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Abstract
Progress in making neural networks more robust against adversarial attacks is mostly marginal, despite the great efforts of
the research community. Moreover, the robustness evaluation is often imprecise, making it challenging to identify promising
approaches. We do an observational study on the classification decisions of 19 different state-of-the-art neural networks
trained to be robust against adversarial attacks. This analysis gives a new indication of the limits of the robustness of
current models on a common benchmark. In addition, our findings suggest that current untargeted adversarial attacks induce
misclassification toward only a limited amount of different classes. Similarly, we find that previous attacks under-explore the
perturbation space during optimization. This leads to unsuccessful attacks for samples where the initial gradient direction is
not a good approximation of the final adversarial perturbation direction. Additionally, we observe that both over- and under-
confidence in model predictions result in an inaccurate assessment of model robustness. Based on these observations, we
propose a novel loss function for adversarial attacks that consistently improves their efficiency and success rate compared
to prior attacks for all 30 analyzed models.

Keywords Adversarial attacks · Deep learning · Computer vision · Robustness

1 Introduction

Deep neural networks (DNN) can be easily fooled into mak-
ing wrong predictions by seemingly negligible perturbations
to their input data, called adversarial examples. [1] first
demonstrated the existence of adversarial examples for neu-
ral networks in the image domain. Since then, adversarial
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examples have been identified in various other domains
such as speech recognition [2, 3] and natural language
processing [4, 5]. The prevalence of adversarial examples
has severe security implications for real-world applications,
making the development of robust machine learning models
essential. As a result, the robustness of neural networks has
become a central research topic of deep learning in recent
years [6].

Several defense strategies have been proposed to make
Deep Neural Networks (DNNs) more robust and reliable
[7–13]. However, most of them have later been shown
to be ineffective against stronger attacks [14, 15] and
overall progress has been slow [16]. As robustness
improvements are mostly in the single-digit percentage
range, a reliable evaluation of new defense strategies is
critical to identify methods that actually improve robustness.
An inaccurate evaluation of new defenses can lead to the
adaption of ineffective defense strategies, which in turn
may hinder progress in robustness research. Moreover,
accurate quantification of network robustness is necessary
to accurately assess the risk of deploying machine learning
models in the real world.

To improve the robustness quantification of neural
networks, the community has established helpful guidelines
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Fig. 1 We investigate failure cases of adversarial attacks for 19 dif-
ferent neural networks trained to be robust against adversarial attacks
on the CIFAR10 dataset [20]. Based on the result of this observational
study, we propose the Jitter loss function to improve the effectiveness

of adversarial attacks. We benchmark Jitter against 5 state-of-the-art
(SOTA) adversarial attacks and 30 different neural networks. In all
cases, Jitter achieves the highest success rate and efficiency out of all
attacks

[17–19]. Nevertheless, the worst-case robustness of DNNs
is still reduced repetitively by even stronger attacks and a
precise evaluation remains a challenging problem [16].

In this work, we explore the classification decisions of 19
recently published DNNs to identify weak points of current
adversarial attacks (Fig. 1). Hereby, we restrict our analysis
to DNNs which have been trained to be robust against
adversarial attacks with a variety of different methods. Our
analysis can be summarized by four main findings:

1. We show that none of the 21 CIFAR10 [20] models
that we evaluated can correctly classify 24.2% of
the CIFAR10 test data in the presence of adversarial
attacks. This finding emphasizes the vast gap in robust
and clean performance of current neural networks
beyond prior analysis done for individual models.

2. Further, we observe that untargeted adversarial attacks
cause misclassification towards only a limited amount
of different classes in the dataset.

3. Additionally, we find that, where the loss of the model
does not change along the direction of the initial gradient,
samples are more difficult to attack. This limits current
gradient-based attacks that exploit these gradient direc-
tions without sufficiently exploring the loss landscape.

4. Furthermore, we observe that if a model exhibits
irregularly large over- and under-confidence, it is
difficult to assess its robustness accurately.

We leverage these observations to design a new loss func-
tion that improves the success rate of adversarial attacks
compared to current state-of-the-art loss functions. More
specifically, we encourage target diversity in untargeted

Image

CE attack

Jitter attack

Fig. 2 Difference of adversarial perturbations created by Cross-
Entropy (CE)-based attacks and Jitter-based attacks. Original images
are shown in the first row, CE-based perturbations in the second row,
and Jitter-based perturbations in the last row. In contrast to CE-based

attacks, Jitter-based attacks mainly attack the most salient regions of
the image. Thus, the �2 norm of Jitter-based attacks is considerably
smaller, while Jitter-based attacks are still more effective than prior
attacks
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attacks by injecting noise into the model output. Addi-
tionally, we introduce scale invariance to the loss function
by normalizing the output logits to a fixed value range.
Thereby, we circumvent the gradient obfuscation problem
generated by models with low-confidence predictions or
irregularly large output logits [16, 21]. Moreover, we pro-
pose a simple yet effective mechanism that minimizes the
magnitude of perturbations, as shown in Fig. 2, without
compromising the success rate of an attack. This leads
to the definition of an objective function for adversarial
attacks, which we will refer to as Jitter. We empirically
evaluate our loss function on an extensive benchmark con-
sisting of 30 different models proposed in the literature. We
show that Jitter-based attacks consistently outperform prior
attacks in all 30 analyzed models by up to 11.8 percentage
points. Additionally, Jitter-based attacks generate perturba-
tions with a 4.20 times smaller norm on average. Lastly, we
analyze the effect of Jitter on the classification decisions to
explain its effectiveness. Pytorch-like pseudo code to com-
pute the Jitter loss and a Jitter-based PGD attack is given in
the Appendix1.

2 Notation

Let fθ : [0, 1]d → R
C be a DNN classifier parameterized

by θ ∈ � with fθ : x �→ z. Here x is a d-dimensional input
image, z is the respective output vector (logits) of the DNN,
and C denotes the number of classes. The ground truth class
label of a given image is described by y ∈ {1, . . . , C}
while the predicted class label ŷ ∈ {1, . . . , C} is given by
argmax(z). The confidence values for every class are given
by softmax(z).

