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Abstract
Supervised deep learning methods using image data as input have shown promising results in the context of vehicle control.
However, these supervised methods have two main disadvantages: 1) They require a copious amount of labeled training
data, which is difficult and expensive to collect. 2) Such models do not perform well, when situations that are not in the
distribution of the training set are encountered. This includes deviations from the designated driving behavior. We therefore
provide a framework to mitigate these problems from merely an unlabeled sequence of images. Visual Odometry is first
used to determine the vehicle trajectory. Model Predictive Control (MPC) then uses this trajectory to implicitly infer the
steering labels. Meanwhile, synthesized images at deviated trajectories are included in the training distribution for enhanced
robustness of the neural network model. Experimental results demonstrate that the performance of our network is at par with
methods requiring additional data collection or supervision. Code and supplementary information is available here: https://
github.com/idilsulo/nn-driving

Keywords Intelligent driving · Computer vision · Deep learning · Neural networks

1 Introduction

Vehicle autonomy has always been a subject of interest,
whether it be for the task of driving [1–3], marine navigation
[4–6] or even aerial agents [7, 8]. The focus of this
work is on self-driving cars using deep learning. Over
the last decade, supervised deep learning methods have
achieved exemplary performance in various applications.
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One domain of interest to us is vehicle control, where
convolutional network architectures have proven to be
instrumental in directly mapping images to steering
commands [9, 10]. Despite their great success, supervised
deep learning methods are prone to two severe limitations:

1. They require tremendous amounts of labeled training
data. In the context of a vision-based driving applica-
tion, this would mean having a camera placed at the
front of the car which records a video as the vehi-
cle is being driven. The corresponding steering angle
executed by the driver is also recorded and time syn-
chronized for each image frame. The necessity of hav-
ing an expert driver who collects data from a vehicle
with such a controlled setup limits the scalability of the
underlying application.

2. The trained neural network model struggles at inference
time when data that is not in the distribution of the
training set is encountered. In the context of self-driving
cars, such out-of-distribution data would constitute
those scenarios where the vehicle is driving off-course1

[11–13].

1Note that in this work, the ego-vehicle is considered to be on-course
if it is driving safely within its own lane. Otherwise, it is defined to
be off-course. Driving off-road or in the lane of oncoming traffic is
included in off-course.
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It is worth noting that the second limitation is a
consequence of the first one, as anomalous off-course
data is scarce during data collection with an expert driver.
Specifically, the traffic rules and lane regulations are strictly
necessary to be followed to ensure safety. During inference,
the network predictions may cause the car to diverge far
from the boundaries of the driving lane. Since there are no
such aberrant scenarios in the training set, it may not be
possible for the car to take corrective measures to recover
from this deviation.

In this work, we propose a framework which addresses
these problems associated with supervised deep learning
models. The framework merely requires an unlabeled
sequence of RGB images from which the vehicle trajectory
is determined using visual odometry. The steering labels
can then be inferred by applying Model Predictive Control
(MPC) using this trajectory and modeling the kinematics
of the ego-vehicle. Meanwhile, off-course images are
synthesized at novel views and are also included in
the training set to enhance robustness. The primary
contributions of our framework are enumerated below:

1. We demonstrate training a lateral vehicle control
network from only an unlabeled sequence of images.
This eliminates the need for a specialized setup on the
car that has to retrieve the steering angles executed
by the driver. Moreover, the task of synchronizing the
recording of the images with the corresponding steering
angles is also eliminated.

2. The data collection process does not necessitate driving
off-course for recording anomalous cases. Rather
images at divergent positions are synthesized using only
on-course image sequences and included in the training
data.

3. We demonstrate in the experiments that the proposed
fusion of MPC with synthesized novel views leads to
improved robustness at inference time.

