
Applied Intelligence (2023) 53:22415–22428
https://doi.org/10.1007/s10489-023-04685-3

Deep embeddings and Graph Neural Networks: using context
to improve domain-independent predictions

Fernando Sola1 · Daniel Ayala1 · Inma Hernández1 · David Ruiz1

Accepted: 1 May 2023 / Published online: 28 June 2023
© The Author(s) 2023

Abstract
Graph neural networks (GNNs) are deep learning architectures that apply graph convolutions through message-passing
processes between nodes, represented as embeddings. GNNs have recently become popular because of their ability to obtain
a contextual representation of each node taking into account information from its surroundings. However, existing work has
focused on the development of GNN architectures, using basic domain-specific information about the nodes to compute
embeddings. Meanwhile, in the closely-related area of knowledge graphs, much effort has been put towards developing
deep learning techniques to obtain node embeddings that preserve information about relationships and structure without
relying on domain-specific data. The potential application of deep embeddings of knowledge graphs in GNNs remains largely
unexplored. In this paper, we carry out a number of experiments to answer open research questions about the impact on GNNs
performance when combined with deep embeddings. We test 7 different deep embeddings across several attribute prediction
tasks in two state-of-art attribute-rich datasets. We conclude that, while there is a significant performance improvement, its
magnitude varies heavily depending on the specific task and deep embedding technique considered.

Keywords Knowledge graphs ·Graph neural networks ·Attributive embeddings ·Deep graph embeddings ·Machine learning

1 Introduction

Graph Neural Network (GNN) architectures seek to lever-
age the connections in a graph when it comes to making
predictions about the elements of the graph [44]. To achieve
this, the nodes of the graph are represented as numeric vec-
tors called embeddings that can capture and summarise the
implicit information present in them. For example, graph
convolutional layers [27] aggregate the embeddings of each
node with those of its neighbours to endow them with con-
textual information. These architectures allow the networks
to have a more complete understanding of the graph that

B Fernando Sola
fsola@us.es

Daniel Ayala
dayala1@us.es

Inma Hernández
inmahernandez@us.es

David Ruiz
druiz@us.es

1 University of Seville, ETSII, Avda. Reina Mercedes, s/n.,
Seville, Spain

helps it make node predictions for a variety of tasks, such
as image and text classification or natural language process-
ing, among others. Research in this area has so far mainly
focused on developing new GNN architectures or applying
existing ones to new domains. However, the type of embed-
dings being used has received significantly less attention.
In most cases, node embeddings are defined manually, and
created using any domain-specific information available; for
example, when representing data from the academic research
domain in which the nodes are scientific papers, embeddings
can be bag-of-words representations of the textual contexts
of a paper [21]. Another example can be found in the genetic
information domain, using genetical positional sequences as
embeddings [18]. Only in a few cases, node embeddings
have been considered when dealing with GNN and they just
employ popular embedding approaches such as TransE [4]
andDistMult [45] as baseline in tasks like link prediction [31,
38].

At the same time, Knowledge Graphs (KGs) have become
a popular research topic as companies such as Google, Face-
book, and Amazon [28] are increasingly relying on them
to integrate and curate information to support their busi-
ness processes. A considerable amount of research effort

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10489-023-04685-3&domain=pdf

22416 F. Sola et al.

focuses on developing deep learning techniques that are able
to obtain embeddings in a domain-independent way [40].
This is usually done by training a neural network to generate
task-specific embeddings, and then using said neural net-
work to carry out some prediction task using the generated
embeddings. In addition, it is also possible to leverage these
embeddings by using them as input for other deep learning
architectures such as GNN, and to tackle prediction tasks
different from those they were initially designed for. This is
feasible because a well-produced embedding space contains
latent information about the elements represented in it [40],
and therefore, they can be fed to architectures for a variety of
tasks, such as question answering [51], KG completion [5,
19], scientific fact-checking [6], clustering [20], or plagia-
rism detection [12], to mention a few.

Additionally, deep embedding techniques can automatise
the generation of embeddings from heterogeneous datasets,
such as those containing nodes with different types and
attributes. This can be a significant improvement over hand-
made embeddings, usually tied to certain entity types and
attributes, e.g. the aforementioned bag-of-words represen-
tation of nodes symbolising textual documents. More recent
approaches have introduced attributive embeddings [14] to be
able to leverage the available information about the attributes
of a node, which are usually numerical or textual values. This
may be beneficial for prediction tasks in which the value of
a property or the similarity between node properties can be
exploited.

It has caught our attention that, while GNNs and deep KG
embeddings are clearly related, there are almost no insights
in the existing literature on how well they perform when
combined, because most efforts have been put towards the
application of GNN on different fields and the development
of new GNN models and architectural variants [1]. While
domain-specific embeddings benefit from GNNs, we believe
that it is interesting to study the effect of using deep KG
embeddings with GNNs because of their different nature and
aforementioned advantages. This motivated us to carry out
an experiment to shed some light on the feasibility of such
combination.

In this paper, we present the results of an experimental
study to analyse the benefits of combining deep KG embed-
dingswith a baselineGNNarchitecture. Our focus is far from
the specific GNN architectures and deep KG embeddings or
their features, which have been thoroughly researched in pre-
vious works; instead, we want to analyse the performance
improvement that can be expected from a state-of-the-art
combination of both approaches. The improvement result-
ing from GNNs has been thoroughly studied for manually
defined embeddings, but remains unexplored in the field of
deep embeddings. These may be more challenging to exploit
given their unsupervised nature, but can be computed from
any graph without homogeneity restrictions or the need to

manually define suitable representations. Specifically, our
work focuses on comparing the results obtained by a base-
line feedforward network and a standardGNNwhen trying to
predict the value of different attributes. We test seven differ-
ent deep embedding techniques on seven attribute prediction
tasks. We focus mainly on the testing of attributive embed-
dings, since they contain additional information that could
increase the benefits of applying a GNN; therefore, we lim-
ited ourselves to standard datasets on the deep embedding
state-of-the-art that are rich in attributes, namely: YAGO [35]
and FB15K237 [37]. The results obtained by these configu-
rations contribute towards the state-of-the-art by thoroughly
answering a series of open research questions about how
much different types of neural networks can benefit from
deep embeddings when performing prediction tasks.

The rest of this paper is structured as follows: Sect. 2
details the state-of-the-art in the fields of GNNs andKG deep
embeddings. Section3 describes the specific research ques-
tions we have identified and the neural network architectures
used in our experiments. Section4 describes the experimen-
tal setup and discusses the obtained results. Finally, Sect. 5
summarises our contributions and discusses potential future
work.

2 Related work

In the following subsections, we summarise the current
state-of-the-art both in the fields of GNNs and deep node
embedding techniques.

