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Abstract
Over recent decades, research in Artificial Intelligence (AI) has developed a broad range of approaches and methods that
can be utilized or adapted to address complex optimization problems. As real-world problems get increasingly complicated,
this requires an effective optimization method. Various meta-heuristic algorithms have been developed and applied in the
optimization domain. This paper used and ameliorated a promising meta-heuristic approach named Crow Search Algorithm
(CSA) to address numerical optimization problems. Although CSA can efficiently optimize many problems, it needs more
searchability and early convergence. Its positioning updating process was improved by supporting two adaptive parameters:
flight length ( f l) and awareness probability (AP) to tackle these curbs. This is to manage the exploration and exploitation
conducts of CSA in the search space. This process takes advantage of the randomization of crows in CSA and the adoption of
well-known growth functions. These functionswere recognized as exponential, power, and S-shaped functions to develop three
different improved versions ofCSA, referred to asExponential CSA (ECSA), PowerCSA (PCSA), andS-shapedCSA (SCSA).
In each of these variants, two different functions were used to amend the values of f l and AP . A new dominant parameter
was added to the positioning updating process of these algorithms to enhance exploration and exploitation behaviors further.
The reliability of the proposed algorithms was evaluated on 67 benchmark functions, and their performance was quantified
using relevant assessment criteria. The functionality of these algorithms was illustrated by tackling four engineering design
problems. A comparative study was made to explore the efficacy of the proposed algorithms over the standard one and other
methods. Overall results showed that ECSA, PCSA, and SCSA have convincing merits with superior performance compared
to the others.
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1 Introduction

Numerous numerical optimization problems have grown
more complex over the last few decades, demanding the
utilization of quite efficacious optimization algorithms. For
instance, accuracy problems in data mining and design
cost problems in engineering often require finding the best
solutions from many available ones without squandering
efforts in looking for sub-optimal areas. Due to the highly
non-convex landscapes and the knotty nature of many real-
world problems, the search space associated with such issues
posesmany difficulties in optimization approaches [1]. These
extraordinarily knotted modalities of the search space are
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typically proportionate to the problem size, and the increas-
ing problem dimensionality [2]. Traditional deterministic
methods, based on humble calculus rules, conduct a thorough
search and cannot present effective solutions as heuristic
methods enclosed by limited calculations resources [3]. Typ-
ically traditional optimization methods usually, in a large
number of cases, presented potent procedures for obtain-
ing the optimal global solutions for problems of humble
or even extreme complexity [4]. They intelligibly lead to
a fast and efficient optimization process when the optimiza-
tion problem to be addressed has a simple design with few
constraints and decision variables. These methods find it
relatively complex to deliver fully efficient solutions for real-
world problems of complex designs that have undergone
many constraints [4]. They can only identify local optima
for some intricate problems, as there is no sureness that the
global optimum will constantly be found [5]. This puts a
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powerful challenge to locate the global optimality of concern.
To control such issues, researchers have focused their atten-
tion on meta-heuristic techniques. More information about
meta-heuristics can be found later in the related works sec-
tion. A broad range of meta-heuristics has recently been
utilized in the literature to cover efficient optimization for
various optimization problems. A meta-heuristic algorithm
can act effectively for most kinds of problems. It has become
evident in line with the ‘no-free-lunch’ (NFL) theory [6] that
there is no general meta-heuristic that can handle all kinds of
optimization problems in the best possible manner and can
surpass all othermeta-heuristics for every problem [7].A suc-
cessfulmeta-heuristic algorithmmay be deemed to playwell,
or at least perform well, on most problems. A crucial prob-
lem that impedes researchers from achieving these goals is
the sufficient equilibrium between exploration and exploita-
tion conducts in the algorithmof interest. This balance cannot
be identified in advance, where the proper balance between
these aspects depends on the problem. Practically, some
methods have better exploration and exploitation strategies
than others. This opens the room for improvement of exist-
ing meta-heuristic processes to get a satisfactory balance
between exploitation and exploration and then to get to sane
solutions in most optimization problems. Simply put, the
NFL theory inculcates this area of studies to stay unlocked
and motivate researchers to improve the accuracy of present
methods or introduce newones to reinforce optimizationwith
broader performance [8].

In this context, this study was motivated to enhance
further a newly well-known meta-heuristic method, called
Crow Search Algorithm (CSA) [9], to tackle a good pool
of optimization problems. This is developed according to
the ideology of ongoing amelioration to develop compelling
solutions to real-life problems. CSA is one of the promising
swarm intelligence techniques [9], devised about the intelli-
gent behavior of crows while foraging in nature. Although
CSA can get the optimum in solving various problems in the
field of optimization [10], it usually may be trapped in local
optima, particularly when facedwith complex problemswith
several local optima. This may be attributed to its narrow
search capability and slow convergence property. To give
control over such hurdles, various strategies, and methods
have been presented in the literature to promote the accuracy
level of CSA further. In this, many variants of CSA were
designed from the operators’ perspective. In [11], CSA was
improved by chaotic-based criteria to embed a chaotic local
search to ameliorate the diversity of solutions. Due to the effi-
cacy of chaos, chaos theory was amalgamated into CSA to
explore its characteristics [12]. A conscious neighborhood
method was employed in CSA to direct the locomotion of
crows according to three search mechanisms. The enhanced
CSArevealedgoodperformanceonbenchmark test problems
[13]. In [14], a chaos-based strategy was utilized to imple-

ment a chaotic local search for CS to hasten the convergence
rate and mitigate the incidence of local optima. The chaotic
mechanisms are potent to strengthen the search power of
CSA under its stochasticity and ergodicity. The strategies of
amalgamation of past experience and crafting a non-hideout
position help compromise the exploration and exploitation
potential of CSA in the search process. A niching method
was integrated into CSA to manage the interaction among
crows to empower CSA to locate multiple solutions for opti-
mization problems [15]. In [16], each crow uses two update
methods to come upwith a better solution, where onemethod
achieves intelligence among crows, and the other method
assists crows to get out of the local optima. Also, in that
work, awareness probability and flight length were adapted
inside the iteration loops of CSA to establish a good balance
between local and global search strategies to boost searcha-
bility. These operators efficiently amend crows’ movements.
Besides operators, various strategies were also presented
in the literature to augment the performance of CSA in
addressing various optimization problems. An opposition-
based learning method was incorporated into the position
updating process of CSA to explore solutions and direct the
movements of crows [17, 18]. Kapur’s entropy was incor-
porated with CSA to reinforce its population diversity and
assist it in emerging from early convergence [19]. Promising
adjusting methods for time-varying flight length based on
crows’ life convergence times were proposed to deal with
the problem of rapid convergence of CSA. In the mean-
time, an adaptive flight length variable, in reliance on the
present and maximum iteration values, improves the hunt-
ing ability of crows [20]. A spiral search mechanism was
used to strengthen CSA by mitigating early premature con-
vergence while solving numerical optimization problems
[21]. Hybrid strategies that integrate several approaches also
show outstanding performance in tackling the defects of
CSA. CSA was combined with PSO to use both proper-
ties sufficiently to strengthen its exploration and exploitation
processes [22]. An improvedCSAwas hybridizedwith a uni-
form crossover mechanism to enhance its exploration search
capacity and convergence behavior [23]. Moreover, CSA has
been fruitfully practiced for many optimization problems. In
view of this, variants of CSA have continuous, binary, and
mixed types. Continuous type with real-valued variables can
address real problems [24], constrained problems [25], and
multi-objective problems [18]. For continuous optimization
problems, an optimization strategy was embedded into CSA
to prop its performance degree in diagnosing Parkinson’s dis-
ease for twenty benchmark test problems [26]. A binary CSA
was presented for binary optimization problems to solve fea-
ture selection problems [20]. An integration between CSA
and Grey Wolf Optimizer (GWO) was utilized to tackle
feature selection problems in addition to unconstrained test
functions [27]. For multi-objective optimization problems,
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CSA was combined with the fruitfly optimization method to
evolve combinatorial interaction test suites in the existence
of constraints [28]. A hybrid CSA incorporated with fuzzy
c-means and chaos theory has been applied to medical diag-
nosis problems [29]. Hybrid approaches of CSA with PSO
were developed for feature selection, and global optimization
problems [22, 30]. In [31], an arithmetic crossover is inte-
grated with CSA to address engineering design problems.
More variants and applications of CSA in addressing a broad
scope of problems can be found in [10]. The above strate-
gies and approaches have efficiently enhanced the search
property of CSA to foster its performance in solving opti-
mization problems. However, each of the revised approaches
performed well in the applications deemed, albeit some may
fall short of what is required in particular applications. Some
of them have limited functionality and modest performance
with complex optimization problems. There is still a neces-
sity for more amelioration of CSA, particularly for complex
real-world problems.

On the grounds of this, it is worth paying attention and
investigating to improve CSA from the point of view of
position updating strategy and adaptive strategies for its key
parameters. A good positioning updating processwith appro-
priate control parameters can be implemented for CSA to
guide further the local and global search processes of crows
in the environment. In this paper, an improved CSA with
effective flight length and awareness probability is destined
to handle the early convergence andmodest search capability
of CSA. First, the awareness probability of crows is expected
to grow as a function of iterations. It is also anticipated that
the more the flight length of a crow, the more likely it is to
locate food. Thus, we present flight length as a descending
function of time and the awareness probability as the rate of
change of flight length. This is to foster the exploration and
exploitation aptitudes of CSA.We adopted three functions of
time for flight length and three functions for awareness proba-
bility to achieve this goal. These adaptable functions not only
provide adequate guidance for crows in the environment, but
they are also beneficial for mitigating the stagnation of CSA.
These parametric functions are designed to equipoise the
exploration and exploitation features in CSA. In this respect,
three versions of CSA were developed, each using different
growth functions to update the values of awareness proba-
bility and flight length in the course iterations of CSA. Each
version adds a sensible enhancement to the original CSA.
These versions are named Exponential CSA (ECSA), Power
CSA (PCSA), and S-shaped CSA (SCSA). Then, we intro-
duced an enhancement to the positioning updating process
of these versions to manage the movement of crows further.
The goal of this enhancement is to enable crows to scout and
exploit every promising area in the search domain.

Lastly, a new parameter that can provide more exploration
and exploitation abilities for these versions was proposed.
This parameter can help the crows to explore diverse direc-
tions in the search space and exploit each search region to
locate other crows’ food. To assess the performance of the
evolved ECSA, PCSA, and SCSA, many evaluation experi-
ments were conducted to compare them with the basic CSA
and many promising meta-heuristic algorithms on three test
suites of broadly well-known benchmark functions. Finally,
their practicality and practicability were demonstrated in
solving four engineering design problems. The comparison
findings between the developed algorithms and other rival
ones indicate the notable performance of ECSA, PCSA, and
SCSA, which implies that these algorithms are competitive
and promising. In sum, the critical contributions of this work
can be abridged as shown below:

1. Three population-based algorithms, namely ECSA,
PCSA, and SCSA, were derived from the basic CSA.

2. A thorough evaluation comparison was conducted
between the developed algorithms and other meta-
heuristics on three benchmark groups: classical bench-
mark functions, CEC-2015, and CEC-2017 test suites.

3. The credibility and practicability of the proposed algo-
rithms were investigated on four engineering design
optimization problems.

4. The statistical importance and convergence behavior of
the proposed algorithms were investigated.

The rest of this work is structured as follows: Section 2
reviews the state-of-the-art optimization problems andmeth-
ods. The following Section 3 provides a thorough description
of the original CSA. In Section 4, we present an elaborated
description of the proposed versions of CSA. The evaluation
and statistical outcomes of the proposed versions compared
to other selected meta-heuristics on extensive test environ-
ments are presented in Section 5. The appropriateness of
the developed algorithms is verified on four engineering
problems in Section 6, with a conclusion and future trends
presented in Section 7.

2 Related works

This section presents a description of the random optimiza-
tion domain. This field has several portions, like single-
objective, unconstrained, multi-objective, and dynamic opti-
mization. As the algorithms proposed in this work solve
problems of single-objective optimization, the central hub
here concerns the difficulties and relevant results in the areas
of single-objective optimization problems and algorithms, as
described below.
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2.1 Single-objective optimization problems

These problems cope with a single objective connoting that,
at most, one objective needs to be maximized or minimized.
This form of optimization might be concerned with a set of
constraints that fall into the groups of inequality and equal-
ity and which can be drafted as a minimization problem as
shown below:

Minimize: F (�x) = { f1 (�x)}
Subject to:
w j (�x) ≥ 0, j = 1, 2, . . . ,C
z j (�x) = 0, j = 1, 2, . . . , L
lb j ≤ x j ≤ ub j , j = 1, 2, 3, . . . , V

where L and C represent the number of equality and
inequality constraints, respectively, V denotes the number
of variables, ub j and lb j are the upper and lower limits of
the j th variable, respectively.

The set and scope of variables, constraints, and objec-
tives create a space in a d-dimensional search domain. For
one-, two-and three-dimensional problems, the search space
can be readily displayed in the Cartesian coordinate sys-
tem, allowing its shapes to be viewed. However, problems
with dimensions more than three cannot be drawn as these
dimensions lie outside of what we encounter in our lives.
Thus, real-world optimization problems with many variables
present the most significant difficulty when addressing them.
The scope of problems’ variables limits the scope of the
search process, which is diversified. The optimization prob-
lems’ variables can be either binary or continuous, where
these problems deal with either a binary or a continuous
search domain. In the first type, there is a finite number of
points between any two adjacent points, while there is an
unlimited number of points between every two in the sec-
ond type. Locating the global optimal in a continuous search
space differs from that in a binary search space, where each
search has its challenges. Even though most optimization
problems have a varied scope of decision variables, several
problems do not have a precise scope to be deemed during
optimization [32].

Anyway, solving such problems demands particular atten-
tion. For example, an optimization algorithm might com-
mence with an initial scope and expand it during optimiza-
tion. The constraints of the optimization problem restrict
the search space all the more. Due to the gaps they cause
in the search space, the solutions in these areas need to be
revised for the optimization problem. The search space can
be split into diverse segregated regions with various con-
straints. Infeasible solutions go beyond the constrained areas
that have been set.

Conversely, the feasible solutions are those that can be
implemented within constrained areas. The sections of the
search domain that are outside and within the confined
regions are referred to as feasible areas and infeasible areas,
respectively. An optimization technique that performs well
in an open search area may need to be more effective when
used in a confined search domain. Thus, optimization algo-
rithms must be set up with appropriate operators to handle
the constraints [33] properly. Another defiance when deal-
ing with optimization problems is that there are several local
optimums. The search space created by the objective func-
tion, decision variables, and constraints may be modest or
too complex. In reality, the main difficulty of optimization
methods in most studies given in the literature is the number
of local solutions present in the problems.

In single-objective search space problems, only one opti-
mal solution (i.e., the global best one) is available, which
delivers the optimal target value. Many other solutions pro-
duce objective values that are not far from the best global
ones. This form of solution is referred to as local solutions
because they are locally the best ones when the entire search
space is considered in its proximity. Still, they are not con-
sidered the best solutions globally when the search space
is considered as a whole. Having too many local solutions
brings about several optimization methods to drop into local
optimums. Due to the fact that a real search space frequently
includes several local solutions, an optimization algorithm
should be able to avoid them in order to consistently obtain
the best global solution. Additionally, convergence speed is
an intricacy that faces optimization algorithmswhen address-
ing optimization problems.

An optimization method capable of averting local solu-
tions is not inevitably eligible to find the global optimal.
The estimated position of the global optimal is well defined
when the optimization method avoids local solutions. The
following stage is to boost the performance level of the
got approximate solutions. Rapid convergence rate will
certainly cause stagnation in local optima. Conversely, unex-
pected amendments in the solutions lead to eschewing local
optima but slow down the convergence rate to the opti-
mality. The main challenge an optimization technique must
overcome when solving real-world problems is these two
conflicting goals. The convergence speed is all-important
in locating a precise approximation of the global opti-
mal solution. When dealing with single-objective search
spaces, there are other kinds of challenges like uncer-
tainty, and isolation of the optimal, dynamic, and noisy
objective functions. Each of these difficulties demands par-
ticular regard. These concepts are beyond the setting of this
study, so concerned readers can refer to the work presented
in [34].
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2.2 Single-objective optimization algorithms

These algorithms can be broadly distributed into two key
classes: deterministic methods, heuristic and meta-heuristic
methods, with the latter category being the most common
[35].

2.2.1 Deterministic algorithms

Deterministic approaches address optimization problems by
making predetermined decisions; for example, if the initial
conditions are the same, the ultimate solution will also be
the same [36]. Deterministic methods consistently find the
exact solution to a specific problem, provided they launch
with identical outset points. The essential advantage of these
algorithms is their reliability, as they get a solution in each
independent run. Their computations could be more effec-
tive when acting with large-scale data structures. Yet, the
stagnation of local optima is a hurdle to these methods as
they usually do not have random conduct when tackling
real-world optimization problems [37]. Bharathan et al. [38]
evolved an integer linear programming model with penalty
coefficients. Global constraint violations are permitted in this
model, but they will be penalized appropriately. This strat-
egy is superior to traditionalmethodswhen user requirements
are complex. Local and Tabu search are examples of deter-
ministic techniques [39]. Deterministic approaches are often
ineffective when used to solve high-dimensional problems
as the problem’s conditions constrain them. Meta-heuristics
have been proposed to solve such challenging problems since
many real-world problems exhibit one or more of the char-
acteristics indicated above [35].