2 Related work

2.1 Supervisedmethods for vehicle control

Toromanoff et al. [1, 10] train a supervised network that
directly maps image data to the steering commands. One
limitation of these methods is scaling, as they require an
expert driver whose steering maneuvers need to be recorded
during the course of data collection. Moreover, performance
of such models tends to be constrained to the domain
on which they were trained [14]. Attempts to partially
circumvent this problem involve using multiple laterally
displaced cameras while recording data [3], shearing the
images [15] or using a fish-eye camera to generate laterally
displaced images [10]. An appropriate label correction

is applied to each of the laterally displaced images.
However, such approaches may cause visual distortions
or are constrained by the maximum lateral displacement
in the images. For robustness, [16] adapts the strategy
from [17] by injecting noise into the control command and
letting the expert recover from these disturbances during
data collection. While this method may be expedient in
controlled environments, it is impractical and too dangerous
to be deployed in the real world. The injected noise may
cause the vehicle to veer off-course and result in a potential
collision. In our approach, we synthesize images at arbitrary
locations from a single on-course trajectory without having
the need to drive off-course. Moreover, recording the
steering commands of the driver is not required. Rather, the
steering labels are inferred from MPC.

2.2 Methods not requiring supervision

Zhang et al. [18–20] train a neural network in a simulated
setting for vehicle control using Reinforcement Learning
(RL). RL methods do not require explicit supervision; but
involve a random exploration of the environment as part
of learning a suitable policy [21]. The trajectory resulting
from the exploration strategy may cause the driving agent to
depart from the driving lane, thereby violating traffic rules
and causing accidents. One way of partially alleviating this
issue is to use the training data from a virtual environment
which tends to be less intrusive [22]. Therefore, the authors
of [23] train an RL model in a virtual environment and
evaluate it in the real world. However, an intermediate
semantic representation to translate virtual images to the
real world is required.

In comparison, our method is capable of training directly
on images that the model is expected to see at inference
and does not require any additional semantic information.
Kendall et al. [11] also demonstrates training an RL
policy directly in the real world. However, the approach
necessitates a safety driver to seize control whenever the
car diverges from the lane. An another issue with RL-based
control policies is that they tend to require tremendous
amounts of data and computational resources for training
[19, 24]. In [25], supervised data is not needed and training
can potentially be done on real world data. However, they
additionally utilize images from multiple trajectories by
aligning them to the reference. In contrast, our framework
only requires a single reference trajectory from which
additional images at arbitrary positions are synthesized.

2.3 Path planning and longitudinal control

The task of autonomous driving can be decomposed
into two integral components: 1) High level planning
to determine the optimal path for the driving agent to
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reach its destination. 2) The low level steering commands
executed by the ego-vehicle using data received from its
immediate surroundings. Li et al. [26, 27] demonstrate path
planning methods for generating safe vehicle trajectories.
In contrast, our work is concerned with predicting low
level vehicle control commands. These low level commands
can be further segregated into lateral and longitudinal
control. Matute et al. [28, 29] generate velocity profiles
such that possible passenger inconvenience resulting from
sudden acceleration/deceleration can be mitigated. Similar
to our case, they also test their approach in simulation.
However, our network is focused on predicting the steering
command for lateral vehicle control and does not require
state estimation at inference time. Uebel et al. [30]
also determines the longitudinal dynamics of the vehicle.
However, they additionally take the current and future state
of the multiple traffic lights ahead to furnish energy efficient
driving. Our framework only requires a single RGB camera
for immediate lateral control. It is not focused on long term
velocity profiling and trajectory planning.

2.4 Methods combining deep learning and optimal
control

Bansal et al. [31] combines optimal control with deep
learning for vision-based navigation of a robot in an indoor
setting. It is assumed that the environment is static and the
robot state is perfectly known. Mohseni et al. [32] combines
MPC and uses an ensemble of neural networks for collision

avoidance. The sensory input to the network is obtained
from Lidar which tends to be more expensive [33]. In [34], a
network is trained to predict the output obtained from MPC
for controlling the moisture content produced from a paper-
making machine. They generate training data in simulation.
In comparison, our framework is not limited to just the
synthetic domain and can equally be applied on real world
data. We show image synthesis for the real world KITTI
dataset [35].

3 Framework

Figure 1 provides a high-level overview of our proposed
framework. Note that the ultimate goal of the framework is
to train a neural network that takes an image as input and
predicts the appropriate steering angle for lateral vehicle
control. The network is trained only from an unlabeled
sequence of images; which are obtained from a camera
setup placed at the front of a car. No ground truth
steering labels are available. Rather, the steering labels are
inferred from MPC. The framework comprises of four main
components:

• Visual Odometry, which provides the trajectory tra-
versed by the vehicle using a sequence of RGB images.