2.1 Graph neural networks

Back in the 1990s, neural networks were first applied to
graphs by propagating states from one node to the others
in an iterative way until a stable point was reached, using
recurrent graph neural networks (RGNN) [44]. Some of
their main drawbacks were that they were computationally
costly and lacked representation capabilities and extend-
ability. Later, several approaches that tried to leverage the
progress in convolutional techniques emerged and redefined
the concept of convolution on graphs by using not only
the features of a node, but also those of its neighbours [7].
This type of procedure is common in image processing, in
which pixels are updated with the information features of
adjacent pixels. The resulting networks are known as con-
volutional graph neural networks (CGNN), and are further
divided in twogroups: spectral-based approaches and spatial-
based ones [49]. RGNNs and CGNN are significantly related
as they are both based on the same node representation
update with neighbouring information principle. Their main
difference is that RGNNs always use the same recurrent

123

Deep embeddings & GNNs: using context to improve predictions 22417

layer, using contractive constraints to ensure convergence,
whereas CGNNs use several convolutional layers with dif-
ferent weights in each of them. These characteristics make
CGNNs a more flexible, powerful and less costly approach
than RGNNs, which are mostly considered, nowadays, pio-
neer works of GNNs [44] that inspired later research on
convolutional networks. Therefore, CGNNs have emerged
as the dominant architecture for graph-related tasks, and for
that reason, this work focuses on these widespread and state-
of-art approaches.

In other matters, the performance of GNNs when applied
on a KG might be influenced by the size and type of the
graph, so these aspects should be taken into consideration.
KGs can be classified as follows [52]:

• Directed vs. undirected: directed edges provide more
information than undirected ones, which can also be seen
as double-directed edges.

• Homogeneous vs. heterogeneous: heterogeneous graphs
provide a type for each node and edge, adding additional
information to them.

• Spatiotemporal vs. static: on dynamic graphs, also
known as spatial-temporal ones, topology or features
change over time, a characteristic that needs to be prop-
erly addressed.

• Large vs. small: there are not clearly defined criteria to
distinguish between a small or large graph; the bound-
aries are ever changing due to computation capabilities
improvements on devices like GPUs.

There are different kinds of tasks that can be carried out
using GNNs: node attribute prediction, node classification
[21], link or edge strength prediction [17, 26, 33], and graph
level tasks such as graph classification [29, 46, 48]. Nonethe-
less, there are some challenges about GNNs that are still to
be addressed. The literature specially reports some scala-
bility issues, as these techniques usually require having the
graph loaded inmemory in order to perform the convolutions,
since doing sampling or clustering may end up losing neigh-
bourhood information [44]. Other challenges than remain
unsolved are defining a method to systematically select the
optimal GNN architecture for a given network or task, and
finding the most suitable knowledge graph embedding tech-
nique to maximise the performance of the network.

2.2 Deep node embedding techniques

Knowledge graph deep node embeddings have been widely
studied recently because of their numerous possibilities [16].
Such embeddingsaimto represent nodes as multi-dimensional
vectors while retaining information about the structure of the
graph and the attributes of its nodes, so that they can be used

as input for other algorithms in subsequent tasks. Conse-
quently, it should be noted that the performance of GNNs, as
deep learning architectures, can therefore be influenced by
the type of node embedding it is provided with.

Typical deep embedding approaches use distance-based
scoring functions to produce embeddings and to maintain
information about the relations between nodes. This way,
with a triple <s,r,t> where s and t are source and target
nodes and r the relation between them, the embedding of s
plus the embedding of r should be near the embedding of t
in the corresponding multi-dimensional space. In this regard,
these approaches only take into consideration the topology of
the graph, and so they are called structure-based embeddings.

When using these techniques, literal information con-
tained in nodes such as textual, numeric or even image
properties is not leveraged. Since these literals provide use-
ful information, the challenge lies in learning embeddings
taking them into account, which can be addressed in two
ways [14]. The first option is to handle literals separately,
i.e., training the classical structure-based embedding and a
node feature-learner one at the same time so that the net-
work uses both data sources in each step to learn the node
embeddings. The second option is to combine the classical
structure-based embedding with the node literals by adding,
multiplying, concatenating, etc. these features in the form of
additional embeddings. Intuitively, these attributive embed-
dings contain much richer information that can be helpful for
GNNs and their message-passing nature.

Some of the classical knowledge graph embedding gen-
eration techniques are TransE [4] and TransR [24]. TransE
trains a vector of embeddings for each entity and relation,
so that the sum of the embedding of the source node and
the relation embedding results in the embedding of the tar-
get node. TransR works in a similar way, but performs the
addition with the projection of the embedding vectors into a
different space, separate from that of entities and relations.

In terms of attributive embedding techniques, ASNE [23]
trains a network that predicts the node connections from the
concatenation of an embeddings vector associated to the node
itself (structural embedding) and another one associated to
the attributes. The vector of attribute embeddings is created
from the concatenation of numeric attributes (including their
value) and categorical attributes (by one-hot encoding). It
does not take into account non-categorical textual attributes,
nor does it consider theexistence ofdifferent types of relations.

LiteralE [22] integrates the embedding of each node with
a vector of the node’s attributes values. This integration is
done by a modular function that enriches the embeddings
before providing them to an existing embedding adjustment
network, among which the authors propose and provide an
implementation of DistMult and ComplEx. The integration
function uses dense layers to train the way in which infor-
mation about literals will be integrated.

123

22418 F. Sola et al.

MTKGNN [36] incorporates literals by introducing a
learning task in addition to the typical separation of positive
and negative triples. This task attempts to predict the value of
a numerical attribute, so that the embeddings associated with
the entities are indirectly affected by them. TransEA [43],
similar to MTKGNN, incorporates the attributes in an addi-
tional learning task, added to TransE. It only considers
numeric attributes.

2.3 State-of-the-art approaches

With all previous considerations in mind, we summarise in
Table 1 the most popular GNN architectures approaches, as
well as the datasets onwhich they are applied, the embedding
techniques that they use, and the training, testing, and val-
idation splits that are used in their experimental validation.
Among them, themost referenced proposals likeGCN[21] or

Table 1 GNN architecture popular approaches (a dash means “not specified”)

Approach Datasets Node embeddings Train/test/val. %

PATCHY-SAN (2016) [27] MUTAG - 10-fold cross-val.

PCT - 10-fold cross-val.

NCI1 - 10-fold cross-val.

NCI109 - 10-fold cross-val.

PROTEIN - 10-fold cross-val.

D&D - 10-fold cross-val.

GraphSage (2017) [18] Thomson Reuters Web of
Science Core Collection
citations dataset

GenSim word2vec 80/14/6

Reddit GloVe CommonCrawl 67/23/10

PPI Gene sets and features 84/8/8

GCN (2017) [21] Cora Bag-of-words feature vector 9/61/30

Citeseer Bag-of-words feature vector 7/62/31

Pubmed Bag-of-words feature vector 4/64/32

NELL Features vector 12/58/30

MoNet (2017) [25] Cora Bag-of-words feature vector 9/61/30

Pubmed Bag-of-words feature vector 4/64/32

GAT (2018) [39] Cora Bag-of-words feature vector 9/61/30

Citeseer Bag-of-words feature vector 7/62/31

Pubmed Bag-of-words feature vector 4/64/32

PPI 50 features vector 84/8/8

GAAN (2018) [47] Reddit - 67/23/10

PPI - 84/8/8

METR-LA - 70/20/10

FastGCN (2018) [9] Cora - 45/37/18

Pubmed - 92/5/3

Reddit - 65/25/10

ClusterGCN (2019) [10] PPI - 82/7/11

Reddit - 66/24/10

Amazon - 28/72/-

Amazon2M Bag-of-words feature vector 70/30/-

AP-GCN (2021) [34] Citeseer Bag-of-words feature vector 29/29/42

Cora-ML Bag-of-words feature vector 23/47/30

Pubmed Bag-of-words feature vector 3/92/5

MS-Academic Bag-of-words feature vector 1/94/5

Amazon Computers Bag-of-words feature vector -

Amazon Photos Bag-of-words feature vector -

123

Deep embeddings & GNNs: using context to improve predictions 22419

Fig. 1 Baseline neural network
architecture

GraphSage [18], represent the classical formulation ofGNNs
with iterative updates of node features through an aggregation
function over the features of neighbouring nodes. Besides
these architectures, attention-based GNNs like GAT [39]
and GAAN [47], employ attention mechanisms to allow the
model to learn neighbouring nodesweights according to their
importance.

