune the models after the last repruning operation
and the ResNet-50model converges slower than the VGG-16
and FNN models.

4.2 Influence of the preset pruning ratio

The pruning ratio is perhaps the most important hyperparam-
eter in pruning algorithms. In this subsection, we evaluate the
influence of the preset pruning ratio ξ on the performance of

our algorithm and determine the pruning ratios of the other
four comparative pruning algorithms.

The comparison results of the reductions in FLOPs,
parameters and testing accuracy for the VGG-16, ResNet-50
and three-layer FNN models pruned by our algorithm with
different ξ values on CIFAR-10, CIFAR-100 and MNIST
datasets are summarized in Table 1. As ξ increases, the
FLOPs↓ and the Parameters↓ of all models increase sig-
nificantly, but their pruned accuracies have small or even no
reductions. These results prove that our algorithm can effec-
tively prune the unimportant input channels and nodes in
CNNs and FNNs.Moreover, the pruned VGG-16 and pruned
ResNet-50 models have higher FLOPs↓ and Parameters↓ on
CIFAR-10 than on CIFAR-100. In other words, by using our
algorithm, the models retain more parameters for CIFAR-
100 than for CIFAR-10. This proves that our algorithm can
adaptively prune CNNs according to the learning task diffi-
culty.

In addition, the comparison results of retained parameters
and testing loss versus the number of epochs for all models
pruned by our algorithm with different ξ values are shown
in Figs. 3, 4 and 5, respectively. Our algorithm can prune all
models multiple times in 30 to 160 or 60 to 250 epochs. After
each pruning operation, the testing loss is reduced in a few
epochs. This proves that our algorithmwith different ξ values
retains the fast convergence speed of the RLS optimization.
As ξ increases, the pruning times gradually decrease in most
cases. In addition, as the iterative pruning process continues,
the actual pruning ratio gradually deceases. For example, for
the VGG-16 model on CIFAR-10, our algorithm performs

Table 2 Comparison on the reductions in FLOPs, parameters and testing accuracy for the VGG-16 model pruned by different pruning algorithms
on CIFAR-10 and CIFAR-100

Algorithm Pruned Acc(%) FLOPs↓(%) Parameters↓(%) Acc↓(%)

(a) On CIFAR-10, Baseline Acc(%)=91.63

�1-norm 91.77 63.50 63.86 -0.16

Network Slimming 91.81 60.26 64.51 -0.20

Taylor FO 91.59 70.00 90.54 0.02

Taylor SO 90.50 55.53 75.98 1.11

Oursξ=0.4 91.73 84.78 88.74 -0.12

Oursξ=0.5 90.98 88.74 91.22 0.63

(b) On CIFAR-100, Baseline Acc(%)=70.08

�1-norm 66.46 64.60 65.08 3.62

Network Slimming 67.75 63.70 68.63 2.33

Taylor FO 68.24 64.40 84.21 1.84

Taylor SO 68.30 52.68 75.89 1.78

Oursξ=0.4 68.35 68.81 61.20 1.73

Oursξ=0.5 67.55 80.85 80.48 2.53
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four pruning operations when ξ is 0.4. The actual pruning
ratios of these pruning operations are 0.220, 0.220, 0.219
and 0.202, respectively. These results prove that our algo-
rithm can prevent overpruning to some extent when ξ is too
large.

Based onTable 1 and Figs. 3 to 5, considering the trade-off
between the accuracy loss and the compression ratio, we set ξ
to be 0.4 and 0.5 in the following comparative experiments.
According to the above statistical data from the VGG-16

model on CIFAR-10, our actual pruning ratio is approxi-
mately one half of ξ . Thus, to ensure a fair comparison, we
set the pruning ratios of Taylor FO and Taylor SO to be 0.2.
However, in contrast to our algorithm, the �1-norm and Net-
work Slimming methods are one-shot pruning algorithms,
meaning that they prune the CNNs and FNNs only once.
Thus, we experimentally determine their pruning ratios to be
0.4 for the VGG-16 and ResNet-50 models and to be 0.6 for
the three-layer FNN model.

Table 3 Comparison on the reductions in channels or nodes for each layer in the VGG-16 model pruned by different pruning algorithms on
CIFAR-10 and CIFAR-100

Layer Channels or nodes ↓(%)
�1-norm Network Slimming Taylor FO Taylor SO Oursξ=0.4 Oursξ=0.5

