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Abstract
The growing relevance of artificial intelligence (AI) for technical systems offers significant potential for the realization and
operation of autonomous systems in complex and potentially unknown environments. However, unlike classical solution
approaches, the functionality of an AI system cannot be verified analytically, which is why data-driven approaches such
as scenario-based testing are used. With the increasing complexity of the required functionality of the AI-based system,
the quantity, and quality of the data needed for development and validation also increase. To meet this demand, data
generated synthetically using simulation is increasingly being used. Compared to the acquisition of real-world reference
data, simulation offers the major advantage that it can be configured to test specific scenarios of interest. This paper presents
an architecture for the systematic generation of virtual test scenarios to establish synthetically generated test data as an
integral part of the development and validation process for AI systems. Key aspects of this architecture are the consistent use
of digital twins as virtual 1-to-1 replicas and a simulation infrastructure that enables the generation of training and validation
data for AI-based systems in appropriate quantity, quality, and time. In particular, this paper focuses on the application of
the architecture in the context of two use cases from different application domains.

Keywords Digital twin · Modeling and simulation · Verification and validation · Virtual testbed

1 Introduction

Emerging from the rapid development of modern AI
technologies, intelligence and autonomy are being used
in mechatronic systems to an ever greater extent. This
progress is supported by the ever-increasing potential of
hardware performance and software technology. Especially
through the use of AI, mechatronic systems are becoming
increasingly complex and the need for comprehensive
functional validation exists. The importance of functional
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validation quickly becomes apparent, considering that AI-
based approaches commonly realize tasks like environment
perception or are responsible for intelligent interaction
with a potentially unknown operational environment. The
resulting system behavior somewhat becomes opaque and
emergent behavior can no longer be predicted with certainty.

In particular, AI-based approaches built on neural
networks are characterized by their black-box nature.
Consequently, well-known module-by-module verification
approaches (e.g. from software engineering) are no longer
applicable, stating a severe challenge for their functional
validation. As a result, AI-based approaches are only
established at the subsystem level (e.g. image processing)
but not yet in system-level applications with harsh safety
considerations. The potential of AI-based approaches
is enormous, but the need for comprehensive quality
assurance of AI-based systems persists. Consequently, more
sophisticated processes for the end-to-end verification of
AI-based systems are inevitably required.

Looking at current challenges in the development and
validation of AI-based systems, some recurring points
emerge. The required amount and needed variety of data
is commonly acknowledged as a core challenge. Therefore,
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real-world tests of AI-based systems in their operational
environment are typically envisaged (e.g. test drives for
validation of AI-based driver assistant systems). They
provide an accurate evaluation of the AI performance since
the AI-based system is directly tested in its designated
operational environment. Nevertheless, several drawbacks
are not yet negligible: Real-world tests come at high costs
(financially and timely) and might state risks for entities of
the real environment (e.g. other road users). Additionally,
it is not guaranteed that all relevant conditions or scenarios
will occur during the real-world test drives (e.g. cyclist on
the street while raining). Focusing on such scenario-based
validation approaches, these incomplete data sets might
result in malfunctioning AI-based systems.

Reflecting on these considerations and challenges, it is
commonly accepted to accompany the validation process
of AI-based systems with virtual test drives. Mandatory
real-world tests are complemented by simulated tests that
provide several advantages: Parameters and conditions can
be purposefully specified, simulations are deterministic and
reproducible, and simulation data can be generated cost-
effectively and faster than in real-time. However, current
simulation-centered approaches cannot usually formally
describe scenarios and automatically generate scenario
variations. In addition, existing approaches mostly focus on
individual aspects of AI validation or are only suited for
specific application domains. The basic concepts are only
loosely coupled and have no conceptual base. A holistic
framework for the structured cross-application development
and validation process of an AI-based system does not yet
exist. In this case, the validation approach presented in this
paper meets this requirement. The goal of this research is
to provide a conceptual framework for the structured and

highly automated scenario-driven validation of AI-based
systems, that helps to build trust in the correct functioning
of the AI (see Fig. 1).