Adversarial examples xadv = x + γ aim to change the
input data of DNNs such that the classification decision of
the network is altered, but the class label remains the same
for human perception. Additionally, xadv is constrained in
the data domain, i.e., xadv ∈ [0, 1]d . A common way
to enforce semantic similarity to the original sample is to
restrict the magnitude ε of the adversarial perturbation γ by
an �p-norm bound, such that ‖γ ‖p ≤ ε. We refer to the set
of valid adversarial examples that fulfill these constraints
as S. As prior work mainly focuses on p = ∞ and thus
most models are available for this threat model, we focus
on p = ∞ in this work as well. Furthermore, we restrict
our analysis to untargeted white-box adversarial attacks, as
done in prior work [16, 22].

1Code is available at: https://git.io/JyJ0N

3 Related work

One of the most often used adversarial attacks, Projected
Gradient Descent (PGD), was proposed by [10]. PGD is
an iterative gradient-based attack, in which multiple smaller
gradient updates are used to find the adversarial perturbation

xt+1
adv = �S (xt

adv + α · sign(∇xL(fθ (x
t
adv), y)) (1)

where 0 < α ≤ ε and xt
adv describes the adversarial

example at iteration t . The loss of the attack is given
by L(fθ (x

t
adv), y). �S(x) is a projection operator that

keeps xt+1
adv within the set of valid adversarial examples

S and sign is the component-wise signum operator. The
starting point of the attack x0

adv is randomly chosen in
the ε-norm ball. Several variants of iterative gradient-
based attacks have been proposed that are more effective
than vanilla PGD [19, 22–24]. Recently, [16] proposed the
Auto-PGD (APGD) attack. In contrast to previous PGD
versions, APGD requires considerably less hyperparameter
tuning and was shown to be more effective than other
PGD-based attacks against a variety of models [16].
Nevertheless, one important component of all gradient-
based attacks is their optimization objective. The most
commonly used objective is the Cross-Entropy (CE) loss.
Carlini and Wagner [21] observe that CE-based attacks
fail against models with large logits. They propose the
Carlini & Wagner (CW) loss function −zy + maxi 	=y(zi)

which does not make use of the softmax function and
thereby reduces the scaling problem. Nevertheless, [16]
observe that the scale dependence of the CW loss can still
lead to failed attacks against models with exceptionally
large logits. They address this issue with the scale- and
shift-invariant Difference of Logit Ratio (DLR) loss and
show its effectiveness on an extensive benchmark. Recently,
Pintor et al. [25] proposed the Fast Minimum Norm (FMN)
attack that is robust to hyperparameter choices, creates low-
norm adversarial perturbations, and is computationally less
complex than previous attack approaches. Another method
to improve the robustness evaluation of machine learning
models is to combine multiple conceptually different
attacks into an attack ensemble [16, 26]. We explore and
discuss the limitations of current adversarial attacks in the
following section.

4 Robust misclassifications

While several benchmarks of adversarial robustness exist
in the literature, they generally do not investigate the
classification decisions of multiple models simultaneously
[16]. To investigate common limitations among models in
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Table 1 Summary of the most important abbreviations and symbols
used in the methods and experiments sections of this work

Symbol Description

PGD Projected Gradient Descent

APGD Auto-PGD

DLR Difference of Logit Ratio

CW Carlini & Wagner

FMN Fast Minimum Norm

CE Cross-Entropy

ẑ Rescaled and normalized output logits of a neural network

α Rescaling factor of the output logits

ŝ Softmax output of the rescaled logits ẑ

ŝNoise ŝ perturbed with Gaussian noise ŝNoise = ŝ + N (0, σ )

σ Variance of the Gaussian noiseN (0, σ ) used to perturb ŝ

Y One-hot encoded label vectors

LJ itter Loss function proposed in this work

the literature and get a more holistic overview of model
robustness, we explore the classification decisions of 21 out
of the 30 different models in the presence of adversarial
attacks. We restrict our analysis to the 21 models trained
on the CIFAR10 dataset [20], as only a limited amount
of pre-trained models are available for the other datasets.
The labels “airplane” and “automobile” have been renamed
to “plane” and “car”, respectively. We choose the recently
proposed Auto-PGD (APGD) with the Difference of Logit
Ratio (DLR) loss as an attack to perturb the images, as
it is one of the most efficient and reliable gradient-based
attacks [16]. These choices and specific hyperparameters
are described in more detail in Section 6. A summary of the
most important symbols and abbreviations used in this work
is given in Table 1.

4.1 Distribution of misclassifications

Recent studies mainly focus on common evaluation metrics
to assess the robustness of DNNs. This includes the worst-
case robustness of a classifier [16] and the magnitude of
the perturbation norm necessary to fool the classifier for
individual inputs [21]. Here, we provide insights into the
classification decisions and numerical properties of a large
and diverse set of models from the literature. We focus on
models that are trained to be robust to adversarial attacks.
Furthermore, all models are attacked individually to find the
respective worst-case robustness.

Figure 3a shows how the 19 most robust models
misclassify inputs attacked by APGD. We left out the
models by [14] and [27] from this analysis, as they show
negligible robustness against strong adversarial attacks. Out
of the 10,000 test samples of the CIFAR10 dataset, 3298 are
correctly classified by all 19 models, while 2423 samples
are consistently misclassified by all models. This is shown
by the leftmost (green, dashed) and rightmost (red) bars of
the histogram plot. This shows that none of the 19 models
is able to robustly classify a considerable fraction of the
test set. Further, it highlights the vast accuracy gap between
adversarial and clean data beyond prior analysis of this
trade-off between robustness and accuracy on individual
models. Inspired by prior work [28], we will refer to
images in the first group that are never misclassified as
robust images and images in the second group that are
always misclassified as non-robust images. The gray bars
in between show the remaining 4279 samples misclassified
by at least one model, but not by all models. Figure 3b
summarizes the class distribution of robust and non-robust
images. There is a considerable difference in frequency for
most classes between the two groups. Images from the

Fig. 3 Analysis of misclassification decisions of 19 out of the 21 ana-
lyzed CIFAR10 models. The two models by [14] and [27] showed
no considerable robustness against strong attacks and were therefore
excluded from this analysis. Subfigure (a) shows by how many mod-
els each attacked input is misclassified. Robust images that are never

misclassified are shown in the leftmost column (green, dashed) and
non-robust images that are always misclassified are shown in the
rightmost column (red). Subfigure (b) displays the difference between
the class distributions between robust and non-robust images. Both
statistics are calculated on the test set of CIFAR10

19846 L. Schwinn et al.



Fig. 4 Averaged confusion matrices of all models for adversarially
perturbed inputs for the CIFAR10 dataset (Only misclassified samples
are shown). We also observe substantial sparsity in the summed
confusion matrix for both all the CIFAR100 and all the ImageNet
models, where only a small fraction of all entries is larger than 0

classes “plane”, “car”, “horse”, “ship”, and “truck” are
often classified correctly while “bird”, “cat”, “deer” and
“dog” are mostly misclassified.

