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Abstract
Understanding human mobility in urban areas is important for transportation, from planning to operations and online control.
This paper proposes the concept of user-station attention, which describes the user’s (or user group’s) interest in or depen-
dency on specific stations. The concept contributes to a better understanding of human mobility (e.g., travel purposes) and
facilitates downstream applications, such as individual mobility prediction and location recommendation. However, intrinsic
unsupervised learning characteristics and untrustworthy observation data make it challenging to estimate the real user-station
attention. We introduce the user-station attention inference problem using station visit counts data in public transport and
develop a matrix decomposition method capturing simultaneously user similarity and station-station relationships using
knowledge graphs. Specifically, it captures the user similarity information from the user-station visit counts matrix. It extracts
the stations’ latent representation and hidden relations (activities) between stations to construct the mobility knowledge graph
(MKG) from smart card data. We develop a neural network (NN)-based nonlinear decomposition approach to extract the
MKG relations capturing the latent spatiotemporal travel dependencies. The case study uses both synthetic and real-world
data to validate the proposed approach by comparing it with benchmark models. The results illustrate the significant value
of the knowledge graph in contributing to the user-station attention inference. The model with MKG improves the estima-
tion accuracy by 35% in MAE and 16% in RMSE. Also, the model is not sensitive to sparse data provided only positive
observations are used.
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1 Introduction

Understanding human mobility and behavior patterns is the
prerequisite for effective decision-making and interventions
in urban mobility systems under normal and abnormal situa-
tions (e.g., congestions, pandemics, and natural disasters).
Nowadays, with the rapid development of sensing tech-
niques, large-volume and multi-source mobility data (e.g.
smart card data in public transport, GPS trajectory data, and
geotagged social media data) can be accessed and applied
in human mobility pattern analysis. Mobility data may pro-
vide human travel behavior records at a disaggregated level,
which significantly benefits mobility-related studies, such as
individual travel patterns and behavior analysis [1–3].
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In order to understand user behavior and optimizing pub-
lic transport systems, the level of interest or dependence of
individual users or groups of users on specific stations in a
public transport system can be an important aspect. Numer-
ous factors influence thismeasure, including station location,
user preferences, travel patterns, and the availability of alter-
native transportation options. For instance, users may show
a higher level of attention towards stations that are close
to their home or workplace, or that offer convenient trans-
fer options. Through the analysis of user-station attention,
transport providers can gain valuable insights into user pref-
erences and travel patterns, which can assist them in making
data-driven decisions to improve services. Moreover, study-
ing user-station attention leads to a better comprehension of
human mobility, such as travel purpose and underlying moti-
vations, and facilitates downstream applications in transport,
such as mobility prediction and location recommendation.

Although many studies have explored visiting patterns
of passengers to stations, we have found no studies on
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user-station attention in the literature. We introduce the user-
station attentionproblemas the problemof inferring the ‘real’
hidden (unobserved) user-station attention from the observed
station visit counts data (e.g., from smart card data). The
problem is challenging given its intrinsic unsupervised learn-
ingnature. In addition, it is elusive to associate the visit counts
with attention for cases with zero or relatively small (e.g., 1-
2 visits per week) visit counts. For example, a user having
no historical visiting record to a station does not necessarily
mean that the user has no interest in that station. It could be
because the user is unaware of or has not yet visited that sta-
tion, but could be potentially interested to go (e.g., based on
nearby points of interest or restaurants). Furthermore, miss-
ing station visit count data for new users will lead to the ‘cold
start’ problem when analyzing their behaviors for proactive
interventions.

Mathematically, the studieduser-station attentionproblem
is similar to the user-item rating problem in recommendation
systems (e.g., items, restaurants, movies, and music). Gener-
ally, the proposed models in user-item rating studies aim to
capture the user similarity (e.g., sociodemographic character-
istics) and item-item relationships (e.g., laptop andmouse) to
make effective recommendations [4–6]. Analogous to that,
an effective user-station attention inference method should
model the user similarity and station-station relationships.
In our context, user similarity is measured by mobility pat-
terns extracted from users’ travel histories (approximating
users’ sociodemographic). In the studied problem, we con-
sider the user-station attention as the attention of a user to
a destination station assuming the user’s origin station is
known or inferred from the residential location, and we also
assume the time-dependent activities are a prior. Therefore,
station-station relationships should capture the travel pur-
poses/activities in order to facilitate the user-(destination)
station attention inference. In other words, we assume that
users with similar travel patterns and traveling from the same
station at the same time are more likely to visit the same des-
tination station (detailed discussions in Section 3.1).

The knowledge graph (KG) is a potential approach to
model relations between stations. KG is a widely studied
method in recent years, which is a graph-based knowledge
representation and organization method. KG can be regarded
as a large knowledge base with a directed network struc-
ture (nodes representing entities and edges are relationships
between entities) [7]. The main advantage of KG is that it
can capture and present not only the directly observed infor-
mation, but also the intricate relations among knowledge,
and connect the fragmented pieces of knowledge in various
information systems. The KG has been successfully applied
in a wide range of domains such as searching, journalism,
healthy, entertainment, network security, and pharmaceuti-
cals [8–11]. In the urban mobility area, the temporal aspects
ofmobility events (e.g., departures, stations) and their depen-

dencies are essential elements in the modeling analysis.
Despite several studies attempting to develop KGs for trans-
portation considering times [12–14], they are in essence static
KGs since they use times as entity attributes but the relation-
ships do not change over time.

Another challenge for constructing KG in the mobil-
ity area is that the knowledge is usually hidden (e.g., trip
purpose) in the observed travel trajectories. Developing auto-
matic methods to extract the hidden knowledge is needed but
challenging in practice without ground-truth observations.