This contribution is an extended version of the following
paper [1] and focuses on a detailed overview of the
practice-oriented application of the presented architecture,
highlighting the proposed iterative process for the holistic
validation of AI-based systems. Consequently, the existing
approaches and relevant aspects of the architecture are only
briefly highlighted in Sections 2 and 3. The benefits and
versatility of the proposed architecture are demonstrated
in Section 4 by examining the validation of AI-based
systems in an automotive application as well as in the often
neglected application domain of aerospace engineering. The
contribution concludes with a summary of the results in
Section 5.

2 State of the art

The generation of synthetic data for the training and
validation of AI-based systems requires several core
technologies: formal descriptions of scenarios, a simulation
framework, and standardized processes. The following
section briefly compares and summarizes the relevant
technologies.

2.1 Standardized description of scenarios

A scenario is a formalized description of a specific
use case of a system and its operational environment.
Currently, two major specification languages exist for the
formal description of scenarios: the SCIENIC language

Fig. 1 Generation of virtual test
scenarios based on a single
scenario template (see [1])
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[2] and OpenSCENARIO [3]. The SCIENIC language
is a probabilistic programming language targeting the
description and randomization of the static environment
of a scenario. Therefore, parameters and parameter ranges
are defined. The SCIENIC language is interfaced with
various simulation tools, e.g. VerifAI [4] and CARLA [5].
The ASAM OpenX standards, on the other hand, emerged
from the automotive industry and in addition enable the
description of dynamic behavior. The standard consists of
three distinct sub-standards: OpenDRIVE, OpenCRG, and
OpenSCENARIO. The last sub-standard integrates the static
description of the environment with a behavior description
of the entities in the scene. A storyboard hierarchically
describes the behavior of all entities, by using triggers and
actions, allowing for the description of multiple concurrent
actions. Currently, parameter variations are not integrated
into the standard.

2.2 Overall system simulation infrastructures

Simulation technology and virtual methods become increas-
ingly important in product development [6], virtual com-
missioning [7], as well as the verification and validation of
technical systems [8]. The relentless advances in simulation
technology are reflected by various simulation tools, e.g. the
open source simulator for autonomous driving CARLA [5],
Tesla’s rendering and simulation-aided evaluation infras-
tructure for their AI-based autopilot [9], MSC’s Virtual Test
Drive [10], NVIDIA’s factory floor simulation [11], and
the open source traffic simulation package SUMO [12].
The developers of AI-based systems recognize this progress
and the associated potential. Consequently, synthetic data
and virtual tests are gradually being accepted and gaining
importance.

However, the mentioned simulation tools are mostly
designed for a specific application domain (e.g. autonomous
driving), so their application in other domain contexts is
difficult. To enable a cross-domain and cross-application
simulation-based development of AI-based systems, the
simulation technology must provide different perspectives
to the system, resulting in a holistic convergence of the
virtual and real world. This can be achieved through
the systematic use of digital twins, as they represent
a structurally similar replica of a real system.1 Digital
twins support transferability to real systems through their
equivalent interface and enable the creation of so-called
hybrid scenarios in which real and virtual components
interact with each other in real-time. To unleash the full

1The term digital twin has various facets and is sometimes defined very
differently, depending on the respective context. In this paper, we use
the terminology of [13] and use the digital twin as a virtual test object
(simulation aspect).

potential of digital twins, a comprehensive virtual testbed
is required. In this work, we build upon the 3D simulation
platform VEROSIM [14].