We additionally explored the average of the confusion
matrices of all models for adversarially perturbed images.
Note that the CIFAR10 dataset is balanced and contains an
equal amount of samples for all classes. Figure 4 shows
the confusion matrix of only the misclassifications. The
confusion matrix contains only a few large values, which
is in line with the previous observation that some classes
are easier to perturb than others. Furthermore, the matrix
is largely symmetric. Classes are mainly confused amongst
pairs. This includes semantically meaningful pairs such as
“cats” and “dogs” or “car” and “truck”, but it also includes
other pairs that generally share similar image backgrounds
such as “plane” and “ship”, “deer” and “frog”, and “deer”
and “bird”. Examples of non-robust and robust images are
shown in Fig. 5. Non-robust images contain outliers and
wrongly labeled images. These include:

• Subfigure (a): A seaplane that is classified as a ship.
• Subfigure (b): A ship in the air that is classified as a

plane.
• Subfigure (c): A golf cart and an ambulance that are

labeled as a car but classified as a truck.
• Subfigure (d) An oldtimer car that is labeled as a truck

and classified as a car.

Fig. 5 (a-d) Non-robust images
that are correctly classified by all
CIFAR10 models under normal
conditions but misclassified by
all models under attack
(DLR-based APGD).
Additionally, only examples of
images that are misclassified as
the same target class by all
models (e.g., plane images that
are misclassified as ships by all
models) are shown. (e-h) Robust
images that are correctly
classified by all CIFAR10
models even under attack
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We additionally observe considerable sparsity of the
misclassification confusion matrices of the CIFAR100
[20] and ImageNet [29] datasets. For all CIFAR100 and
ImageNet models, only 17% and 1.4% of the entries in
the confusion matrix are higher than 0 (note that for an
attack that induces optimal target class diversity, 100%
and 7.2% of the entries in the confusion matrix would
be higher than 0, respectively). Concurrent work by [30]
made a similar observation on the ImageNet dataset.
They find that untargeted adversarial attacks mostly cause
misclassifications into semantically similar classes.

4.2 Attacks against robust and non-robust images

We further analyzed the behavior of the DLR-based
adversarial attack for robust and non-robust images. This
is exemplified in Fig. 6 for the model proposed by [8].
We explored how the CW loss [21] (y-axis) changes
during the attack optimization (x-axis in Fig. 6a) and
how the CW loss changes along the direction of the final
adversarial perturbation starting from a clean image (x-axis
in Fig. 6b). We choose to display the CW loss and not the
DLR loss as the CW loss can directly be related to the
classification decision of a classifier (inputs with LCW > 0
are misclassified). Note that we still use the DLR loss in the
attack optimization and only use the CW loss for display
purposes. We additionally calculated the CW loss on the
softmax output of the network such that the output is scaled
between −1 and 1. The subfigures show the mean loss
value over the sets of robust and non-robust images by a
solid line. The individual loss values for 10 randomly drawn
samples from each set are shown as dashed lines. For non-
robust images, the CW loss increases rapidly during the first
attack iterations and most images are successfully attacked

in the first attack iteration. Moreover, for non-robust images,
the CW loss increases steadily along the direction of the
final adversarial perturbations on average, which indicates
that the initial gradient direction is a good approximation
of the final attack direction. In contrast, for robust images
following the gradient directions in the vicinity of the
original image is not effective and the CW loss changes only
marginally during the attack.

4.3 Logit and confidence distribution

Next, we analyze the distribution of the output logits z and
the confidence of all CIFAR10 models and relate these
properties to the difficulty of the robustness evaluation.
Prior work observed that simply scaling the output of a
DNN will lead to vanishing gradients when the softmax
function is used in the last layer of the network [16]. This
phenomenon occurs due to finite arithmetic and thus lim-
ited precision, where the CE loss is quantized to 0 and the
model effectively obfuscates the gradient from the attack.
The CE loss is given by

CE(z, y) = − log(softmax(z)y)

where softmax(z)y = ezy

∑C
j=1 ezj

. (2)

Figure 7 summarizes the logit and confidence distri-
butions for the analyzed CIFAR10 models. The model
proposed by [27] shows exceptionally large logits that are
outside of the floating-point precision, thus obfuscating its
gradients. Furthermore, the models by [27] and [8] exhibit
a considerably higher average confidence (0.948) than all
other models (0.666 excluding models with exceptionally
low confidence [14, 15]). In contrast, the models by [14]

Fig. 6 Analysis of the CW loss [21] (y-axis) for robust and non-robust
images during (a) DLR-based adversarial attack optimization and (b)
along the direction of the final adversarial attack perturbation γ found
by the DLR-based attack. In (b) x describes a clean image and x + γ

the adversarial example. For both images, the average loss over the
whole sets of robust and non-robust images is shown by a solid line.
Additionally, the loss for 10 individual examples from each of the sets
is shown by dashed lines
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Fig. 7 (a) Box plots of the logits
distribution of clean images
from the CIFAR10 test set for all
models analyzed in this paper.
(b) Box plots of the confidence
distribution of all models. Only
the highest softmax output for
every prediction is considered.
The models highlighted by gray
shading and text show
considerably lower robustness
against strong attacks compared
to standard PGD [8, 14, 15, 27].
Models that use additional data
during training are marked with
a *

and [15] reveal a different phenomenon where the logits
are close to zero and show a substantially lower standard
deviation than the other models. Consequently, the logits
are generally mapped to a limited value range by the soft-
max function, where all values are similar. Thus, the loss
may only change slightly between different attack iterations,
decreasing the attack performance. This is also reflected in
low confidence for the two models, where the most confi-
dent prediction has a probability of < 0.51 while it is ≈ 1
for all other models.

Note that prior work already observed that models with
exceptionally large logits are difficult to attack [16, 21].
However, we observe that the robustness of all 4 models
identified in the above analysis is difficult to assess in
practice, including models with above or below average
confidence but without exceptionally large logits. For these
4 models, the difference between a standard robustness
evaluation with CE-based PGD and stronger attacks is larger
than 7% and considerably less accurate than for the other
17 models [31]. This highlights that the distribution of
the output logits z can be a possible failure case for an
accurate robustness evaluation, even when the logits are
not exceptionally large. We explain how we combat this
problem in comparison to prior work in Section 5.1.