In this paper, we introduce the user-station attention infer-
ence problem using observed station visit counts data in
public transport and develop a matrix decomposition method
capturing both user similarity and station-station relation-
ships modeled using KG. Specifically, we capture the user
similarity information from the user-station visit counts
matrix. It extracts the stations’ latent representation and hid-
den relations (activities) between stations to construct the
mobility knowledge graph (MKG) from smart card data.
To extract the hidden relations between stations, a neural
network (NN)-based nonlinear decomposition approach is
introduced. The main contributions are summarized as fol-
lows:

• Develop a methodology to infer the ‘real’ user-station
attention from partially observed user-station visit counts
data. It captures both user similarity and station-station
activity relations using MKG;

• Propose MKG construction framework from smart card
data. It captures the spatiotemporal travel pattern corre-
lations between stations using a neural network-based
nonlinear decomposition method;

• Conduct systematic case studies to validate the proposed
method using both synthetic and real-world datasets, and
comparing with benchmark models.

The remaining paper is organized as follows. Section 2
reviews the related works of user-station attention problem
and knowledge graphs. Section 3 describes the research prob-
lem and framework, and proposes the user-station attention
inference method. Section 4 presents the case study to val-
idate the proposed method and explore its performance in
user-station attentionmatrix inference. Section 5 summarizes
the main findings and outlines future research directions.

2 Related work

User-station attention has not been previously studied. How-
ever, the concept is related to the problem of suggesting
relevant items to users in recommender systems (or recom-
mendation systems). In recommender systems, algorithms
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aim at predicting a user’s ‘rating’ or ‘preference’ for an
item (e.g., movies, books, restaurants, etc.). In recent years,
the KG has been widely used in recommender systems and
achieved fruitful results [15–19]. Concretely, a KG-based
recommender system exploits the connection between enti-
ties (nodes) representing users, items to be recommended,
and their interactions (relations) [4]. The relations, explicit
or implicit, are used to identify items that may be interesting
to the target user [17]. Thus, compared to other approaches
(e.g., collaborative filtering, and content-based filtering), the
relations in KG can provide additional valuable informa-
tion to facilitate inference between nodes to discover new
connections. It leads to better prediction performance, espe-
cially when the dataset is sparse [19]. In general, the KG
exhibits rich semantic correlations that can be used to explore
hidden connections, help expand users’ interests to increase
the diversity of recommended items, and enhance the inter-
pretability of the system [20]. Therefore, the KG has great
advantages in mining relationships and establishing connec-
tions between entities, which lays an important foundation
for user-station attention inference.

KGs as a form of structured knowledge representation and
extraction method have drawn great research attention from
both academia and industry. The KG can be classified into
general knowledge graphs and domain knowledge graphs
according to the application field [16]. The domain KGs
usually require more comprehensive background knowledge
and specific datasets than the general ones. Given the studied
problems, this paper focuses on reviewing the domain KGs.

KGs have been extensively studied in many fields, espe-
cially in the medical field. Many studies constructed a
medicine/health knowledge graph by extracting medical
entities, relations, and properties from different sources
of medical knowledge, respectively [21–23]. Yang et al.
[24] developed a corporate risk knowledge graph using
basic corporate information from encyclopedia data through
information extraction, knowledge fusion, ontology con-
struction, and dynamic knowledge reasoning. It introduced
a time dimension to describe the evolutionary character-
istics of enterprise risk events and focused on characters
and entities in the corporate field. Du et al. [25] built a
GIS knowledge graph (GIS-KG) by combining various GIS
knowledge sources to form a hierarchical ontology and
using deep-learning techniques tomapGIS publications onto
the ontology. By capturing and integrating GIS knowledge
from various primary sources, it improved domain-specific
information retrieval for the wide-ranging field of geo-
graphic information science and its technologies. Zhang et al.
[26] systematically analyzed the maritime dangerous goods
related knowledge and defined concepts and relations to build
an ontology framework and then filled entities in this frame-
work to construct a knowledge graph for maritime dangerous
goods. It was used for the efficient retrieval of dangerous

goods knowledge, as well as the automatic judgment of seg-
regation requirements. Mao et al. [27] proposed a process
safety knowledge graph and developed a domain ontology
on the delayed coking process to handle the process safety
knowledge and support risk causes and consequences anal-
ysis. It enhanced the knowledge-based analysis abilities in
discovering the hidden relationships between possible risk
causes and consequences in an emergency situation.

The knowledge sources of the above studies are all based
on domain textual knowledge, and different methods are
used to extract knowledge. In addition, most studies used
the triple form structure (entity-relation-entity) with a few
using the quadruple form (entity-relation-entity-property) to
extract information from static text data.

Compared with other domain knowledge graphs, research
in transportation is still emerging. For example, Tan et al. [14]
constructed a knowledge graph of an urban traffic system
and extracted entities, relations, and attributes from Auto-
matic Fare Collection (AFC) data, static basic data of metro
lines and stations, urban road traffic data, and other data
to construct a traffic field ontology. It was used for traffic
knowledge discovery and intelligent question answering of
urban traffic services (traveler discovery). Shan et al. [28]
proposed the notion of an urban knowledge graph, which
composes multiple traffic topics, entities, attributes, and fea-
tures extracted from traffic text knowledge. It performs better
than traditional statistical methods for reasoning pedestrian
volume based on a hybrid reasoning algorithm. Chen et al.
[12] proposed a knowledge graph-based framework for dig-
ital contact tracing in public transportation systems during
the COVID-19 pandemic. The framework fuses multi-source
data and uses the trip-chaining model to construct a knowl-
edge graph, from which a contact network is extracted and a
breadth-first search algorithm is developed to efficiently trace
infected passengers in the contact network. Wang et al. [29]
studied the integration of reinforcement learning and spa-
tial knowledge graph for incremental mobile user profiling.
The spatial knowledge graph extracted entities from the envi-
ronment and established the semantic connectivity among
spatial entities and characterized the semantics of user visits
over connected locations, activities, and zones. Li et al. [30]
presented a knowledge graph-based framework for discover-
ing potential destinations of low predictability travelers.The
framework considers trip association relationships and con-
structs a trip knowledge graph to model the trip scenario.
With a knowledge graph embedding model, it can obtain the
possible ranking of unobserved destinations by calculating
triples’ distance.