2.2.2 Stochastic andmeta-heuristic algorithms

Stochastic methods use random operators, where different
solutions can be found even if the launch point is unal-
tered, hence making stochastic methods less trustworthy
than deterministic algorithms. Anyhow, the random behavior
enhances in avoiding the local optima, which is the critical
merit of stochastic methods. The accuracy of these methods
can be further enhanced by adjusting and using more runs
[40]. As per this, heuristic methods can produce high-quality
approximate solutions promptly for large-scale data. How-
ever, heuristic methods are often created based on the unique
knowledge of optimization problems [41]. Hence there will
be several limitations to extending the algorithm.

Stochastic algorithms can be split into two classes: collec-
tive and individualist. In the first pool, a stochastic algorithm
commences and fulfills optimization with a single solution,
which is altered, at random, and ameliorated for a prede-
termined number of iterations or meets a final evaluation
method. Simulated Annealing (SA) [42] and hill climbing

[43] are the two most popular methods in this group. This
family of algorithms demands low computational overhead
and only needs a few function evaluations. Comparatively,
several random solutions are produced and evolved by collec-
tive approaches during the optimization process. Typically,
the solutions work together to establish the global optimal
in the search space. There are a lot of optimization algo-
rithms in this family; some of the most prominent ones are:
Genetic Algorithm (GA) [44], Particle Swarm Optimization
(PSO) [45], and Differential Evolution (DE) algorithm [46].
These algorithms might get many solutions by reducing the
opportunity for stagnation in local optima, which is a cru-
cial benefit of the collective techniques. Yet each alternative
necessitates a single function assessment, and establishing
effective collaboration between the solutions is a significant
difficulty.

There is no way to be sure that the optimal solution
will be found in solving many real-world fusion prob-
lems because most problems are NP-hard. Heuristics, which
are approximate approaches utilizing iterative trial-and-error
procedures, are typically used instead of accurate methods to
approach the optimal solution.Many of them take inspiration
fromnature, and theirmost recent development is usingmeta-
heuristics [22]. A meta-heuristic is a chief iterative process
that directs and alters the actions of subordinate heuristics to
provide solutions of a high standard quickly. Each iteration
may change either a whole (or partially) single solution or an
accumulation of solutions. The subordinate heuristicsmay be
low (or high) levelmethods, a straightforward local search, or
a construction technique. Even though meta-heuristic meth-
ods take part in some semblances with each other, they are
some fundamental differences between them. In effect, they
typically mimic some features of natural behavior, biological
or physical phenomena present in nature, or manually tai-
lored search strategies [47]. They can be principally classed
into four key pools, according to their source of inspiration,
as explained below:

• Evolutionary-basedAlgorithms (EAs): algorithms in this
category simulate concepts andmodels of biological evo-
lutionary behavior of creatures found in nature based on
natural selection and the idea of survival of the fittest. The
most widespread techniques in this class are GA [44],
DE algorithm [46], and Biogeography-Based Optimizer
(BBO) [48]. Some other examples of this type of algo-
rithm include Wildebeests Herd Optimizer (WHO) [49]
and Learner Performance-based Behavior (LPB) [50].

• Physics-Based (PB) methods are motivated by the pre-
vailing physical rules that exist. The notable method
devised by the inspirations appropriated from physics
is SA [42]. Essentially, the physics’ laws have already
generated significant results when couched into opti-
mization methods, with some eminent examples being:
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Equilibrium Optimization (EO) [51] and Archimedes
Optimization Algorithm (AOA) [3].

• Swarm Intelligence (SI) techniques: the algorithms in
this category simulate the collective social behavior of
collections of flocks or colonies, such as swarms of
birds, animal herds, insect colonies, schools of fish and
flocks of many other species of creatures found in nature.
Among the most successful SI-based methods are PSO
[45] and ACO Algorithm [52]. Salp Swarm Algorithm
(SSA) [32], Capuchin Search Algorithm (CSA) [53],
Chameleon Swarm Optimizer (CSO) [54], White Shark
Algorithm (WSA) [55] and Trees Social Relations (TSR)
[56] are only a small number of the long list of SI-based
meta-heuristics.

• Human-based Algorithms (HBA): these methods are
generally associated with human activities and behav-
iors [57]. Some of the newest human-based algorithms
in this category include driving training-‘based optimiza-
tion [58], Ali baba and the forty thieves algorithm [47],
and stock exchange trading optimization [59].

These and other meta-heuristics have proven to be prac-
tical and effective in solving a wide variety of applications
in engineering [32] and science [47, 55]. Many applications
of similar algorithms can be located in the extended litera-
ture concerned with meta-heuristic research. To name a few,
business activities [60], industrial designs [61, 62], Feature
Selection (FS) [63], motif discovery problem [64], agricul-
ture [65], medical [66] and classification problems [67] are
among the beneficiaries [68, 69]. In most cases, these meth-
ods in the related applications have led to encouraging and
promising results when solving practical, real-world opti-
mization problems.

Optimization with meta-heuristic algorithms begins with
a set of random solutions that demand to be amalgamated
and altered rapidly and abruptly. This motivates solutions to
proceed globally. This procedure, known as exploration or
diversification of the search space, draws solutions to dif-
ferent areas of the search space by abrupt shifts [55]. The
fundamental objective of this procedure is to identify the
most encouraging regions of the search space and to avert
local solutions [54]. After satisfactory solutions, solutions
commence to change and advance locally progressively. The
main goal of this procedure, known as exploitation, is to
increase the performance level of the best solutions obtained
during the exploration step. Even if the exploitation stage
may involve the avoidance of local optima, the coverage
of the whole search space is less extensive than it was dur-
ing the diversification stage. In this situation, local solutions
nearby to the global optimal can be avoided. This explanation
illustrates how the exploration and exploitation stages toler-
ated two opposing aims. When is the preferable time to shift

from exploration to exploitation? is a critical question [53].
No one can answer this question due to the randomness of
meta-heuristics and the unknowable shape and nature of the
search space. Because of this, most meta-heuristic optimiza-
tion methods call for search agents to quickly proceed from
exploration to exploitation throughflexiblemechanisms [70].

The above and other meta-heuristic methods have
achieved encouraging levels of performance in a reasonable
amount of time in tackling complex real-life problems identi-
fied in the intended applications and datasets. Still, they need
to ensure that optimum solutions will be located in all exper-
imental runs [53]. Additionally, several complex problems
may emerge due to ongoing technological breakthroughs in
various technical and scientific domains [32, 55, 71]. These
problemsmust be effectively and continuously solved by get-
ting optimal solutions for all of them. The proficiency of
any meta-heuristic to identify the globally optimal solutions
for all types of optimization problems cannot be guaranteed.
Although only sometimes, an optimization technique is ade-
quate for most problem types. Therefore, it is still thought
necessary to facilitate existing algorithms or create new ones
to tackle challenging real-world problems. This led to the
motivation for this work, which aims to improve the capabil-
ity of the basic CSA [71]. This is accomplished by creating
three enhanced versions of this algorithm and exploring their
efficiencies in solving well-known optimization problems
with various numbers of dimensions and complexity. The
following sections detail the primaryCSAand proposed vari-
ants of the CSA.

3 Basic crow search algorithm

The inspiration for CSA was featured in the crows’ behavior
in hiding food and the mechanism they follow to find where
other crows’ food is stashed. Crows frequently conceal extra
food in locations where it may be preserved and retrieved
when needed.As greedy birds, crows try to find hidden places
for other crows’ food to find better food by following other
crows that act as thieves. Meanwhile, crows prevent their
food from being robbed. The anti-tailing ability of crows
enables them to notice if another crow follows them by a
reasonable probability. If a crownotices that a crow follows it,
it will trick that crow into random places in the environment
rather than guiding it to where it hides its food. Based on
this simulation of crow’s intelligence, CSA aims to find the
optimum solution to the targeted optimization problem.

The key idea of mimicking the intelligent behavior of
crows is the search mechanism and how crows prevent their
food from being looted from their lairs by tricking other
crows into random positions. The thieves’ experience is
that the teachers store their food in safe places to protect
their caches from being pilfered [72]. Simulation of crow’s
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behavior in a mathematical model of optimization can be
characterized as follows: Several N crows in the flock are
the population size, and the d-dimensional environment is
the search space that crows need to search in, where d is the
number of the decision variables. The position of crow i at
iteration t is defined as:

xit = [xi,t1 , xi,t2 , . . . , xi,td ], (1)

where i = 1, 2, 3, . . . , N , t = 1, 2, 3, . . . , T , where T is the
total number of iteration loops, and xit represents the current
position of crow i at iteration t .

Each crow has its corresponding memory m to store the
hiding position, whereby crow i memorizes the position with
the best food so far at iteration t and stores it in mi

t . During
addressing an optimization problem, crow i chases crow j
at iteration t to its hiding place m j

t . There are two situations,
and either of them will happen:

• Situation 1: Crow i was able to locate the hiding place
m j

t while crow j does not know that it is being pursued by
crow i . Next, crow i changes its location as seen below:

xit+1 = xit + ri f l(m
j
t − xit ) (2)

where ri is a uniformly random value ∈ [0, 1], which
affects the randomization during the search process and
f l is the flight length of the crows.

Figure 1 displays the schematic illustration of the flight
length ( f l) implied in (2). This parameter constitutes one of
the main control parameters of CSA and significantly affects
the ability to search. Small values for f l will eventually lead
to a local search, where the neighborhood search space will
not be far from the present position of crow i .

As Figure 1 illustrates, the next position xit+1 of the i th

crow will be on the dashed line between xit and m j
t in the

state if f l is set to a value less than 1. Alternatively, large
values for f l will stimulate crows to global search, where
the search space will be far away from the present position
xit . When f l is set to larger than 1, the following location of
the i th crow, xit+1, will be located anywhere on the dashed

line. It may override the position m j
t based on the value of

ri .

• Situation 2: If the j th crow observes that the i th crow is
following it, it will fly to a randomplace in the search area
to get it away from its hiding place, or denoted asm j

t . By
combining the two states, the mathematical paradigm of

CSA can be expressed in (3):

xit+1 =
{
xit + ri f l(m

j
t − xit ) r j ≥ AP

A random position r j > AP
(3)

where AP is the awareness probability of crows, r j is
a randomly dispensed random value ∈ [0, 1] that con-
tributes to random distribution during the random search
process. The values of f l and AP are fixed at 2.0 and
0.1, respectively.

AP directly controls the counterbalance between diversi-
fication (i.e., exploration) and intensification (i.e., exploita-
tion). A small value of AP creates a good solution in the
neighborhood area, which will increase intensification. Con-
versely, large awareness probability values will have a great
chance to scout the search space and tend to reach global
search, which will increase diversification.

As a synopsis, optimization-based CSA is implemented
through an iterative process in which the initially generated
memories and positions of crows are valued and amended
at each iteration loop up to convergence. The convergence
process stops when the termination assessment criterion is
attained. The best position reached by crows that have found
food is indicated as a solution to the optimization problem.
The pseudo-code of the primary CSA is given in Algorithm
1.

Algorithm 1 Pseudo code of the standard CSA.
1: N ← Number of crows
2: t ← Iteration counter
3: T ← Total number of iterations
4: Set the initial values of AP = 0.1, f l = 2.0 and t = 1
5: xi ← Crows positions; i = 1, 2, . . . , N .
6: Initialize the positions of crows at random
7: Evaluate the fitness function of each crow f (·)
8: Initialize the memory, m, of the crows
9: while (t < T )
10: fori = 1, 2, . . . , N
11: Choose one of the crows at random, like crow j , and chase it.
12: if(r j ≥ AP)

13: xit+1 = xit + ri f l(m
j
t − xit )

14: else
15: xit+1 = a random position in the search space
16: end if
17: end for
18: Examine the viability of new positions (xit+1)
19: Assess the crows’ new position f (xit+1)

20: Amend crows’ memory m j
t+1

21: t = t + 1
22: end while

Each new location of each crow is assessed iteratively
inside each loop ofCSA in accordance to a pre-definedfitness
criterion. Crows’ positions are updated if their solutions are
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Fig. 1 Flight length of situation
1 (a) f l < 1 and (b) f l > 1
inspired from [9]

more accurate than the ones of the current positions. Crows
remain in their positions if their solutions are of lesser quality
than the current ones. Crows update their memories within
each iteration loop if the quality level of the new positioning
solutions, assessed per the fitness criterion, is better than the
saved positions.

4 Proposed variant algorithms of CSA

4.1 Limitations of the basic CSA

Although CSA can search for optimal solutions during solv-
ing optimization problems, its search capacity is confined by
its native positioning updating mechanism, which may result
in local optima iteratively [20, 22, 30]. This phenomenon is
illustrated by the fact that CSA is probably to face early
convergence when addressing complex or even modest real-
world optimization problems [21]. The cause is that crows in
CSA rely on constant flight length and awareness probabil-
ity parameters to navigate and search for other crows’ foods
repeatedly. However, these fixed selected values for such key
parameters cannot ensure that the CSA can escape stagna-
tion or that it is not trapped in local optima. Besides, CSA
faces another problem of weak exploration and exploitation
capabilities. This phenomenon is clearly encountered due to
the process of updating the locations of crows in CSA, which

needs to consider the global positions of the crows obtained
thus far. Therefore, some strategies must help update the
positioning of crows in addition to fine-adjusting the key
parameters, namely flight length and awareness probability.
A desired exploration process can find a favorable region in
the search space with an optimal solution. Then, a desired
exploitation process can eventually locate this optimal solu-
tion. However, the exploration power of CSA needs to be
improved in the initial search phase so that its low exploita-
tion causes it tough to locate the global optimum solution in
the overdue search stage. As a result of this fact, local optima
is customarily received. Thus, a sensible trade-off should be
formed between exploration and exploitation to reinforce its
search aptitude. Accordingly, the movements of crows in the
enhanced CSA in this work are carried out by a new posi-
tioning updating process with the global best position got
so far that the best crows offer, as explained in more detail
in the next section. Further, more is needed to support the
best crows to find other crows’ food sources using only fixed
flight length and awareness probability parameters. Because
this implies that the best crow’s capacities to guide all the
crows are weakened, the exploration and exploitation com-
petencies ofCSAare less and less in the late foraging process.
As per this, the flight length value should increase gradually
with time, while the value of awareness probability should
gradually decrease over time. This is to assist the best crow
in directing all the crows towards the food so that the explo-
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ration and exploitation abilities of CSA will be higher and
higher in the overdue search process. Thereby, it is essen-
tial to strengthening the exploitation feature of CSA in the
final search iterations to speed up the speed of convergence
and shun suffering from quick convergence. To cope with
the above issues, a new positioning updating model that uses
adaptive flight length and awareness probability parameters
in the implementation phase of CSA is presented to enhance
the performance degree of CSA greatly. The following sec-
tions offer detailed descriptions of the proposed positioning
updating model, in addition to the proposed enhanced ver-
sions ofCSA, referred to asExponentialCSA(ECSA), Power
CSA (PCSA), and S-shaped CSA (SCSA).

4.2 Proposed positioning updating process

In ECSA, PCSA, and SCSA, the position of the robber and
owner crows needs to be updated at each iteration. A crow
possesses a food source, and a robber crow endeavors to steal
that food. In such a scenario, the position of both the owner
and robber crows has changed accordingly. The owner crow’s
memory is also updated based on its observation of the robber
crow. The position of the crows in ECSA, PCSA, and SCSA
are updated as per the mechanism proposed in (4).

xit+1 =

⎧⎪⎨
⎪⎩
xit + f lt (m

j
t − xit )r1 r j ≤ APt , r < 0.5

xit − (1 − f lt )(m
j
t − xit )r2α Otherwise

τ
(
l j − (l j − u j )r3

)
r j ≥ APt

(4)

where xit+1 designates the next position of the i th crow at
iteration t+1, xit identifies the present position of the i th crow

at the current iteration, m j
t stands for the memory of the best

crow throughput the iterative process of the entire swarms
at iteration t , APt is the awareness probability of crows at
iteration t which is updated iteratively during the iteration
loops, f lt represents the unit step of crows’ movement upon
iteration t , r j , r , r1, r2 and r3 are random values yielded in the
extent from 0 to 1, α represents the component sgn(rand −
0.5) that is either 1 or -1 which effects the search direction,
l j and u j stand for the lower and upper boundaries of the
search domain at dimension j and τ is defined as a function
of iterations as drafted in (5).

τ = a0e
−(a1t/T )a2 (5)

where the coefficients a0, a1 and a1 are constant values used
to automatically update the parameter τ at each iteration.
These coefficients are basically beneficial for strengthening
exploration and exploitation conducts. The coefficients a0, a1
and a2 are all set to 2.0, 4.0, and 2.0, respectively, for all of
the problems that are later handled in this work. These values
were captured by pilot testing for a bunch of test functions.