(a) On CIFAR-10

Conv64-1 40.6 57.8 65.6 75.0 60.9 64.1

Conv64-2 40.6 45.3 0.0 6.2 60.9 67.2

Conv128-1 40.6 44.5 16.4 7.0 64.1 68.8

Conv128-2 40.6 24.2 4.7 0.0 61.7 67.2

Conv256-1 40.6 29.7 53.9 35.2 53.5 62.1

Conv256-2 40.6 26.2 41.8 25.0 54.3 61.3

Conv256-3 40.6 29.3 43.4 14.8 59.8 66.0

Conv512-1 40.6 37.3 78.9 51.8 65.2 67.6

Conv512-2 40.6 40.6 48.9 57.4 67.6 70.5

Conv512-3 40.6 36.5 73.2 51.0 58.2 67.2

Conv512-4 40.6 52.0 84.0 67.6 68.0 71.5

Conv512-5 40.6 48.2 78.5 59.6 65.6 69.9

Conv512-6 40.6 42.8 78.3 66.0 58.2 64.5

FC4096-1 40.6 41.3 57.0 34.5 50.9 52.1

FC4096-2 40.6 38.7 77.5 63.1 83.6 86.3

FC10 0.0 0.0 0.0 0.0 0.0 0.0

(b) On CIFAR-100

Conv64-1 40.6 37.5 79.7 87.5 54.7 51.6

Conv64-2 40.6 43.7 9.4 28.1 40.6 48.4

Conv128-1 40.6 46.1 25.0 21.1 50.8 57.0

Conv128-2 40.6 41.4 14.8 7.0 40.6 59.4

Conv256-1 40.6 33.6 51.6 18.0 36.7 54.3

Conv256-2 40.6 36.7 43.0 12.5 46.9 57.0

Conv256-3 40.6 37.1 43.4 5.5 44.1 59.0

Conv512-1 40.6 37.3 74.6 23.8 36.3 55.5

Conv512-2 40.6 39.5 74.0 21.7 45.9 57.0

Conv512-3 40.6 38.5 73.8 96.7 57.0 68.2

Conv512-4 40.6 45.3 79.3 48.8 46.1 54.7

Conv512-5 40.6 45.1 78.5 84.2 40.8 52.5

Conv512-6 40.6 43.7 84.6 88.1 56.4 65.2

FC4096-1 40.6 11.0 64.8 65.3 32.6 58.1

FC4096-2 40.6 70.2 69.7 32.4 29.0 49.3

FC100 0.0 0.0 0.0 0.0 0.0 0.0
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4.3 Comparison with other pruning algorithms

4.3.1 Pruning VGG-16 on CIFAR-10 and CIFAR-100

The comparison results of the reductions in FLOPs, param-
eters and testing accuracy for the VGG-16 model pruned
by our algorithm and other four algorithms on CIFAR-10
and CIFAR-100 are summarized in Table 2, with the best
results shown in bold. Our algorithm effectively reduces
the FLOPs and the number of parameters for the VGG-16
model with a small accuracy loss. Under similar pruned
accuracy conditions, the FLOPs↓ and Parameters↓ of our
algorithm are significantly higher than those of the �1-norm
and Network Slimming algorithms. Taylor FO and Tay-
lor SO also effectively reduce the number of parameters
for the VGG-16 model. However, they cannot reduce the
FLOPs as effectively as they reduce the number of param-
eters, and the FLOPs↓ of Taylor SO is even smaller than
those of the �1-norm and Network Slimming algorithms.
In addition, in Section 4.2, we discuss that our algorithm
can adaptively prune CNNs according to the learning task
difficulty. Comparing the Parameters↓ values of the four
comparative algorithms in Table 2, we determine that only
Taylor FOmakes the VGG-16 model retain more parameters
for CIFAR-100 than for CIFAR-10, and the �1-norm, Net-
work Slimming and Taylor SO algorithms do not have this
property.

In addition, the comparison results of the reductions in
channels or nodes for each layer in theVGG-16model pruned
by all algorithms on CIFAR-10 and CIFAR-100 are sum-

marized in Table 3. Our algorithm, �1-norm and Network
Slimming prune each VGG-16 layer more uniformly than
Taylor FO and Taylor SO. This is the reason why our algo-
rithm achieves both high FLOP reduction and high parameter
reduction.

4.3.2 Pruning ResNet-50 on CIFAR-10 and CIFAR-100

The comparison results of the reductions in FLOPs, parame-
ters and testing accuracy for the ResNet-50 model pruned
by our algorithm and other four algorithms on CIFAR-
10 and CIFAR-100 are summarized in Table 4, with the
best results shown in bold. Our algorithm with ξ = 0.5
effectively reduces the FLOPs and the number of parame-
ters for the ResNet-50 model with a small accuracy loss.
Under similar pruned accuracy conditions, the FLOPs↓ and
the Parameters↓ of the �1-norm and Network Slimming
algorithms are significantly lower than those of our algo-
rithm. Moreover, Taylor FO and Taylor SO cannot reduce
the FLOPs as effectively as they reduce the number of
parameters. Although Taylor SO has the best FLOPs↓ and
Parameters↓ on CIFAR-100, its pruning accuracy is reduced
by 4.22%. Among the considered algorithms, our algorithm
with ξ = 0.4 has the best pruned accuracies on CIFAR-10
andCIFAR-100. In contrast, the four comparative algorithms
have considerably larger accuracy losses for pruning the
ResNet-50 model than for pruning the VGG-16 model. This
proves that our algorithm has better adaptability for pruning
different CNNs. In addition, our algorithm and Taylor FO
can make the ResNet-50 model retain more parameters for

Table 4 Comparison on the reductions in FLOPs, parameters and testing accuracy for the ResNet-50 model pruned by different pruning algorithms
on CIFAR-10 and CIFAR-100