5 Enhancing adversarial attacks

In the previous section, we explored the misclassification
of robust DNNs under adversarial attacks. The experiments
showed a general consistency between the different models.
Specifically, we discovered that common attacks mostly
focus on a limited amount of different classes to attack in
the untargeted setting. At the same time, current attacks
often fail to find adversarial examples if the initial gradient
direction is not a good approximation of the final attack
direction and cannot change the classification loss even

slightly in these cases. Additionally, we observed that the
scale and distribution of the output logits are linked to
the success rate of adversarial attacks. Based on these
observations, we now design a novel loss function for
adversarial attacks to make them more effective. We
first describe the two main components of this loss
function. Subsequently, we elaborate on how we can
minimize the norm of the final adversarial perturbation
without compromising the attack’s success rate. This
is important as adversarial attacks should not change
the label for human perception, which is linked to the
perturbation magnitude.

5.1 Scale invariance

Previous work has already demonstrated that high output
logits can lead to gradient obfuscation and weaken
adversarial attacks [16, 21]. We additionally observe that a
small value range of the logits can also lead to attack failure.
We propose to scale the output logits by the following
rule:

ẑ = α · z

‖z‖∞
(3)

where α is an easy-to-tune scalar value that controls the
lowest and highest possible output values of the softmax
function. After rescaling, the logits are within a fixed
value range ẑ ∈ [0, α]C , which solves the aforementioned
problems. We additionally define the scaled softmax output
as ŝ = softmax

(
ẑ
)
, where softmax is the element-wise

softmax operator. While other loss functions are already
designed to be scale invariant [16] or handle large output
logits [21] they are not suited to be combined with
the loss function modification that we propose in the
next section.

19849Exploring misclassifications of robust neural...



5.2 Attack target diversity and attack exploration

Figure 4 demonstrates that untargeted adversarial attacks
mainly induce misclassifications for a limited amount of
classes. We argue that this behavior limits the effectiveness
of adversarial attacks. This is further supported by prior
work showing that performing targeted attacks against every
possible class is usually more effective than applying a
single untargeted attack [16, 32]. However, these so-called
multi-targeted attacks are computationally expensive and do
not scale to datasets with a large number of output classes.
Besides, in Fig. 6, we show that current adversarial attacks
have difficulties changing the loss for robust images. We
argue that this stems from a bad trade-off between attack
exploitation and attack exploration. Gradient-based attacks
exploit the local gradient information to find adversarial
examples with no incentive to explore.

To address the above problems, we propose to perturb
the scaled softmax output of a model after each forward
pass with Gaussian noise ŝNoise = ŝ + N (0, σ ) to prompt
adversarial attacks to further explore the input space. Here,
the noise magnitude is controlled by the hyperparameter σ .

Still, the CE loss is only dependent on the output of
the ground truth class and adding noise to the other output
values has no impact. Other loss functions such as DLR
or CW have non-normalized logits, which make it difficult
to find a suitable σ , as the logit range changes between
every input. Instead, we exchange the CE loss function with
the Euclidean distance loss between the one-hot encoded
ground truth vector Y of the class label and the scaled
output of the model. The proposed rescaling makes it easier
to tune the σ hyperparameter for individual models in our
experiments. We additionally observe the scaled Euclidean
distance loss to be more effective than the DLR or CW
loss even without noise injection (see Table 2). More details
are given in Section 6. The loss function is given by the
following equation:

L2 = ‖ŝ − Y‖2. (4)

Combining the Euclidean loss function and the scaling
described in (3) the loss function can be described by the
following equation.

LNoise = ‖ŝNoise − Y‖2. (5)

Injecting gradient noise to improve the convergence of
optimization algorithms is well-motivated by previous work
[33–36]. Neelakantan et al. [36], found that adding noise
to the weight updates of a neural network during training
does not only improve the generalization ability of the
model but additionally leads to a lower training loss. They
attribute this to the additional exploration of the parameter
space induced by the noise. Furthermore, non-gradient-
based algorithms like simulated annealing [33] or genetic

Table 2 Ablation results for the individual Jitter components for the
model proposed by [14]

Attack Accuracy Improvement

APGDCE 52.34 N/A

APGDCE & Scaled 18.29 +34.05

APGDScaled & L2 18.13 +0.16

APGDScaled & L2 & Noise 7.54 +10.59

APGDDLR 21.22 N/A

APGDDLR & Noise 7.61 +13.61

APGDCW 47.78 N/A

APGDCW & Noise 35.21 +12.57

algorithms [34] utilize randomness to escape local optima
in non-convex optimization landscapes. However, to the
best of our knowledge enhancing gradient-based adversarial
attacks by adding noise during the optimization has not been
investigated by existing work.

5.3 Minimizing the norm of the perturbation

Finally, we aim to encourage the attack to find small
perturbations. As long as no successful perturbation is
found, we apply the loss function presented in (5). As soon
as the adversarial attack is able to change the predicted label
of the model, we additionally aim to minimize the norm of
the adversarial perturbation. Furthermore, we only override
the current perturbation if the norm-minimized perturbation
also leads to a successful attack. This procedure can never
decrease the success rate of the attack and effectively
minimizes the norm of the adversarial perturbation in
our experiments. In addition, the norm (or other distance
measures) can be freely chosen according to the respective
problem (e.g., �1, �2, �∞) as long as it is differentiable. The
final loss function can be defined as

LJ itter =
{ ‖ŝNoise−Y‖2‖γ ‖p

if ŷ 	= y

‖ŝNoise − Y‖2 if ŷ ≡ y
. (6)

The effect of the different components is exemplified in
Table 2 for the model proposed in [14]. Every component
decreases the accuracy of the model and therefore increases
the success rate of the attack. The norm minimization does
not affect the performance and is therefore excluded from
the table. We additionally analyzed the influence of noise
injection for the DLR and CW loss functions. However,
since the logits of the DLR and CW loss functions are not
normalized we additionally scaled the sigma value by the
largest logit for every sample in the batch. Note that noise
injection to the output does not improve the performance
when using the CE loss in our experiments. This may be
attributed to the fact that the CE loss is only dependent on
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the output of the ground truth class and adding noise to the
other output values has little impact.

6 Experiments

We conducted a series of experiments to evaluate the effec-
tiveness of the proposed Jitter loss function. Furthermore,
we inspect the perturbations generated with the Jitter loss
function to explain its effectiveness compared to other state-
of-the-art loss functions. All experiments were conducted
on a single NVIDIA V100 GPU.