Despite efforts made in numerous studies to develop KGs
for transportation that incorporate time as an entity attribute,
they remain static in nature as the relationships do not dynam-
ically change over time. Furthermore, constructing a KG in
the mobility area is particularly challenging in comparison
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to other fields due to the fact that the knowledge, such as trip
purpose, is typically hidden within the observed travel tra-
jectories. Therefore, it is essential but challenging to develop
methods for extracting this hidden knowledge in practical
applications without ground-truth observations.

3 Methodology

This section introduces the user-station attention inference
problem. It proposes the inference methodology assisted by
MKG and also correspondingly the MKG construction mod-
els from smart card data. The notation used throughout the
paper is shown in Table 1.

3.1 Problem description and research framework

In practice, the attention of a user to stations and the station-
station relations (activities) in MKG could vary for different
time periods. Therefore, we infer the user-station attention
matrix and develop a set of sub-graphs corresponding to dif-
ferent time periods, such as morning peak and off-peak. For
ease of presentation, we define key terminologies used in this
paper.

Definition 1 (Individual mobility trajectories) The individ-
ual mobility trajectories are a sequence of trips of users, i.e.,
Tr = {tr1, tr2, tr3, . . . , trn}, with a trip tri = {user id,

origin, destination, entr y time, exi t time}.
Definition 2 (User-station visit counts matrix) The user-
station visit counts matrix X = [xi j ] ∈ R

m×n describes the
visiting counts of users to stations, wherem is the number of
users, n the number of stations. For each entry xi j in matrix
X, it is the visiting counts of i th user to j th station.

Definition 3 (User-station attention matrix) The user-station
attention matrix Y = [yi j ] ∈ R

m×n is defined as the whole
attention of the transport network, where m is the number of
users, n the number of stations. For each entry y ∈ (0, 1) in
matrix Y, it is the attention of i th user to j th station.

Definition 4 (Mobility knowledge graph) The mobility
knowledge graph is defined as a time-dependent knowl-
edge graph, which is composed of sub-graphs for different
time intervals. Each sub-graph is a quadruple form knowl-
edge graph composed of nodes, edges, and time period, in
which nodes represent stations and edges represent the rela-
tions (travel activities) between stations during a certain time
period. It can be represented as G = {(lo, r, ld , t) | lo ∈
Lo, r ∈ R, ld ∈ Ld}, where lo is the origin stations’ latent
vector; r is the relationship’s latent vector; ld is the destina-
tion stations’ latent vector; and t is the time period. At each
time period t , the time element in G becomes irrelevant in
the sub-graph.

Note that the user-station visit counts matrix provides a
simple count of the number of times a user has visited a partic-
ular station,without indicating the importance or dependence
of the user on that station. In contrast, the user-station atten-
tion matrix can quantify the importance of a station to a
user or group, providing insights into the level of interest
or dependency of users on different stations. Also, the user-
station visit counts may be biased towards frequently visited
stations, potentially overlooking less frequently visited sta-
tions and resulting in an incomplete understanding of the
user-station relationship. Therefore, while the user-station
visit countsmatrix provides basic information about the users
and stations, the user-station attention matrix offers a more
comprehensive, intuitive, and nuanced understanding of their
relationships.

Figure 1 shows the studied problem in this paper. The
problem is to infer the full and ‘true’ user-station attention
matrix Y given a partially observed user-station visit counts
matrix Xp. Due to mechanical faults, new users, or ticket
users in the network, matrix X may not be fully observed.
Moreover, the zero and small values (e.g., 1-2 visits per
week) in matrix X are regarded as ‘untrusted’ observations.
Therefore, only certain observations in matrix X (i.e., par-
tially observed user-station visit counts matrix Xp) are used
to infer the user-station attention matrix. Similar to the user-
item rating prediction problem in the recommender system,
we represent users and stations in a latent low-dimensional
space of dimension k in Eq. (1). The i th user is represented
by a latent vector ui ∈ R

1×k and j th station by a latent
vector l j ∈ R

1×k . The attention of i th user to j th station is
expressed as the inner product of their latent representations
[31] as follows:

yi j = ui lTj . (1)

However, there are two challenges to solving this problem.
Firstly, as discussed previously, the zero and extremely small
values in matrix Xmay not reflect the user’s real attention to
a station, which should be considered noisy data. Secondly,
the lack of historical trajectory data (missed values) can lead
to cold start problems. To tackle this issue, the user similarity
and station-station relations (activities) are exploited to assist
in inferring the fully user-station attention matrix.

A common implementation in recommender systems is to
recommend new items by identifying other users with simi-
lar tastes. Similarly, the user’s attention to a destination that
has not been visited or not frequently visited can be inferred
based on similar users. In addition, a person’s travel demand
is derived from their daily activity patterns. Therefore, we
assume that people with the same travel activity and trav-
eling from the same origin station at the same time period
would more likely to visit the same destination. People with
the same travel activity refer to those who have the same
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Table 1 Notation Variable Interpretation

l Vector of station, l ∈ L

lo Vector of origin station

ld Vector of destination station

lt Station’s temporal latent vector

ls Station’s spatial latent vector

L Stations’ latent representation

Lt Stations’ temporal latent representation

Ls Stations’ spatial latent representation

Lts Stations’ spatiotemporal latent representation

r Vector of relation, r ∈ R

R Relation’s latent representation

Tr Individual mobility trajectories, Tr = {tr1, tr2, . . . }
t Time period

m Number of users

n Number of stations

p Number of relations

w Number of hidden neurons

T temporal station demand matrix

S OD flow matrix

Q Coefficient matrix

D Feature diagonal matrix

H Latent indexing matrix

W1,W2 Weights of the first layers and second layers

k, kt , ks , kts , kr Number of latent features

u Vector of user, u ∈ U

U User’s latent representation matrix

X Observed user-station visit counts matrix

X p Partially observed user-station visit counts matrix

Xo Pre-set ‘real’ user-station attention matrix

Xs Simulated user-station visit counts matrix

Y The ‘real’ user-station attention matrix

M Maximum iteration

N Number of user-station pairs in the network

λ Regularization rate

Fig. 1 Problem description. (a)
Observed user-station visit
counts matrix (Green grid: 0;
Orange grid: observations with
extremely small values; Blue
grid: observations with normal
values; ×: missed observation).
(b) The user-station attention
matrix
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travel purpose, such as work, shopping, school, etc. Such an
assumption is important for accurate and robust user-station
attention estimation. By analyzing the travel patterns of users
with similar travel activities and factoring in the origin sta-
tion and time period, it may be possible to infer the attention
of a particular user towards a destination. For instance, if a
destination has not been visited by a particular user but has
been frequently visited by users with similar travel activities
during the same time period, it may be inferred that the user
has a certain level of interest in that destination.