The parameter τ is presented as a function of time to dom-
inate the random movement of crows iteratively and thus
decreases with the number of iterative generations. Specifi-
cally, this parameter was applied to strengthen the dynamic
system of convergence by diminishing the search speed as
well as enhancing the exploration and exploitation features
of the evolved algorithms. This parameter can enable crows
to explore more foraging space and exploit each area while
foraging for food or other crows’ food. This is to arrive at an
efficient convergence process, which can further strengthen
the performance degree of ECSA, PCSA, and SCSA in tack-
ling optimization problems.

The first two cases of (4), (i.e., when r j < APt ), were sug-
gested to allow crows to take advantage of random numbers,
and the component sgn(rand − 0.5) was proposed to enable
crows to be very effective in exploiting and scouting the
search space in different directions and locations. The third
case of (4), (i.e., when r j ≥ APt ) was suggested to empower
crows to scout several random positions in the search domain
to improve local and global search capabilities and to get
a sufficient balance between exploration and exploitation.
This gives crows in ECSA, PCSA, and SCSA great power
to explore every potential position in the search area. The
parameters f lt and APt were used as interactive operators to
manage these algorithms’ exploration and exploitation capa-
bilities. With different values for f lt and APt , the proposed
algorithms can alternate between global and local searches.

In the position updating mechanism in (4), the algorithms
tend to evolve a new solution xit+1 for a particular problem
that is better than the present solution xit . In the mechanism
of updating crows’ positions in CSA [9] as shown in (3), the
values of the parameters APt and f lt are constants during the
execution phase of CSA. This indicates that exploration and
exploitation features of the standardCSA rely onfixedfigures
of these parameters. This affects the search behavior of CSA,
which can turn into good exploration and exploitation with-
out a rigid structure. Accordingly, to improve exploration and
exploitation, the values of f lt and APt parameters must be
updated iteratively at each iteration of CSA.

To recapitulate, we have proposed three new variant algo-
rithms of the primary CSA. The developed variants of CSA
aim to boost the convergence rate of CSA to reach opti-
mality by carefully enhancing two folds: exploration and
exploitation of the search space. Each evolved algorithm uses
a differentmathematical growthmodel for each of the f lt and
APt coefficients, which are described below.

4.3 Exponential model-based CSA (ECSA)

The exponentialmodelwasfirst introduced in [73]. The expo-
nential growth functions shown in (6) and (7) were proposed
to represent the flight length and awareness probability of
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crows in ECSA, respectively.

f lt (k;β0, β1) = β0(1 − e−β1k) (6)

APt (k;β0, β1) = β1β0e
−β1k (7)

where k = T
t , β0 stands for the initial estimation of the flight

length, β1 stands for the final estimation of the flight length
of crows that could be fulfilled approximately at the end of
the ECSA’s iterative process. These parameters represent the
coefficients of the exponential growth function.

It is important to be aware of the following:

APt (k;β0, β1) = ∂ f lt (k;β0, β1)

∂k
(8)

Several conventional and intelligent conventional are
mentioned in the literature to estimate the parameters β0, and
β1 for the functions of flight length and awareness probability
[74]. One famous traditional parameter estimation method
is the least square estimation method [75]. This method
struggles with estimating accuracy and requires a lot of mea-
surements to be able to offer accurate parameter estimates.
Other approaches include using meta-heuristics, which may
require great computational efforts to estimate parameters
[74]. In this work, the parameters β0 and β1 used for the
adaptive functions of f lt and APt were picked by applying
practical design by examining ECSA on a significant subset
of test problems. The coefficients β0 and β1 are equal to 2.0
and 1.0, respectively, for all of the problems solved in this
paper using the proposed ECSA. However, only optimal val-
ues are often experimentally obtained, perhaps, not the ‘best’
ones.

4.4 Powermodel-based CSA (PCSA)

The non-homogeneous Poisson process serves as themodel’s
foundation [76]. The functions shown in (9) and (10) were
used to implement f lt and APt of the crows in PCSA, respec-
tively.

f lt (k;β0, β1) = β0k
β1 (9)

APt (k;β0, β1) = β0β1k
β1−1 (10)

where k = T
t .

Equations 9 and 10 were utilized to amend f lt and APt
throughout the iterative process of PCSA. It is significant to
know that (8) was used to find APt in this model. A range
of values from 0 to 5 was applied to β0 and β1. For all of
the benchmark problems optimized in this paper using the
proposed PCSA, β1 and β0 are equal to 0.05 and 2.0, respec-
tively. These values were found by empirical investigation of

a large subset of test functions of varied complexity, where
these values reported the best performance of the proposed
PCSA.

It is evident from (9) and (10) that when t is small, the
value of f lt is as its maximum value and rapidly drops to
its lowest value. On the contrary, APt is small at small t and
gradually increases towards its maximum value. In such a
context, crows in PCSA can find a food source at the end
of their foraging. Using power functions for f lt and APt
can improve exploration and exploitation, as shown in the
evaluation results.

4.5 Delayed s-shapedmodel-based CSA (SCSA)

The S-shaped model used in the proposed SCSA was intro-
duced in [77, 78]. The proposed growth S-shaped model for
f lt is given in (11).

f lt (k;β0, β1) = β0

(
1 − (1 + β1k) e

−β1k
)

(11)

where k = T
t .

Equation 8 was used to derive APt of the SCSA model
from f lt presented in (11), where the formula produced for
APt can be expressed as follows:

APt (k;β0, β1) = β0β
2
1ke

−β1k (12)

This work solves all testing problems using the proposed
SCSA, where β1 and β0 are equal to 7.0 and 2.0, respectively.
These values were determined by experimental testing of a
large number of benchmark functions, in which these coef-
ficients were altered many times until the proposed SCSA
obtained a sensible solution.

To sum up, the parameters β0 and β1 in (6), (7), (9),
(10), (11) and (12) can be fine-tuned to other problems as
demanded. The three new versions of the basic CSA were
proposed to provide an adequate setting for f lt and APt
to foster exploration and exploitation features of CSA. The
above models are expected to achieve effective convergence
and improve the performance of the proposed ECSA, PCSA,
and SCSA in optimizing optimization problems. Moreover,
they could provide great potential for ECSA, PCSA, and
SCSA to evade stagnation in local optima areas and assist
them in determining the global optimum solution.

4.6 Exploration ability

Many parameters improve exploration in the proposed algo-
rithms, ECSA, PCSA, and SCSA, which are described as
shown below:
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• τ : It manages the exploration quantity of the proposed
algorithms and identifies how far the new location would
be from the food source. It further intensifies exploitation
aptness, eludes premature convergence, and prevents the
descent of solutions into local optima.

• sgn(rand−0.5): It directs the direction of the exploration
process. Since r implements a random number in the
interval from 0 to 1, the likelihood of both positive and
negative signs is comparable.

• f lt : This adaptive function was elected based on several
empirical tests. In the initial iterations, the owner crow
and the robber crow are far away from each other, and
the crows are all onward away from food or other crows’
food. Updating f lt improves the proposed algorithms’
ability to search the space globally.

• APt : This adaptive function was selected based on an
empirical test. Updating the values of APt for each pro-
posed algorithm helps the crows in each algorithm to find
unknown search areas at initial iterations when crows are
very far from food or from each other.

4.7 Exploitation ability

The following describes the main parameters used in ECSA,
PCSA, and SCSA to perform exploitation and local search
in the search space:

• τ : With the passage of iteration time, exploration wanes,
and exploitation expands. In the last iterations, where a
crow approaches a food source, updating the crow’s posi-
tionwith this control variablewill aid the ability to locally
search for the food source, which leads to exploitation.

• sgn(rand−0.5): It also manages the exploitation feature
and identifies the direction of the local search.

• a0: This quantity manages the exploitation property of
the proposed algorithms by drilling around the optimum
solution.

4.8 Computational complexity analysis

Typically, the complexity issue of optimization algorithms
canbe represented by a function that links the problem’s input
size to the algorithm’s run-time. In doing so, the complexity
issue of ECSA can be described as presented in (14).

O(ECSA) = O(ini tiali zation) + O(problem Def .)(13)

+ O(t(cost f unction)) + O(t(Sol. update))

+ O(t(memory update))

where N , d, and t denote the number of crows, problem
dimension, and iteration counter, respectively, and c identi-
fies the cost of the objective function.

The parameters in (14) form the basic components of
the complexity issue of the optimization method. In conse-
quence, the general computational complexity issue can be
identified as shown below:

O(ECSA) = O(1 + nd + tcn + tn + tnd) (14)

As nd � tnd and tn � tcn, (14) is reduced to (15):

O(ECSA) ∼= O(tcn + tnd) (15)

Notably, the complexity issue for PCSA and SCSA is the
same as the complex issue for ECSA, which is given in (15).
The complexity issue of ECSA, PCSA, and SCSA is of the
polynomial order. In conclusion, these proposed algorithms
can be considered efficient optimization algorithms. The fun-
damental steps of these algorithms can be abridged by the
steps given in Algorithm 2, and the flowchart describing the

Algorithm 2 A pseudo-code summarizing the main steps of
the proposed ECSA, PCSA, and SCSA algorithms.
1: r , rand, r1, r2, r3, r j are random values from 0 and 1
2: l j and u j are the lower and upper limits at dimension j
3: d ← dimension of the problem
4: Initialize and evaluate the position, x , of all N crows
5: Initialize the crows’ memory, m
6: Set t ← 1
7: while (t < T ) do
8: Define APt using Equations 7, 10 or 12 depending on the model
used.
9: Define f lt using Equations 6, 9 or 11 depending on the model
used.
10: Define τ using Equation 5
11: for i = 1 to N do
12: Choose one of the crows at random, such as crow j , to
follow it.
13: if(r j < APt ) then
14: if(r < 0.5) then
15: xit + 2 f lt (m

j
t − xit )r1

16: else
17: xit − 2(1 − f lt )(m

j
t − xit )r2 sgn(rand − 0.5)

18: end if
19: else
20: for j=1 to d do
21: xi, jt+1 = τ

(
l j − (l j − u j )r3

)
22: end for
23: end if
24: end for
25: Assess the new crows’ positions f (xit+1)

26: Amend crows’ memory m j
t+1

27: t = t+1
28: end while
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Fig. 2 Schematic diagram of
the proposed algorithms of CSA
for global optimization

general steps of these algorithms (i.e., ECSA, PCSA, and
SCSA ) are presented in Fig. 2.

5 Experimental results and discussion

This section shows and explains the experimental results
of the developed ECSA, PCSA, and SCSA on sixty-seven
broadly well-known benchmark functions. A characteriza-
tion of these test functions is also provided in this section.
The outcomes are explained and compared with promising
meta-heuristic optimization methods.

5.1 Description and purpose of the functions used

In this study, 67 optimization functions were used to demon-
strate the effectiveness of the developed ECSA, PCSA, and
SCSA. These functions can be clustered into the following
classes: unimodal with 7 test functions [79], multimodal with
6 test functions [80], fixed-dimension multimodal with 10
test functions [79, 80], CEC-2015 with 15 benchmark func-
tions [81] and CEC-2017 with 29 stable functions and one
unstable test function [47, 82]. Details of these test func-
tions, involving the test environment, functions’ dimensions,
search spaces’ limits, and the optimum obtained value, are

26851

1 3



A. Sheta et al.

presented in Appendix A in Tables 23, 24 and 25, respec-
tively. Each set of these test functions was used to assess
specific views of the developed algorithms.

The first class (i.e., unimodal functions) that includes F1-
F7 has only one optimum solution. These test functions were
chosen to judge the proposed algorithms’ exploitation feature
and convergence. Multimodal test functions in the second
class, which involve F8-F13, have more than one optimum
solution. These functions were chosen in the current work to
assess the exploration behavior of the proposed algorithms,
where theyhavemany local optimumsolutions andmore than
one global optima. However, a good optimization algorithm
demands the ability to search the space globally to identify
the global optimal and bypass the local entrapment. The third
class (i.e., fixed-dimension multimodal functions), which
includes F14-F23, are homologous to multimodal functions,
but they havefixed and lowdimensions. These functionswere
employed here to assess the proposed algorithms’ explo-
ration feature further. The desired algorithmmust avoid local
optimal solutions and quickly approach the optimal global
solution. In a nutshell, the test functions F1-F23 were cho-
sen in this study because they are adequate in verifying the
local optimum avoidance, diversification, and intensifica-
tion behaviors of the proposed algorithms as well as their
suitability for testing the convergence rate of the proposed
algorithms.

The last two classes, CEC-2015 andCEC-2017 test groups
include composite and hybrid benchmark test functions.
These tests’ functions mimic the complexity of a real search
domain by having several local optima and various func-
tion shapes in diverse test areas. As detailed in Appendix A,
these functions are formed by shifting, rotation, extension,
and hybridization of unimodal andmultimodal test functions.
These test problems implement more challenging optimiza-
tion problems and are chosen in this work to present more
challenges in evaluating the accuracy of the proposed algo-
rithms. Besides, these cases were prepared to assess optimal
local avoidance and the proposed algorithms’ exploration
and exploitation behaviors. As per the above discussions, an
adept optimization algorithm should be capable of bypassing
local optimal solutions and speedily converging to the global
optimum. Subsequently, the above test groups were selected
to assess the efficacy of the proposed algorithms from the per-
spective of evading local optimal solutions and finding the
optimum global ones, especially CEC-2015 and CEC-2017
benchmarks with extremely challenging test functions. With
this, estimating and judging the exploration and exploitation
aptitudes of the developed algorithms in this work is simple.

5.2 Experimental setup

To manifest the general efficacy of the developed ECSA,
PCSA, and SCSA, their outcomes are compared with those

of the standard CSA and other optimization methods on
unimodal, multimodal, fixed-dimensional, CEC-2015, and
CEC-2017 benchmark test groups presented in Appendix
A. The competing methods presented here include four cat-
egories of meta-heuristic optimization algorithms: (i) GA
[83] as an evolutionary algorithm, (ii) PSO [84], Spotted
Hyena Optimizer (SHO) [85], GWO [86], Emperor Penguin
Optimizer (EPO) [87], and CSA [9] as swarm intelligence
algorithms, (iii) Gravitational Search Algorithm (GSA) [88]
and Multi-Verse Optimizer (MVO) [89] as physics-based
algorithms and (iv) Sine Cosine Algorithm (SCA) [90] as a
mathematics-based algorithm.PSOandGAare themost pop-
ular and well-studied swarm intelligence and evolutionary
algorithms in these comparative algorithms. Besides, SHO,
GWO, EPO, CSA, and SCA are practical meta-heuristic
algorithms, and finally, MVO and GSA are reliable and well-
known physics-based algorithms. Parameter settings of the
proposed ECSA, PCSA, and SCSA algorithms, the primary
CSA, and the other comparative algorithms are provided in
Table 1. The comparative meta-heuristics mentioned above
were selected in this comparison because they have been
broadly applied in the literature to address the aforemen-
tioned benchmark functions, where they provided promising
performance. Moreover, these algorithms share many sim-
ilarities with the proposed algorithms, including flexibility,
generality, and simplicity. In addition, they are independent
of the nature of the benchmark functions to be addressed.

The settings of the parameters displayed in Table 1 were
determined to fit the settings broadly presented in the liter-
ature. The initialization process of the proposed algorithms
is similar to that used in the other ones for a fair-minded
comparison between the proposed algorithms and those com-
petitive ones. The proposed algorithms used 30 search agents
associated with 1000 iterations (30,000 maximum number
of function evaluations (FEs)) for all test functions in all
test classes. Likewise, to realize a fair comparison, the other
algorithms also used a maximum number of 30,000 FEs. The
comparisons between the algorithms were made with simi-
lar floating-point precision. In this, themargins of differences
between the findings are attributable to the degree of perfor-
mance of the comparative methods. As presented in Table 1,
the algorithms were assessed in 30 separate runs for each test
problem in each experiment.

5.3 Performance Evaluation

This section presents the accuracy of the proposed algorithms
and compares them with other optimization algorithms on
classical unimodal (F1-F7), multimodal (F8-F13) and fixed-
dimension multimodal (F14-F23) benchmark test functions.
The average (AVG) and standard deviation (STD) values
were employed as the best statistical measures on the bench-
mark test functions. These statistical values were calculated
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Table 1 Parameter settings of ECSA, PCSA, and SCSA and other opti-
mization methods

Algorithm Parameter Value
∀ algorithms Search agents 30

Number of generations 1000

CSA f l 2

AP Constant 0.1

ECSA β0, β1 2.0, 1.0

a0, a1, a2 2, 4, 2

PCSA β0, β1 2.0, 0.05

a0, a1, a2 2, 4, 2

SCSA β0, β1 2.0, 7.0

a0, a1, a2 2, 4, 2

SHO �M Constant [0.5, 1]

Control parameter (�h) [5, 0]

GWO Control parameter (�a) [2, 0]

PSO Inertia coefficient 0.75

Cognitive coefficient 1.8

Social coefficient 2

MVO Traveling distance rate [0.6, 1]

Wormhole existence Prob. [0.2, 1]

SCA Number of elites 2

GSA Alpha coefficient 20

Gravitational constant (G0) 100

GA Selection Roulette wheel

Crossover 0.9

Mutation 0.05

EPO Temperature profile (T̀ ) [1, 1000]

�A constant [-1.5, 1.5]

Parameters M , f , l 2, [2, 3], [1.5, 2]

Function S() [0, 1.5]

at the final iteration to evaluate the algorithms’ accuracy
convincingly. The standard deviation results were computed
to test the stability of the proposed algorithms during the
independent runs. The algorithms’ stopping conditions were
assigned to the total number of iterations. The best findings
are emboldened in all tables.