6.1 Data andmodels

All experiments were performed on the CIFAR10,
CIFAR100 [20], and ImageNet datasets [29]. We chose
CIFAR10 for our initial analysis as many pre-trained models
exist for this dataset. CIFAR100 and ImageNet were used to
evaluate if the findings on CIFAR10 and the proposed Jit-
ter loss generalize to more complicated classification tasks.
We gathered 30 models from the literature for the attack
evaluation. All models were either taken from the Robust-
Bench library [31] or from the GitHub repositories of the
authors directly [14, 27, 39, 49]. We excluded some mod-
els from RobustBench as we had difficulties getting them to
run correctly. We only considered models which are trained
to be robust against �∞-norm attacks. The resulting bench-
mark contains a diverse set of models which are trained with
different methods.

6.2 Threat model

We compare the performance of different loss functions for
the Auto-PGD (APGD) attack [16], which is one of the
state-of-the-art iterative gradient-based attacks. Moreover,
APGD has no hyperparameters such as step size and thus
enables a less biased comparison between different loss
functions. We compare Jitter to three different loss functions
and two popular gradient-based adversarial attacks. This
includes the Cross-Entropy (CE) loss, which is the standard
loss function for training supervised DNNs and is the
most often used loss function for gradient-based adversarial
attacks. We also consider the Carlini & Wagner (CW) loss
proposed by [21] that shows considerably better results
compared to CE when the model shows high output logits.
Additionally, we include the Difference of Logit Ratio
(DLR) loss proposed in [16] that was shown to achieve more
stable results compared to the CE and CW loss. Lastly, we
compare Jitter to the recently proposed B&B and the Fast
Minimum Norm (FMN) attacks, which have shown to be
effective against several different defenses and robust to
hyperparameter choices [22, 25]. All attacks are untargeted

�∞-norm attacks and use 100 attack iterations. We use
a perturbation budget of ε = 8/255 for CIFAR10 and
CIFAR100 models and a perturbation budget of ε = 4/255
for ImageNet models.

6.3 Jitter hyperparameter

Compared to CE and DLR, Jitter introduces two additional
hyperparameters. The first hyperparameter α rescales the
softmax input and directly controls the possible minimum
and maximum value of the output logits and the average
magnitude of the gradient. Note that values for α close
to or greater than ≈ 88 will result in an overflow of 32-
bit float values (e88 ≈ 3.402823 · 1038) in the softmax
function and thereby lead to numerical issues. Thus, we
can focus on 0 < α � 88. In a preliminary experiment,
we explored different values for α between 2 and 20 and
observed a stable performance for all values and therefore
chose α = 10 for all remaining experiments. The second
hyperparameter σ controls the amount of noise added to
the rescaled softmax output ŝ. We tuned σ for every model
individually on a batch of 100 samples by testing values for
σ ∈ {0, 0.05, 0.1, 0.15, 0.2}. Note that tuning σ on a small
batch for each model introduces only a negligible overhead
(≈ 1% additional runtime). Additionally, we analyzed the
sensitivity of the attack performance with respect to σ for
all models. Values between 0.05 and 0.2 resulted in similar
success rates, while values above 0.25 decreased the attack
performance compared to no noise injection on average.

7 Results and discussion

In this section, we summarize and discuss the results of the
experiments.

7.1 Attack performance

Table 3 compares the performance of the different loss
functions on the CIFAR10, CIFAR100, and ImageNet
datasets. The best result for every model is highlighted in
bold. The best attack for every model is highlighted in bold.
The minimum and maximum difference between Jitter and
the other attacks is shown in the two rightmost columns.
The proposed Jitter loss achieves superior performance
compared to the other attacks for 29 out of 30 models.
For the model proposed in [27] the B&B and FMN
attacks achieve a marginally higher success rate in the
100 attack iterations. Nevertheless, every iteration of the
B&B and FMN attack are considerably slower than an
iteration of Jitter-based attacks in our experiments (We use
the implementation provided in the GitHub repositories
of the authors). Jitter still achieves 100% success rate
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Table 3 Accuracy [%] of the evaluated models when attacked with �∞ norm APGD attacks using different loss functions

Model CE CW DLR B&B FMN Jitter Min Diff. Max Diff.