2.3 Processes for the validation of AI-based systems

Finally, it requires suitable processes to provide a frame-
work for the application of available standards and tech-
nologies. Taking a look at classical approaches from e.g.
software development reveals that mostly a formal spec-
ification of the system (i.e. the definition of subsystems
and their coupling, interfaces, functions, etc.) is needed, to
develop and validate the intended functionality. To evaluate
the quality, performance, and fault tolerance of the software
system approaches like code reviews, unit tests, and code
walkthroughs are commonly pursued [15]. Transferring this
type of established process to the development of AI-based
systems brings some unique challenges, primarily because
the functionality of the system is defined by data rather
than a formal specification. Consequently, it is of great
importance to examine and ensure the reliability and mean-
ingfulness of the data used in the development process (i.e.
evaluating the quality of data and avoiding data corruption
[16]). In the automotive industry, the so-called SOTIF (ISO
21448 - Safety of the Intended Functionality [17]) faces
similar challenges since it is designed for systems operating
in a potentially unknown environment. The SOTIF approach
especially attempts to minimize the number of unknown
unsafe situations and thus connects to the problems in the
development of AI-based systems, since data must cover
all possible relevant operational scenarios. Additionally, it
is reasonable to introduce a measure of uncertainties in the
definition of quality metrics [18] and to continuously moni-
tor the performance of AI-based systems in the development
process to perform forensics in erroneous system states [19].
Despite the variety of loosely coupled approaches, a system-
atic and comprehensive approach for the simulation-aided
development of AI-based applications does not exist yet.

2.4 Assessment of existing technologies

By now, a variety of technologies and concepts exist,
which are needed as building blocks for the simulation-
based development of AI-based systems. However, a
toolbox that combines the individual building blocks
into a comprehensive framework for the development
of AI functionality has not yet been realized. This
starts with the formal scenario description, which needs
to be able to capture both the behavior description
(e.g. OpenSCENARIO) and the formalized description of
randomized scenario space (e.g. SCIENIC). In addition,
relevant processes for the validation of AI-based systems
(e.g. SOTIF) describe a basic procedure but do not provide
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Fig. 2 Concept for systematic and target-oriented generation of synthetic data for the development and validation of AI-based systems with virtual
testbeds (see [1])

any recommendations for the technical realization of the
underlying process.

Based on the identification of the relevant technologies
and processes, this results in a framework for the
development of AI-based systems which fuses existing
technologies, allocates them within a process, and enables
a structured step-by-step validation of AI-based systems.
The resulting architecture is a blueprint for the domain-
independent view on AI development and thereby stands
out from known domain-specific approaches. The structured
consolidation of existing technologies is urgently needed
and forms a cornerstone in the development of AI

capabilities and is essential for the transfer of AI technology
to complex applications and domains not yet conquered.

3 Architecture for the generation of virtual
test scenarios

As already mentioned, the overall architecture has already
been introduced in [1]. Therefore, this section briefly
summarizes the existing parts and highlights the novel
aspects, especially the data analysis and the feedback
loop in the scenario generation process (see right side of

Abstract Scenario

Relevant Parameters

Test Environment

Digital Twins

Scenario Behavior

Fig. 3 Basic structure of the abstract scenario definition. All relevant variation parameters are defined as parameter declarations, and all scenario
entities are linked to digital twins
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Fig. 4 Basic structure of the
logical scenario definition. All
parameters defined in the
abstract scenario can be assigned
with specific variation ranges.
Based on this, the parameter
space can be explored in a
randomized or grid-based way
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Fig. 2). The basic idea of the developed architecture is to
iteratively generate scenarios, use them for simulation and
data generation, and detect shortcomings and corner cases
in the data set based on the analysis of these scenarios.
Finally, these findings can be used to close the loop and
generate additional meaningful scenarios for either training
or validation purposes in the next iteration.

The entire process begins with the definition of an
abstract scenario. The abstract scenario defines all relevant
parameters, the required entities, the test environment, and
the interactive scenario behavior. The abstract scenario
is formalized according to the ASAM OpenSCENARIO
standard (see Fig. 3). Once the abstract scenario is available,
a configuration engine supports the generation of a logical
scenario. The logical scenario spans the entire scenario
space, by assigning parameter ranges and distribution
to all variation parameters in the abstract scenario and
thus envelops all relevant test cases. Additionally, the
logical scenario enables the definition of couplings between
parameters (linear equations and inequalities), constraining
the scenario space (e.g. initial velocity of vehicle 1 needs
to be greater than the initial velocity of vehicle 2). The
logical scenario is the starting point for the exploration of
the parameter space. Therefore, the concept provides two