5.3.1 Evaluation of functions F1-F7

These functions are convenient for judging the exploitation
ability of the proposed algorithms since they only have one
global optimum and no local ones. Table 2 shows the average
(AVG) and standard deviation (STD) obtained, over 30 sepa-
rate runs, by the proposed algorithms and the meta-heuristics
mentioned above on unimodal functions.

From the findings on unimodal functions in Table 2, it
is apparent that the proposed algorithms, ECSA, PCSA, and
SCSA, reveal their strength in delivering very reasonable out-

comes in comparison to the parent CSA and other promising
methods. In particular, these proposed algorithms achieved
the global optimum solution inmany test functions compared
to others. Notably, as it is seen, the proposed SCSA was the
most efficient algorithm for the functions F1, F3, and F6,
where it achieved the global optimum solutions compared to
the others. For the function F6, the average and standard devi-
ation values of SCSAwere the best, with values of 0.00E+00
in bothmeasures. Besides, it delivered competitive outcomes
in the other test functions and was much better than many
competing algorithms. This reliable performance is also seen
for the proposed ECSA on average and standard deviations
in F4, F6, F3, F2, and F1, respectively in which it achieved
very promising results in these functions, had the second and
third ranks in these test functions after EPO and SCSA.More
particularly, ECSAwas the most proficient algorithm among
the other algorithms for function F5, as it identified the best
global perfect solution in this function.

The proposed PSCA achieved the second-best result in
F1, F3, and F6 with only slight differences in the outcomes
in comparison to SCSA. In F5, ECSA ranked first with an
optimal result of 7.97E-01, whereas PSCA ranked second
with only a little amount of difference in the mean result,
and SCSA collected the third rank after ECSA and PSCA in
respect of the average scorewith only a very slight difference.
PSCA and SCSA are the second and third-best optimization
methods regarding the average results in function F6. Specifi-
cally, SCSA ranked first with an optimal result of 0.00, where
PSCAreceived the second rank after SCSAwith amean score
of 7.08E-33, and ECSA received the third rank after SCSA
and PSCA with a mean score of 5.81E-28. The results of
ECSA, PCSA, and SCSAon the unimodal functions (F1 - F3)
confirm that these algorithms outperformed the basic CSA,
PSO, MVO, SCA, GSA, and others in these test cases. How-
ever, in F2, F4, and F7, these algorithms provided relatively
comparable results to EPO and GWO algorithms. Therefore,
it can be deduced that the evolved algorithms in this work
were capable of finding optimal results on many unimodal
functions. Further, the small standard deviation results of the
proposed ECSA, PCSA, and SCSA in all unimodal functions
expose that these algorithms are stable and that this excel-
lence is entrenched. On the basis of the characteristics of the
unimodal functions under study, it can be certainly stated that
ECSA, PCSA, and SCSA benefited from the high exploita-
tion capability.

5.3.2 Evaluation of functions F8-F23

The functions F8 to F23 are well-suited for examining the
exploration conduct of the developed algorithms. Tables 3
and 4 exhibit the performance scores of different algorithms,
over 30 separate runs, for high dimensional functions (F8-
F13) and fixed-dimensional functions (F14-F23), respectively.
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Table 2 Results of ECSA, PCSA, SCSA, and other optimization algorithms in unimodal benchmark functions

F ECSA PCSA SCSA CSA
AVG STD AVG STD AVG STD AVG STD

F1 7.62E-28 1.02E-27 1.41E-32 1.87E-32 8.36E-35 1.33E-34 1.33E-10 1.35E-10

F2 1.42E-11 2.13E-11 1.02E-11 1.78E-11 3.14E-12 7.20E-12 1.27E-05 1.15E-05

F3 1.35E-22 5.36E-22 2.27E-24 5.43E-24 1.0E-24 4.37E-24 1.41E-06 4.54E-06

F4 2.87E-13 4.35E-13 7.64E-13 1.28E-12 4.20E-13 6.27E-12 3.36E-05 2.18E-05

F5 7.97E-01 1.62 1.25 1.83 1.32 1.91 3.37 1.77

F6 5.81E-28 1.08E-27 7.08E-33 9.91E-33 0.00E+00 0.00E+00 9.80E-11 1.11E-10

F7 4.72E-04 2.72E-04 4.50E-04 2.98E-04 4.88E-05 3.31E-05 5.41E-01 2.62E-01

F PSO MVO SCA GSA

AVG STD AVG STD AVG STD AVG STD

F1 4.98E-09 1.40E-08 28.10E-02 1.11E-01 3.55E-02 1.06E-01 1.16E-16 6.10E-17

F2 7.29E-04 1.84E-03 39.60E-02 14.10E-02 3.23E-05 8.57E-05 17.00E-02 92.90E-02

F3 1.40E+01 7.13 43.10 8.97 4.91E+03 3.89E+03 41.60E+01 15.60E+01

F4 6.00E-01 17.20E-02 88.00E-02 25.00E-02 18.70E+00 8.21 1.12 98.90E-02

F5 4.93E+01 38.90 11.80E+01 14.3E+01 73.7E+01 19.80E+02 38.50E+00 3 4.70E+00

F6 9.23E-09 1.78E-08 31.50E-02 9.98E-02 4.88 97 .50E-02 1.08E-16 4.00E-17

F7 6.92E-02 28.70E-03 2.02E-02 7.43E-03 3.88E-02 5.79E-02 76.80E-02 2.77

F SHO GWO GA EPO

AVG STD AVG STD AVG STD AVG STD

F1 0.00E+00 0.00E+00 46.10E-24 73.70E-24 19.50E-13 20.10E-12 57.10E-29 83.10E-30

F2 0.00E+00 0.00E+00 12.00E-35 13.00E-35 65.30E-19 51.00E-18 62.00E-41 33.20E-41

F3 0.00E+00 0.00E+00 10.00E-13 41.00E-15 77.00E-11 73.60E-10 20.50E-20 91.70E-21

F4 77.80E-13 89.60E-13 20.20E-15 24.30E-15 91.70 56.70 4.32E-18 3.98E-19

F5 8.59 55.30E-02 27.90 1.84 55.70E+01 41.60 5.07 49.00E-02

F6 24.6E-02 17.80E-02 65.80E-02 33.80E-02 31.50E-02 99.80E-03 70.10E-20 43.90E-21

F7 32.90E-06 24.30E-06 78.00E-05 38.50E-05 67.90E-05 32.90E-04 27.10E-06 92.60E-07

Table 3 substantiates that the proposed ECSA, PCSA, and
SCSA algorithms were able to get promising results in the
majority of multimodal test functions (i.e., F8 - F13) while
some of the other methods did not. The results obtained
by ECSA, PCSA, and SCSA in these functions were in the
vicinity of the global optimum solutions, with only a slight
margin difference to these solutions. For a thorough discus-
sion, it is apparent from the findings in Table 3 that SCSA
outperformed othermethods in F12. For F8, which is themost
challenging function in this group, ECSA, PCSA, and SCSA
got better scores than those reported by the parent CSA,
which roughly reached results reasonably approaching the
global optimum reported by SHO. For F9, HS presented bet-
ter accuracy than other optimization methods, while ECSA,
PCSA, and SCSA still presented very sensible results in this
function. Also, the proposed ECSA, PCSA, and SCSA deliv-
ered highly effective results in F10 and F11. For F12, SCSA
is the first best optimizer. When reading Table 3 once more,
one can notice that almost all optimization algorithms acted
sensibly well, with the proposed ECSA, PCSA, and SCSA
achieving high-performance levels better than those per-

formed by CSA. These findings confirm that ECSA, PCSA,
and SCSAhave good scores concerning exploration capacity.
The standard deviation figures of ECSA, PCSA, and SCSA
are tiny in these benchmark test functions, which asserts that
their performance is stable.

The experimental tests presented in Table 4 are purposed
to corroborate the exploration tact of the proposed ECSA,
PCSA, andSCSAalgorithmsonmore sophisticated test func-
tions with complex search spaces than the tests presented in
Tables 2 and 3. It is evident from the outcomes shown inTable
4 that ECSA, PCSA, and SCSA are superior to many other
promising algorithms in the majority of fixed-dimensional
functions concerning the accuracy values. Their performance
is also very comparable to other rivals in the other test func-
tions. Eventually, the AVG outcomes of the best solutions got
during the 30 independent runs prove that ECSA, PCSA, and
SCSA show excellent and consistent performance on aver-
age. In more detail, it is apparent from the results in Table 4
that ECSA, PCSA, and SCSA are the best optimizers in F14
- F19, where they got convincing statistical results in these
functions markedly better than those obtained by other algo-
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Table 3 Results of ECSA, PCSA, SCSA, and other optimization algorithms in multimodal test functions

F ECSA PCSA SCSA CSA
AVG STD AVG STD AVG STD AVG STD

F8 -2.45E+03 3.53E+02 -2.66E+03 3.09E+02 -2.81E+03 3.76E+02 -2.91E+03 3.21E+02

F9 2.60 7.06 4.44 6.00 3.70 7.08 6.40 3.60

F10 1.11E-01 2.20E-01 1.09E-01 3.02E-01 0.91E-01 1.36E-01 4.34E-01 6.38E-01

F11 2.68E-02 2.86E-02 1.23E-02 3.48E-02 1.00E-02 3.19E-02 9.08E-02 6.84E-02

F12 2.23E-08 1.47E-07 9.04E-08 1.76E-07 8.11E-11 1.49E-10 2.69E-09 7.12E-09

F13 1.11E-04 1.93E-04 1.05E-02 2.12E-02 1.25E-02 2.00E-02 1.79E-03 4.93E-03

F PSO MVO SCA GSA

AVG STD AVG STD AVG STD AVG STD

F8 -6.01E+02 13.00E+01 -69.20E+01 91.90E+01 -38.10E+01 28.30 -27.50E+01 57.20

F9 4.72E+01 10.30 10.10E+01 18.90 22.30 32.50 33.50 11.90

F10 3.86E-02 21.10E-02 1.15 78.70E-02 15.50 8.11 82.5E-10 19.00E-10

F11 5.50E-03 73.90E-04 57.40E-02 11.20E-02 30.10E-02 28.90E-02 8.19 3.70

F12 1.05E-10 20.60E-11 1.27 1.02 52.10 24.70E+01 26.50E-02 31.40E-02

F13 4.03E-03 53.90E-04 66.00E-03 43.30E-03 28.10E+01 86.3E+01 57.30E-33 89.50E-33

F SHO GWO GA EPO

AVG STD AVG STD AVG STD AVG STD

F8 -1.16E+02 27.20 -61.40E+01 93.20 -51.10E+01 43.70 -87.60E+01 59.20

F9 0.00 0.00 43.40E-02 1.66 12.30E-02 41.10 69.00E-02 48.10E-02

F10 2.48 1.41 16.30E-15 31.40E-16 53.10E-12 11.10E-11 80.30E-17 27.40E-15

F11 0.00 0.00 22.90E-04 52.40E-04 33.10E-07 42.30E-06 42.00E-06 47.30E-05

F12 36.80E-03 11.50E-03 39.30E-03 24.20E-03 91.60E-09 48.80E-028 50.90E-04 37.50E-04

F13 92.90E-021 95.20E-03 47.50E-02 23.80E-02 63.90E-03 44.90E-03 0.00 0.00

rithms. There is no noteworthy difference between the results
of ECSA, PCSA, and SCSA algorithms. Still, there is a large
of difference between the findings obtained by these algo-
rithms and those obtained by the other algorithms in F14,
F15, F16, and F17. The average accuracy values of ECSA,
PCSA, and SCSA are better than the average accuracy val-
ues of CSA in F22, F21, F20 and F19. In comparison, the STD
values of CSA are better than ECSA, PCSA, and SCSA in
these test functions. Specifically, there is a minimal statisti-
cal difference between ECSA, PCSA, SCSA, GA, EPO, and
GWO in F17, and there is a slight difference between ECSA,
PCSA, SCSA, and SHO in F19 and F20. Some of the opti-
mum results are marked in favor of the proposed algorithm,
while another meta-heuristic algorithm finds a better solu-
tion. For example, the optimum result of F21 is -10.153; the
proposed ECSA, PCSA, and SCSA obtained mean values of
-2.05, -6.72, and -6.57, where these values are close to the
optimal results. The same applies to F22 and F23, where the
performance of ECSA, PCSA, and SCSA is comparable to
SHO in F22 and F23. Moreover, the proposed ECSA, PCSA,
and SCSA algorithms are characterized as having the slight-
est STD results in most of the fixed-dimensional functions in
comparison to all other competing algorithms. These small
STD results divulge that the dominance of ECSA, PCSA, and

SCSA iswell-established. Eventually, these results prove that
the ECSA, PCSA, and SCSA have excellent and stable per-
formance on average. In short, as can be seen, statistically,
the proposed ECSA, PCSA, and SCSA are superior to CSA,
MVO, PSO, GSA, SCA, GA, SHO, GWO, and EPS, as the
mean outcomes of ECSA, PCSA, and SCSA in the majority
of fixed-dimensional functions over 30 separate runs is, in
each function, a much lower.

5.3.3 Implementation time

In addition to the average (AVG) and standard deviation
(STD) values used in comparisons of competing algorithms
above, the computational time taken by the algorithms to
accomplish computations is also a root criterion that is
frequently used to exemplify the efficacy of algorithms.
Alternatively stated, the computational time is crucial to
reveal whether the computational burden of new amended
optimization algorithms is satisfactory andwithin the bounds
of other competing methods. The proposed algorithms of
CSA (i.e., ECSA, PCSA, SCSA) and the other competing
algorithms were carried out inMATLAB 2021 A platform.
All of these algorithms were carried out under identical con-
ditions on a Windows 10 with an Intel Core i7-5200UT M
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Table 4 Results of ECSA, PCSA, SCSA, and other optimization algorithms in fixed-dimensional test functions

F ECSA PCSA SCSA CSA
AVG STD AVG STD AVG STD AVG STD

F14 9.98E-01 3.43E-02 9.98E-01 9.95E-02 9.98E-01 5.64E-02 9.98E-01 0.00

F15 3.27E-03 5.61E-03 4.41E-03 8.11E-03 1.23E-03 3.64E-03 3.19E-03 6.85E-03

F16 -1.0316 5.77E-16 -1.0316 6.19E-16 -1.0316 6.42E-16 -1.0316 6.51E-16

F17 3.97E-01 0.00 3.97E-01 0.00 3.97E-01 0.00 3.97E-01 0.00

F18 2.99 2.16E-15 2.99 2.13E-15 2.99 2.04E-15 2.99 1.87E-15

F19 -3.862 2.61E-15 -3.862 2.42E-15 -3.862 2.37E-15 -3.862 2.69E-15

F20 -3.27 4.79E-02 -3.27 5.29E-02 -3.27 5.92E-02 -3.31 2.17E-02

F21 -2.05 3.31 -6.72 3.38 -6.57 3.69 -1.01E+01 5.62E-15

F22 -5.43 3.52 -3.96 3.80 -4.61 3.53 -1.04E+01 4.66E-16

F23 -6.00 3.67 -5.50 3.70 -4.55 3.84 -1.05E+01 1.58E-15

F PSO MVO SCA GSA

AVG STD AVG STD AVG STD AVG STD

F14 2.77 2.32 9.98E-01 9.14E-12 1.26 6.86E-01 3.61 2.96

F15 9.09E-03 2.38E-03 7.15E-02 1.26E-01 1.01E-02 3.75E-03 6.84E-02 73.70E-03

F16 -1.02 0.00 -1.02 4.74E-08 -1.02 3.23E-05 -1.02 0.00

F17 3.97E-01 9.03E-16 3.98E-01 1.15E-07 3.98E-01 7.61E-04 3.98E-01 11.30E-17

F18 3.00 6.59E-05 3.00 1.48E+01 3.00 2.25E-05 3.00 32.40E-03

F19 -3.80 3.37E-15 -3.77 3.53E-07 -3.75 2.55E-03 -3.86 41.50E-02

F20 -3.32 2.66E-01 -3.23 5.37E-02 -2.84 3.71E-01 -1.47 53.20E-02

F21 -7.54 2.77 -7.38 2.91 -2.28 1.80 -4.57 1.30

F22 -8.55 3.08 -8.50 3.02 -3.99 1.99 -6.58 2.64

F23 -9.19 2.52 -8.41 3.13 -4.49 1.96 -9.37 2.75

F SHO GWO GA EPO

AVG STD AVG STD AVG STD AVG STD

F14 9.68 3.29 3.71 3.86 4.39 4.41E-02 1.08 41.10E-03

F15 9.01E-03 1.06E-03 3.66E-02 7.60E-02 7.36E-02 2.39E-03 8.21E-03 40.90E-04

F16 -1.03 2.86E-11 -1.02 7.02E-09 -1.02 4.19E-07 -1.02 98.00E-08

F17 3.97E-01 2.46E-01 3.98E-01 7.00E-07 3.98E-01 3.71E-17 3.98E-01 53.90E-06

F18 3.00 9.05 3.00 7.16E-06 3.00 6.33E-07 3.00 11.50E-09

F19 -3.71 4.39E-01 -3.84 1.57E-03 -3.81 4.37E-10 -3.86 65.00E-08

F20 -1.44 5.47E-01 -3.27 7.27E-02 -2.39 4.37E-01 -2.81 71.10E-02

F21 -2.08 3.80E-01 -9.65 1.54 -5.19 2.34 -8.07 2.29

F22 -1.61 2.04E-04 -1.04 2.73E-04 -2.97 1.37E-02 -10.01 39.70E-03

F23 -1.68 2.64E-01 -1.05E+01 1.81E-04 -3.10 2.37 -3.41 11.10E-03

CPU at 2.2 GHz and 8.0 GB of RAM. This is to ascertain
that the comparison is fair. Table 5 shows the average exe-
cution times and their associated standard deviation values
taken by ECSA, PCSA, SCSA, and all other competitors,
over 30 separate runs, in optimizing the functions (i.e., F1
to F23). The best results in this table are emboldened to give
them more significance than the other results.