CIFAR10

Mustafa et al. [27] 19.12 0.10 0.05 0.00 0.00 0.14 -0.14 19.1

Jin and Rinard [14] 52.34 47.78 21.33 19.48 50.12 7.60 11.80 44.7

Wong et al. [37] 45.83 45.95 47.05 47.66 46.14 44.54 1.29 3.12

Zhang et al. [38] 46.12 47.15 47.71 49.58 47.36 46.01 0.11 3.57

Ding et al. [8] 50.14 51.07 51.29 48.22 50.21 47.88 0.34 3.41

Engstrom et al. [39] 51.77 52.27 53.09 53.89 52.5 51.09 0.68 2.80

Zhang et al. [40] 54.80 53.53 53.64 55.54 53.89 53.03 0.50 2.51

Huang et al. [41] 55.86 53.94 54.41 55.85 54.34 53.25 0.69 2.61

Zhang et al. [42] 56.84 54.49 54.78 56.45 54.81 53.97 0.52 2.87

Rice et al. [43] 56.9 55.36 56.0 55.58 55.42 54.44 0.92 2.46

Pang et al. [15] 61.62 55.44 56.29 57.35 55.63 54.46 0.98 7.16

Sehwag et al. [44] 57.32 56.35 56.86 57.84 56.48 55.30 1.05 2.54

Hendrycks et al. [9]* 57.15 56.44 57.23 58.67 56.6 55.94 0.50 2.73

Wu et al. [45] 58.80 56.76 56.82 59.34 57.08 56.60 0.16 2.74

Gowal et al. [46] 59.50 57.82 57.61 59.28 57.59 57.18 0.41 2.32

Wang et al. [47]* 61.82 58.23 58.95 60.99 58.6 57.64 0.59 4.18

Sehwag et al. [48]* 59.61 58.31 58.45 60.84 58.64 57.72 0.59 3.12

Zhang et al. [49]* 66.45 60.21 60.40 62.38 60.49 59.66 0.55 6.79

Carmon et al. [7]* 61.74 60.61 60.88 62.72 61.18 60.12 0.49 2.6

Wu et al. [45]* 63.32 60.62 60.67 63.12 61.13 60.38 0.24 2.94

Gowal et al. [46]* 65.69 63.76 63.92 65.28 64.30 63.40 0.36 2.29

CIFAR100

Rice et al. [43] 20.54 20.20 20.44 22.37 20.38 19.51 0.69 2.86

Sitawarin et al. [50] 26.31 26.79 27.38 29.27 27.10 25.52 0.79 3.75

Chen et al. [51] 30.96 28.27 28.51 30.38 28.24 27.54 0.70 3.42

Cui et al. [52] 29.94 28.17 29.62 31.99 28.37 27.73 0.44 4.26

Hendrycks et al. [9] 32.92 30.73 32.08 32.85 30.67 29.41 1.26 3.51

Cui et al. [52]** 34.01 30.29 30.85 32.22 30.49 29.45 0.84 4.56

Wu et al. [45] 33.28 30.90 31.26 33.09 30.93 29.46 1.44 3.82

ImageNet

Wong et al. [37] 26.89 27.12 27.50 30.86 26.54 26.15 0.39 4.71

Engstrom et al. [39] 32.14 32.40 33.01 32.33 33.57 30.33 1.81 3.24

The minimum and maximum difference between the Jitter and the other attacks is shown in the two rightmost columns. The most successful
attack is highlighted in bold (lowest accuracy), the second best is underlined, and models that use additional data are marked with *. Models from
the same authors with different hyper parameters or architecture are marked with **. The abbreviations of the loss functions and attacks can be
found in Table 1

faster than the B&B and FMN attack, which makes it
the most efficient attack in all experiments. Furthermore,
compared to the other attacks Jitter achieves the same
success rate 49% faster than CE-based attacks, 37% faster
than CW-based attacks, 35% faster than DLR-based attacks,
162% faster than B&B attacks, and 46% faster than FMN
attacks on average. Moreover, the Jitter loss is the only
loss function that is consistently better than the other
loss functions. In contrast, the other five attacks differ in
performance for the individual experiments as shown in
Table 3, where the second-best attack is underlined in each

row. Combining the DLR and CW loss with noise injection
led to equal or higher success rates in all cases but both
losses remain less effective than Jitter on average. A more
extensive overview is given in Appendix C. To evaluate the
performance of Jitter with a higher computational budget
we compared DLR and Jitter using 1000 model evaluations
(5 restarts and 200 iterations) for all CIFAR10 models.
While the success rate increased up to 6.51% for Jitter,
the high-budget version of DLR performed worse than 100
iteration Jitter in all cases. The results are summarized in
Appendix D.
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Fig. 8 Illustration of the attack
target diversity for
LJ itter -based, L2-based, and
LDLR-based attacks. Subfigure
(a), (b), and (c) show binarized
confusion matrices for the
different attacks, where more
green squares indicate a higher
target diversity

7.2 Inducedmisclassifications

We designed Jitter to increase target diversity for untargeted
adversarial attacks and compare the target diversity of the
different loss functions for all 30 models from all explored
datasets. The average increase in target diversity of Jitter
compared to the other loss functions is: CE: 36%, CW: 52%,
DLR: 155%, and L2: 57% (given in (4)). Moreover, noise
injection into the output for the CW and DLR loss increases
the attack target diversity by 49% and 56%, respectively.
This shows that noise injection to the output increases target
diversity and not the L2 loss. Nevertheless, the combination
of noise injection with the L2 loss was more effective in
our experiments than the combination of noise injection
with CW and DLR (more details are given in Appendix C).
Figure 8 exemplifies the increased attack target diversity of
LJ itter -based attacks for the model proposed in [8]. Green
squares denote that an attack changed the classification
decision to the respective class at least once. LJ itter -based
attacks show a considerably higher amount of different
target classes compared to the other two attacks. Further, the
LDLR-based attack was not able to successfully attack the
classes car and truck, which reduces the attack success rate
compared to Jitter.

Analogous to the analysis presented in Fig. 6, we
explored the behavior of Jitter-based adversarial attacks for
robust and non-robust images for the same model [8]. The
different subfigures of Fig. 9 show the CW loss [21] on the
y-axis during the attack optimization (Fig. 9a) and along
the direction of an adversarial perturbation (Fig. 9b). As
in Fig. 6 the individual loss values for 10 randomly drawn
samples are shown as dashed lines for the sets of robust and
non-robust images, while the mean over the whole sets is
shown as a solid line. In comparison to DLR-based attacks
(Fig. 6), Jitter-based attacks (Fig. 9) exhibit a considerably
larger fluctuation of the loss during the attack optimization
for both robust and non-robust images. In contrast to DLR-
based attacks, Jitter-based attacks also show considerable
loss changes for robust images and thereby achieve higher
success rates. Besides, while DLR-based attacks generally
find adversarial directions which directly increase the CW
loss, Jitter-based attacks mainly find adversarial directions
which do not directly increase the CW loss, which can
be seen by the constant mean near the clean input x in
Fig. 9b. Moreover, the mean CW loss value of Jitter-based
attacks exceeds the threshold of misclassification (LCW =
0) noticeably later than DLR-based attacks even for non-
robust images (Jitter:0.87, DLR:0.48). DLR-based attacks

Fig. 9 Analysis of the CW loss [21] (y-axis) during (a) LJ itter -based
adversarial attack optimization and (b) along the direction of the final
adversarial attack perturbation γ found by the Jitter-based attack. In
(b) x describes a clean image and x + γ the adversarial example. For

both images, the average loss over the whole sets of robust and non-
robust images is shown by a solid line. Additionally, the loss for 10
individual examples from each of the sets is shown by dashed lines
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by design follow the direction of the steepest ascent. In
contrast, Jitter-based attacks have a better trade-off between
attack exploration and attack exploitation due to the injected
noise. This enables Jitter-based attacks to find perturbation
directions that are sub-optimal in the beginning but lead to
a misclassification at the final adversarial perturbation.

7.3 Attack norm and structure

In a final experiment, we examined the average perturbation
norm of the different attack configurations for all 30
models. We choose to minimize the �2 norm with Jitter, as
differences in the �2 norm are easier to interpret than for
the �∞ norm (e.g. the attack focusing on specific regions).
The average �2 perturbation norm over all samples for the
different loss functions are: CE: 0.52, CW: 0.54, DLR: 0.55,
B&B: 1.29, FMN: 1.09, and Jitter: 0.19. Jitter achieves
considerably lower average perturbation norms than the
other attacks. In contrast to Jitter, the B&B and FMN attacks
are not able to minimize the perturbation norm considerably
with 100 attack iterations. Note that the average ell∞ norm
of both B&B and FMN are also considerable larger than for
Jitter in our experiments (B&B: 0.024, FMN: 0.022, Jitter:
0.009). An overview is given in Fig. 10.