For missing values, the activities (relations) between OD
pairs contribute to the user-station (destination) attention
inference. For example, suppose the relation between sta-
tions A and B is shopping during off-peak and a new user
travels from station A at off-peak, then we can infer the new
user may possibly have attention to station B. In order to
assist the studied problem, we thus define the station-station
relations in MKG as travel purposes/activities. Given these,
we formally define our studied problems as below.

Problem 1 (User-station attention matrix inference) Given
the partially observed user-station visit counts matrix Xp to
infer the fully user-station attention matrixY capturing both
user similarity and station-station activity relations using
MKG.

Problem 2 (MKG construction)Given the individual mobil-
ity trajectories Tr , extract the stations’ latent representation
L and the hidden relationships (activities) R capturing the
spatiotemporal correlations of travel patterns during time
interval t to construct the MKGG(Lo,R,Ld , t) in a form of
< origin, relationship, destination, time period >.

Figure 2 shows the framework of the proposed method.
The input data are individual mobility trajectories Tr . It con-
tains three modules: user similarity, MKG construction, and
user-station attention matrix inference.

1. User Similarity This step constructs the observed user-
station visit count matrixX frommobility trajectory data
and obtained the users’ latent representation U based on
a matrix decomposition approach. In matrix X, each row
records the visiting counts of a user at different stations,
which reflects the user’s travel pattern. The user sim-
ilarity is reflected by different rows of the matrix. By
matrix factorization, the users’ latent representation can
be obtained, which captures the user similarity (implicit)
features.

2. MKG Construction This step constructs the temporal
station demand matrix T and OD flow matrix S from
mobility trajectory data. An NN-based nonlinear decom-
position approach is proposed to extract the stations’
latent representation, and station-station relations (activ-
ities) R to construct the MKG. The extracted relations
capture the spatiotemporal travel pattern correlations
between stations.

3. User-Station Attention Matrix Inference It infers the
full and ‘real’ user-station attention matrix Y capturing
both user similarity and station-station relations using the
constructed MKG.

3.2 User similarity

By collecting the user’s check-in and check-out data from the
mobility trajectories Tr during timeperiod t , we can construct
the observed user-station visit counts matrix X ∈ R

m×n ,
wherem is the number of users, and n the number of stations.
Each entry xi j in matrixX represents the visiting numbers of
i th user to j th station. Each row aggregates the user’s num-
ber of visits to each station, which reflect the user’s travel
pattern. Therefore, we can capture the users’ hidden charac-
teristics (user similarity) by decomposing matrix X. Similar

Fig. 2 Research framework
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to Eq. (1), based on the matrix factorization, the matrix X
can be decomposed into:

X ≈ ULT . (2)

U ∈ R
m×k is the users’ latent representation capturing the

user similarity (implicit);L ∈ R
n×k is the stations’ latent rep-

resentation. Therefore, by optimizing the following objective
function, we can obtain U and L.

min
U,L≥0

∥
∥
∥X − ULT

∥
∥
∥

2 + λ
[

‖U‖2 + ‖L‖2
]

. (3)

‖·‖ denotes the Frobenius norm and λ the regularization rate.
The last term is the regularization for penalizing the norm of
U and L. The Frobenius norm is the Euclidean norm applied
to the vectorized version of a matrix. It is commonly used
to regularize the objective function in optimization problems
[32].

After this step, we can obtain U and L to infer the
user-station attention matrix Y. However, it has two major
drawbacks. First, the learned stations’ latent representa-
tion L is not easy to interpret; second, it does not capture
the station-station relations and other constraint information
(e.g., temporal, spatial, spatiotemporal features). To over-
come these limitations, the MKG is constructed to enrich
stations’ latent representation.

3.3 Mobility knowledge graph construction

The construction of MKG consists of two parts: entity
extraction and relation extraction. Entity extraction refers to
extracting different station entities (including subway sta-
tions, train stations, or bus stops) from mobility data. Unlike
GPS trajectory data, the passenger’s boarding and alighting
stations are usually recorded in the smart card data, which
makes it not difficult to identify the passengers’ travel station.
Since all variables in this study are calculated in the latent
space, we need to obtain the stations’ latent representation.
Relation extraction is to extract the implicit relations (activ-
ities) between the stations. In the context of MKG in public
transport, relations represent the spatiotemporal travel pat-
tern correlations between two stations within a certain time
period, which is in an implicit form (‘hidden’ mechanism).
Therefore, relation extraction is a core part of MKG con-
struction.