The comparisonpresented inTable 5between the competi-
tor algorithms was made in respect of the execution time that
the algorithm takes to accomplish the computation. Although

the execution times of ECSA, PCSA, andSCSA, as displayed
in this table, are sometimes slightly more significant than
those of CSA and some of the other algorithms, the increase
in execution times of these proposed algorithms is not sig-
nificant in many cases. Appropriately, the execution times of
the proposed algorithmswere reasonable since they are fallen
within the scope of execution times of other algorithms. In
short, the proposed ECSA, PCSA, and SCSA algorithms’
computational times are relatively short and associated with
small Std values.
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5.4 Convergence curves of the developed
algorithms

The most common qualitative results of optimization tech-
niques utilized in the literature are convergence curves. In
this situation, an algorithm’s best results to date are recorded
after each iteration loop. To demonstrate how closely an
algorithm approximates the global optimal solutions over a
certain number of iterations, the convergence curves are rep-
resented as lines. The convergence curves of the proposed
ECSA, PCSA and SCSA, and the parent CSA, in respect of
the best fitness values of all test functions of the standard
benchmark functions, were obtained in a two-dimensional

environment, as shown in Figs. 3 and 4, where the preceding
Fig. 3 exhibits the convergence curves for F1 to F12, while
the latter Fig. 4 presents the curves for F13 to F23.

The convergence curves of the three algorithms derived
fromCSA are displayed over 1000 iterations specified on the
x-axis in Figs. 3 and 4 against the best fitness values obtained
so far on the y-axis. In these curve trends, the best optimiza-
tion method is the one that illustrates rapid convergence and
reaches a minor error. This implies that we support the algo-
rithm that settles at a low fitness value after a few number
of iterations. An attractive outcome is that all the proposed
algorithms of CSA have credibly found the minimum of F1−
F12. Hence, these problems may be relatively easy to solve

Fig. 3 Convergence curves of the proposed algorithms, ECSA, PCSA, SCSA, and the basic CSA for F1 - F12
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Fig. 4 Convergence curves of the proposed algorithms, ECSA, PCSA, SCSA, and the basic CSA for F13−F23

with a 100% success rate. Looking deeply at Figs. 3 and 4,
one can notice reasonable variations in the behaviors of the
three developed algorithms ofCSA.This variation is ascribed
to how the optimization method acts regarding exploitation
and exploration features.

This also varies fromone test function to another test func-
tion for the same optimization algorithm based on the nature
of the function. In general, the convergence curves stabi-
lize at or after approximately 200 iterations. The proposed
versions of CSA show good convergence behaviors in all
test functions and outperform the native CSA. Looking at
each plot separately, one can say that SCSA has surpassed

its companion versions in benchmark function F21, where
it realized a meager fitness value in less than ten iterations.
After then, the curve continued to fall, although only very lit-
tle. Again, one can perceive that SCSA excelled in getting the
best visual results, followed by PCSA, which behaved simi-
larly to PCSA, and both are superior to ECSA, andCSA is the
worst among them. Overall, the convergence curves in Figs.
3 and 4 demonstrate that the proposed ECSA, PCSA, and
SCSA maintain an appropriate balance between exploration
and exploitation for locating the optimal global solution reli-
ably. Thus, the success rate of these algorithms is high for
solving optimization functions.
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5.5 Qualitative analysis of ECSA

To show the qualitative outcomes of ECSA, four metric
measures were used in a 2-D environment given by solving
functions F1, F4, F6, F10, F11 and F16.

The metric measures employed in the qualitative results
can be characterized as follows:

• The first metric displays the convergence of the best
global crow through a path of iterations. Convergence

analysis of optimization algorithms is vital to grasp
methods’ exploration and exploitation features better.
Remarkably, the results of the convergence curves reveal
that ECSA exhibits sensible convergence rates and has
encouraging conduct in all of the considered functions.
Within the first 500 iterations, ECSA quickly converges
to the most favorable regions in the search space. In the
following 500 iterations, ECSA gradually converges to
the global or near-global optimal in F1, F6, and F10.

Fig. 5 Qualitative results for F1, F4, F6, F10, F11 and F16: convergence curve, the average fitness of all crows, search history and path in the first
dimension of the first crow
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For F4 and F11, ECSA continued to approach the global
solutions. The stability of ECSA with various kinds of
functions supports the ability to obtain a steady conver-
gence. The soft convergence curves and the regularity
with which these curves converge to the slightest error
throughout an iterative process serve as evidence. The
crows are prompted to travel to the global optima and are
prompted to move locally rather than globally, demon-
strating how ECSA utilizes the search space.

• Average fitness curves read the average objective val-
ues of all crows at each iteration of ECSA. These fitness
curves decrease significantly throughout iterations in all
tested test functions. In more detail, ECSA gave a fast
convergence response for F1, F6, F10 and F16, has ratio-
nal convergence for F4, and found optimal solutions with
a sensible convergence response for F11. This ascertains
that ECSA promotes the global best crow and enhances
the fitness values of all crows.

• The search history records the crows’ positions dur-
ing optimization. ECSA is exploring the most favorable
regions in the search space for the benchmark func-
tions. The proposed ECSA does not become stuck in
local optima and is exploring the whole search space.
For F1, F4, and F6, the sample points are slightly split
into the unpromising regions. Most of the sample points
in the test functions, F10 - F11, and F16, are distributed
around unpromising regions. This is owing to the com-
plexity of these test functions. This insinuates that ECSA
explored the whole search space and averted falling into
local optima. The sample points are dispersed around the
optimal solution, which ensures that ECSA can diver-
sify and intensify the search process in the search space
efficiently and effectively.

• At each loop of the iterative ECSA process, the first
crow’s path shows the value of the first variable. The
route curves demonstrate that crows exhibit signif-
icant favorable regions during the initial stages of
optimization.

The average fitness and convergence curves in Fig. 5
demonstrate that ECSA has an appropriate balance between
exploration and exploitation to effectively locate the global
optimal solution. Generally, the above qualitative outcomes
substantiate the coveted features of ECSA and affirm that
its success level in addressing benchmark test functions is
mainly reliable. This is attributed to the robust global and
local search mechanisms of the developed ECSA in the
search space.

5.6 Evaluation of CEC-2015 benchmark

The performance level of the proposed variants of CSA was
evaluated using a more complicated benchmark set, CEC-

2015. These functions include hybrid and composition test
functions [91]. Therefore, they are valuable for assessing the
exploration and exploitation features of the proposed algo-
rithms. These test functions have a search space equal to
[−100, 100]with dimensions equal to 30 for each. Appendix
A in Table 24 details these functions. The settings of the
parameters for ECSA, PCSA, and SCSA and all other com-
peting algorithms used in this test set are exhibited in Table
1. The number of FEs for each function was assigned to
30,000, considering that each method’s number of iterations
and crows are 1000 and 30, respectively. The performance
degree of ECSA, PCSA and SCSA, and other competing
methods on the CEC-2015 benchmark group is provided in
Table 6.

Table 6 compares the performance of the proposed ECSA,
PCSA, and SCSA algorithms with the primary CSA and
eight other meta-heuristics for CEC-2015 benchmark func-
tions. It is evident from this table that ECSA, PCSA, and
SCSA excelled other algorithms in the majority of the stud-
ied functions. In this context, ECSA achieved better mean
values for test functions C15-f1, C15-f4, C15-f8, and C15-
f11. PCSA arrived at better mean scores for C15-f2 and
C15-f5, and SCSA realized better mean scores for C15-f6
and C15-f10. Additionally, the proposed ECSA, PCSA, and
SCSA yielded findings near optimality for C15-f3, C15-
f7, C15-f9, C15-f12, C15-f13, and C15-f15, respectively,
and these results are analogous to other algorithms. For the
test functions C15-f3 and C15-f9, all the competing meth-
ods achieved the same results of 3.20E+02 and 1.00E+03,
respectively. Also, CSA produced near-optimal outcomes for
the C15-f4 test function comparable to the results revealed
by ECSA, PCSA, and SCSA. On the C15-f7 test function,
CSA reported an average fitness value of 7.11E+02, close
to the result of 7.02 E+02 reported by ECSA, PCSA, and
SCSA. For the C15-f8 test function, ECSA reported an opti-
mal result of 1.43E+03, whereas PCSA, SCSA, and CSA
reported good results close to optimality for this function
1.65E+03, 1.56E+03, and 7.75E+03, respectively. For C15-
f10, SCSA reported an optimal result of 1.17E+03, whereas
ECSA and PCSA reported 1.24E+03 and 2.87E+03, respec-
tively, comparable to the result obtained by SCSA. However,
CSA did not perform as well as ECSA, PCSA, and SCSA for
the C15-f10 test function. Even though ECSA, PCSA, and
SCSA have very sensible results in CEC-2015 benchmark
functions, the edges of differences between the mean scores
obtained by CSA and those obtained by ECSA, PCSA, and
SCSA in the C15-f14 test function are minimal. Still, the
standard deviations of ECSA, PCSA, and SCSA are mini-
mal compared to that reported by CSA for this function. For
the remaining functions, C15-f11, C15-f12, C15-f13, and
C15-f15, ECSA, PCSA, and SCSA scored optimal or near-
optimal average outcomes. In sum, the results obtained by
ECSA, PCSA, and SCSA are outstanding and almost better
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than the competitors, namely CSA,GWO, SHO,MVO, PSO,
GSA, EPO, SCA, and GA, in the majority of the CEC-2015
test functions. Regarding the standard deviation outcomes,
ECSA, PCSA, and SCSA have tiny figures in most of these
functions compared to others. This confirms that the excel-
lence of these algorithms is stable, and this stability is solid.

5.7 Evaluation of CEC-2017 benchmark

For further testing, the degree of reliability of the proposed
ECSA, PCSA, and SCSA against more challenging bench-
mark problems, the CEC-2017 as a recent and challenging
test group was employed. This group comprises hybrid and
composition functions, as well as unimodal, multimodal, and
multimodal functions that have been rotated and shifted [82].
As a result, it is sufficiently adequate for rating the explo-
ration and exploitation conducts of the evolved algorithms.
It is worth mentioning that given the unsteady behavior
of the C17-f2 function, it was taken away from this suite.
The search area for all of these functions in this test suite
is [−100, 100] with ten dimensions for each test problem.
Due to the high complexity of these problems and because
they contain a lot of local optima, they were chosen to
judge the strength level of the evolved algorithms in avoid-
ing local optimums and getting the optimal global solutions.
Appendix A in Table 25 gives more details about these
functions.

The performance of ECSA, PCSA, and SCSA was tested
via this test set, and the outcomes were compared with previ-
ous meta-heuristics. The majority of the functions in this
group rank among the most difficult hybrid and compo-
sitional functions. All competing methods’ findings were
gathered using 50 search agents, 1000 iterations, and 30 sep-
arate runs. Taking into account the predetermined number of
iterations and search agents, 50,000 FEs were allocated to
each test function. The parameter settings of the competing
methods can be found in Table 1. The outcomes of ECSA,
PCSA and SCSA, and other comparative algorithms are dis-
played in Table 7.

The outcomes in Table 7 underscore the notability of
the proposed ECSA, PCSA, and SCSA over other meta-
heuristics in optimizing challenge functions. These algo-
rithms presented the best exclusive average fitness scores
in 6 out of 29 functions (C17-f1, C17-f3, C17-f4, C17-f19,
C17-f22, and C17-f23). In further detail, the proposed algo-
rithms have remarkable performance degrees in uni-modal
test problems (C17-f1, C17-f3), where they could constantly
find the global optimum solution over 30 separate runs. Also,
they could find the optimum solutions in three cases in the
hybrid functions, namely C17-f15, C17-f18, and C17-f19.
It is obviously seen that ECSA is the best algorithm among
all other competitors, which scored the best average results

in C17-f7, C17-f10, C17-f17, C17-f21, C17-f18, C17-f11,
and C17-f14. At the same time, PCSA is the second-best
optimizer that scored the best results in 8 out of 29 test func-
tions, namely C17-f4, C17-f1, C17-f3, C17-f23, C17-f19,
C17-f25, C17-f9 and C17-f16. Besides, SCSA is the third
best optimizer, which reported the best average outcomes
in C17-f29, C17-f26, C17-f30, C17-f24, C17-f5, and C17-
f20. Moreover, ECSA and PCSA reported the best average
scores in the C17-f25 test function. This confirms that we
have formerly settled that SCSA has high accuracy when
solving optimization functions in different search domains.
However, the proposed ECSA, PCSA, and SCSA flopped to
acquire the optimal solutions in a few test functions, such
as C17-f6. As a result, these proposed algorithms are some-
times trapped in local optimums, but they are not far from
the global optimum.

For the C17-f8 test function, CSA reported the best aver-
age score of 811.04, whereas SCSA, ECSA, and PCSA
reported the second, third, and fourth best scores with slight
differences from that reported by CSA. For the C17-f9 func-
tion, PCSA achieved the best mean value, whereas ECSA
and SCSA reported the third and fourth best outcomes with
modicum differences from that reported by PCSA. For the
C17-f12 test function, the performance ofGWO is better than
other methods in respect of the average fitness value. SHO is
the best optimizer for C17-f13, which reported the best aver-
age score and is better than ECSA, PCSA, and SCSA, with
slight difference margins. In connection with the composi-
tion functions thatmake up themost complicated functions in
CEC-2017, the optimal solutions were revealed by the pro-
posed methods in C17-23, C17-25, and C17-26 test cases.
ECSA and SCSAwon the best average fitness value for C17-
f27. Hence, the performance of ECSA, PCSA, and SCSA is
better than other algorithms regarding average fitness values,
and theywon the top three optimizers for these test functions.
Regarding the STD figures in Table 7, the presented ECSA,
PCSA, and SCSA performed remarkably better than other
optimization methods in most test functions. This sustains
the conviction that the proposed algorithms have significant
stability when applied to complex test functions in different
search areas. These results divulge that ECSA, PCSA, and
SCSA are ranked first, following their strength in exploration
and exploitation capacities.

Lastly, CSA, SHO, and GWO algorithms provided plau-
sible solutions in different test functions of CEC-2017. The
SCA, GSA, and GA algorithms behaved almost poorly in
these test functions, while PSO and MVO behaved almost
modestly. Overall, SCSA, ECSA, PCSA, SHO, and GWO
functioned much better than the others in most CEC-2017
functions. The top three optimizers were the overall ranking
of the proposed ECSA, PCSA, and SCSA algorithms in this
test bed.
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Table 8 Average rank of all methods obtained using Friedman’s test in
the first test group of unimodal, multimodal, and fixed-dimensional test
functions

Algorithm Rank

ECSA 4.500000

PCSA 4.478260

SCSA 4.130434

CSA 4.695652

SHO 6.934782

GWO 6.217391

PSO 6.782608

MVO 9.282608

SCA 9.782608

GSA 8.326086

GA 8.021739

EPO 4.847826

5.8 Statistical test analysis

To determine if the performance differences of all methods
in the benchmark test functions examined in this study are
statistically significant using the non-parametric Friedman’s
test, a statistical analysis test was first done in this section.
More than five algorithms must be tested and compared on
more than 10 test functions for a reliable comparison. This
study compares the performance of ECSA, PCSA, and SCSA
concerning the primary CSA and eight other meta-heuristics.
In consideration of the benchmark functions, this study thor-
oughly tested three test groups:

– Group 1, which consists of unimodal, multimodal, and
fixed-dimensional functions with 23 test functions,

– Group 2, which is the CEC-2015 test functions, including
15 set functions, and

– Group 3, this test set is the CEC-2017 test function which
includes 29 set functions.