different methodologies: a randomization-based approach,
and a uniform rasterization of the parameter space, see
Fig. 4. The randomized exploration of the parameter space
is especially suitable for large amounts of parameters,
where the relevance of the individual parameters to the
scenario is not obvious. This approach was presented in
[20]. The rasterization approach uniformly samples the
parameter space (see the cube in Fig. 4) aiming to iteratively
identify interesting regions within the parameter space.
Once relevant sub-spaces are identified, new scenarios are
generated in these regions to generate additional relevant
data. Within this contribution, we focus on this rasterization
approach.

A randomization engine as implemented in [21] realizes
both approaches and generates so-called concrete scenarios.
These are concrete instances of the abstract scenario each
with a unique set of values assigned to all parameters. Using
the component database (a repository of digital twins), an
executable simulation model can be generated automatically
from each concrete scenario. The digital twins are combined
with the scenario behavior, forming a virtual test scenario
that can be used for data generation (Fig. 5). Details about
the automated parsing and generation of the executable
simulation model can be found in [22]. Impressions of the
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AnalysisScenario 1

…
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Fig. 5 Basic processing steps for the analysis of a test series. Each simulated scenario generates a simulation log database which is individually
analyzed by applying appropriate scenario metrics. Once all scenarios have been analyzed, the entire test series can be evaluated based on the
scenario KPIs
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generated simulation models are shown in Fig. 6, which
originates from the first application use case in the next
section.

Once executable simulation models are available, the
simulation can be carried out, either sequentially as well
as parallelized on a computation cluster. Therefore, we
developed a simple framework for the automated execution
and scheduling of the individual simulation runs based on
Python. Since we want to generate synthetic data from
each simulation run, the data generation from the virtual
test scenarios is of great importance. Therefore, we build
upon a preexisting comprehensive logging functionality
in the virtual testbed [23]. The applied logging approach
generates comprehensive SQLite databases, providing a
holistic replication of the entire simulation, which also can
be used for simulation replays. To increase the performance
of the simulation execution and reduce the amount of
irrelevant data, we applied white-list logging, only storing
the relevant data for the two use cases in the next section.

The data monitoring and analysis are realized on a newly
developed Python framework. Figure 5 illustrates the basic
steps for the analysis of a specific test series. The framework
allows to query requests to the logging databases, and
provides common data transformations and frequently used
plotting functionality. Additionally, it provides modules
to calculate key performance indicators (KPIs) based on
common metrics. These KPIs and metrics are of great
importance since they allow for the automated classification

of scenarios. For example, if a distance metric between
two vehicles becomes too small, this could indicate a
critical scenario. Similarly, a collision between objects can
be used as a classifier of an unsafe scenario. Based on
this classification, interesting parameter sub-spaces can be
identified and new scenarios can be generated subsequently.
In addition, statistical couplings between parameters or
scenarios can be analyzed, which can either highlight
critical situations or indicate the risk of shortcut learning.

Since the amount of data to be handled easily becomes
very large, it is clear that big data issues must be addressed
during data-driven processes like this. The proposed
architecture allocates these issues in the process chain and
enables experts to develop targeted solutions here. However,
the iterative scenario generation process and the flexible
logging capabilities offer the possibility of reducing the
amount of data generated so that the required application of
specific big data technologies can be scaled as needed.

A fundamental design decision for the developed frame-
work was a certain independence of the individual process
modules. This way, the individual modules can be con-
figured and combined for arbitrary use cases. By building
upon the OpenSCENARIO standard and commonly used
technologies such as SQLite or Python, compatibility with
industrial applications is inherently given. Additionally, the
individual modules can be replaced by various realizations,
allowing for flexible customization of the toolchain. Data
can be injected and gathered everywhere, making the entire

Fig. 6 Execution of the simulation scenario inside the virtual testbed showing different views on the cut-in process simultaneously
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process of data generation transparent and allowing for a
specific analysis of data at every step within the toolchain.
The flexibility and versatility of the proposed framework
should be demonstrated in the following applications.