These GNN architectures offer some advantages like their
ability to handle graph-structured data, capture local and
global structures, and reach state-of-art performance. How-
ever, GNNs also face several challenges such as scalability,
interpretability, and robustness [44, 52]. Recent studies have
proposed solutions to address these issues, including the use
of hierarchical GNNs [8] or adversarial training [42]. Despite
these efforts, further research is required to make GNNs
more efficient, interpretable, and robust. Another issue to be
addressed is the lack of standardisation in the design and eval-
uation of GNNmodels, making it difficult to compare results
across studies and benchmark datasets; although some efforts
have been made in this direction [11].

This is evidenced by the fact that, as shown in Table 1, for
all proposals, the technique used to compute node embed-
dings is usually not specifically designed for the task, or
it is even not described at all, not being considered a rele-
vant aspect of the proposal. In terms of datasets, we find that
Reddit [18], PPI [18], Cora [32], and Citeseer [15], which

are domain-specific ones, are commonly used. Other gen-
eral purpose KGs that are heterogeneous and rich in node
attributes, such as YAGO [30] or Freebase [3], are not usu-
ally considered. Additionally, there is a big variability in the
train/test/validation splits, since they are very dependent on
the characteristics of each dataset. These reasons led us to
carry out the current study, in which we focus on the combi-
nation of deep embeddings and GNN, abstracting ourselves
from state-of-art architectures particularities, as explained
later on Sect. 3.2.

3 Aim and scope

In this section we describe our contributions: in Sect. 3.1 we
define the goals of ourwork and our research questions,while
Sect. 3.2 describes the architecture of the neural networks that
we used to answer the previous research questions.

3.1 Goals

The previous study of the state-of-the-art clearly shows that
there has been little consideration for the combination of
GNNandKGdeep embeddings.More specifically, to the best
of our knowledge, it does not exist a report on how this type of

Fig. 2 Standard GNN
architecture

123

22420 F. Sola et al.

Table 2 Datasets summary Dataset Nodes Edges Edge types Attributes Attribute types

FB15K237 14,192 306,773 237 85,894 119

YAGO 29,735 123,630 32 3,691,702 24

CORA 2,708 5,429 1 - -

neural networks are affected by the use of different kinds of
KG deep embeddings. It is currently unclear whether or not
more specific research is needed to fully exploit the capabil-
ities of GNNs when applied to deep embeddings. Therefore,
we have focused on answering a number of open research
questions that will help identify the scenarios in which per-
formance is affected the most by said networks:

• Q1:Whenusing aGNN,does the kindof deep embedding
that is used have a significant effect on performance? To
what extent is the performance of GNNs affected by the
use of attributive embeddings?

• Q2:Whenusing deep embeddings for attribute prediction
tasks, does the use of a GNN instead of a regular neural
network result in significant performance differences?

• Q3: Are the aforementioned differences affected by the
kind of deep embedding being used?

• Q4: Is the improvement as pronounced as the reported in
the state of art for tasks that use domain-specific embed-
dings? Does it vary with the prediction task?

• Q5: To what extent is the improvement achieved by
GNNs affected by the amount of training data?

3.2 Architecture of the neural networks

In order to answer the previous questions and, since the spe-
cific architectures being used are not the focus of our work,
we used a baseline feedforward neural network and a stan-
dard graph neural network. The feedforward one, described
in Fig. 1, is composed by a series of five dense blocks with
skip connections, except the first one; and a final dense layer
which provides the output. Each dense block is composed by
two groups of batch normalisation, dropout and dense layers.
The computationalmodules employed in this architecture are
well-known, standard and commonly used together [2, 13,
41] so they conform a representative enough network for our
experiments.

The standard GNN, shown in Fig. 2, is based in Graph-
Sage [18], which is a well-known, representative and mature
GNN approach of the state-of-art [50], and compared to
other well-stablished GNN approaches like GCN [21] and
GAT [39], offers a more flexible convolution configuration
because of the variable aggregation function. Our represen-
tative architecture is composed of two dense blocks that
perform preprocessing and postprocessing functions and
between which we have placed two graph convolution lay-

Table 3 Datasets used in each
state-of-the-art deep embedding
technique

Deep embedding technique Datasets

ASNE Facebook Oklahoma

Facebook UNC

DBLP

Citeseer

LiteralE-ComplEx Freebase (FB15K, FB15K237)

YAGO (YAGO3-10)

LiteralE-DistMult Freebase (FB15K, FB15K237)

YAGO (YAGO3-10)

MTKGNN YAGO (YG24K)

Freebase (FB28K)

TransEA YAGO (YG58K)

Freebase (FB15K)

TransE WordNet

Freebase (FB15K, FB1M)

TransR WordNet (WN18, WN11)

Freebase (FB15K, FB13, FB40K)

123

Deep embeddings & GNNs: using context to improve predictions 22421

ers. These are made up of a setup dense block, a message
aggregation layer and a node embedding updating layer, as
well as a skip connection over them. Finally, the output is
provided by a dense layer.

It is worth noting that all layers in the networks, essentially
the dense layers, are configured with 32 nodes or units. The
initial hyperparameter setup was the one proposed in Graph-
Sage [18], and was carefully tuned through a set of small,
empirical and informal tests until a suitable typical state-of-
art configuration was found. This configuration includes a
learning rate of 0.01, RMSprop optimization, a dropout rate
of 0.5, a batch size of 256 and 300 epochswith early stopping.

In terms of input, the feedforward network only receives
a matrix containing the embeddings of the graph nodes and
outputs the predicted value for the specific attribute predic-
tion task performed. The input of the GNN architecture is
a matrix of the embeddings of the nodes and the list of
graph edges, that is, the relations between nodes in a (source,
target) format. The GNN architecture also outputs the pre-
dicted attribute value for eachnode.Graphnodes embeddings
are computed with the knowledge graph embedding tech-
niques specified later in Sect. 4 and using the available node
attributes on each dataset.

4 Evaluation

In this section, we discuss our evaluation setup: the datasets
that we have used, the different embedding techniques under
evaluation and the tasks that were performed. Subsequently,
we display and comment on our experimental results.