We also inspect the structure of the perturbations.
Figure 2 displays the perturbation for CE- and Jitter-based
attacks for several images. To plot the perturbations, we
calculate the absolute sum over every color channel and
show the magnitude as a color gradient, where no change is
denoted by black color. CE-based attacks generally attack
every pixel in an image. In comparison, Jitter-based attacks
mainly focus on the salient regions of an image. We enforce

Fig. 10 Box plots that show the �2 norm perturbation magnitude
distribution for all models between the different loss functions

this by regularization of the perturbation γ within our
loss function and thereby enable Jitter-based attacks to
create successful and low-norm adversarial perturbations.
In an ablation study, we found that combing other loss
functions with the norm-minimization objective described
in (5) successfully reduces the perturbation norm of those
attacks. For this experiment, we evaluated CE-based, CW-
based, and L2-based attacks. However, in our experiments
the perturbation norm of Jitter-based attacks was always
the lowest on average. This is expected, as we only
minimize the perturbation norm of an attack once the
attack is successful. This is done to prevent the perturbation
norm minimization from reducing the effectiveness of the
attack. As Jitter-based attacks find successful adversarial
perturbations faster than other attacks in our experiments
(see Section 7.1), the number of iterations that are dedicated
to minimizing the perturbation norm is greater for Jitter-
based attacks compared to other attacks.

7.4 Discussion

In an extensive benchmark study, we compared the proposed
Jitter loss function to other adversarial attacks from the
literature. Our experiments showed that Jitter achieves
higher attack success rates and efficiency compared to
prior methods. Moreover, Jitter-based attacks exhibit lower
perturbation norms. The proposed Jitter loss has two key
components that lead to increased attack success rate
and efficiency.

1) Scale invariance. Previous work observed that excep-
tionally large output logits in neural networks reduce
the efficiency of gradient-based attacks [21]. We further
found that gradient-based attacks are also inefficient
when models show exceptionally low or high confi-
dence values. Both issues can be solved by normalizing
and rescaling the output logits of neural networks to
a specific range. In addition, rescaling the output log-
its of neural networks makes it simpler to integrate
noise injection into the Jitter loss function. For a more
detailed explanation, refer to Section 5.2. Noise injec-
tion is the second key component that improves the
success rate of Jitter-based attacks.

2) Noise Injection.Our experiments revealed that existing
untargeted adversarial attacks induce misclassifications
in only a limited amount of target classes. We show that
the target class diversity can be increased by injecting
noise into the scaled softmax output of the model.
We observe that this simultaneously increased the
success rate of the attack, which indicates a connection
between the target class diversity of an untargeted attack
and its effectiveness. Moreover, noise injection also
increased the success rate of previous adversarial attack
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Table 4 Pytorch-like
implementation of the Jitter
loss function

Algoritm 1: Jitter loss

# X: input data, X adv: adversarial input data, B: batch size

# z: logits, y: labels, Y: one-hot encoded labels

# alpha: value range, sigma: noise magnitude, norm: norm to minimize

# Function call: Jitter(X, X adv, B, z, y, Y, alpha, sigma, norm)

############################## logit scaling ###########################

z scaled = z / norm(z.view(B, -1), p=float(‘‘inf’’), dim=1, keepdim=True)

z scaled = softmax(z scaled * alpha, dim=1)

z noisy = z scaled + randn like(z scaled) * sigma

############################## l2 loss #################################

l2 = norm((z noisy - Y).view(B, -1), p=2, dim=1)

############################## perturbation magnitude ##################

non adversarial mask = z.argmax(1) != y

magnitude = norm((X - X adv).view(B, -1), p=norm, dim=1)

masked magnitude = ones like(l2)

masked magnitude[non adversarial mask] = magnitude[non adversarial mask]

############################## final loss ##############################

loss = l2 / masked magnitude

return loss

methods in our experiments and is not limited to the
proposed Jitter loss function. The effect of injecting
noise into the output of a neural network was studied

from a theoretical perspective in prior work, which
could yield another explanation for the effectiveness
of noise injection apart from the empirical observation

Table 5 Pytorch-like
pseudo-code of an untargeted
PGD-like attack using the Jitter
loss function

Algoritm 2 Jitter-based PGD-like attack

# f: neural network, X: input data, y: labels, Y: one-hot encoded labels

# N: number of attack iterations, step size; step size of the attack

# eps: maximum perturbation norm

X adv = X.clone()

B = X.shape(0)

alpha = 10

sigma = 0.1

norm = 2

for i in range(N):

z = f(X)

loss = Jitter(X, X adv, B, z, y, Y, alpha, sigma, norm)

loss.backward()

gradients = X adv.grad.sign() * step size

X adv = X adv + gradients

# project X adv to the l-norm ball and to the a valid range (i.e., (0,1))

X adv = torch.max(torch.min(X adv, X + eps), X - eps)

X adv = X adv.clamp((0, 1))

return X adv

The attack is conducted in the �∞ norm
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of increased target class diversity. Zhu et al. [53]
demonstrate that using gradient Langevin dynamics
(GLD) instead of regular gradient descent can help
to escape local minima during optimization from a
theoretical perspective. The ability to escape sharp and
poor local minima could also improve the effectiveness
of adversarial attacks. However, in GLD Gaussian noise
is directly added to the gradient and not to the output
before performing the gradient calculation. Further
investigations are necessary to clarify the connection
between Jitter and GLD.