• View Synthesis, that generates additional images at
arbitrary positions lateral to the original (on-course)
trajectory.

Fig. 1 Overview of the proposed framework describing the steps for
data and label generation (Steps 1-4), training (Step 5) and inference.
Step 1: A sequence of images obtained from a camera rigidly attached
to the car is fed through a visual odometry algorithm. It generates
the pose of each image along the ego-vehicle’s trajectory. We refer
to it as the reference trajectory. Step 2: Images at arbitrary positions
are synthesized. Step 3: The positions of the synthesized images are
aligned in relation to the reference trajectory. Step 4: MPC gener-
ates the appropriate steering angles at locations of the reference and

synthesized images. Step 5: A network is trained to predict the appro-
priate steering angle with an image frame as input. The target labels
for training are obtained from MPC for each frame. Inference: Once
the training is done, only the neural network component of the entire
framework is used at inference time to make steering predictions from
raw images directly taken from the camera. Note that no view synthe-
sis, visual odometry or MPC calculation is required at the inference
step
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• Model Predictive Control, which supplies the steering
labels for both the synthesized images and those in the
original trajectory.

• Neural Network, which maps the input images to the
lateral steering commands.

We first describe the motivation for using model pre-
dictive vehicle control and how it works in Section 3.1. Its
limitations with regards to real time implementation are also
discussed (in Section 3.1.3). Next, view synthesis (Section
3.2) and visual odometry (Section 3.2) are explained
as solutions to overcoming these limitations. Finally,
Section 3.4 gives information about the neural network.

3.1 Model predictive control (MPC)

We use MPC to implicitly acquire the steering labels. Note
that MPC is an optimization based approach, whereas our
neural network is trained with a learning based approach.
As depicted in Fig. 1, we therefore use MPC to provide the
target labels which are then used to train the neural network.

In driving-related tasks, MPC has shown to outperform
other controllers [36–38], as it allows to achieve desired
behaviours by appropriately adjusting the cost function [39].
We therefore treat MPC for the task of self-driving as
a receding horizon problem. As depicted in Fig. 2, the
controller optimizes to predict the future set of actions
that need to be executed for the ego-vehicle (point A) to
reach a goal state (point C) along the original reference
trajectory (in purple). The first control action is executed
and the vehicle attains a new state at time T 1. The process is
repeated at the new vehicle state. Successive optimizations
with the updated goal state (point C) for timestamps T i,
where i ∈ [1, n], reduce the deviation between the ego-
vehicle (point A) and the closest state (point B) on the

reference. Note that we only execute the first action rather
than all actions predicted by MPC because the motion
model of the ego-vehicle is only an approximation of the
real world. Therefore, attempting to execute all actions in
order to follow the entire path predicted by MPC may cause
the ego-vehicle to deviate far away from the reference.

We now define the motion model of the ego-vehicle and
cost function used for the optimization.

3.1.1 Motion model

We use the bicycle model [40] to describe the kinematics
of a 4-wheeled ego-vehicle with planar motion. The state
of the ego-vehicle is described by its orientation (θ ) and
location coordinates X, Y . It can be controlled by regulating
the acceleration (a) and steering angle (δ). We assume there
is no slip in the vehicle, which is a valid assumption for
vehicles that execute turns at low or moderate speed [41]. If
L is the wheelbase and V is the ego-vehicle’s velocity, then
the equations of motion can be formulated as:

Ẋ = V cosθ; Ẏ = V sinθ; V̇ = a; θ̇ = V
tan δ

L
(1)

3.1.2 Cost function

The cost function aims to produce the optimal sequence of
control actions such that the difference between the goal
state and an ego-vehicle state at any of the N timesteps into
the horizon ahead is minimized. The state at each of the N

timesteps ahead can be estimated by iteratively applying the
equations of the motion model. Longer horizons ought to
produce better estimates of the control actions to be taken.
However, this comes at the expense of longer optimization
cycles. If Xg, Yg and θg describe the state variables of the