Algorithm Pruned Acc(%) FLOPs(%)↓ Parameters(%)↓ Acc(%)↓
(a) On CIFAR-10, Baseline Acc(%)=94.11

�1-norm 93.20 47.01 46.58 0.91

Network Slimming 93.02 41.45 51.77 1.09

Taylor FO 92.32 27.56 55.45 1.79

Taylor SO 91.95 27.51 55.01 2.16

Oursξ=0.4 93.42 55.29 54.15 0.69

Oursξ=0.5 93.09 64.79 64.27 1.02

(b) On CIFAR-100, Baseline Acc(%)=74.53

�1-norm 42.34 47.00 45.79 32.19

Network Slimming 70.26 44.66 49.30 4.27

Taylor FO 71.20 23.58 51.24 3.33

Taylor SO 70.31 60.63 77.77 4.22

Oursξ=0.4 73.02 39.35 34.94 1.51

Oursξ=0.5 72.12 53.98 50.26 2.41
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Table 6 Comparison on the
reductions in FLOPs,
parameters and testing accuracy
for the three-layer FNN model
pruned by different pruning
algorithms on MNIST

Algorithm Pruned Acc(%) FLOPs(%)↓ Parameters(%)↓ Acc(%)↓
Baseline Acc(%): 98.93

�1-norm 98.42 69.51 69.51 0.51

Network Slimming 98.40 68.75 68.75 0.53

Taylor FO 98.67 77.10 77.10 0.26

Taylor SO 98.67 76.99 76.99 0.26

Oursξ=0.4 98.68 82.68 82.68 0.25

Oursξ=0.5 98.57 90.79 90.79 0.36

CIFAR-100, but the FLOPs↓ with Taylor FO on CIFAR-100
is only 23.58%.

In addition, the comparison results of the reductions in
channels or nodes for each layer in the ResNet-50 model
pruned by all algorithms on CIFAR-10 and CIFAR-100 are
summarized in Table 5. Our algorithm, �1-norm andNetwork
Slimming prune each ResNet-50 layer more uniformly than
Taylor FO and Taylor SO.

4.3.3 Pruning FNNs on MNIST

The comparison results of the reductions in FLOPs, param-
eters and testing accuracy for the three-layer FNN model
pruned by different pruning algorithms on MNIST are sum-
marized in Table 6, with the best results shown in bold. Our
algorithm achieves the best pruning accuracy, FLOPs↓ and
Parameters↓. In particular, the FLOPs↓ and the Parameters↓
of our algorithm are significantly higher than those of the
four comparative algorithms. These results prove that our
algorithmcaneffectivelypruneFNNswithasmallaccuracyloss.

In addition, the comparison results of the reductions in
nodes for each layer in the three-layer FNN model pruned
by all algorithms on MNIST are summarized in Table 7. Our
algorithm, �1-norm and Network Slimming prune each FNN
layer more uniformly than Taylor FO and Taylor SO. More
importantly, the results show that our algorithm can not only
prune the nodes in fully-connected hidden layers but also
prune the original sample features in the input layer. In fact,
according to (25), our algorithm can also prune the original
channels of multichannel samples if the number of channels

is greater than or equal to 2/ξ . In Sections 4.3.1 and 4.3.2,
our algorithm does not prune the input layers of the VGG-16
and ResNet-50 models because all images in CIFAR-10 and
CIFAR-100 have only three channels.

5 Conclusion

In this paper, we studied structured pruning algorithms for
CNNs. To address the shortcomings of existing algorithms,
we proposed an RLS-based iterative structured pruning algo-
rithm. Our algorithm employs the RLS optimization to
accelerate the convergence rate of the training andfine-tuning
stages, combines inverse input autocorrelation matrices with
weight matrices to evaluate and prune unimportant input
channels or nodes in CNN layers, and uses the testing
loss to automatically determine the repruning timing. We
demonstrated the effectiveness of our algorithm in prun-
ing VGG-16 and ResNet-50 on CIFAR-10 and CIFAR-100
and pruning an FNN on MNIST. The experimental results
show that our algorithm can prune CNNs and FNNs mul-
tiple times in a small number of epochs. Compared with
four popular pruning algorithms, our algorithm can effec-
tively reduce both the FLOPs and number of parameters
for CNNs and FNNs with small or even no reduction
in the accuracy. Furthermore, our algorithm can adap-
tively prune CNNs according to the learning task difficulty
and has better adaptability for pruning different networks.
Moreover, our algorithm can prune the original sample
features.

Table 7 Comparison on the
reductions in nodes for each
layer in the three-layer FNN
model pruned by different
pruning algorithms on MNIST

Layer Nodes ↓(%)
�1-norm Network Slimming Taylor FO Taylor SO Oursξ=0.4 Oursξ=0.5

Input 0.0 0.0 0.0 0.0 67.0 68.2

FC1024 60.1 58.0 63.1 62.7 59.1 73.8

FC512 60.2 64.8 95.7 96.5 44.5 60.9

FC10 0 0 0 0 0 0
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