8 Conclusion and outlook

In this paper, we analyze the classification decisions of a
diverse set of models that are trained to be robust against
adversarial attacks. This analysis gives an indication of
the limits of the robustness of current models on the
CIFAR10 dataset. We utilize insights from our analysis
to create a novel loss function which we name Jitter that
increases the efficiency and success rate of adversarial
attacks. Specifically, we enforce scale invariance of the
lossfunction and encourage attack exploration and a diverse

Table 6 Accuracy [%] of the evaluated models when attacked with APGD using different loss functions

Model CE CW DLR B&B CW noise DLR noise Jitter

CIFAR10

[27] 19.12 0.1 0.05 0.0 0.01 0.04 0.02

[14] 52.33 47.78 21.22 19.48 35.21 7.61 7.6

[37] 45.83 45.95 47.05 47.66 44.26 45.7 44.54

[38] 46.12 47.15 47.71 49.58 45.86 46.11 46.01

[8] 50.13 51.07 51.29 48.22 48.38 47.34 47.88

[39] 51.77 52.27 53.09 53.89 50.92 51.43 51.09

[40] 54.80 53.53 53.64 55.54 53.23 53.36 53.03

[41] 55.86 53.94 54.41 55.85 53.42 53.56 53.25

[42] 56.84 54.49 54.77 56.45 54.04 54.84 53.97

[43] 56.89 55.36 56.00 5558. 54.55 54.65 54.44

[15] 61.62 55.44 56.28 57.35 54.74 54.66 54.45

[44] 57.32 56.35 56.86 57.84 55.81 56.65 55.30

[9] 57.15 56.44 57.23 58.67 55.33 55.87 55.94

[45] 58.8 56.76 56.82 59.34 56.48 57.01 56.59

[46] 59.5 57.82 57.60 59.28 57.24 57.33 57.18

[47]* 61.82 58.23 58.95 60.99 57.63 58.26 57.64

[48]* 59.61 58.30 58.45 60.84 58.14 58.37 57.72

[49]* 66.45 60.20 60.4 62.38 60.07 60.57 59.66

[7]* 61.73 60.61 60.88 62.72 60.52 60.41 60.12

[45]* 63.32 60.62 60.67 63.12 60.37 60.5 60.38

[46]* 65.69 63.75 63.92 65.28 63.16 63.39 63.4

CIFAR100

[43] 20.54 20.20 20.44 22.37 20.01 20.25 19.50

[50] 26.31 26.79 27.38 29.27 26.15 27.02 25.52

[51] 30.95 28.27 28.51 30.38 27.96 28.4 27.54

[52] 29.94 28.17 29.62 31.99 27.93 27.87 27.73

[9] 32.92 30.73 32.08 32.85 30.0 29.84 29.40

[52]** 34.01 30.29 30.85 32.22 29.95 30.7 29.45

[45] 33.28 30.9 31.25 33.09 30.20 30.66 29.45

The difference between the best and second-best loss function is given in the right-most column. The most successful attack is highlighted in
bold, the second best is underlined, and models that use additional data are marked with *. Models from the same authors with different hyper
parameters are marked with **
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set of target classes for the attack by adding Gaussian
noise to the output logits. In addition to the analysis on
CIFAR10, we show that the proposed attack generalizes to
two other benchmark datasets CIFAR100 and ImageNet.
Our experiments demonstrate that analyzing failure cases of
adversarial attacks over multiple models at the same time is
an effective way to design stronger adversarial attacks. The
proposed method shows superior attack efficiency for all
30 analyzed models for all three datasets compared to five
other popular attacks from the literature. In all cases, Jitter
achieved a higher success rate in a shorter amount of time.
Moreover, the average perturbation norm of Jitter-based
attacks is considerably lower compared to prior methods,
which is achieved without compromising the success rate
of the attack. Future work will explore if using Jitter for
adversarial training can further improve the robustness of
models against strong attacks. Theoretical analysis was
beyond the scope of this paper but will be explored in future
work. This includes connections between the proposed Jitter
loss function and gradient Langevin dynamics.

Appendix A: Jitter code

The Jitter loss can be implemented with just a few lines
of code, which makes it easy to combine with prior

approaches. Table 4 shows a PyTorch-like implementation
of Jitter.

Appendix B: Jitter adversarial attack

Table 5 exemplifies how Jitter can be combined with
adversarial attack algorithms like PGD.

Appendix C: DLR and CWwith noise injection

The performance of DLR- and CW-based attacks with
noise injection is shown in Table 6. The proposed Jitter
loss function achieves the highest success rate most often.
Moreover, injecting noise to the logits of the other two loss
functions is highly effective as well. Here the performance
is equal or better in all cases compared to no noise injection.

Appendix D: Attack performance
for a higher computational budget

The performance of DLR- and Jitter-based attacks for more
model evaluations is shown in Table 7. Attacks with a

Table 7 Accuracy [%] of the
CIFAR10 models when
attacked with APGD using
either the DLR or Jitter loss
function

Models DLR Jitter DLR strong Jitter strong Min Diff.

Mustafa et al. [27] 0.05 0.02 0.03 0.00 0.02

Jin and Rinard [14] 21.33 7.54 12.43 1.03 6.51

Wong et al. [37] 47.05 44.49 46.69 43.45 1.04

Zhang et al. [38] 47.71 46.01 47.31 45.79 0.22

Ding et al. [8] 51.29 47.85 50.19 43.62 4.23

Engstrom et al. [39] 53.09 51.08 52.59 50.83 0.24

Zhang et al. [40] 53.64 53.05 53.42 52.88 0.17

Huang et al. [41] 54.41 53.33 54.24 53.25 0.09

Zhang et al. [42] 54.77 53.98 54.54 53.64 0.34

Rice et al. [43] 56.00 54.36 55.70 53.66 0.70

Pang et al. [15] 56.28 54.48 55.97 54.10 0.38

Sehwag et al. [44] 56.86 55.30 56.56 54.65 0.65

Hendrycks et al. [9] 57.23 55.94 56.98 55.10 0.84

Wu et al. [45] 56.82 56.45 56.69 56.10 0.35

Gowal et al. [46] 57.60 57.09 57.44 57.08 0.01

Wang et al. [47] 58.95 57.58 58.55 57.28 0.31

Sehwag et al. [48] 58.45 57.66 58.23 57.50 0.15

Zhang et al. [49]* 60.40 59.66 60.11 59.16 0.5

Carmon et al. [7] 60.88 60.08 60.62 59.90 0.19

Wu et al. [45] 60.67 60.44 60.56 60.19 0.25

Gowal et al. [46] 63.92 63.31 63.74 62.73 0.57

Attacks with the keyword “strong” suffix use 200 iterations and 5 restarts, while the other attacks use 100
iterations without additional restarts
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“strong” suffix use 200 iterations and 5 restarts, while
the other attacks use 100 iterations without additional
restarts. Low-budget Jitter-based attacks achieve a higher
success rate than both normal and strong DLR-based attacks
in all cases. Overall more model evaluations do only
marginally improve the performance for DLR-based attacks
except for the model proposed by [14], where the success
rate increases by 8.9 percentage points. For Jitter-based
attacks more model evaluations improve the performance
considerably for the models proposed by [14] and [8] and
slightly for the models proposed by [37, 43], and [9].
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