Fig. 2 Depicts MPC treated as a receding horizon problem. At time
T0, the ego-vehicle is at position A. B is the point on the purple refer-
ence trajectory closest to A. The dotted blue line shows the estimated
trajectory of the car, if the sequence of control actions optimized by
MPC are executed. The first set of action(s) predicted by the controller

is executed and the ego-vehicle attains a new state. The process is
repeated all the while the distance between point B and the goal state
is maintained to be D. The state at some later time Tn is also shown.
Figure should be viewed in colour
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goal state, then the objective function to be minimized can
be expressed as:

min
a,δ

N∑

i=1

[α1(Xi − Xg)
2 + α2(Yi − Yg)

2 + α3(θi − θg)
2], (2)

where α1−3 ∈ R are values to appropriately weight the
different terms in the cost function. Also, note that the cost
function is dynamically modified to bring the goal state
closer to the current state when making turns. This is to
ensure that the optimization does not cause the vehicle to
cut corners, while simultaneously reducing the velocity and
abiding by the no-slip condition.

The optimization yields a sequence of N control actions.
However, only the first is executed and the vehicle attains a
new state. This process is repeated at this new vehicle state.

3.1.3 MPC limitations and solutions

Optimization Time: In principle, the entire set of N

control actions can be executed after a single MPC
optimization. This would relieve the computational burden
from optimizing at each time step. However, the ego-vehicle
model is only an approximation of the real world. Therefore,
attempting to execute all control actions that are farther
into the future may yield an ego-vehicle trajectory which
significantly deviates from the estimated trajectory. Hence,
in order to obtain an optimal solution, the calculations
need to be performed at each time step which may not
be feasible for real time execution. To alleviate this issue,
we perform the optimizations offline and train a neural
network to predict the first control action in the sequence.
Offline computation allows inference time to remain the
same, irrespective of how long the optimization cycles were
to train the network. The input to the network is an image
corresponding to the ego vehicle position.

Reference Trajectory: The reference trajectory required
to implement MPC in real time is no longer needed when a
neural network is used at inference. Nevertheless, it would
still be required to determine the target labels for training
the network. We utilize a visual odometry system in order to
track the moving camera and obtain the reference trajectory
for the training stage. Please see Section 3.3 for further
details on visual odometry.

Localization: Even if the reference trajectory is known,
another issue with real time MPC implementation is that
the position of the ego-vehicle needs to be localized
against the reference. Methods used for localization would
incur additional cost and further constrain the hardware
resources. In contrast, the neural network directly maps the
input image to the appropriate steering command, thereby
obviating the intermediate localization step. Nevertheless,
to make the network robust to deviations from the reference,
we would still like to train it with images at arbitrary
locations that are not on the reference trajectory. For
this, we formulate a self-supervised pipeline which uses
images from the reference trajectory to synthesize images
at arbitrary locations away from the reference. Hence, we
have inverted the problem by synthesizing images at desired
locations and training the network offline. This is in contrast
to localizing the car in relation to the reference in real time.
Please see the next Section 3.2 on view synthesis.

3.2 View synthesis

Figure 3 provides the schematics on how images at novel
view points are generated using a single image from the
reference trajectory traversed by the car. This image is
first fed to a depth estimation network to output the
corresponding depth. The depth estimation problem is
framed similar to a view synthesis one by constraining the
network to perform image synthesis using an intermediary
variable such as a depth map. If It is the target image and

Fig. 3 Describes the schematics
of synthesizing images at novel
view points using a source image
from the reference trajectory
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It ′→t is the reconstructed image from the source It ′ , then
the objective function to be minimized can be formulated as
a combination of photometric reconstruction error Lp and
edge-aware depth smoothness Ls , as follows [42]:

LD(It , It ′→t ) = μLp(It , It ′→t ) + λ Ls(It ) (3)

For the photometric reconstruction error Lp, we use a
combination of SSIM and L1 loss terms, and set α = 0.85.
μ denotes the per-pixel mask to eliminate pixels which
remain stationary between adjacent frames in the sequence.