4 Applications

4.1 Validation of an AI-based ADAS

The first application example comes from the autonomous
driving domain and centers around the validation of an AI-
based advanced driver assistant system (ADAS). As part
of a research project, a so-called Traffic Jam Chauffeur
(TJC) is being developed. The TJC is an ADAS that can be
activated in a dense traffic situation to automatically control
the vehicle. It autonomously ensures that the vehicle stays
in its lane and maintains speed if the traffic situation allows.
However, the intended operational situation is characterized
by great complexity, since vehicles are driving close to each
other and short-term changes occur (speed changes, lane
changes, etc.) that require a quick response. The TJC must
therefore be able to reliably detect the relative movement of
surrounding objects and, if necessary, brake the vehicle to
maintain a speed-dependent minimum distance to prevent
rear-end collisions.

To support the development team, we apply the presented
approach for system validation using virtual scenario tests.
For quality assurance reasons, the validation tests are to
be performed explicitly without knowledge of the internal
structure of the ADAS. We, therefore, use a digital twin
of the test vehicle in which the ADAS is integrated as a
black box. In the context of an initial risk assessment, it is
rated as particularly critical if another vehicle suddenly cuts
in, since this abruptly reduces the distance to the object in
front. In such a case, it must also be ensured that the AI
in the ADAS recognizes the cutting-in vehicle and adjusts
the Ego vehicle’s speed to re-establish a suitable safety
distance. To be able to evaluate the ADAS’s functionality

as early as possible in the development, the system should
be tested within the vehicle context. The presented concept
offers the possibility to perform virtual test series in
simulation without the need for expensive test drives with
real components.

For the identified risk of a vehicle suddenly cutting in,
we first define an abstract scenario that considers three other
vehicles in addition to the Ego vehicle, and one of them
changes to the lane of the Ego vehicle. Figure 7 represents
the initial situation graphically. In the beginning, the Ego
vehicle is surrounded by the three NPC cars, and all cars
are moving at the same speed. The positions and velocities
of the NPC cars are defined relative to the Ego vehicle,
making it very easy to move the whole test drive to a
different position inside the virtual test environment. After
two seconds, the NPC vehicle in the right lane accelerates
and, as soon as it is ahead of the Ego vehicle for more than
two seconds, it cuts into the Ego vehicle’s lane. Depending
on the distance and difference in velocity, this makes it
necessary for the Ego vehicle to react. The scenario also
includes a sudden deceleration of all surrounding vehicles
to a complete stop a certain time after the cut-in process, a
behavior that is not uncommon in a traffic jam. Therefore,
at the end of the scenario, the TJC must also bring the
Ego vehicle to a stop without hitting the vehicle in front.
To keep the scenario generic and flexible, all characteristic
parameters are declared as variation parameters.

The next step is creating a logical scenario for the first
test series. For this purpose, the variation parameters in the
abstract scenario are first evaluated for their relevance. The
initial relative longitudinal offset d1 of the cut-in vehicle
to the Ego vehicle, the overtaking velocity v2 of the NPC
car 1, and finally the time when it starts the cut-in, which
results from the headway time theadway, are identified as
particularly relevant. The logical scenario for the first test
series therefore initially defines variation ranges only for
these three parameters and assigns constant values to all
other parameters. The used variation ranges are given in
Table 1.