3.3.1 Stations’ latent representation

For each station, we construct the station’s latent vector
l = [lt ; ls] capturing both temporal and spatial features of
station demand patterns, where lt and ls are the station’s
temporal and spatial latent vectors, respectively. The travel

characteristics of each station are time-varying. For exam-
ple, the number of visitors at a station may be quite different
between peak and off-peak hours. Therefore, it is important
to extract the visiting feature of stations based on time. We
first select the time period of interest t (e.g., morning peak or
off-peak), then construct the temporal station demand matrix
T ∈ R

n×h , where h is the number of hours within time period
t . An entry Ti j in matrix T represents the visit counts of i th

station in the j th hour. According to the Non-negativeMatrix
Factorization (NMF) theory [33], the non-negative matrix T
can be decomposed into two non-negative matrices, which
is utilized to extract the visiting feature of each station. The
time series matrix T can be decomposed into:

T ≈ LtQ. (4)

Matrix Lt ∈ R
n×kt is the stations’ temporal latent repre-

sentation, Q ∈ R
kt×h is the coefficient matrix and kt is the

number of stations’ temporal latent features.
To obtain the spatial latent features between OD-pairs, the

OD flow matrix S ∈ R
n×n is constructed, in which an entry

Si j represents the visit counts from i th station to i th station.
Given the matrix S, it can be decomposed into:

S ≈ LsDLT
s . (5)

Matrix Ls ∈ R
n×ks is the stations’ spatial latent represen-

tation; L ∈ R
ks×ks is the feature diagonal matrix and ks is

the number of spatial latent features. The OD flow matrix S
records the relation from one station to another, which can
also be seen as spatial dependencies. Therefore, the OD flow
matrix S can be regarded as the embedding of the system’s
topology. Similarly, thematrixLs andD are the stations’ spa-
tial embedding and the interactions in the latent component
space, respectively.

Combining Eqs. (4) and (5), the stations’ latent represen-
tation L is expressed as L = [Lt ;Ls], which is formed by
concatenating stations’ temporal latent representationLt and
spatial latent representation Ls . Therefore, we can get the
stations’ latent representation L by optimizing the following
objective function

min
Lt ,Ls ,Q,D≥0

∥
∥
∥S − LsDLT

s

∥
∥
∥

2 + ‖T − LtQ‖2

+ λ
[

‖Lt‖2 + ‖Ls‖2 + ‖Q‖2 + ‖D‖2
]

.

(6)

The first and second term capture the spatial and temporal
latent patterns, respectively; the last term is the regulariza-
tion for penalizing the norm of Lt , Ls , Q, and D; λ is the
regularization rate. Actually, Eqs. (4) and (5) can be seen
as stations’ temporal and spatial-based information extrac-
tion respectively. After this step, the stations’ temporal and
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spatial related latent representationL = [Lt ;Ls] is extracted
and can be used to enrich L in Eq. (3).

3.3.2 Relation extraction

Relation extraction for KG is an extensive and profound
research topic and most studies focus on supervised learning
methods [34–37]. In contrast to the conventional supervised
relation extraction learning task, the relation extraction prob-
lem in this paper is an unsupervised learning task since the
‘real’ relations between stations in MKG are unknown in the
training data. Moreover, compared to linear matrix decom-
position, the non-linear matrix decomposition method can
extract more information and simultaneously capture spa-
tiotemporal travel patterns ofODpairs (rather than arbitrarily
concatenating spatial and temporal patterns). In the OD flow
matrix S, each entry records a specific flow from the ori-
gin to the destination, which is determined by characteristics
of origin and destination stations, as well as their relations.
Therefore, the relations can be extracted from the OD flow
matrix S. We propose a neural network (NN)-based model,
based on the model used in [38], to formulate the problem to
extract the relations’ and stations’ latent representation with
the objective of recovering the observedODflowmatrix (i.e.,
a supervised learning model).

To illustrate that, Fig. 3 shows the feedforward NN frame-
work for theMKGrelation extraction learning task. The input
data [lo; rod ; ld ] is the triple form of MKG in a certain time
period, which is horizontally concatenated by origin’s latent
vector lo, relation’s latent vector rod and destination’s latent
vector ld . The estimated OD flow is generated through the
hidden layer and the initial weightsW1,W2 of the NN. Then

the error between the estimated and observed OD flows is
calculated and used to update the weights and the input triple
form via the backpropagation algorithm. The objective is
to minimize the error in order to obtain the relations and
stations’ latent representation to construct MKG. Adopting
a supervised learning approach for this unsupervised task
yields several advantages, including the network’s ability to
acquire more intricate information (i.e., comprehending spa-
tiotemporal OD travel patterns) and enhancing the inference
performance.

In this method, the stations’ spatiotemporal latent repre-
sentation and the relations’ latent representation are defined
as Lts ∈ Rn×kts and R ∈ R

p×kr , respectively, where p is
the numbers of relations; kts and kr are the number of latent
features of stations and relations. To specify a relationship
between two stations, a latent indexing vector H ∈ R

1×p

is introduced, and the latent vector of a specific relation is
rod = HR. Therefore, the objective of the relation extraction
is tomap each input vector [lo; rod ; ld ] to an output entry Sod .
The relation extraction problem is defined as:Given a training
set {([l1; r12; l2], S12), ([l1; r13; l3], S13), . . . , ([ln; rn(n−2);
ln−2], Sn(n−2)), ([ln; rn(n−1); l(n−1)], Sn(n−1))}, for each input
z = [lo; rod ; ld ] ∈ Z and corresponding output entry Sod ∈
S, the goal is to learn a function f : Z → Smapping inputs to
outputs. For each input vector z, the feedforward NN-based
fN N (z) is defined as:

fN N (z) = W2Sigmiod((zW1)
T ). (7)

Matrix W1 ∈ R
(2kts+kr )×w and W2 ∈ R

1×w represent the
weights of the first layers and second layers;w is the number
of hidden neurons and Sigmoid() is the activation function.

Fig. 3 Framework of
feedforward neural network
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Similar to Eq. (6), by considering both temporal and
spatial features, i.e., Eqs. (4) and (7), the stations’ latent rep-
resentation Lts , and relationR can be learned by minimizing
the following objective function:

min
Lts ,R,H,Q≥0

∑

∀(lo,rod ,ld )∈S
(Sod − fN N (z))2 + ‖T − LtsQ‖2

+ λ
[

‖Lts‖2 + ‖H‖2 + ‖R‖2 + ‖Q‖2
]

.

(8)

The stations’ latent spatiotemporal representation Lts is
shared in the first and second terms and constrained by the
two terms simultaneously. The parameter λ is the regulariza-
tion rate. The last term is the regularization for penalizing
the norm of Lts , H, Q, and R. After this step, the MKG can
be represented as G(Lts,R,Lts, t).