Lp(It , It ′→t ) = min
t ′

pe(It , It ′→t ) (4)

pe(Ia, Ib) = α
1 − SSIM(Ia, Ib)

2
+ (1 −α)

∥∥Ia − Ib

∥∥
1 (5)

Edge-aware smoothness is used to prevent shrinking of
the predicted depth, where d∗

t = dt/dt denotes the
mean-normalized inverse depth. The combined loss LD is
averaged over each pixel, scale, and batch.

Ls(It ) = ∣∣∂xd
∗
t

∣∣ e−
∣∣∣∂xIt

∣∣∣ + ∣∣∂yd
∗
t

∣∣ e−
∣∣∣∂yIt

∣∣∣
(6)

This depth map is then projected to yield a 3D coloured
point cloud. Multiple images can then be synthesized from
this point cloud at desired imaginary positions [43]. Note
that certain regions in the synthesized image may be beyond
the visible field of view of the reference image. In this
case, the synthesized image may have voids. We make sure
that the imaginary camera position is chosen such that the
void regions do not occlude the drivable regions in the
image. The depth estimation network can be trained in
an entirely un/self-supervised manner [42, 44]. However,
such methods tend to suffer from bleeding artifacts at the
object boundaries [45]. This is further exacerbated for thin
objects [46]. Hence, attempting to synthesize images at
novel views may produce curved boundaries for certain

edges. Nevertheless, for the task of lateral vehicle control,
the trained neural network tends to focus on the high
level features of the image [47]. Hence, for all intents and
purpose, the network trained with synthesized images yields
similar performance as the network trained with original
images. This is also shown in Table 1 in Section 4 and
further discussed in Section 5.7.

3.3 Visual odometry

Recall that by using a neural network, we are absolved from
the requirement of having a reference trajectory at inference
time. The network also has the possibility to generalize itself
to control the vehicle in new unseen environments where no
reference trajectory is available. This is done by shifting the
requirement of having the reference trajectory at inference
time to having it during offline training of the network.
This can be obtained by running a state-of-the-art visual
odometry system [48–50]. These approaches generate the 6
Degree-of-Freedom (DoF) pose information for each frame
in the trajectory. Since the camera setup is rigidly attached
to the car, the pose of the camera can also be used to
determine the pose of the car at the corresponding frame.
Using stereo image pairs can additionally provide the scale
information [51, 52]. The camera poses are represented by a
transformation matrix T belonging to the special Euclidean
group SE(3) representing rigid body motions. It comprises
of R ∈ SO(3) and t ∈ R

3.

3.4 Neural network

The neural network is trained to take an image as input and
produce the appropriate steering angle (δ) for lateral vehicle
control. The training is done by minimizing the L1 loss
between the value predicted by the model and the first δ

of the N steering commands optimized by model predictive

Table 1 Ratio of time the car
remains within its driving lane Train Test

Our method 0.9441 0.9413

Single trajectory 0.5944 0.3117

Online MPC 0.9799 –

Supervised 0.4931 0.3945

Supervised with noise injection [16] 0.9704 0.9517

3-Camera model [3] 0.8374 0.7125

Ours + Ground Truth 0.9385 0.9355

The evaluation is done for different model configurations on both the seen (train) and unseen (test)
trajectories. Please refer to Section 5 for a detailed discussion of the different configurations
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control. This image can either be one from the reference
trajectory or can also be synthesized.

4 Experiments

There are many publicly available real world datasets
[35, 53–56] that have been instrumental for benchmarking
and evaluating various autonomous driving tasks such as
object detection/tracking, SLAM, semantic segmentation
etc. However, none of these real world benchmarks provide
steering labels for evaluation of vehicle control algorithms.
More importantly, they also do not facilitate interaction
with the environment. This interaction is necessary to
quantitatively evaluate sensorimotor control methods for
true driving quality. Codevilla et al. [57] had conducted
extensive studies to demonstrate that the true driving quality
obtained from online interaction does not necessarily
correlate with offline evaluation. In fact, they showed
that two models with similar offline performance metrics
can have significantly different driving behaviours. Hence,
offline evaluation on static images of the available real
world benchmarks would be inadequate for our task
of evaluating online sensorimotor control. In contrast,
simulation engines [58–61] aid online interaction with the
driving environment. They are therefore increasingly being
used to quantitatively evaluate contemporary vehicle control
algorithms [62, 63]. We use the CARLA simulator [60] for
evaluation and benchmark against the strategies from [16]
and [3]. Further details on our experimental setup on the
CARLA simulator are given in the following subsections.