Friedman’s test requires computing the mean ranked
value, for which a comparison is needed to examine the
p− values gained for a level of significance (α = 0.05)
with Friedman’s test to recognize if the null hypothesis is
rejected or not. The mathematical formulation and commen-
taries regarding Friedman’s test can be found in [92, 93].
The null hypothesis was rejected for all three test sets of
benchmark functions, indicating a statistically large differ-
ence between the performances of the competing methods
in each test set. The lowest-ranked algorithm by Friedman’s
test is commonly utilized as a control one for post-hoc anal-
ysis. Further steps are needed to determine the performance
of the optimization methods that differ significantly from
ECSA or SCSA, which are reported as the best algorithms
in the first, second, and third test groups, as shown below,
and find out which algorithms have similar performance as
ECSA or SCSA. To this effect, we performed a post-hoc
statistical test using Holm’s test procedure [92] to conduct
a pairwise comparison between the control algorithm and
the other algorithms. This test method shows that the perfor-
mance of the two algorithms is considerably dissimilar if the
difference in the mean ranking of the compared algorithms
is greater than the p− values. This statistical test is carried
out here to discern which algorithms are better, similar, or
worse than ECSA, PCSA, and SCSA at a significance level
of 0.05.

Holm’s method is a widely applicable multiple-test
method based on successive rejection manner. It ranks all
algorithms based on their p-values and compares them with
α/k − i , where k is the degree of freedom and i represents
the algorithm number. This procedure commences with the
most significant p-value and consecutively rejects the null
hypothesis as long as that pi < α/k − i . Once the algorithm
cannot deny the hypothesis, it stops and considers all the rest
hypotheses agreeable.

Holm’s technique is a multiple-test approach based on
successive rejection that is generally applicable. It compares

Table 9 Results of Holm’s
method based on the statistical
results of Group 1 for α = 0.05

i Algorithm z p-value α ÷ i Hypothesis

11 SCA 5.316095 1.060176E-7 0.004545 Rejected

10 MVO 4.845825 1.260863E-6 0.005 Rejected

9 GSA 3.946178 7.940843E-5 0.005555 Rejected

8 GA 3.659927 2.522869E-4 0.00625 Rejected

7 SHO 2.637601 0.008349 0.007142 Rejected

6 PSO 2.494475 0.012614 0.008333 Rejected

5 GWO 1.962865 0.049661 0.01 Rejected

4 EPO 0.674735 0.499844 3 0.0125 Not rejected

3 CSA 0.531609 0.594996 0.016666 Not rejected

2 ECSA 0.347590 0.728147 0.025 Not rejected

1 PCSA 0.327144 4 0.743558 8 0.05 Not rejected
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Table 10 Average ranking of all algorithms obtained using Friedman’s
test on the test functions of the second group (i.e., CEC-2015)

Algorithm Rank

ECSA 3.666666

PCSA 4.733333

SCSA 3.933333

CSA 9.000000

SHO 5.900000

GWO 7.466666

PSO 5.066666

MVO 7.566666

SCA 6.299999

GSA 9.266666

GA 10.200000

EPO 4.900000

all algorithms with alpha/k− i and ranks them according to
their p-values, where k is the degree of freedom and i is the
algorithm number. As long as pialpha/k− i , this technique
sequentially rejects the null hypothesis starting with the most
significant p-value. Once the algorithm is unable to refute the
hypothesis, it pauses and accepts all remaining hypothese.

Table 8 shows the mean rank of all algorithms obtained
by utilizing Friedman’s test in light of algorithms’ results
in unimodal, multimodal, and fixed-dimensional multimodal
benchmark functions.

The p-value retrieved by Friedman’s test based on the
mean outcomes of Group 1 is 4.747802E-11. In this test
group, SCSA surpassed all evaluated methods, with the low-
est mean rank of 4.130434, and the performance score was
substantially better than PCSA, ECSA, CSA, EPO, GWO,
PSO, SHO, GA, GSA, MVO, and SCA. The statistical out-
comes of Holm’s method obtained on the test functions of
Group 1 are given in Table 9.

Holm’s test in Table 9 rejects those hypotheses with p-
value ≤ 0.007142. It is seen from these results that ECSA,
PCSA, and SCSA are proficient in yielding promising results
such as those of other efficacious optimization methods pre-
sented in the literature.

Table 10 displays the average ranking of all algorithms
determined by Friedman’s test after the results of all algo-
rithms in the CEC-2015 test suite (i.e., Group 2).

The p-value evaluated by Friedman’s test based on the
average accuracy outcomes for Group 2 is 7.596059E-09.
The results for Group 2, presented in Table 10, exhibit that
ECSA ranked first, SCSA ranked second, and PCSA ranked
fourth. In sum, ECSA significantly outperformed SCSA,
EPO, PCSA, PSO, SHO, SCA, GWO, MVO, CSA, GSA,
and GA at the examined level of significance.

The results of Holm’s method got after the application of
Friedman’s test on the test functions of Group 2 is shown in
Table 11.

Holm’s test in Table 11 rejects those hypotheses with p-
value ≤ 0.008333. It is evident from these findings that the
proposed algorithms are promising optimization algorithms
as those evaluated in this study.

Table 12 displays the average ranking of all algorithms as
determined by Friedman’s test on the outcomes of all CEC-
2017 test functions (i.e., Group 3).

Finally, the p-value retrieved by Friedman’s test forGroup
3 is 6.930422E-11. In the results of this group, shown inTable
12, which compares the performance of each optimization
algorithm in all test functions of CEC-2017, ECSA placed
first, SCSA placed second, and PCSA placed fourth. In short,
the lowest average rank belonged to ECSA, with an aver-
age rank of 3.762068, and vastly outperformed SCSA, CSA,
PCSA, PSO, SHO, MVO, GWO, GSA, SCA, and GA.

The results of Holm’s test obtained after applying Fried-
man’s test on Group 3 functions are shown in Table 13.

In Table 13, Holm’s procedure rejects those hypotheses
that have p-value ≤ 0.016666. From the outcomes shown in

Table 11 Results of Holm’s
method based on the average
ranking results of Group 2 for
α = 0.05)

i Method z p-value α ÷ i Hypothesis

11 GA 4.962422 6.961920E-7 0.004545 Rejected

10 GSA 4.253505 2.1044991E-5 0.005 Rejected

9 CSA 4.050957 5.100847E-5 0.0055555 Rejected

8 MVO 2.962262 0.003053 0.00625 Rejected

7 GWO 2.886307 0.003897 0.007142 5 Rejected

6 SCA 2.000160 0.045482 0.008333 Rejected

5 SHO 1.696338 0.089821 0.01 Rejected

4 PSO 1.063376 0.287611 0.0125 Not rejected

3 EPO 0.936783 0.348869 0.016666 Not rejected

2 PCSA 0.810191 0.417830 0.025 Not rejected

1 SCSA 0.202547 0.839488 0.05 Not rejected
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Table 12 Average ranking of all algorithms obtained using Friedman’s
test on the test functions of the third test group (i.e., CEC-2017)

Algorithm Rank

ECSA 3.762068

PCSA 4.102586

SCSA 3.810310

CSA 4.017241

SHO 6.465517

GWO 7.258620

PSO 6.017241

MVO 7.137931

SCA 8.172413

GSA 8.103448

GA 9.258620

Table 13, it is clear that the proposed versions of CSA are as
practical optimization algorithms as those evaluated in this
study.

As a principal inference drawn from all CEC-2015 and
CEC-2017 functions’ statistical analysis in this paper, ECSA
performs considerably better than PCSA, SCSA, and CSA.
In concise terms, the results reported in Tables 8, 9, 10, 11,
12 and 13 show that the proposed algorithms, ECSA, PCSA,
and SCSA, are statistically highly similar to each other in
these test groups. These proposed algorithms have success-
fully avoided local optimumsolutions and are highly efficient
in both exploration and exploitation features.

6 Engineering design problems

This section explores the competence of the proposed ECSA,
PCSA, and SCSA algorithms in solving four well-known
classical engineering design problems: (1) the speed reducer
problem, (2) the tension/compression spring problem, (3) the
pressure vessel problem, and (4) the welded beam problem.

Fig. 6 A structural design of a speed reducer problem

These design problems reflect challenging benchmark test
problems with different characteristics, dimensions, and var-
ied levels of complexity and constraints. Because of this,
their search spaces are highly comparable to those that the
proposed ECSA, PCSA, and SCSA may encounter while
addressing constrained optimization problems.

As presented below, the effectiveness of the proposed
algorithms in solving these design problems was compared
with other meta-heuristic algorithmsmentioned above and in
Table 1. These comparative algorithms were selected in this
comparison because they were extensively applied in the lit-
erature to address these engineering design problems, where
they provided promising performance. Further, these algo-
rithms share many similarities with the proposed algorithms,
including flexibility, generality, and simplicity. In addition,
these algorithms are independent of the nature of the engi-
neering design problems to be addressed. To achieve a fair
comparison between the proposed ECSA, PCSA, and SCSA
algorithms, (EPO [87], SHO [85], GWO [86], PSO [84],
MVO [89], SCA [90], GSA [88] and GA [83]) the primary
CSA, and the other competing meta-heuristics, the settings
of standard parameters such as the maximum number of iter-
ations and the number of search agents used to solve these
problems were the same and set to 1000 and 30, respectively.
Moreover, several constraints should not be infringed by

Table 13 Results of Holm’s test
method based on the average
statistical results of Group 3 for
α = 0.05

i Method z p-value α ÷ i Hypothesis

10 GA 7.344015 2.072793E-13 0.005 Rejected

9 SCA 6.096918 1.081326E-9 0.005555 Rejected

8 GSA 6.017737 1.768715E-9 0.00625 Rejected

7 GWO 5.047773 4.4698895E-7 0.007142 5 Rejected

6 MVO 4.909207 9.144540E-7 0.008333 Rejected

5 SHO 4.137194 3.515778E-5 0.01 Rejected

4 PSO 3.622519 2.917472E-4 0.0125 Rejected

3 CSA 1.3262777 0.184747 0.016666 Not rejected

2 SCSA 0.593855 0.552608 0.025 Not rejected

1 PCSA 0.534470 0.593016 0.05 Not rejected
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Table 14 A comparison of the results achieved by ECSA, PCSA, SCSA, and other algorithms for the speed reducer design problem

Algorithm Optimum variables Optimum cost
b m z l1 l2 d1 d2

ECSA 3.5 0.7 17 7.3 7.71533 3.35021 5.28665 2994.47144045

PCSA 3.5 0.7 17 7.30034 7.71558 3.35026 5.28666 2994.51947720

SCSA 3.5 0.7 17 7.30196 7.71684 3.35039 5.28683 2994.82887327

CSA 3.5 0.7 17 7.90415 7.71738 3.35142 5.28669 3000.21223231

EPO 3.50123 0.7 17 7.3 7.8 3.33421 5.26536 2994.2472

SHO 3.50159 0.7 17 7.3 7.8 3.35127 5.28874 2998.5507

GWO 3.506690 0.7 17 7.380933 7.815726 3.357847 5.286768 3001.288

PSO 3.500019 0.7 17 8.3 7.8 3.352412 5.286715 3005.763

MVO .508502 0.7 17 7.392843 7.816034 3.358073 5.286777 3002.928

SCA .508755 0.7 17 7.3 7.8 3.461020 5.289213 3030.563

GSA 3.6 0.7 17 8.3 7.8 3.369658 5.289224 3051.120

GA 3.510253 0.7 17 8.35 7.8 3.362201 5.287723 3067.561

the optimum solution(s) arrived at while solving these engi-
neering design problems. Therefore, when addressing these
design problems, the proposed algorithms are equipped with
a static penalty function in handling the constraints while
solving these problems as described below:

ζ(z) = f (z) ±
⎡
⎣ m∑

i=1

li · max(0, ti (z))
α +

n∑
j=1

o j
∣∣Uj (z)

∣∣β
⎤
⎦

(16)

where ζ(z) is the objective function, o j and li stand for pos-
itive penalty constants,Uj (z) and ti (z) are the constraints of
the objective function. The values of α and β were assigned
to 1 and 2, respectively.

This approach sets the penalty value for each solution in
the static penalty function, which can help the proposed algo-
rithms’ search agents move into the problem’s search space.

The results of solving the aforementioned engineering design
problemsby the proposed algorithms compared to other com-
petitors are presented below.

6.1 Speed reducer design problem

The structural design of the speed reducer design problem is
shown in Fig. 6. This design is complex because it consists
of seven design variables [94].

The weight that should be reduced in this design problem
is subject to four constraints [85], which are explained as
follows:

• Transverse deflections of the shafts
• Surface stress
• Bending stress of the gear teeth
• Stresses in the shafts

Table 15 Statistical results
obtained from ECSA, PCSA
and SCSA and other
optimization algorithms for
speed reducer design problem

Algorithm Best AVG Worst STD

ECSA 2994.47106669 2994.51536693 2994.90762336 1.37829792E-01

PCSA 2994.47107258 2994.47243595 2994.47723809 2.41749483E-03

SCSA 2994.47107658 2994.48965105 2994.55203370 3.05108129E-02

CSA 2994.60512139 2997.50385785 3002.59911565 2.78670160

EPO 2994.2472 2997.482 2999.092 1.78091

SHO 2998.5507 2999.640 3003.889 1.93193

GWO 3001.288 3005.845 3008.752 5.83794

PSO 3005.763 3105.252 3211.174 79.6381

MVO 3002.928 3028.841 3060.958 13.0186

SCA 3030.563 3065.917 3104.779 18.0742

GSA 3051.120 3170.334 3363.873 92.5726

GA 3067.561 3186.523 3313.199 17.1186
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Fig. 7 A schematic diagram of a tension/compression spring design

The variables of this design problem were set as follows:
l1, l2, d1, d2, b, m, and z. These parameters are the first
shaft’s distance between bearings, the second shaft’s distance
between bearings, the first and second shafts’ diameters, the
faces of the shafts, the module of teeth, and the number of
teeth in the pinion, respectively. These variableswere succes-
sively implemented while solving this problem by a vector
as �x = [x1x2x3x4x5x6x7]. The mathematical formula for the
speed reducer problem can be formulated as follows:

Minimize : f (�x) = 0.7854x1x
2
2 (3.3333x

2
3 + 14.9334x3

−43.0934) − 1.508x1(x
2
6 + x27 )

+7.4777(x36 + x37)

+0.7854(x4x
2
6 + x5x

2
7 )

This function is subject to the following eleven con-
straints:

g1(�x) = 27

x1x22 x3
− 1 ≤ 0

g2(�x) = 397.5

x1x22 x
2
3

− 1 ≤ 0

g3(�x) = 1.9x34
x2x46 x3

− 1 ≤ 0

g4(�x) = 1.93x35
x2x47 x3

− 1 ≤ 0

g5(�x) = [(745(x4/x2x3))2 + 16.9 × 106]1/2
110x36

− 1 ≤ 0

g6(�x) = [(745(x5/x2x3))2 + 157.5 × 106]1/2
85x37

− 1 ≤ 0

g7(�x) = x2x3
40

− 1 ≤ 0

g8(�x) = 5x2
x1

− 1 ≤ 0

g9(�x) = x1
12x2

− 1 ≤ 0

g10(�x) = 1.5x6 + 1.9

x4
− 1 ≤ 0

g11�x) = 1.1x7 + 1.9

x5
− 1 ≤ 0

where the range of the design parameters b,m, z, l1, l2, d1
and d2 were applied as 2.6 ≤ x1 ≤ 3.6, 0.7 ≤ x2 ≤ 0.8,
17 ≤ x3 ≤ 28, 7.3 ≤ x4 ≤ 8.3, 7.3 ≤ x5 ≤ 8.3, 2.9 ≤ x6 ≤
3.9 and 5.0 ≤ x4 ≤ 5.5, respectively.

The optimum cost and best designs obtained by ECSA,
PCSA, SCSA, and other optimization methods for the speed
reducer design problem are in Table 14.