4.1 Experimental setup

The attribute-rich datasets we took into consideration for
our experiments were FB15K237 [37] and a reduced ver-
sion of YAGO [35] which only contains nodes with at least
one attribute and that have at least ten connected edges. It is
worth noting that they were chosen because they are standard
attribute-rich datasets on the deep embedding state-of-art,

as can be seen in Table 3. Other datasets such as Word-
Net are also typically used, but they do not contain node
attributes,making it impossible to apply attribute-based tech-
niques on them. Additionally, we also included Cora [32], a
citation dataset that is very commonly used in experiments
involving GNNs, as shown in Table 1. The first two datasets
are rich in attributes, which allow us to compute attributed
embeddings and perform attribute prediction tasks, while the
Cora dataset allows us to compare the improvement in per-
formance with regards to that obtained by domain-specific
embeddings. More detailed statistics of each dataset, like
nodes, edges and attributes number, are provided in Table 2.

In terms of embedding techniques, we selected the
ones proposed by Asefa et al. [14], which employ textual
and/or numerical attributes and have an accessible imple-
mentation, namely: ASNE [23], LiteralE-ComplEx [22],
LiteralE-DistMult [22], MTKGNN [36], and TransEA [43].
In addition, we included two well-known non-attributive
embeddings as baselines: TransE [4] and TransR [24].

The prediction tasks we selected, as shown in Table 4,
include a variety of node attributes to predict. It is also worth
noting that tasks involving FB15K237 and YAGO consist in
the regression of numerical attributes, while the Cora task
consists in node classification. While the node type can be
treated as an attribute, the Cora dataset does not include
any actual attributes that can be used to compute attribu-
tive embeddings, and thus we limit the deep embeddings
experiments to the FB15K237 andYAGO tasks, leavingCora
dataset to the domain-specific embeddings experiment that
serves as a representative of how GNNs improve perfor-
mance when using said embeddings. We tested each task
with three different train/test split proportions: 80%/20%,
50%/50% and 20%/80%, respectively. Additionally, we exe-
cuted every task 10 times in order to better assess the overall
obtained performance.

To perform the experiments, we implemented a script,
shown in Algorithm 1, to execute all the combinations in
terms of train split proportions and embedding techniques for
every defined task in the datasets, for both the baseline feed-
forward neural network and the standard GNN. The output

Table 4 Prediction tasks KG Task Nodes No. of different values Range of observed values

FB15K237 filmRating 739 13 [0, 100]

locationArea 2,150 2,063 [0.004, 165,250,000]

personHeight 2,870 122 [1.35, 2.18]

populationNumber 52,704 49,928 [0, 1,205,624,648]

YAGO hasLatitude 8,671 6,620 [-75, 73]

hasLongitude 8,671 7,394 [−171.83, 178.44]

hasArea 11,922 10,075 [0.52, 8,000,036]

Cora hasSubject 2708 7 [0, 6]

123

22422 F. Sola et al.

Table 5 GNN accuracy on the Cora dataset (higher is better)

Train% NN GNN �Accuracy

20% 64.74 67.56 +2.82

50% 73.96 81.06 +7.11

80% 76.67 84.85 +8.17

of every step consists of the prediction evaluation metrics
values for each setup.

Experiments where performed on a computer equipped
with an Intel Core i9-9900K CPU, 32 GB of RAM and an
Nvidia RTX 2080Ti GPU.

Algorithm 1 Experimental process
Input: T S: List<Double> Train splits

EN : Integer Executions number
D: Dictionary with datasets, tasks and its types, and
embedding techniques

Output: PM : Dictionary with prediction evaluation metrics
1 foreach dataset in D do
2 foreach task in dataset do
3 foreach train_si ze in T S do
4 foreach embedding_technique in task do
5 foreach i teration in EN do
6 test_nn(task, train_si ze,
7 embedding_technique, i teration)

8 test_gnn(task, train_si ze,
9 embedding_technique, i teration)

10 end
11 end
12 end
13 end
14 end

4.2 Experimental results and analysis

Tables 5 and 6 show the results of the experiments that we
conducted (note that a more comprehensive account of the
embeddings experimental results can be found in Table 8).
Table 7 offers a summarised view of the results.

Table 5 collects the reference results of the Cora dataset,
in terms of accuracy. Figure4 shows in a more visual way
the MAE difference between GNNs and NNs depending on
the performed task and the train set size, for deep embedding
technique LiteralE-DistMult, in which the effect of using
different train set sizes is particularly significant.

Table 6 contains the mean absolute error (MAE) differ-
ence obtained after applying each embedding technique in
combination with the standard neural network and the GNN,
to perform different tasks and considering different training
set sizes, on two of the datasets (FB15K237 and YAGO).
Each execution was repeated ten times to compute average

values. We have boldfaced those results where MAE differ-
ence is a negative value, that is, GNNoutperforms the regular
neural network.

Fig. 3 displays a representative picture of the convergence
of the networks and early stopping policy, on two represen-
tative tasks, employing ASNE embeddings and 80% training
set size. Table 9 shows a summary of mean training times for
both architectures on every performed task.

Next, we provide the answers to the questions posed in
Sect. 3.1, according to the former experimental results.

Q1:When using a GNN, does the kind of deep embed-
ding that is used have a significant effect on performance?
To what extent is the performance of GNNs affected by
the use of attributive embeddings?

There are clear differences in GNN performance depend-
ing on the embedding technique and it is more noticeable
in certain tasks, e.g. between TransEA and ASNE in the
hasLati tude task, as shown in Table 8. However, we have
not identified an embedding technique that consistently
obtains better results in most tasks. The same applies to non-
attributive embeddings (TransE and TransR)when compared
to the rest.We conclude that the kind of embedding has a sig-
nificant effect in a per-task manner, without a clear overall
winner.

Q2: When using deep embeddings for attribute pre-
diction tasks, does the use of a GNN instead of a regular
neural network result in significant performance differ-
ences?

Generally, it does, as can be seen in the�MAE%columns
in Table 6, showing the percentage difference betweenGNNs
and NN in bold. The results indicate that the GNN out-
performs the regular NN in the 65.7% of cases, Table 7,
with GNN taking less but longer-in-time epochs to converge,
Fig. 3. However, some tasks tend to leverage context infor-
mation and thus, the improvement is greater in them, like
locationArea or populationNumber , see Fig. 4, while
other tasks may only need their own information to make
a judgement, and the use of convolutions and contextual data
may blur the characteristics of the current node, showing
GNN then, no clear strength over NN, like in task has Area.
Itmay therefore be of interest to studywhether the neighbour-
aggregation process of GNN is beneficial for a specific task
andwhether the improvement in results obtainedwith aGNN
compared to those of a common neural network justify the
higher complexity and computational cost of a GNN when
dealing with that specific task, which can mean i.e., on aver-
age, about double the training time, as shown in Table 9.

Q3:Are the aforementioned differences affected by the
kind of deep embedding being used?