Note that in addition to the quantitative results on CARLA,
we also provide qualitative evaluation on the real world
KITTI dataset. Please refer to Section 4.4 for more details.

4.1 CARLA simulator

The CARLA simulator has been designed to validate
various autonomous driving algorithms encompassing both
perception and control. It also supports a diverse suite
of sensors. The primary objective of this paper is to
demonstrate how a vehicle control model can be trained
merely from an unlabeled sequence of images. Therefore,
the RGB camera is the only category of sensor used in
this paper. Note that the CARLA simulator also provides
the ability to violate traffic rules which would otherwise
be infeasible and costly in the real world. Hence, we are
able to compare the performance of our method with the
supervised approach adapted from [16], wherein noise is
injected into the control signal during data collection. This
causes the vehicle to swerve off-course, thereby breaking
traffic rules. The action taken by the expert driver to bring
the vehicle back on-course is recorded. We show that the

performance of our model is comparable to this supervised
method. This is despite the fact that our method does not
require dangerous traffic violations during data collection.
Recall from the Introduction Section 1, that we have defined
the ego-vehicle to be on-course if it is driving safely within
its own lane. Otherwise, it is considered to be off-course.
Driving off-road or in the lane of oncoming traffic would be
categorized as off-course.

4.2 Data collection

We place the camera setup at the front of the ego-vehicle.
Images of size 1200 × 600 with a field of view of 110◦ are
recorded as the vehicle traverses the road in the autopilot
mode. Note that recording the steering angle executed by
the ego-vehicle during data collection is not needed for our
method. Nevertheless, for the purpose of comparison with
the supervised method, these steering commands are also
collected. We use [51] as the visual odometry algorithm
for determining the reference trajectory. This is needed for
determining the control values with MPC (Section 3.1),
which serve as the training labels for our neural network
(Section 3.4). Meanwhile, [42] is used to train the depth
estimation model in an entirely self-supervised manner. The
estimated depth is then utilized to warp the original colour
image as if the scene would be seen from a new perspective.

4.3 Quantitative evaluation results

Table 1 reports the online evaluation results for different
starting positions both on trajectories that the model had
seen during training and also the testing trajectories which
were not seen during training. Each episode is run up to
250 timesteps for natural turns. The online metric used for
evaluation is the mean ratio of time the ego-vehicle remains
within its driving lane [47]. The car is considered to be
within its own lane if no portion of it is in the lane of
the oncoming traffic or off the road and it does not collide
with other traffic participants/obstacles. For the purpose of
comparison, we additionally report the evaluation scores for
other model configurations. They are described in further
detail in Section 5.

4.4 Qualitative results

Evaluating the online performance of the neural network
for steering angle prediction is not possible on existing
real world datasets, since it requires interaction with the
captured environment. Nevertheless, we can depict the
qualitative performance of the other three components of
our framework, namely view synthesis, visual odometry and
MPC on the real world KITTI dataset [35]. The results
of visual odometry for calculating the vehicle pose have
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been included in the supplementary material. Moreover,
view synthesis and control labels from MPC are depicted
in the supplementary video on the KITTI dataset. For
visual odometry and view synthesis, images at their native
resolution of 1241 x 376 are used without further pre-
processing. However, for view synthesis, locations at farther
distances from the source image lead to visible voids at
the boundaries. This is because the field of view (FOV)
of the source image does not capture the entire FOV of
the synthesized images. Therefore, for illustration purposes,
we center crop the image to 1000 x 376 in the video. We
conduct the same qualitative evaluation on CARLA as well.
These results can also be visualized in the video.

5 Discussion

In this section, we make some observations on the
experimental results of our approach when compared with
other models.