Fig. 7 Visualization of the
specified abstract scenario for
the automotive application
example containing four
vehicles on a road with three
lanes

EGO

NPC 2

NPC 1

NPC 3

Lane -1

Lane -2

Lane -3

Road 1
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Table 1 Variation parameters for the first data set

Parameter name Value range Unit

d1 [−10 . . . + 10] Meter

v2 [1.1 . . . 2.0] Relative factor to v1

theadway [0.5 . . . 5.0] Seconds

The reduced dimension of the parameter space resulting
from the estimation of parameter relevance allows the
application of the approach for the systematic rasterized
exploration of the parameter space. Therefore, in the
logical scenario, equally distributed ranges for the three
parameters are defined and corresponding concrete scenario
variants are generated. Every concrete scenario is a specific
OpenSCENARIO file with a unique parameter set for
all parameter declarations. Thanks to the parser, each
scenario can be selected directly in the virtual testbed
and automatically translated into an executable simulation
model when loaded. Figure 8 shows the resulting 3D model.

As mentioned earlier, we vary over three different
parameters, spanning a three-dimensional scenario space.
For the initial data set of test scenarios, all three dimensions
are sampled uniformly. This results in 64 concrete scenarios
for the first data set. With the help of the Python tool
set, all scenarios of the first test series can be simulated
automatically. Likewise, the logging of the simulation data
is carried out automatically, forming the basis for the
analysis of all scenarios.

The cube in Fig. 9 shows the sampling of the entire
scenario space described by the logical scenario. Each point
in the grid visualizes an individual simulation run. In total
64 simulations were carried out for the initial exploration
of the scenario space and the evaluation is performed using
the developed Python tools for analysis. To classify the
criticality of the scenarios, the Time-to-Collision (TTC)
metric is calculated in a post-processing step, taking into
account the velocities of the individual vehicles and their
bounding boxes. Therefore, the relative distance between
both bounding boxes x1 − x2 and the relative velocity
v1 − v2 of both vehicles are taken into account. The
TTC can be interpreted as the predicted point in time
where both bounding boxes intersect and thus both vehicles
collide. Consequently, the TTC can be used to automatically
measure the criticality of traffic scenarios. The lower it gets,
the more critical a given scenario is. If both bounding boxes
do not collide, the TTC is set to a chosen maximum value.

T T C(t) = x1(t) − x2(t)

v1(t) − v2(t)
(1)

If the TTC never drops below a given threshold of five
seconds, the scenario is classified as a safe scenario. If the
TTC drops below this threshold, the scenario is classified
as critical, since it might cause discomfort to the driver.
Collisions between vehicles (T T C = 0) are detected by
collision signals generated by the simulator and state a
severe failure of the system, which needs to be avoided.

Fig. 8 Automatically generated
executable simulation model for
the automotive example
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Fig. 9 Explored parameter space. Each point is assigned to a specific
simulation run. Circles indicate safe scenarios, squares indicate critical
scenarios and a cross indicates a scenario with a collision of the Ego
vehicle

Taking a detailed look at Fig. 9 reveals two observations:
First, there seems to be a separation plane between the
safe and critical situations, which is defined by the relative
velocity v2. Second, the scenarios with collision form an
“L-shape” in the d1-v2-plane. The first observation can
be explained easily. If the relative velocity is big enough,
the NPC vehicle will be safe in front of the Ego vehicle,
regardless of the headway time theadway and thus, a collision
can be avoided. The second observation requires more
sophisticated analysis. First of all, it is noticeable that
all scenarios with a collision are characterized by a low
headway time theadway. The red (cross) scenarios with d1 =
const. are scenarios where the NPC vehicle starts slightly
in front of the Ego vehicle. Consequently, regardless of
their relative velocity, the headway time theadway causes the
cut-in to start immediately after two seconds. Within this
period, the NPC vehicle was not able to generate enough
headway. The sensors used by the TJC are not able to detect
the NPC yet, since it is not completely in front of the Ego
vehicle. Subsequently, a collision occurs. The second line of
red (cross) scenarios is characterized by very small relative
velocities v2 = const. In combination with a small relative
distance of d1, this will have the same effect. The NPC will
perform a cut-in without the Ego vehicle being able to detect
the maneuver. Consequently, the TJC is not able to react
accordingly and a collision is caused.

Collisions must be avoided. To get a detailed understand-
ing of the transition from critical scenarios to a scenario
with collision, we perform an in-depth analysis of a critical
scenario in the direct neighborhood of a collision scenario.