Per the optimum costs shown in Table 14, ECSA, PCSA,
and SCSA are adept at finding optimum designs for the speed
reducer problem with the lowest costs. In terms of best,
worst, average, and standard deviation results, a summary of
the statistical outcomes for ECSA, PCSA, SCSA, and other

Table 16 A comparison of the
outcomes reached by ECSA,
PCSA, SCSA, and other
algorithms for the
tension/compression spring
design problem

Algorithm Optimum variables Optimum weight
d D N

ECSA 0.0516891 0.356718 11.289 0.01266523

PCSA 0.0516891 0.356718 11.289 0.01266523

SCSA 0.0516891 0.356718 11.289 0.01266523

CSA 0.0516895 0.356729 11.2883 0.01266523

EPO 0.051087 0.342908 12.0898 0.012656987

SHO 0.051144 0.343751 12.0955 0.012674000

GWO 0.050178 0.341541 12.07349 0.012678321

PSO 0.05000 0.310414 15.0000 0.013192580

MVO 0.05000 0.315956 14.22623 0.012816930

SCA 0.050780 0.334779 12.72269 0.012709667

GSA 0.05000 0.317312 14.22867 0.012873881

GA 0.05010 0.310111 14.0000 0.013036251
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Table 17 Statistical results
obtained by ECSA, PCSA, and
SCSA and other algorithms for
tension/compression spring
design problem

Algorithm Best AVG Worst STD

ECSA 0.01266523 0.01266523 0.01266523 8.3790149E-16

PCSA 0.01266523 0.01266523 0.01266523 2.58597307E-18

SCSA 0.01266523 0.01266523 0.01266523 2.55932959E-17

CSA 0.01266523 -02 0.01266523 0.01266524 4.14047743E-09

EPO 0.012656987 0.012678903 0.012667902 0.001021

SHO 0.012674000 0.012684106 0.012715185 0.000027

GWO 0.012678321 0.012697116 0.012720757 0.000041

PSO 0.013192580 0.014817181 0.017862507 0.002272

MVO 0.012816930 0.014464372 0.017839737 0.001622

SCA 0.012709667 0.012839637 0.012998448 0.000078

GSA 0.012873881 0.013438871 0.014211731 0.000287

GA 0.013036251 0.014036254 0.016251423 0.002073

meta-heuristics for this design problem, over 30 independent
runs, is exhibited in Table 15.

As per the results in Table 15, the proposed ECSA, PCSA,
and SCSA identified the best statistical solutionswith respect
to best, average, worst, and standard deviation values among
all other competitors. This is for more certainty that the pro-
posed algorithms are superior to other existing algorithms in
terms of these statistical results.

6.2 tension/compression spring design

The design of the tension/compression spring problem is
shown in Figure 7 [95].

This problem aims to lessen the design’s weight of the
tension/compression spring. This design problem has sev-
eral constraints: minimum deflection, shear stress, and surge
frequency. The parameters of this problem are mean coil
diameter (D), wire diameter (d), and the number of active
coils (N ). These variables can be drafted as a vector as:
�x = [x1, x2, x3], where the parameters of �x are d, D and
N , respectively. The mathematical formulation of this prob-
lem can be described as given below:

Minimize: f (�x) = (x3 + 2)x2x21
The following restrictions apply to this design problem:

g1(�x) = 1 − x32 x3
71785x41

≤ 0

g2(�x) = 4x22−x1x2
12566(x2x31−x41 )

+ 1
5108x21

− 1 ≤ 0

g3(�x) = 1 − 140.45x1
x22 x3

≤ 0

g4(�x) = x1+x2
1.5 − 1 ≤ 0

where 0.05 ≤ x1 ≤ 2.0, 0.25 ≤ x2 ≤ 1.3 and 2 ≤ x3 ≤
15.0.

A comparison of the optimal designs gained by ECSA,
PCSA, SCSA, and those algorithms mentioned above for
the tension/compression spring design problem is shown in
Table 16.

As per the results in Table 16, the proposed ECSA, PCSA,
SCSA, and CSA have reached the optimum design for this
problem with an optimal cost of 0.01266523. This cost is
a little lower than the costs obtained by other comparative
algorithms. A summary of the statistical results of the ten-
sion/compression spring design problem collected by ECSA,
PCSA, SCSA, and different algorithms over 30 independent
runs is given in Table 17.

It is perceived from the outcomes reported in Table 17
that ECSA, PCSA, and SCSA performed better again by
providing many improved statistical results in terms of best,
average, worst, and standard deviation results compared to
the others.

6.3 Pressure vessel design

The pressure vessel design problem has been widely used in
optimization [90]. This problem aims to reduce the total cost
of material formation and welding of the cylindrical vessel,
which is covered on both ends with hemispherical heads, as
shown in Figure 8.

The variables of this design problem are defined as fol-
lows:

• Inner radius (R)
• Thickness of the shell (Ts)

Fig. 8 A representative structure of the cross-section of a pressure ves-
sel design problem
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Table 18 A comparison of the
results achieved by ECSA,
PCSA, SCSA, and other
algorithms for the pressure
vessel design problem

Algorithm Optimal values for variables Optimum cost
Ts Th R L

ECSA 12.4507 6.154387 40.31962 200 5885.332773

PCSA 12.4507 6.154387 40.31962 200 5885.332773

SCSA 12.4507 6.154387 40.31962 200 5885.332773

CSA 12.45072 6.154399 40.31967 199.9994 5885.340485

EPO 0.778099 0.383241 40.315121 200.00000 5880.0700

SHO 0.778210 0.384889 40.315040 200.00000 5885.5773

GWO 0.779035 0.384660 40.327793 199.65029 5889.3689

PSO 0.778961 0.384683 40.320913 200.00000 5891.3879

MVO 0.845719 0.418564 43.816270 156.38164 6011.5148

SCA 0.817577 0.417932 41.74939 183.57270 6137.3724

GSA 1.085800 0.949614 49.345231 169.48741 11550.2976

GA 0.752362 0.399540 40.452514 198.00268 5890.3279

• Length of the cylindrical section of the vessel without
looking at the head (L)

• Thickness of the head (Th)

The variable vector of this design problem can be formu-
lated as follows: �x = [x1, x2, x3, x4], where the parameters
of this vector represent Ts , Th , R and L , respectively. The
mathematical formulation of this design problem can be
defined as shown below:

f (�x) = 0.6224x1x3x4 + 1.7781x2x
2
3

+ 3.1661x21 x4 + 19.84x21 x3

This problem is subject to the following constraints:

g1(�x) = −x1 + 0.0193x3 ≤ 0

g2(�x) = −x2 + 0.00954x3 ≤ 0

g3(�x) = −πx23 x4 − 4

3
πx33 + 1296000 ≤ 0

g4(�x) = x4 − 240 ≤ 0

where 0 ≤ x1 ≤ 99, 0 ≤ x2 ≤ 99, 10 ≤ x3 ≤ 200 and
10 ≤ x4 ≤ 200.

This design problem has been addressed in the literature
using various optimizationmethods, such as thosementioned
above. Table 18 illustrates the cost results achieved byECSA,
PCSA, SCSA, and other algorithms for the pressure vessel
design problem.

As shown in Table 18, the proposed ECSA, PCSA, and
SCSA can find the optimal design for the pressure vessel
problem with the lowest cost of 5885.332773. Table 19 dis-
plays the statistical results for the pressure vessel design
problem obtained by ECSA, PCSA, SCSA, and other algo-
rithms, over 30 independent runs, regarding the best, worst,
mean, and standard deviation costs.

Table 19 Statistical results
obtained by ECSA, PCSA,
SCSA, and other algorithms for
pressure vessel design problem

Algorithm Best AVG Worst STD

ECSA 5885.332773 5885.332773 5885.332773 2.541289E-09

PCSA 5885.332773 5885.332773 5885.332773 4.605113E-11

SCSA 5885.332773 5885.332773 5885.332773 1.174152E-11

CSA 5885.336392 5885.339615 5885.344878 2.950500E-03

EPO 5880.0700 5884.1401 5891.3099 024.341

SHO 5885.5773 5887.4441 5892.3207 002.893

GWO 5889.3689 5891.5247 5894.6238 013.910

PSO 5891.3879 6531.5032 7394.5879 534.119

MVO 6011.5148 6477.3050 7250.9170 327.007

SCA 6137.3724 6326.7606 6512.3541 126.609

GSA 1550.2976 23342.2909 33226.2526 5790.625

GA 5890.3279 6264.0053 7005.7500 496.128
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Fig. 9 A schematic structure of a welded beam design

It may be ascertained from Table 19 that ECSA, PCSA,
and SCSA outperformed other algorithms and provided
highly competitive statistical results regarding standard devi-
ation and average cost values compared to others.

6.4 Welded beam design

The welded beam problem always strives to reduce the man-
ufacturing cost of the welded beam structure shown in Fig.
9 [96].

The welded beam structure in Fig. 9 comprises a beam, A,
and the welding coveted to be linked to the section, B. This
design problem undergoes a set of constraints identified as
follows:

• End deflection of the beam (δ)
• Buckling load on the bar (Pc)
• Shear stress (τ )
• Bending stress in the beam (θ)

There is a need to find the parameters of the welded
beam structure to optimize this design problem, which is:
the clamped bar’s length (l), the thickness of the weld (h),
the thickness of the bar (b) and the height of the bar (t). The
design variable vector can be written as: �x = [x1, x2, x3, x4],
where the parameters of �x stand for h, l, t and b, respectively.
The mathematical formulation of the cost function of this
design problem to be minimized is given as follows:

Minimize: f (�x) = 1.10471x21 x2+0.04811x3x4(14.0+
x2)
Subject to the following constraints,
g1(�x) = τ(�x) − τmax ≤ 0
g2(�x) = σ(�x) − σmax ≤ 0
g3(�x) = x1 − x4 ≤ 0
g4(�x) = 1.10471x21 + 0.04811x3x4(14.0 + x2) − 5.0 ≤ 0
g5(�x) = 0.125 − x1 ≤ 0
g6(�x) = δ(�x) − δmax ≤ 0
g7(�x) = P − Pc(�x) ≤ 0
where the other parameters are defined as presented below:

τ(�x) =
√

((τ ′)2 + (τ ′′)2) + 2τ ′τ ′′x2
2R , τ ′ = p√

2x1x2

τ ′′ = MR
J , M = P(L + x2

2 ), R =
√

( x1+x3
2 )2 + x22

4

J = 2

{√
2x1x2

[
x22
12 + ( x1+x3

2 )2
]}

, σ (�x) = 6PL
x4x23

δ(�x) = 4PL3

Ex4x33
, Pc(�x) = 4.013

√
EGx23 x

6
4/36

L2

(
1 − x3

2L

√
E
4G

)

where P = 6000lb, L = 14in, δmax = 0.25inch, E = 30 ∗
106 psi, G = 12∗106 psi, δmax = 13600psi , σmax = 30000
psi. The ranges of the variables were used as 0.1 ≤ xi ≤ 2.0
when i = 1 and 4 and 0.1 ≤ xi ≤ 10.0 when i = 2 and 3.

This problem was addressed by several algorithms such
as EPO [87], SHO [85], GWO [86], PSO [84], MVO [89],
SCA [90], GSA [88] and GA [83]. The results obtained by

Table 20 A comparison of the
cost results achieved by ECSA,
PCSA, and SCSA, and other
algorithms for the welded beam
problem

Algorithm Optimal values for variables Optimum cost
h l t b

ECSA 0.20573 3.4705 9.0366 0.20573 1.72485230

PCSA 0.20573 3.4705 9.0366 0.20573 1.72485230

SCSA 0.20573 3.4705 9.0366 0.20573 1.72485230

CSA 0.20573 3.4705 9.0366 0.20573 1.72485233

EPO 0.205411 3.472341 9.035215 0.201153 1.723589

SHO 0.205563 3.474846 9.035799 0.205811 1.725661

GWO 0.205678 3.475403 9.036964 0.206229 1.726995

PSO 0.197411 3.315061 10.00000 0.201395 1.820395

MVO 0.205611 3.472103 9.040931 0.205709 1.725472

SCA 0.204695 3.536291 9.004290 0.210025 1.759173

GSA 0.147098 5.490744 10.00000 0.217725 2.172858

GA 0.164171 4.032541 10.00000 0.223647 1.873971
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Table 21 Statistical results obtained from ECSA, PCSA, and SCSA
and other algorithms for welded beam design problem

Algorithm Best AVG Worst STD

ECSA 1.724852 1.724852 1.724852 0 2.792645E-13

PCSA 1.724852 1.724852 1.724852 3.427136E-15

SCSA 1.724852 1.724852 1.724852 8.757557E-16

CSA 1.724852 1.724852 1.724852 3.215889E-08

EPO 1.723589 1.725124 1.727211 0.004325

SHO 1.725661 1.725828 1.726064 0.000287

GWO 1.726995 1.727128 1.727564 0.001157

PSO 1.820395 2.230310 3.048231 0.324525

MVO 1.725472 1.729680 1.741651 0.004866

SCA 1.759173 1.817657 1.873408 0.027543

GSA 2.172858 2.544239 3.003657 0.255859

GA 1.873971 2.119240 2.320125 0.034820

ECSA, PCSA, SCSA, and other algorithms for the welded
beam design problem are presented in Table 20.

It is evident from the outcomes in Table 20 that ECSA,
PCSA, and SCSA delivered optimal designs for the welded
beam structure by finding the optimum cost of approximately
1.72485230, thus exceeding all other algorithms in terms
of accuracy in optimization. Table 21 displays the statisti-
cal results of ECSA, PCSA, SCSA, and different algorithms
over 30 independent runs concerning best, worst, mean, and
standard deviation results.

The results in Table 21 show that ECSA, PCSA, and
SCSA outperformed all other algorithms with minimal stan-
dard deviation and average cost values compared to different
algorithms.

The efficiency of an optimization algorithm can also be
judged based on how long it takes to solve a problem. The
processing timewas calculated to evaluate the proposed algo-
rithms’ performance accurately. No matter how effective the
optimization is, it is useless if the algorithm takes too long to
solve a problem. Therefore, the running time must be within
the acceptable range. The implementation time is influenced
by the size and complexity of the problem aswell as the capa-
bility of the machine being used. The average computational
times taken by ECSA, PCSA, SCSA, and other algorithms to
solve the above four classical engineering design problems
are presented in Table 22, where the machine and software
specifications are as follows: previously specified.

It can be noticed from Table 22 that the average compu-
tational times required by the proposed ECSA, PCSA, and
SCSA in optimizing different engineering design problems
are within the range of other algorithms. The computational
times for ECSA, PCSA, and SCSA are also better than
some of the other rivals. This demonstrates that the proposed

Table 22 Average running time of the proposed algorithms of CSA and
other algorithms in solving various engineering design problems

Algorithm Average time (in seconds)

ECSA 2.392594

PCSA 2.382520

SCSA 2.469050

CSA 3.789843

PSO 2.033712

MVO 3.502070

SCA 3.961583

GSA 4.371697

SHO 3.612047

GWO 3.810658

GA 6.552614

EPO 3.996441

algorithms are computationally efficient on a machine with
moderate specifications like the one mentioned above.

In short, as can be seen from the results of the proposed
ECSA, PCSA, and SCSA algorithms in solving the above
engineering design problems, several advantages could be
noted by the performance of these algorithms in solving these
problems.

– First, these algorithms are independent of the nature of
these design problems, which means there is no bias for
these algorithms in solving these problems. This can pro-
vide a good judgment of the efficiency and practicality of
the proposed algorithms in solving real-world optimiza-
tion problems.

– Second, as per the design costs and statistical results are
shown in Tables 20 to 15, one can say that the proposed
algorithms are suitable for solving these design problems
as the designs costs of these algorithms are the lowest
among all other competing algorithms. In other words,
the proposed ECSA, PCSA, and SCSA algorithms could
identify the optimal designs for these problems by find-
ing the optimal costs in each, which implies that these
proposed could escape out of local optimums.

– Another benefit can be captured from the performance
levels of the proposed algorithms in solving these prob-
lems, where one can suggest that these algorithms can be
used for further studies in judging the efficiency of newly
developed meta-heuristic algorithms. This includes con-
ducting comparative studies andverificationof newmeta-
heuristic optimization algorithms. The above advantages
of the proposed algorithms are positive points to recom-
mend the proposed ECSA, PCSA, and SCSA algorithms
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as promising candidates for solving other engineering
design problems.

As per the NFL theorem [6] mentioned in the introduction
section, it is beyond the bounds of the possibility of finding
a single algorithm that can solve all kinds of problems with
a high level of efficiency. Because of this, an algorithm may
tackle a specific problem very efficiently while bringing poor
results to another problem. Knowing the properties of the fit-
ness function is necessary to comment on which algorithm

should be selected to solve a problem. Hence, to choose an
algorithm when encountering a similar problem, it is best to
study it first and then carefully select the most suitable algo-
rithm. In this, it is better to choose and test many algorithms
to solve the problemof interest under the same conditions and
settingswith a particular fitness function. Then, the algorithm
with superior performance and the most efficient among all
other algorithms in solving the problem can be selected and
recommended for solving different problems similar to the
solved problem.