5.1 Single trajectory model

The power of our framework comes from its ability
to synthesize additional off-course data from a single
on-course reference trajectory. To examine the significance
of utilizing the synthesized images, we train another model

only with images from the single reference trajectory.
Note that the reference trajectory is always on-course. As
can be seen in Table 1, this model’s performance drops
significantly on both the train and test sequences. There are
two plausible explanations for this:

1. Over-fitting: Firstly, the single trajectory model was
trained with fewer images, which has the tendency to lead
to over-fitting. But then, why does online evaluation on the
training trajectories yields dismal results? This is despite
that images in these trajectories were seen by the model
during training. As alluded to in [57], the training loss
is an offline evaluation metric and it does not necessarily
correlate with the true driving quality at inference. So, if the
car were to deviate even slightly from the reference training
trajectory at inference, it would come across a scene whose
corresponding image was not available in the training set.
This brings us to our second point.

2. Lack of anomalous scenarios in the training data: The
training data for the single trajectory model did not contain
such anomalous off-course scenarios. Therefore, it has
difficulty figuring out what ought to be the correct action
to take to return the ego-vehicle to its original course. This
would cause the model in taking the wrong decision, leading
the ego-vehicle to go further astray. This accumulation in
errors will eventually cause a violation of traffic rules or
even a collision. This is despite conducting an evaluation on
the same trajectories the model had seen in the training set.

Fig. 4 Shows the effect on the
performance of the various
model configurations when
different levels of perturbation
are added to the final steering
command. The performance is
reported as the mean of the ratio
of time the car remains within
its driving lane. Higher ratio
values correspond to better
performance of a method. Note
that perturbations are introduced
regularly every 15 timesteps for
a continuous duration of 5
timesteps. In the remaining 10
timesteps of the cycle, no
perturbation are added to allow
the models to recover from
deviations. Figure should be
viewed in colour
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5.2 Effect of perturbations

To further investigate this issue with the single trajectory
model, we introduce perturbation into the predicted steering
command. This is to see if and how well it can recover
from deviation on the training trajectories. As can be seen
in Fig. 4, the greater the intensity of perturbations, the more
difficult it is for the model to execute a recovery and the
worse is the performance. This is in contrast to our model,
trained additionally with synthesized images representing
potential anomalous driving scenarios. Our model therefore
has the ability to cater to such circumstances and bring
the vehicle back to its original course. It maintains a fairly
consistent performance even in light of perturbations.

5.3 OnlineMPC

This is the only approach in Table 1 that is not data driven.
Rather, it adapts the approach described in Section 3.1 by
performing real time optimizations at every ego-vehicle
state. It assumes that the ground truth reference trajectory
and the ego-vehicle state are always perfectly known, as
they can be easily obtained from the CARLA simulator.
It is not surprising to see that this online MPC approach
outperforms our method on the training set. However,
ground truth trajectory and precise ego-vehicle state are
unknown in the real world. One can determine the ego-
vehicle state in relation to the reference trajectory using
visual re-localization methods such as [64] or by using
visual image descriptors [65, 66] on the PnP algorithm
in a RANSAC scheme. Although, these visual localization
methods are highly accurate in determining the ego-vehicle
state to centimeter accuracy, they are however slower when
compared to our network (please also see Section 5.8 on
‘Computational Cost’). Moreover, our framework neither
requires a ground truth trajectory nor needs to determine
the ego-vehicle state at inference time. Instead of using the
ground truth trajectory, our method derives the reference
trajectory from visual odometry. In addition to this, instead
of localizing the ego-vehicle against the reference in real
time, we synthesize images at arbitrary locations from
the reference offline. Note that since the online MPC
approach requires a reference trajectory, its performance for
unseen test trajectories cannot be reported. However, Fig. 4
shows that it is robust to perturbations on the “training”
trajectories.

5.4 Supervised network

Table 1 also compares the performance of our method with
a supervised model; which is trained with ground truth
steering labels recorded during data collection. Note that
our approach does not require supervised labels. Yet, it

far outperforms the network trained with supervision. The
supervised model suffers from the same issue as that of the
single trajectory model described earlier in Section 5.1. It
was trained with only images on the reference trajectory.
Hence, if the vehicle deviates off-course, it is not capable
of returning back to course. The model is also not robust
against perturbations as depicted in Fig. 4.