3.4 User-station attentionmatrix inference

Asmentioned previously, the user-station attention inference
problem should comprehensively consider both user similar-
ity and station-station relationships, i.e., Eqs. (3) and (8).
Therefore, the user-station attention matrix can be inferred
by optimizing the following objective function:

min
U,Lts ,R,H,Q≥0

∥
∥
∥X − ULT

ts

∥
∥
∥

2 +
∑

∀(lo,rod ,ld )∈S
(Sod− fN N (z))2

+‖T − LtsQ‖2

+λ
[

‖U‖2+‖Lts‖2+‖H‖2+‖R‖2+‖Q‖2
]

.

(9)

The first term is to obtain the users’ latent representation
capturing the user similarity (implicit) features. The second
and third terms capture the stations’ spatiotemporal latent
patterns, and station-station relations capture the spatiotem-
poral travel pattern correlations between the two stations.
The parameter λ is the regularization rate. The last term is
the regularization for penalizing the norm of U, Lts , H, Q,
and R. Therefore, the fully user-station attention matrix Y is
inferred by capturing both user similarity and station-station
relations using MKG.

3.5 Solution algorithm

To solve the optimization problem in Eq. (9), we develop
an iterative user-station attention matrix inference algo-
rithm based on the gradient descent algorithm. Algorithm 1
presents the pseudo-code of the solution algorithm.

Algorithm 1 Generative process for user-station attention
matrix inference.
Input: the temporal station demand matrix T , the OD flow matrix S,
learning rate α, maximum iteration N , regularization rate λ, conver-
gence error ε

Output: latent variables V ts , Rts , H , Q
1: Randomly initialize latent variables V ts , Rts , H , Q
2: Normalize matrix T ,S, X
3: Obj = Eq. (9)
4: compute cost0 = Obj
5: for i = 1 : N do
6: for each variable v in [U , Lts , R, H , Q] do
7: compute gradient ∇v = ∂(Obj)

∂v
8: update variable vi+1 = vi − α · ∇v

9: update costi = Obj
10: end for
11: if | costi−costi−1

costi−1
|≤ ε then

12: break
13: end if
14: end for
15: return latent variables U , Lts

4 Case study

4.1 Data preparation

To validate the proposed method, both synthetic data and
real-world smart card data from Hong Kong Mass Transit
Railway (MTR) are used. MTR is the major public trans-
port network of Hong Kong, serving the urbanized areas of
Hong Kong Island, Kowloon, and the New Territories. The
smart card data records trip transaction information includ-
ing tap-in/out stations and times. The data used was from
January 1st to March 31st , 2018 (86476 users and 19 mil-
lion trips). According to the characteristics of actual data,
the study considers the time interval of morning peak (MP,
07:00-10:00) and off-peak (OP, 10:00-15:00) to construct
MKG and randomly selected 1000 individuals to infer the
user-station attention, respectively.

The information utilized in our approach comprises time-
dependent demand, OD flows, and user-station visit counts,
all of which can be obtained from various mobility data
sources such as smartcard data, GPS data, and geotagged
data. None of these data sources involve sensitive or private
information. The user-station visit counts data are identified
solely by trips (without or with anonymized card ID) and do
not contain any personally identifiable information, such as
name, address, or email. Table 2 shows the structure of the
AFC database used in the study.

Since the observed user-station visit counts data does not
reflect the real user-station attention, the real user-station
attention cannot be obtained from historical observations.
To validate the proposed method, we use the synthetic user-
station visit counts data generated from a pre-set ‘real’
user-station attention matrix. Algorithm 2 illustrates the pro-
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Table 2 Example of AFC data
structure in database

Card ID Origin Entry time Destination Exit time

xxxxxx_1 Tai Po Market 2018-01-02 20:03:49 University 2018-01-02 20:08:27

xxxxxx_2 Wong Tai Sin 2018-01-02 10:53:54 KowloonTong 2018-01-02 11:01:23

xxxxxx_3 KowloonTong 2018-01-02 21:22:57 Lok Fu 2018-01-02 21:31:43

xxxxxx_4 South Horizons 2018-01-02 09:44:11 Causeway Bay 2018-01-02 10:08:59

xxxxxx_5 Tai Wo Hau 2018-01-02 07:57:54 Causeway Bay 2018-01-02 08:33:51

xxxxxx_6 Hung Hom 2018-01-02 08:49:00 Tsuen Wan West 2018-01-02 09:11:54

xxxxxx_7 Tsuen Wan West 2018-01-02 17:59:25 Hung Hom 2018-01-02 18:25:38

cess of generating the synthetic user-station visit counts
matrix. It takes inputs of pre-set ‘real’ user-station attention
matrix Y, number of stations n, number of users m, number
of iterations (days) d, deviation σ , and outputs the simulated
‘observed’ user-station visit counts matrix Xs . To keep the
same travel pattern with the real-world dataset, the pre-set
‘real’ user-station attention matrix Y is set as the normal-
ized observed user-station visit counts matrix X. Each user
is simulated for 1000 days (i.e., d = 1000) and the deviation
σ (e.g., σ = 0.01) is used to simulate the random variation
of users’ visits on different days.

Algorithm 2 Synthetic data generation process.
Input: the pre-set user-station attention matrix Y , number of stations n
Output: the simulated ‘observed’ user-station visit counts matrix Xs

1: Initialize matrix Xs ⇐ zeros(m, n)

2: Normalize the matrix Y (the sum of each row is 1)
3: for i = 1 : m do
4: for j = 1 : n do
5: calculate the probability interval of each nonzero attention

pi j = [
j−1∑

0
yi j ,

j∑

0
yi j )

6: end for
7: for k = 1 : d do
8: randomly generate variable σ in the range of [0, 1)
9: θ∗ = θ + σ

10: for j = 1 : n do
11: if θ∗ ∈ pi j then
12: Xs

i j = Xs
i j + 1

13: end if
14: end for
15: end for
16: end for
17: return latent variables U , Lts

To visually check the quality of the synthetic data, we
normalize the simulated visit counts matrix as the simu-
lated attention matrix. We expect that the simulated attention
matrix retains the structure of the pre-set real attentionmatrix
but also has certain deviations. Fig. 4 shows the compar-
ison of the pre-set (Fig. 4(a)) and the simulated (Fig. 4(b))
user-station attention matrix, and their differences (Fig. 4(c))
for 200 users. The difference is calculated by subtracting
the pre-set from the simulated matrix. The result shows that

the output simulated user-station visit counts matrix retains
the travel pattern of the real-world dataset and also contains
certain variations which reasonably represent the studied
user-station attention inference problem in practice.