Table 24 A description of the CEC-2015 benchmark test functions

Function Function name Related basic functions Dim fmin

C15-f1 Rotated Bent Cigar function Bent Cigar function 30 100

C15-f2 Rotated Discus function Discus function 30 200

C15-f3 Rotated and shifted Weierstrass function Weierstrass function 30 300

C15-f4 Rotated and shifted Schwefel’s function Schwefel’s function 30 400

C15-f5 Rotated and shifted Katsuura function Katsuura function 30 500

C15-f6 Rotated and shifted HappyCat function HappyCat function 30 600

C15-f7 Rotated and shifted HGBat function HGBat function 30 700

C15-f8 Rotated and shifted expanded Griewank’s with
Rosenbrock’s function

Griewank’s function 30 800

Rosenbrock’s Function

C15-f9 Rotated and shifted expanded Scaffer’s F6 function Expanded Scaffer’s F6 function 30 900

C15-f10 Hybrid function 1 (three functions) Rastrigin’s function 30 1000

High Conditioned Elliptic function

Schwefel’s function

C15-f11 Hybrid function 2 (four functions) Rosenbrock’s function 30 1100

Scaffer’s F6 function

Griewank’s function

Weierstrass function

C15-f12 Hybrid function 3 (five functions) Ackley’s function 30 1200

Schwefel’s function

Expanded Griewank’s with Rosenbrock’s function

HappyCat function

Katsuura function

C15-f13 Composition function 1 (five functions) Rosenbrock’s function 30 1300

Bent Cigar function

Discus function

High Conditioned Elliptic function

High Conditioned Elliptic function

C15-f14 Composition function 2 (three functions) Rastrigin’s function 30 1400

High Conditioned Elliptic function

Schwefel’s function

C15-f15 Composition function 3 (five functions) Schwefel’s function 30 1500

Weierstrass function

HGBat function

Rastrigin’s function

High Conditioned Elliptic function
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7 Conclusion and future works

In this study, three improved variants of the Crow Search
Algorithm (CSA), named Exponential CSA (ECSA), Power
CSA (PCSA), and S-shaped CSA (SCSA), were proposed.
Exponential, power, and s-shaped growth functions were
used to implement these versions’ flight length and aware-
ness probability to improve their exploration and exploitation
capabilities. Another key adaptive control parameter was
suggested in the positioning updating mechanism of ECSA,
PCSA, and SCSA to improve their exploration and exploita-

tion features further. Extensive experiments were conducted
to reveal the performance degree of the proposed algorithms
by solving three test groups of benchmark functions consist-
ing of 67 familiar optimization problemswith different levels
of complexity. Besides, the effectiveness of ECSA, PCSA,
and SCSAwas also proven by their applications on four engi-
neering design problems. In line with the computational and
statistical results, it can be realized and confirmed that the
proposed algorithms provided very competitive outcomes
with several advantages over a group of widely well-known
meta-heuristics regarding the stability and quality of the solu-

Table 25 Characteristics of the CEC-2017 benchmark test functions: U: Unimodal, M: Multimodal, H: Hybrid, and C: Composition

Function Function name Dim fmin Type

C17-f1 Rotated and shifted Bent Cigar function 10 100 U

C17-f3 Rotated and shifted Zakharov function 10 300 U

C17-f4 Rotated and shifted Rosenbrock’s function 10 400 M

C17-f5 Rotated and shifted Rastrigin’s function 10 500 M

C17-f6 Rotated and shifted Expanded Scaffer’s function 10 600 M

C17-f7 Rotated and shifted Lunacek Bi-Rastrigin function 10 700 M

C17-f8 Rotated and shifted Non-Continuous Rastrigin’s function 10 800 M

C17-f9 Rotated and shifted Levy function 10 900 M

C17-f10 Rotated and shifted Schwefel’s function 10 1000 M

C17-f11 Hybrid function of Rosenbrock, Zakharov and Rastrigin’s 10 1100 H

C17-f12 Hybrid function of Modified Schwefel, High Conditioned Elliptic, and Bent Cigar 10 1200 H

C17-f13 Hybrid function of Rosenbrock, Bent Ciagr and Lunache Bi-Rastrigin 10 1300 H

C17-f14 Hybrid function of Ackley, Eliptic, Schaffer, and Rastrigin 10 1400 H

C17-f15 Hybrid function of HGBat, Bent Cigar, Rosenbrock, and Rastrigin 10 1500 H

C17-f16 Hybrid function of Expanded Schaffer, Modified Schwefel, Rosenbrock and HGBat 10 1600 H

C17-f17 Hybrid function of Ackley, Katsuura, Expanded Griewank plus Rosenbrock, Rastrigin
and Modified Schwefel

10 1700 H

C17-f18 Hybrid function of Ackley, High Conditioned Elliptic, Discus, Rastrigin and HGBat 10 1800 H

C17-f19 Hybrid function of Rastrigin, Bent Cigar, Expanded Grienwank plus Rosenbrock,
expanded Schaffer and Weierstrass

10 1900 H

C17-f20 Hybrid function of Happycat, Schaffer, Katsuura, Modified Schwefel, Rastrigin and
Ackley

10 2000 H

C17-f21 Composition of High Conditioned Elliptic, Rosenbrock and Rastrigin 10 2100 C

C17-f22 Composition of Griewank’s, Rastrigin’s and Modified Schwefel’s 10 2200 C

C17-f23 Composition of Ackley, Rosenbrock, Rastrigin and Modified Schwefel 10 2300 C

C17-f24 Composition of Girewank, High Conditioned Elliptic, Ackley and Rastrigin 10 2400 C

C17-f25 Composition of Rastrigin, Discus, Happycat, Rosenbrock and Ackley 10 2500 C

C17-f26 Composition of Rastrigin, Rosenbrock, Griewank, Modified Schwefel and Expanded
Scaffer

10 2600 C

C17-f27 Composition of Rastrigin, HGBat, Expanded Scaffer, Bent-Cigar, Modified Schwefel,
and High Conditioned Elliptic

10 2700 C

C17-f28 Composition function of Discus, Griewank, Rosenbrock, Ackley, Expanded and
HappyCat Scaffer

10 2800 C

C17-f29 Composition function of Rotated and shifted Rastrigin, Lunacek Bi-Rastrigin and
Expanded Scaffer

10 2900 C

C17-f30 Composition function of Rotated and shifted Rastrigin, Levy function and
Non-Continuous Rastrigin

10 3000 C
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tions obtained. Upon reading the outcomes, the proposed
algorithms provide a fundamental framework for relatively
low-dimensional optimization problems, which may expand
their reliability to solve large-scale problems. In this, there is
a need for further study to solve other real-world problems
with several search fields and diverse kinds of constraints. It
also has the potential to expand the applications of ECSA,
PCSA, and SCSA to address multi-objective problems in
diverse fields.

Appendix A. Unimodal, multimodal, CEC-
2015 and CEC-BC-2017 test functions

The classical unimodal, multimodal, fixed-dimensional,
CEC-2015 andCEC-2017benchmark functions are tabulated
in Tables 23, 24 and 25, respectively.
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4. Mlinarić D, Perić T, Matejaš J (2019)Multiobjective programming
methodology for solving economic diplomacy resource allocation
problem. Croat Oper Res Rev, pp 165-174

5. Qi Y, Jin L, Wang Y, Xiao L, Zhang J (2019) Complex-valued
discrete-time neural dynamics for perturbed time-dependent com-

plex quadratic programming with applications. IEEE Trans Neural
Netw Learn Syst

6. Koppen M, Wolpert DH, Macready WG (2001) Remarks on a
recent paper on the" no free lunch" theorems. IEEE Trans Evol
Comput 5(3):295–296

7. Wolpert DH, Macready WG (1997) No free lunch theorems for
optimization. IEEE Trans Evol Comput 1(1):67–82

8. YongW,TaoW,Cheng-Zhi Z,Hua-JuanH (2016)A new stochastic
optimization approachdolphin swarm optimization algorithm. Int
J Comput Intell Appl 15(02):1650011

9. Askarzadeh A (2016) A novel metaheuristic method for solving
constrained engineering optimization problems:crow search algo-
rithm. Comput & Struct 169:1–12

10. Meraihi Y, Gabis AB, Ramdane-Cherif A, Acheli D (2021) A com-
prehensive survey of crow search algorithm and its applications.
Artif Intell Rev 54(4):2669–2716

11. Hinojosa S, Oliva D, Cuevas E, Pajares G, Avalos O, Gálvez
J (2018) Improving multi-criterion optimization with chaos: a
novel multiobjective chaotic crow search algorithm. Neural Com-
put Applic 29(8):319–335

12. Rizk-Allah RM, Hassanien AE, Bhattacharyya S (2018) Chaotic
crow search algorithm for fractional optimization problems. Appl
Soft Comput 71:1161–1175

13. Zamani H, Nadimi-Shahraki MH, Gandomi AH (2019) Ccsa:
conscious neighborhood-based crow search algorithm for solving
global optimization problems. Appl Soft Comput 85:105583

14. Sayed GI, Hassanien AE, Azar AT (2019) Feature selection via
a novel chaotic crow search algorithm. Neural Comput Applic
31(1):171–188

15. Islam J, Vasant PM, Negash BM, Watada J (2019) A modified
crow search algorithm with niching technique for numerical opti-
mization. In 2019 IEEE Student Conference on Research and
Development (SCOReD), pages 170-175. IEEE

16. Bhullar AK, Kaur R, Sondhi S (2020) Enhanced crow search algo-
rithm for avr optimization. Soft Comput 24(16):11957–11987

17. Shekhawat S, Saxena A (2020) Development and applications of
an intelligent crow search algorithm based on opposition based
learning. ISA Trans 99:210–230

18. Rizk-Allah RM, Hassanien AE, Slowik A (2020) Multi-objective
orthogonal opposition-based crow search algorithm for large-
scale multi-objective optimization. Neural Comput & Applic
32(17):13715–13746

19. Upadhyay P, Chhabra JK (2020) Kapurs’entropy based optimal
multilevel image segmentation using crow search algorithm. Appl
Soft Comput 97:105522

20. Chaudhuri A, Sahu TP (2021) Feature selection using binary crow
search algorithm with time varying flight length. Expert Syst Appl
168:114288

21. Han X, Xu Q, Yue L, Dong Y, Xie G, Xu X (2020) An improved
crow search algorithm based on spiral search mechanism for
solving numerical and engineering optimization problems. IEEE
Access 8:92363–92382

22. Braik M, Al-Zoubi H, Ryalat M, Sheta A, Alzubi O (2022) Mem-
ory based hybrid crow search algorithm for solving numerical and
constrained global optimization problems. Artificial Intelligence
Review, pages 1-73

23. El-Ashmawi WH, Ali AF, Slowik A (2021) Hybrid crow search
and uniform crossover algorithmbased clustering for top-n recom-
mendation system. Neural Comput Appl 33(12):7145–7164

24. Guha D, Roy PK, Banerjee S (2022) Performance evolution of
different controllers for frequency regulation of a hybrid energy
power system employing chaotic crow search algorithm. ISATrans
120:128–146

25. Das S, Sahu TP, Janghel RR, Sahu BK (2022) Effective forecasting
of stockmarket price by using extreme learningmachine optimized

26880

1 3

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


Improved versions of crow search

by pso-based group oriented crow search algorithm. Neural Com-
put Appl 34(1):555–591

26. Gupta D, SundaramS, KhannaA,HassanienAE,DeAlbu-querque
VHC (2018) Improved diagnosis of parkinson’s disease using opti-
mized crow search algorithm. Comput & Electr Eng 68:412–424

27. Arora S, Singh H, Sharma M, Sharma S, Anand P (2019) A
new hybrid algorithm based on grey wolf optimization and crow
search algorithm for unconstrained function optimization and fea-
ture selection. Ieee Access 7:26343–26361

28. Ramgouda P, Chandraprakash V (2019) Constraints handling in
combinatorial interaction testing usingmulti-objective crow search
and fruitfly optimization. Soft Comput 23(8):2713–2726

29. Anter AM,AliM (2020) Feature selection strategy based on hybrid
crow search optimization algorithm integrated with chaos theory
and fuzzy c-means algorithm for medical diagnosis problems. Soft
Comput 24(3):1565–1584

30. Adamu A, Abdullahi M, Junaidu SB, Hassan IH (2021) An hybrid
particle swarm optimization with crow search algorithm for feature
selection. Mach Learn Appl 6:100108

31. Kumar S, Fred AL, Miriam LJ, Padmanabhan P, Gulyás B, Kumar
A, Dayana N (2022) Improved crow search algorithm based on
arithmetic crossover-a novel metaheuristic technique for solving
engineering optimization problems. Elsevier, In Multi-Objective
Combinatorial Optimization Problems and Solution Methods, pp
71–91

32. Mirjalili S, Gandomi AH, Mirjalili SZ, Saremi S, Faris H, Mirjalili
SM (2017) Salp swarm algorithm: A bio-inspired optimizer for
engineering design problems. Adv Eng Softw 114:163–191

33. Wang J,WanD (2020) Application progress of computational fluid
dynamic techniques for complex viscous flows in ship and ocean
engineering. J Mar Sci Appl 19(1):1–16

34. Liu Q, Li X, Liu H, Guo Z (2020) Multi-objective metaheuristics
for discrete optimization problems: A review of the state-of-the-art.
Appl Soft Comput 93:106382

35. Hernández-Pérez LG, Ponce-Ortega JM (2022) Use of statistic
functions to consider uncertainty in multi-objective optimization
methods based on metaheuristic algorithms. Process Integr Optim
Sustain 6(1):161–174

36. Kvasov DE, MukhametzhanovMS (2018) Metaheuristic vs. deter-
ministic global optimization algorithms: The univariate case. Appl
Math Comput 318:245–259

37. Alshamrani AM, Alrasheedi AF, Alnowibet KA, Mahdi S,
Mohamed AW (2022) A hybrid stochastic deterministic algorithm
for solving unconstrained optimization problems. Mathematics
10(17):3032

38. Bharathan S, RajendranC, Sundarraj R (2017) Penalty basedmath-
ematical models for web service composition in a geo-distributed
cloud environment. In 2017 IEEE IntConfWebServ (ICWS), IEEE
pp 886–889

39. Venkateswarlu C (2021) A metaheuristic tabu search optimization
algorithm: Applications to chemical and environmental processes.
IntechOpen, In Engineering Problems-Uncertainties, Constraints
and Optimization Techniques

40. Sangaiah AK, Hosseinabadi AAR, Shareh MB, Rad SYB,
Zolfagharian A, Chilamkurti N (2020) Iot resource allocation and
optimization based on heuristic algorithm. Sensors 20(2):539

41. Hafeez G, Alimgeer KS, Khan I (2020) Electric load forecasting
based on deep learning and optimized by heuristic algorithm in
smart grid. Appl Energy 269:114915

42. Kirkpatrick S, Gelatt CD, Vecchi MP (1983) Optimization by sim-
ulated annealing. Science 220(4598):671–680

43. Chinnasamy S, Ramachandran M, Amudha M, Ramu K (2022) A
review on hill climbing optimization methodology

44. Holland JH (1992) Genetic algorithms. Scientific american
267(1):66–73

45. Eberhart R, Kennedy J (1995) A new optimizer using particle
swarm theory. In Micro Machine and Human Science, 1995.
MHS’95., Proceedings of the Sixth International Symposium on,
pages 39–43 IEEE

46. Das S, Suganthan PN (2011) Differential evolution: A survey of
the state-of-the-art. IEEE Trans Evol Comput 15(1):4–31

47. Braik M, Ryalat MH, Al-Zoubi H (2022) A novel meta-heuristic
algorithm for solving numerical optimization problems: Ali baba
and the forty thieves. Neural Comput Appl 34(1):409–455

48. Simon D (2008) Biogeography-based optimization. IEEE Trans
Evol Comput 12(6):702–713

49. Motevali MM, Shanghooshabad AM, Aram RZ, Keshavarz H
(2019) Who: A new evolutionary algorithm bio-inspired by wilde-
beests with a case study on bank customer segmentation. Int J
Pattern Recog Artif Intell 33(05):1959017

50. Rahman CM, Rashid TA (2021) A new evolutionary algorithm:
Learner performance based behavior algorithm. Egypt Inform J
22(2):213–223

51. Faramarzi A, HeidarinejadM, Stephens B,Mirjalili S (2020) Equi-
librium optimizer: A novel optimization algorithm. Knowl-Based
Syst 191:105190

52. DorigoM, Stützle T (2019) Ant colony optimization: overview and
recent advances. Handb Metaheuristics, pp 311–351

53. BraikM, ShetaA,Al-HiaryH (2020)Anovelmeta-heuristic search
algorithm for solving optimization problems: capuchin search algo-
rithm. Neural Comput Appl, pp 1–33

54. BraikMS (2021)Chameleon swarmalgorithm:Abio-inspiredopti-
mizer for solving engineering design problems. Expert Syst Appl,
pp 114685

55. Braik M, Hammouri A, Atwan J, Al-Betar MA, Awadallah MA
(2022) White shark optimizer: A novel bio-inspired meta-heuristic
algorithm for global optimization problems. Knowl-Based Syst
243:108457

56. Alimoradi M, Azgomi H, Asghari A (2022) Trees social rela-
tions optimization algorithm: A new swarm-based metaheuristic
technique to solve continuous and discrete optimization problems.
Math Comput Simul 194:629–664

57. Meraihi Y, Gabis AB, Ramdane-Cherif A, Acheli D (2020) A com-
prehensive survey of crow search algorithm and its applications.
Artif Intell Rev, pp 1–48

58. Dehghani M, Trojovská E, Trojovskỳ P (2022) Driving training-
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