Figure 10 shows the TTC calculated in post-processing. It
shows a significant indentation at 15 seconds. Comparing
this to the velocity profiles, the change in TTC indicates the
breaking of the NPC vehicle, once the traffic jam occurs.
The Ego vehicle reacts properly, reduces its velocity, and
keeps the desired safety distance. Nevertheless, another
much more striking change in the velocity profile of the Ego
vehicle can be seen, which does not correlate to the TTC.
Here, the NPC cuts in really close to the EGO vehicle. To
keep the desired safety distance, the TJC performs a hard-
breaking maneuver that shows up strikingly in the velocity
profile at 7.5 seconds. The TTC is not affected by this, since
the velocity of the NPC is greater than the velocity of the
Ego vehicle and a collision will not occur, even though both
vehicles have a really small distance from each other.

Based on these findings, we are now able to generate
new scenarios, especially targeting the small region between
critical scenarios (yellow, square) and collision scenarios
(red, cross). Additionally, to obtain more precise KPIs for
the second iteration of the validation process, it is useful
to consult additional metrics that take into account, for
example, the distance between both vehicles while cutting
in. This way, a multidimensional feature vector can be built
over time, allowing for better classification of the scenarios,
taking into account all relevant aspects of the use case.

4.2 Validation of AI-based rendezvous and docking
maneuver

The second application example originates from the
aerospace domain and deals with the automation of
rendezvous and docking maneuvers (RvD). It is a standard
maneuver for interacting space segments and can already
be carried out automatically in parts. However, for safety
and reliability reasons no AI methods have been used for
it so far. New approaches based on AI must therefore
prove their reliability in particular. However, realistic tests
are extremely difficult to perform on earth. Therefore,
virtual test scenarios provide a unique opportunity for the
introduction of AI-based controls in spaceflight, and with
the help of the methodology presented here, the training and
validation data can be generated in suitable quantity and
quality with reasonable effort. In this concrete example, we
test and validate an RvD approach control system developed
in the context of a research project. As in the previous
example, we do not have insight into the internal structure of
the control system to ensure neutral and unbiased validation
testing.

The RvD maneuver usually consists of two consecutive
phases. In the far phase, the chasing satellite is first roughly
navigated into the space sector where the target satellite
is located. Only when the chaser has reached the space
segment it changes to the near-phase approach. The global
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Fig. 10 Time-resolved analysis
of a single critical scenario from
the entire scenario space
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coordinate guidance is deactivated and instead, the chaser
starts to navigate in coordinates relative to the target using
its local sensors. Therefore, in the context of the feasibility
study described here, the chasing satellite activates a lidar
sensor that captures 3D point clouds in a cone-shaped field
of view with an aperture angle of 120 degrees. The AI-based
onboard flight control system now tries to detect the target
satellite within the captured point clouds and to approach it
by commanding the corresponding actors (here thruster). At
the end of the near approach, the chaser must have reached
the near field of the target, i.e. only a few meters away from
the target, and must have aligned its orientation to the target.

As part of a safety analysis, a risk is identified that the
chaser will improperly estimate the position of the target
satellite and, as a consequence, execute an inappropriate
or, in the worst case, even dangerous approach trajectory.
To cover this risk and to evaluate the current functionality
of the controller system we define an abstract scenario for
this near-phase approach. Figure 11 illustrates the basic
structure of the scenario. It contains two satellite entities
that are linked to the digital twins of the corresponding
satellites. The digital twin of the chaser contains a virtual
lidar sensor, virtual thruster actuators as well as the current
version of the controller system (as a black box). The chaser
has just completed the far approach phase and is therefore
at the edge of the space sector where the target is located.
We define an entry window in the yz-plane from which the
chaser enters the near approach corridor. With the activation
of the lidar and the control system under test, the near
approach begins, in which the chaser automatically attempts
to reach a suitable target position and orientation in the
required safety distance based on the sensor data. The actual
approach trajectory is therefore not determined in advance
but results from the active attitude control.