4.2 Validation using synthetic data

The pre-set user-station attention matrix Y is considered
the ground-truth attention. The problem is to infer the user-
station attentionmatrix Ŷ given partial simulated user-station
visit counts matrix based on MKG. The model performance
is validated by comparing the inferred user-station attention
matrix with the pre-set one. Two performance metrics are
used for synthetic data validation: 1) mean absolute error
(MAE), and 2) root mean squared error (RMSE) metrics are
used. The MAE and RMSE can be defined as:

MAE =

∑

i, j
| yi j − ŷi j |

N
. (10)

RMSE =

√
√
√
√

∑

i, j
(yi j − ŷi j )2

N
. (11)

yi j is the ground-truth user-station attention. ŷi j is the
inferred user-station attention, and N denotes the number
of user-station pairs in the network.

The proposed method is validated under both sparse
and dense training data settings, i.e., 10% and 30% of the
positive value cells (trustworthy data) are selected as the
training dataset. Moreover, the study compares the model
performance with its variants (MKG capturing different
information). The baseline models are as follows:

• US_None. The model captures the user similarity infor-
mation (i.e., Eq. (3)) withoutMKG (not capturing station
relations).

• US_Lt. The model captures user similarity (i.e., Eq. (2))
and stations’ temporal latent features (i.e., Eq. (4)) in
representing MKG relations.
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Fig. 4 Heat map comparison of
pre-set ‘real’ and simulated
user-station attention matrix

• US_[Lt;Ls]. The model captures the user similarity (i.e.,
Eq. (2)) and stations’ temporal and spatial information in
representing MKG relations using a rule-based approach
(i.e., Eq. (6)). That is the stations’ latent representation
is formed by concatenating the temporal latent matrix Lt

and spatial latent matrix Ls .
• US_[MKG]. The model considers both user similarity
and station-station relations modeled using MKG (i.e.,
Eq. (9)). The stations’ latent representation simultane-
ously captures the spatiotemporal latent features using
the NN-based nonlinear matrix decomposition.

We use a grid-search method to find the optimal param-
eter settings in Algorithm 1 for the experimental analysis.
The optimal hyper-parameter values in Algorithm 1 are:
k = 20, kt = 10, ks = 10, kts = 20, p = 30, w = 20, λ =
0.01, α = 1e − 5, N = 100.

Figure 5 shows the models comparison of baselines based
on MAE and RMSE. In general, incorporating MKG sig-
nificantly improves the model inference performance over
the US_None model for both morning peak and off-peak
periods. The US_MKG model has the best performance,
followed by the US_[Lt;Ls] and US_Lt models. Compared
with US_None, US_MKG reduces the MAE and RMSE
by about 35% and 16% at morning peak and off-peak,

respectively. Compared to the morning peak, the perfor-
mance in off-peak is worse for all models. This is because
morning peak travels tend to be more regular for activities.
Furthermore, it shows that the inference performance is very
close under the two training data settings with different den-
sity levels, which indicates its potential in dealingwith sparse
user-station attention visit count matrix in inferring the true
attentions.

To further illustrate the impact of different data densities
and different training datasets on the model, the sensitiv-
ity analysis is performed for the optimal model US_MKG.
We compare the model performance trained using only pos-
itive entries (PG, without zero entries) and the full entries
(FG, including zero entries)with different density settings for
training (i.e., 10%, 30%, and 100%). Figure 6 shows the per-
formance comparison. Compared with using the full entries
as the training set, the models using only positive entries per-
form better in both the morning peak and off-peak scenarios.
It indicates that reliable user-station visit counts information
could benefit the inference of true user-station attention. In
addition, it shows that the model performance is positively
correlated to the number of training samples. The model per-
formance of the off-peak is slightly worse than that of the
morning peak, as the travel characteristics of users are more
regular in the morning peak.
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Fig. 5 Performance comparison
of baselines. (a) MAE in the
morning peak; (b) RMSE in the
morning peak; (c)MAE in the
off-peak; (d) RMSE in the
off-peak

4.3 Validation using actual data

We use actual data to further validate the proposed model
performance by comparing it with baseline models. The
‘observed’ user-station attention Y (normalized observed
user-station visit counts matrix X) is considered the ground-

truth attention. For the actual data, the recall is used to
compare the performance. Since zeros in the observed user-
station visit counts matrix X represents unreliable data, the
recall only considers the positive values. For each user, the
recall@K was defined as:

recall@K = T P@K

T P@K + FN@K
. (12)

Fig. 6 Performance comparison
of different training sets in the
morning peak and off-peak. (a)
MAE in the morning peak; (b)
RMSE in the morning peak; (c)
MAE in the off-peak; (d) RMSE
in the off-peak
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where T P@K is the number of stations that the user pays
attention to (positive value) in the top K stations, and
T P@K + FN@K is the total number of stations that the
user pays attention to. For example, for a user i , we can get
the inferred user-station attention list {ŷi1, ŷi2, ŷi3, . . . , ŷin}
and the corresponding ground-truth user-station attention
list is {yi1, yi2, yi3, . . . , yin}. Then we can get a candidate
set{(ŷi1, yi1), (ŷi2, yi2), . . . , (ŷin, yin)}, where ŷin ≥ 0 and
yi j ≥ 0. When the length of the candidate set is greater than
K , T P@K is K . Otherwise, K is the length of the candi-
date set. T P@K + FN@K is the number of ground-truth
user-station attention greater than zero. For example, sup-
pose K = 2, the length of the candidate set is 5, and there
are 20 ground-truth user-station attention greater than zero,
then recall@K is 0.1. The recall for the entire matrix is the
average recall of all users.