5.5 3-Cameramodel

This approach is adapted from [3]. It is also a supervised
approach trained with ground truth steering labels but it uses
three cameras during data collection. Here, two cameras
are placed to the left and right of the central camera at
a distance of 0.3 meters each. This provides additional
deviated trajectories during training. The steering labels for
the images from these two cameras are obtained by adding
a slight bias to the steering label of the central camera. The
bias is a hyper-parameter and in our case is obtained by
respectively taking the mean of the steering values obtained
by MPC for all the left and right camera images. The
performance of the model is better than both the supervised
and single trajectory model as can be seen in Table 1
and Fig. 4. This is because the images from the deviated
trajectories expand the training distribution. However, this
comes at a cost of using three time-synchronized cameras.
Moreover, note that the performance of this model is still
worse than our approach. One explanation is that our
method of view synthesis can create an arbitrary number
of additional trajectories used for training rather than only
three.

5.6 Supervised network with noise injection

We would like to investigate whether the lack of images
depicting anomalous scenarios is the pivotal reason for
constrained performance of the supervised model. For
this we adapt the strategy of [16]. It is similar to the
supervised model, except that noise is injected into the
steering command during data collection. This would cause
the car to swerve. The corrective action executed by the
expert driver to bring the vehicle back to its original course
is recorded. Table 1 shows that the performance of such a
model trained with noise injection improves significantly.
However, note that attempting to collect supervised data
with noise injection in real traffic may be extremely
dangerous. This is because the injected noise may not only
cause the ego-vehicle to violate traffic rules but also surprise
other traffic participants resulting in them potentially taking
false decisions. Moreover, it would necessitate having an
expert driver with specialized skills to take immediate
corrective actions. This is not a pragmatic and scalable
solution.
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Fig. 5 Shows the cumulative
error of re-localization within 3
meters. The error is the
translation norm between the
predicted and ground truth in
meters

5.7 Ourmethod + ground truth data

This method is similar to ours, except that ground truth
reference trajectory and images are used for training. Recall
that our approach used visual odometry to determine the
reference trajectory and synthesized images at different
locations. Despite this, our model’s performance is at par
with the model trained with ground truth data.

5.8 Computational cost

Note that the online MPC method assumed that the state
of the vehicle in relation to the ground truth trajectory is
precisely known. Although, this information can easily be
extracted from the simulation, it will not be available in
the real world. As an alternate solution, state of the art
visual localization methods can be used to determine the
ego vehicle state in relation to a reference trajectory. Among
such methods one could use visual descriptors such as [66]
on the PnP algorithm in a RANSAC setting. This achieves
up-to centimeter (cm) accuracy. Figure 5 shows that the
method achieves a cumulative re-localization of 98% within
50 cm.

Although very accurate, it is much slower than our
network. This re-localization approach runs at a frequency
of 11 Hz on the GeForce GTX TITAN X 12 GB GPU
and 1 Hz on an Intel(R) Xeon(R) CPU E5-2637 CPU. In
contrast, our network runs faster at 25 Hz on a GPU and 16
Hz on a CPU with the same specifications. This is because
our network at inference time directly maps the RGB
image to the appropriate steering commands. It completely
eliminates the state estimation process at inference.

6 Conclusion

In this paper, we presented a framework for training a
lateral vehicle control network from an unlabeled sequence
of RGB images. The approach demonstrated improved
robustness from using additional images. These views were
synthesized from only the available on-course data but
appeared as if emerging from a deviated traversal of the
vehicle. Hence, data collection did not have to violate
traffic rules to record such deviated aberrant situations.
Moreover, steering labels were inferred from MPC rather
than being recorded by an expert driver. Experimental
results demonstrated that our approach yields on par
performance with methods that rely on additional data
collection and supervision.
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igation to the equation: turning decisions for end-to-end vehicle
control. In: 2017 IEEE 20th international conference on intelligent
transportation systems (ITSC), pp 1–8. https://doi.org/10.1109/
ITSC.2017.8317923

16. Codevilla F, Müller M, López A, Koltun V, Dosovitskiy A
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