Some embeddings seem to benefit more from the appli-
cation of a GNN with higher, more consistent reductions of
the MAE. Overall, there is a higher chance of improvement

123

Deep embeddings & GNNs: using context to improve predictions 22423

Ta
bl
e
6

D
if
fe
re
nc
es

in
M
ea
n
A
bs
ol
ut
e
E
rr
or

of
a
G
N
N
vs

a
re
gu
la
r
N
N
us
in
g
di
ff
er
en
te
m
be
dd
in
gs
.N

eg
at
iv
e
di
ff
er
en
ce
s,
w
he
re

G
N
N
ou
tp
er
fo
rm

s
N
N
,a
re

sh
ow

n
in

bo
ld

K
G

Ta
sk

A
SN

E
L
ite

ra
lE
-C

om
pl
E
x

L
ite

ra
lE
-D

is
tM

ul
t

M
T
K
G
N
N

T
ra
ns
E
A

T
ra
ns
E

T
ra
ns
R

Ta
sk

m
ea
n

�
M
A
E
%

FB
15
K
23
7

fil
m
R
at
in
g

-2
.4
7

-1
.9
1

0.
01

-2
.3
7

1.
41

0.
15

1.
60

-0
.5
1

lo
ca
tio

nA
re
a

-1
8.
54

-6
.3
0

-1
2.
96

-8
.5
1

-1
5.
77

-1
0.
35

7.
19

-9
.3
2

pe
rs
on
H
ei
gh
t

7.
16

-1
.4
5

-2
.1
5

0.
40

1.
00

1.
81

0.
58

1.
05

po
pu
la
tio

nN
um

be
r

-1
8.
26

-2
3.
65

-1
0.
37

-1
3.
01

-1
.8
7

-1
1.
95

-0
.3
8

-1
1.
36

Y
A
G
O

ha
sL
at
itu

de
2.
01

0.
18

-2
.5
4

2.
59

-3
.8
0

-1
.7
2

0.
38

-0
.4
1

ha
sL
on
gi
tu
de

-2
0.
35

3.
29

-6
.5
2

-2
.4
6

-1
.1
7

-1
.3
6

8.
10

-2
.9
2

ha
sA

re
a

-5
.6
2

12
.0
5

6.
34

-8
.3

10
.8
2

15
.9
0

-8
.7
6

3.
21

E
m
be
dd
in
g
m
ea
n

�
M
A
E
%

-8
.0
1

-2
.5
4

-4
.0
3

-4
.5
2

-1
.3
4

-1
.0
7

1.
25

123

22424 F. Sola et al.

Table 7 Comparison of a
regular NN vs GNN,
summarized MAE results

Attributive embeddings Non-attributive embeddings

% cases with improvement 65.71% 42.86%

Mean improvement −8.28% −5.75%

Mean worsening 3.94% 4.47%

Table 8 Regular NN vs GNN
MAE extended comparison

0.00

0.05

0.10

0.15

0.20

0 50 100 150
Epoch

M
AE

 lo
ss

gnn

nn

populationNumber

0.00

0.05

0.10

0.15

0.20

0 50 100
Epoch

M
AE

 lo
ss

gnn

nn

hasArea

Fig. 3 NN vs GNN convergence on two representative tasks for ASNE embedding technique

for attributive embeddings than for non-attributive ones. As
can be seen in Table 7, GNNs lead to an improvement in
roughly 43% of cases when using TransR or TransE non-
attributive embeddings, but when using the attributive ones
ASNE, LiteralE-ComplEx, LiteralE-DistMult, MTKGNN
and TransEA there is an improvement in 65% of cases. For
these reasons, the deep embedding technique used as GNN
input should be carefully selected as it may heavily influence
the obtained results.

Q4: Is the improvement as noticeable as the reported in
the state of art for tasks that use domain-specific embed-
dings? Does it vary with the prediction task?

The results for theCora dataset shown in Table 5 showcase
an accuracy improvement between 3% and 8%. However,
when talking about more generic and attribute-rich datasets,
results vary significantly between tasks, as shown in Table 6.

It is clear that some tasks, like populationNumber , seem
to benefit more from the contextual information provided
by the GNNs, reaching improvements of more than 25% in
some cases, see Table 8. In other tasks, such as has Area
or personHeight , there is little information in the context
of a node that could help improve the prediction while, for
example, the rating of a film could be easier to predict based
on its contextual information. In this case, GNNs lead to

123

Deep embeddings & GNNs: using context to improve predictions 22425

Fig. 4 Mean Absolute Error
differences of Regular NN vs
GNN

lesser improvements or even worse results, probably as a
consequence of the increased architecture complexity. These
results are in contrast to the state-of-the-art ones, where
GNN experiments are always carried out on citations or
domain-specific datasets, as seen in Table 1, and reach better
performances.

Q5: To what extent is the improvement achieved by
GNNs affected by the amount of training data?

As can be seen in Fig. 4, there is no clear trend when
training size is altered. In some tasks a reduced training size
leads to a larger improvement, maybe due to how a GNN can
help use additional information to compensate for the lack of
numerous examples. In others, the opposite happens, which
may be caused by the higher complexity of a GNN needing a
larger number of examples to reach its potential. Therefore,
training set size does not seem to be a determining factor
in GNNs performance improvement against regular neural
networks.

Table 9 NN and GNN mean training times (in seconds)

KG Task NN GNN

FB15K237 filmRating 9.22 19.20

locationArea 10.68 24.05

personHeight 13.37 42.20

populationNumber 10.32 23.47

YAGO hasLatitude 17.27 41.37

hasLongitude 17.86 43.90

hasArea 24.81 63.08

CORA hasSubject 8.98 12.99

Mean training time 14.06 33.78

5 Conclusions and future work

In this paper we have presented a comprehensive study about
how deep embeddings perform when applied together with
Graph Neural Networks (GNNs). Deep embeddings have
the appeal of being domain-independent, potentially able
to capture latent information about the content of the graph
and offer universal, automatised embedding generation that
can deal with heterogeneous datasets. This has led to their
extended use in a variety of tasks, including prediction of
graph elements by feeding them to neural networks. GNNs,
which intend to endow these networks with contextual infor-
mation, seem to be a perfect fit, but so far they have only
been tested with domain-specific embeddings, which moti-
vated our study.

The novelty and value of our work resides in how
we answer several open research questions about the per-
formance of GNNs under several sets of circumstances
including seven attribute prediction tasks, seven types of
deep embeddings, and three different training sizes. We con-
clude that the application of GNNs to improve performance
obtained by deep embeddings has significant potential, as it
can be seen in several tasks in which there is a reduction
of error of more than 25%. However, research so far has
focused too much on proposing novel network architectures
and too little on determining under what circumstances they
work best. As our experiments have shown, the same GNN
can obtain completely different results depending on the task
and embeddings being used.

Future work should focus on collecting a large set of
attribute-rich datasets for the evaluation of GNNs and deep
embeddings in an automated way. It would be particularly
useful to catalogue said datasets according to their topology

123

22426 F. Sola et al.

and other characteristics that should affect how useful the
information-passing mechanisms in GNNs are.

Acknowledgements This work was supported by the Spanish Min-
istry of Science, Innovation and Universities, under Grant PID2019-
105471RB-I00; and by the Office for Economy and Knowledge of the
Andalusian Regional Government under Grant P18-RT-1060 and Grant
US-1380565.

Funding Funding for open access publishing:UniversidaddeSevilla/CBUA

Data Availability The datasets generated during and/or analysed dur-
ing the current study are available from the corresponding author on
reasonable request.