The experiment compares the proposed model perfor-
mance with baseline models introduced in the above section.
Similarly, the experiment compares the performance of the
framework under sparse (insufficient) and dense (sufficient)
training settings, i.e., 10% and 30% positive entries are
selected as the training dataset. Figure 7 shows the exper-
imental results. Figure 7(a) and (c) show the performance of
morning peak and off-peak under a dense setting (i.e., 30%),

whereas Fig. 7(b) and (d) show the results under a sparse
training setting (i.e., 10%). In general, the results indicate
that the MKG greatly improves the model’s performance in
inferring true attention. The US_MKG model consistently
performs better than others under different settings. Since
US_None does not introduce any MKG information, it per-
forms worst in both morning peak and off-peak, especially
under a sparse setting. Compared with US_Lt and US_[Lt;
Ls]which separately consider the temporal and spatial infor-
mation, US_MKG simultaneously considers the stations’
latent representations and their relations which can more
effectively capture hidden information. Similarly, we found
that the performance in the morning peak is higher than that
in the off-peak as the travel is more concentrated and regular
in the morning peak.

4.4 Implications and discussions

Figure 8 visualizes a user’s attention to different stations
inferred using the proposed method. The orange squares
represent visited stations from the user’s historical trajec-
tories. The green squares denote the stations (unobserved
previously) that the user may also be interested in visiting.
The user’s origin is ‘Lo Wu’ connecting the railway station

Fig. 7 Performance comparison of baselines based on recall@K (K=1, 2, …, 10). (a) Morning peak and dense setting = 30%; (b) Morning peak
and dense setting = 10%; (c) Off-peak and dense setting = 30%; (d) Off-peak and dense setting = 10%
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Fig. 8 Example of a user’s
attention to stations (Orange
square: visited stations; green
square: inferred stations with
attention)

‘Luohu’ in Shenzhen. The user visited stations ‘Wong-
TaiSin’, ‘MongKok’, and ‘Central’ in the central business
areas with places of interest and shopping malls. So the user
may be a buyer and his/her travel activity (station-station
relationship) is likely to be ‘shopping’ or ‘purchasing’. The
attention stations inferred from the model are ‘Hung Hom’,
‘TsimShaTsui’, and ‘CausewayBay’which are close to these
observed visiting stations and are also places of interest and
shopping areas. Therefore, the inferred attention stations are
reasonable and the user may have interest to go to these areas
for shopping activities.

Note that the studied user-station attention problem is
mathematically similar to the user-item rating problem in
recommendation systems. The two problems share a com-
monality in that they both utilize user similarity and relation-
ships to infer items or stations that have no prior interaction
history. However, there are also differences between the two
problems. For instance, the context of travel behavior in trans-
portation is different from that of item recommendations. For
user-station attention, the user’s travel pattern remains rela-
tively stable within a certain period and geographic area. In

contrast, the user’s choice of items is highly changeable and
unpredictable, as it is influenced by various factors, includ-
ing personal preferences, current needs, and external stimuli.
For example, while users may frequently travel to the same
stations for work or school, their shopping habits may vary
significantly from day to day, with some days focused on
groceries, while others may involve purchases of clothing,
electronics, or other goods.

Analyzing user-station attention can provide insights into
the underlying factors driving user behavior within public
transport systems, which can be leveraged to develop pre-
dictive models of user behavior and demand. For instance,
historical data on user-station attention can be used to fore-
cast the most heavily used stations during different times of
the day or week, allowing for optimized scheduling and rout-
ing of public transport services. Additionally, user-station
attention analysis can facilitate the development of person-
alized location recommendation systems based on a user’s
travel history and preferences, such as recommending the
best station to start a journey based on the destination, travel
time, and other relevant factors.Moreover, the station-station

123



21958 Zhang et al.

relationship in MKG is also of great significance for other
application scenarios. For example, in precision marketing,
it can assist to locate more target groups and place tar-
geted advertisements based on the main travel activities of
stations/locations. The knowledge obtained from the inves-
tigation of user-station attention can be utilized to enhance
the efficiency, efficacy, and overall user experience of pub-
lic transportation systems, rendering them more appealing
and user-friendly while contributing to promoting sustain-
able urban mobility.

For the practical implementation of our approach, the
absence of privacy or sensitive data previously discussed
is a prerequisite. Furthermore, the accuracy and reliability
of the data are critical to ensure the validity and practical-
ity of our model in real-world scenarios. Therefore, data
should be collected and processed in a way that mitigates the
risk of bias. Moreover, for greater generalizability, our pro-
posed approach should be applied to datasets and contexts
beyond those used in the initial analysis. Additionally, the
involvement of stakeholders such as transportation authori-
ties, policymakers, and users is essential in the design and
implementation to ensure that our approach addresses real-
world needs and is implemented effectively.

5 Conclusion

This paper introduces the user-station attention inference
problem from partially observed user-station visit counts
data in public transport. We develop a matrix decomposition
method capturing simultaneously user similarity and station-
stations relationships using the knowledge graph. Also, we
propose a neural network-based nonlinear decomposition
approach to effectively extract theMKG relations from smart
card data capturing the latent spatiotemporal travel depen-
dencies.

The experiments using both synthetic data and smart card
data verify the validity of the proposed model by compar-
ing the with benchmark approaches. The results illustrate the
value of the knowledge graph in contributing to the inference
of user-station attention. Compared with the model without
MKG, the model with MKG will improve the model perfor-
mance by 35% in MAE and 16% in RMSE. The results also
show that it is important to select the positive observations
in training the model (rather than using all observations with
zero values). The model is less sensitive to the dense settings
(10%, 30%, and 100% of samples used for training) provided
only positive observations are used. Future work will focus
on explaining the inferred user-station attentions by explor-
ing more context information (e.g., points of interest, station
features), and also examine its value in contributing to pre-
diction applications, such as individual mobility prediction.
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