Declarations

Conflicts of interests The authors declare no conflicts of interests.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, youwill need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

References

1. Abadal S, Jain A, Guirado R, et al (2022) Computing graph neural
networks: A survey from algorithms to accelerators. ACMComput
Surv 54(9):191:1–191:38. https://doi.org/10.1145/3477141

2. Abdani SR, Zulkifley MA, Hussain A (2019) Compact convolu-
tional neural networks for pterygium classification using transfer
learning. In: 2019 IEEE International Conference on Signal and
Image Processing Applications, ICSIPA 2019, Kuala Lumpur,
Malaysia, September 17-19, 2019. IEEE, pp 140–143. https://doi.
org/10.1109/ICSIPA45851.2019.8977757

3. Bollacker K, Evans C, Paritosh P, et al (2008) Freebase: A collabo-
ratively created graph database for structuring human knowledge.
In: SIGMOD. ACM New York, NY, USA, pp 1247–1250. https://
doi.org/10.1145/1376616.1376746

4. Bordes A, Usunier N, García-Durán A, et al (2013) Translat-
ing embeddings for modeling multi-relational data. In: Burges
CJC, Bottou L, Ghahramani Z, et al (eds) Advances in Neural
Information Processing Systems 26: 27th Annual Conference on
Neural Information Processing Systems 2013. Proceedings of a
meeting held December 5-8, 2013, Lake Tahoe, Nevada, United
States, pp 2787–2795. https://proceedings.neurips.cc/paper/2013/
hash/1cecc7a77928ca8133fa24680a88d2f9-Abstract.html

5. Borrego A, Ayala D, Hernández I, et al (2021) CAFE: Knowledge
graph completion using neighborhood-aware features. Engineering
Applications of Artificial Intelligence 103:104302. https://doi.org/
10.1016/j.engappai.2021.104302

6. Borrego A, Dessì D, Hernández I et al (2022) Complet-
ing scientific facts in knowledge graphs of research con-

cepts. IEEE Access 10:125867–125880. https://doi.org/10.1109/
ACCESS.2022.3220241

7. Bronstein MM, Bruna J, LeCun Y et al (2017) Geometric deep
learning: Going beyond euclidean data. IEEE Signal Process Mag
34(4):18–42. https://doi.org/10.1109/MSP.2017.2693418

8. Chen C, Li K, Wei W et al (2022) Hierarchical graph neu-
ral networks for few-shot learning. IEEE Trans Circuits Syst
Video Technol 32(1):240–252. https://doi.org/10.1109/TCSVT.
2021.3058098

9. Chen J, Ma T, Xiao C (2018) Fastgcn: Fast learning with graph
convolutional networks via importance sampling. In: ICLR 2018.
https://openreview.net/forum?id=rytstxWAW

10. Chiang W, Liu X, Si S, et al (2019) Cluster-gcn: An efficient algo-
rithm for training deep and large graph convolutional networks. In:
Teredesai A,KumarV, LiY, et al (eds)ACMSIGKDD2019.ACM,
NY, USA, pp 257–266. https://doi.org/10.1145/3292500.3330925

11. Dwivedi VP, Joshi CK, Luu AT et al (2023) Benchmarking graph
neural networks. Journal of Machine Learning Research 24(43):1–
48

12. Franco-Salvador M, Rosso P, Montes-y Gómez M (2016) A sys-
tematic study of knowledge graph analysis for cross-language
plagiarism detection. Information Processing & Management
52(4):550–570

13. Garbin C, Zhu X, Marques O (2020) Dropout vs. batch nor-
malization: an empirical study of their impact to deep learning.
Multim Tools Appl 79(19–20):12777–12815. https://doi.org/10.
1007/s11042-019-08453-9

14. Gesese GA, Biswas R, Alam M et al (2021) A survey on knowl-
edge graph embeddings with literals: Which model links better
literal-ly? Semantic Web 12(4):617–647. https://doi.org/10.3233/
SW-200404

15. Giles CL, Bollacker KD, Lawrence S (1998) Citeseer: An auto-
matic citation indexing system. In: Proceedings of the 3rd ACM
International Conference on Digital Libraries, June 23-26, 1998,
Pittsburgh, PA, USA. ACM, pp 89–98. https://doi.org/10.1145/
276675.276685

16. Goyal P, Ferrara E (2018) Graph embedding techniques, applica-
tions, and performance: A survey. Knowl Based Syst 151:78–94.
https://doi.org/10.1016/j.knosys.2018.03.022

17. Hamaguchi T, Oiwa H, Shimbo M, et al (2017) Knowledge trans-
fer for out-of-knowledge-base entities : A graph neural network
approach. In: IJCAI pp 1802–1808. https://doi.org/10.24963/ijcai.
2017/250

18. HamiltonWL, Ying Z, Leskovec J (2017) Inductive representation
learning on large graphs. In: Advances in Neural Information
Processing Systems pp 1024–1034. https://proceedings.neurips.
cc/paper/2017/hash/5dd9db5e033da9c6fb5ba83c7a7ebea9-
Abstract.html

19. Huang X, Zhang J, Li D, et al (2019) Knowledge graph embedding
based question answering. In: Proceedings of the Twelfth ACM
International Conference onWeb Search and Data Mining pp 105–
113

20. Kerdjoudj F, Curé O (2015) RDF knowledge graph visualization
from a knowledge extraction system. In: Joint Proceedings of the
1st International Workshop on Summarizing and Presenting Enti-
ties and Ontologies and the 3rd International Workshop on Human
Semantic Web Interfaces (SumPre 2015, HSWI 2015) co-located
with the 12th Extended Semantic Web Conference (ESWC 2015),
Portoroz, Slovenia, June 1, 2015, CEUR Workshop Proceedings,
vol 1556. URL https://ceur-ws.org/Vol-1556/paper3.pdf

21. Kipf TN, Welling M (2017) Semi-supervised classification with
graph convolutional networks. In: ICLR. https://openreview.net/
forum?id=SJU4ayYgl

22. Kristiadi A, Khan MA, Lukovnikov D, et al (2019) Incorporating
literals into knowledge graph embeddings. In: Ghidini C, Hartig
O, Maleshkova M, et al (eds) The Semantic Web - ISWC 2019

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3477141
https://doi.org/10.1109/ICSIPA45851.2019.8977757
https://doi.org/10.1109/ICSIPA45851.2019.8977757
https://doi.org/10.1145/1376616.1376746
https://doi.org/10.1145/1376616.1376746
https://proceedings.neurips.cc/paper/2013/hash/1cecc7a77928ca8133fa24680a88d2f9-Abstract.html
https://proceedings.neurips.cc/paper/2013/hash/1cecc7a77928ca8133fa24680a88d2f9-Abstract.html
https://doi.org/10.1016/j.engappai.2021.104302
https://doi.org/10.1016/j.engappai.2021.104302
https://doi.org/10.1109/ACCESS.2022.3220241
https://doi.org/10.1109/ACCESS.2022.3220241
https://doi.org/10.1109/MSP.2017.2693418
https://doi.org/10.1109/TCSVT.2021.3058098
https://doi.org/10.1109/TCSVT.2021.3058098
https://openreview.net/forum?id=rytstxWAW
https://doi.org/10.1145/3292500.3330925
https://doi.org/10.1007/s11042-019-08453-9
https://doi.org/10.1007/s11042-019-08453-9
https://doi.org/10.3233/SW-200404
https://doi.org/10.3233/SW-200404
https://doi.org/10.1145/276675.276685
https://doi.org/10.1145/276675.276685
https://doi.org/10.1016/j.knosys.2018.03.022
https://doi.org/10.24963/ijcai.2017/250
https://doi.org/10.24963/ijcai.2017/250
https://proceedings.neurips.cc/paper/2017/hash/5dd9db5e033da9c6fb5ba83c7a7ebea9-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/5dd9db5e033da9c6fb5ba83c7a7ebea9-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/5dd9db5e033da9c6fb5ba83c7a7ebea9-Abstract.html
https://ceur-ws.org/Vol-1556/paper3.pdf
https://openreview.net/forum?id=SJU4ayYgl
https://openreview.net/forum?id=SJU4ayYgl

Deep embeddings & GNNs: using context to improve predictions 22427

- 18th International Semantic Web Conference, Auckland, New
Zealand, October 26-30, 2019, Proceedings, Part I, Lecture Notes
in Computer Science, vol 11778. Springer, pp 347–363. https://doi.
org/10.1007/978-3-030-30793-6_20

23. Liao L, He X, Zhang H et al (2018) Attributed social network
embedding. IEEE Trans Knowl Data Eng 30(12):2257–2270.
https://doi.org/10.1109/TKDE.2018.2819980

24. Lin Y, Liu Z, Sun M, et al (2015) Learning entity and relation
embeddings for knowledge graph completion. In: Bonet B, Koenig
S (eds) Proceedings of the Twenty-Ninth AAAI Conference on
Artificial Intelligence, January 25-30, 2015, Austin, Texas, USA.
AAAI Press, pp 2181–2187. http://www.aaai.org/ocs/index.php/
AAAI/AAAI15/paper/view/9571

25. Monti F, Boscaini D,Masci J, et al (2017) Geometric deep learning
on graphs and manifolds using mixture model cnns. In: 2017 IEEE
Conference on Computer Vision and Pattern Recognition, CVPR
2017, Honolulu, HI, USA, July 21-26, 2017. IEEE Computer Soci-
ety, pp 5425–5434. https://doi.org/10.1109/CVPR.2017.576

26. Nathani D, Chauhan J, Sharma C, et al (2019) Learning attention-
based embeddings for relation prediction in knowledge graphs. In:
Proceedings of the 57th Conference of the Association for Com-
putational Linguistics, ACL 2019, Florence, Italy, July 28- August
2, 2019, Volume 1: Long Papers. Association for Computational
Linguistics, pp 4710–4723. https://doi.org/10.18653/v1/p19-1466

27. Niepert M, Ahmed M, Kutzkov K (2016) Learning convolu-
tional neural networks for graphs. In: Balcan M, Weinberger
KQ (eds) ICML, JMLR Workshop and Conference Proceedings,
vol 48. JMLR.org, pp 2014–2023. http://proceedings.mlr.press/
v48/niepert16.html

28. NoyN,GaoY, JainAet al (2019) Industry-scale knowledge graphs:
lessons and challenges. Communications of theACM62(8):36–43.
https://doi.org/10.1145/3331166

29. Pan S, Wu J, Zhu X et al (2017) Task sensitive feature exploration
and learning for multitask graph classification. IEEE Trans Cybern
47(3):744–758. https://doi.org/10.1109/TCYB.2016.2526058

30. Rebele T, Suchanek FM, Hoffart J, et al (2016) YAGO: A multi-
lingual knowledge base from wikipedia, wordnet, and geonames.
In: ISWC,pp177–185. https://doi.org/10.1007/978-3-319-46547-
0_19

31. Schlichtkrull MS, Kipf TN, Bloem P, et al (2018) Modeling rela-
tional data with graph convolutional networks. In: Gangemi A,
Navigli R, Vidal M, et al (eds) The Semantic Web - 15th Inter-
national Conference, ESWC 2018, Heraklion, Crete, Greece, June
3-7, 2018, Proceedings, Lecture Notes in Computer Science, vol
10843. Springer, pp 593–607. https://doi.org/10.1007/978-3-319-
93417-4_38

32. Sen P, Namata G, Bilgic M et al (2008) Collective classification
in network data. AI Mag 29(3):93–106. https://doi.org/10.1609/
aimag.v29i3.2157

33. Shang C, Tang Y, Huang J, et al (2019) End-to-end structure-aware
convolutional networks for knowledge base completion. In: AAAI,
pp 3060–3067. https://doi.org/10.1609/aaai.v33i01.33013060

34. Spinelli I, Scardapane S, Uncini A (2021) Adaptive propaga-
tion graph convolutional network. IEEE Trans Neural Networks
Learn Syst 32(10):4755–4760. https://doi.org/10.1109/TNNLS.
2020.3025110

35. Suchanek FM, Kasneci G, Weikum G (2007) Yago: a core of
semantic knowledge. In: Proceedings of the 16th International
Conference on World Wide Web, WWW 2007, Banff, Alberta,
Canada, May 8-12, 2007, ACM, pp 697–706. https://doi.org/10.
1145/1242572.1242667

36. Tay Y, Tuan LA, Phan MC, et al (2017) Multi-task neural network
for non-discrete attribute prediction in knowledge graphs. In: Lim
E, Winslett M, Sanderson M, et al (eds) Proceedings of the 2017

ACMonConference on Information andKnowledgeManagement,
CIKM 2017, Singapore, November 06 - 10, 2017. ACM, pp 1029–
1038. https://doi.org/10.1145/3132847.3132937

37. Toutanova K, Chen D (2015) Observed versus latent features for
knowledge base and text inference. In: Proceedings of the 3rdwork-
shop on continuous vector spacemodels and their compositionality,
pp 57–66

38. Vashishth S, Sanyal S, Nitin V, et al (2020) Composition-based
multi-relational graph convolutional networks. In: 8th Interna-
tional Conference on Learning Representations, ICLR 2020, Addis
Ababa, Ethiopia, April 26-30, 2020. URL https://openreview.net/
forum?id=BylA_C4tPr

39. Velickovic P, Cucurull G, Casanova A, et al (2018) Graph attention
networks. In: ICLR. https://openreview.net/forum?id=rJXMpikCZ

40. Wang Q, Mao Z, Wang B et al (2017) Knowledge graph
embedding: A survey of approaches and applications. IEEE
Trans Knowl Data Eng 29(12):2724–2743. https://doi.org/10.
1109/TKDE.2017.2754499

41. Wang SH, Tang C, Sun J et al (2018) Multiple sclerosis iden-
tification by 14-layer convolutional neural network with batch
normalization, dropout, and stochastic pooling. Frontiers in Neu-
roscience 12. https://doi.org/10.3389/fnins.2018.00818

42. Wei Q, Wang J, Fu X et al (2023) AIC-GNN: adversarial informa-
tion completion for graph neural networks. Inf Sci 626:166–179.
https://doi.org/10.1016/j.ins.2022.12.112

43. Wu Y, Wang Z (2018) Knowledge graph embedding with numeric
attributes of entities. In: Augenstein I, Cao K, He H, et al (eds) Pro-
ceedings of The Third Workshop on Representation Learning for
NLP, Rep4NLP@ACL 2018, Melbourne, Australia, July 20, 2018.
Association for Computational Linguistics, pp 132–136. https://
doi.org/10.18653/v1/w18-3017

44. Wu Z, Pan S, Chen F et al (2020) A comprehensive survey on
graph neural networks. IEEE Transactions on Neural Networks
and Learning Systems 32(1):4–24

45. Yang B, YihW,HeX, et al (2015) Embedding entities and relations
for learning and inference in knowledge bases. In: BengioY, LeCun
Y (eds) 3rd International Conference on Learning Representations,
ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference
Track Proceedings

46. Ying Z, You J, Morris C, et al (2018) Hierarchical graph
representation learning with differentiable pooling. In: Ben-
gio S, Wallach HM, Larochelle H, et al (eds) NeurIPS,
pp 4805–4815. https://proceedings.neurips.cc/paper/2018/hash/
e77dbaf6759253c7c6d0efc5690369c7-Abstract.html

47. Zhang J, Shi X, Xie J, et al (2018a) Gaan: Gated attention networks
for learning on large and spatiotemporal graphs. In: Globerson
A, Silva R (eds) UAI. AUAI Press, pp 339–349. http://auai.org/
uai2018/proceedings/papers/139.pdf

48. Zhang M, Cui Z, Neumann M, et al (2018b) An end-to-end deep
learning architecture for graph classification. In: McIlraith SA,
Weinberger KQ (eds) AAAI. AAAI Press, pp 4438–4445. https://
www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/17146

49. ZhangS,TongH,Xu J, et al (2018c)Graph convolutional networks:
Algorithms, applications and open challenges. In: International
Conference on Computational Social Networks, Springer, pp 79–
91

50. Zheng C, Chen H, Cheng Y, et al (2022) Bytegnn: Effi-
cient graph neural network training at large scale. Proc
VLDB Endow 15(6):1228–1242. https://www.vldb.org/pvldb/
vol15/p1228-zheng.pdf

51. Zheng W, Yu JX, Zou L et al (2018) Question answering over
knowledge graphs: question understanding via template decompo-
sition. Proc of the VLDB Endowment 11(11):1373–1386

123

https://doi.org/10.1007/978-3-030-30793-6_20
https://doi.org/10.1007/978-3-030-30793-6_20
https://doi.org/10.1109/TKDE.2018.2819980
http://www.aaai.org/ocs/index.php/AAAI/AAAI15/paper/view/9571
http://www.aaai.org/ocs/index.php/AAAI/AAAI15/paper/view/9571
https://doi.org/10.1109/CVPR.2017.576
https://doi.org/10.18653/v1/p19-1466
http://proceedings.mlr.press/v48/niepert16.html
http://proceedings.mlr.press/v48/niepert16.html
https://doi.org/10.1145/3331166
https://doi.org/10.1109/TCYB.2016.2526058
https://doi.org/10.1007/978-3-319-46547-0_19
https://doi.org/10.1007/978-3-319-46547-0_19
https://doi.org/10.1007/978-3-319-93417-4_38
https://doi.org/10.1007/978-3-319-93417-4_38
https://doi.org/10.1609/aimag.v29i3.2157
https://doi.org/10.1609/aimag.v29i3.2157
https://doi.org/10.1609/aaai.v33i01.33013060
https://doi.org/10.1109/TNNLS.2020.3025110
https://doi.org/10.1109/TNNLS.2020.3025110
https://doi.org/10.1145/1242572.1242667
https://doi.org/10.1145/1242572.1242667
https://doi.org/10.1145/3132847.3132937
https://openreview.net/forum?id=BylA_C4tPr
https://openreview.net/forum?id=BylA_C4tPr
https://openreview.net/forum?id=rJXMpikCZ
https://doi.org/10.1109/TKDE.2017.2754499
https://doi.org/10.1109/TKDE.2017.2754499
https://doi.org/10.3389/fnins.2018.00818
https://doi.org/10.1016/j.ins.2022.12.112
https://doi.org/10.18653/v1/w18-3017
https://doi.org/10.18653/v1/w18-3017
https://proceedings.neurips.cc/paper/2018/hash/e77dbaf6759253c7c6d0efc5690369c7-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/e77dbaf6759253c7c6d0efc5690369c7-Abstract.html
http://auai.org/uai2018/proceedings/papers/139.pdf
http://auai.org/uai2018/proceedings/papers/139.pdf
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/17146
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/17146
https://www.vldb.org/pvldb/vol15/p1228-zheng.pdf
https://www.vldb.org/pvldb/vol15/p1228-zheng.pdf

22428 F. Sola et al.

52. Zhou J, Cui G, Hu S et al (2020) Graph neural networks: A review
of methods and applications. AI Open 1:57–81. https://doi.org/10.
1016/j.aiopen.2021.01.001

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

Fernando Sola received his B.S.
degree in Software Engineering
and M.S. degree in Data Science
from the University of Seville in
2021 and 2022, respectively. He is
currently a Ph.D. student with the
University of Seville and a mem-
ber of DEAL group, focusing his
research work on graph neural
networks, deep graph embeddings
and, recently, gene databases inte-
gration and antibiotic bacterial
resistance prediction.

Daniel Ayala is currently a
Researcher and Professor with the
University of Seville. His research
with the DEAL Group, so far,
has focused on techniques related
to structured data integration and
mining, and lately, in the field
of knowledge graphs. His current
research interests include the use
of graph neural networks for
attribute completion and genere-
lated predictions regarding antibi-
otic resistance. He was a recipi-
ent of many awards, such as the
Best Resource Paper Award in the

ESWC 2019 Conference and the Best Paper of the Month awards from
the University of Seville-ETSII.

Inma Hernández has been the
Coordinator of the master’s pro-
gram in software engineering
(cloud, data, and IT management)
with the Postgraduate School, Uni-
versity of Seville, since 2020. She
is currently an Associate Profes-
sor with the University of Seville
and a Founding Member of the
Data Engineering Applications
Laboratory. She is also a Principal
Investigator for several projects
funded by the Spanish National
Research and Development Pro-
gram. Her current research inter-

ests include data engineering and knowledge graphs. She has authored
many peer-reviewed publications on these topics in top conferences
and journals. She is a very active reviewer and a member of several
program committees at major conferences.

David Ruiz is currently a Full
Professor of software engineering
with the University of Seville. He
leads the Data Engineering Appli-
cations Laboratory, University of
Seville, focusing his research on
data engineering, knowledge
graphs, and data integration. He
has recently started two new
related lines of research, focus-
ing on the application of machine
learning techniques for the auto-
mated retrieval and processing of
aviation data, and for the genomic
analysis of break multi-resistant

bacteria.

123

https://doi.org/10.1016/j.aiopen.2021.01.001
https://doi.org/10.1016/j.aiopen.2021.01.001

	Deep embeddings and Graph Neural Networks: using context to improve domain-independent predictions
	Abstract
	1 Introduction
	2 Related work
	2.1 Graph neural networks
	2.2 Deep node embedding techniques
	2.3 State-of-the-art approaches

	3 Aim and scope
	3.1 Goals
	3.2 Architecture of the neural networks

	4 Evaluation
	4.1 Experimental setup
	4.2 Experimental results and analysis

	5 Conclusions and future work
	Acknowledgements
	References