It cannot be assumed that the orientation of the target
to the input window is known at the beginning (the target
might be uncooperative). However, it is likely to have
an effect on object detection and position control within

the control system. Therefore, it is defined as a variable
parameter in the abstract scenario. Likewise, the exact
entry point within the entry window is kept variable by
two parameter declarations. This allows the creation of
very different initial situations (approach from the right,
left, diagonally above, etc.). Further parameters are kept
constant for the first test series. Since the number of relevant
parameters is still manageable, but their influence on the
approach can hardly be estimated in detail, we choose the

Target

Satellite

Chaser

Satellite

Far 

approach 

orientation

Automated 

trajectory
(near approach)

Final position of near 

approach (safety 

distance)

Chaser

entering 

window
(far approach)

Initial 

position of 

near approach

Far 

approach 

distance

Fig. 11 Visualization of the specified abstract scenario for the
aerospace application example containing a chasing satellite that tries
to perform an automated near-phase approach to a target satellite
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Table 2 Parameter ranges for the first data set

Parameter name Value range Unit

ychaser,init [−10 . . . + 10] Meter

zchaser,init [−10 . . . + 10] Meter

ϕtarget,heading [−1.571 . . . + 1.571] Radian

grid-based approach for the systematic exploration of the
parameter space in this application example again. Thus,
the next step is to derive a logical scenario that defines
appropriate value ranges for the variable parameters of the
abstract scenario. Table 2 lists the range definitions chosen
for the first iteration.

The variation engine generates 45 different concrete
scenarios for the first iteration, with each parameter sampled
in an equally distributed manner. Since it can be assumed
that the orientation of the target might have a particularly
large influence on the test result due to its irregular shape,
we sample the associated parameter with a higher resolution
than the two position-related parameters. The generated
concrete scenarios are then automatically simulated in
the virtual testbed. Figure 12 shows the 3D view of the
scenery of one concrete scenario. According to the scenario
definition, the specified digital twins are included for
the chaser and target and moved to the specified initial
positions. At the start of the simulation, both the lidar sensor
and the control system that controls 16 different thrusters
are activated in the chaser.

It is possible to display different views simultaneously
during the simulation to be able to observe the process
from different perspectives and to qualitatively examine it
manually. Figure 13, for example, shows three different
perspectives: The topmost is that of an external observer.
Here, the progress of the approach can be easily observed

as the chaser satellite slowly navigates from the right side
to the target on the left side. The two lower views, on the
other hand, are from observers moving along with the chaser
and give an insight into the perspective that the chaser has.
Additionally, the 3D point cloud taken by the sensor is
rendered as well (red points on the satellite).

The simulation is followed by the evaluation based
on appropriate metrics and key indicators, which can be
calculated automatically based on the logged simulation
data. In the presented case, the scenarios are first classified
based on their output. Therefore, a simple distance metric
D was applied, comparing the final position of the chaser
pchaser to the position of the target satellite ptarget .

D = √‖pchaser − ptarget‖ (2)

In addition, the duration of the approaching maneuver as
well as the detection output of the sensor processing system
were evaluated. Again, we used the simulator’s collision
signals to identify disastrous scenarios, where the chaser
collides with the target. In combination, these four metrics
form a feature vector that is used to classify the scenarios.

Figure 14 shows the classified parameter space for the
first iteration cycle. The scenarios marked in green (circle)
were successful, i.e. the chaser independently reached a
suitable target position based on its sensors and actuators.
The scenarios marked in gray (triangle) are those in which
the approach exceeded a predefined maximum duration for
the approach. The yellow (square) scenarios, on the other
hand, are failures where the chaser was not able to even
attempt an approach. The red (cross) scenarios indicate
particularly critical failures in which the chaser collided
with the target.

The distribution of the failures within the parameter
space confirms the problem of estimating the success
probabilities and the influence areas of the parameters in

Fig. 12 Automatically
generated executable simulation
model for the aerospace example
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Fig. 13 Execution of the
simulation scenario inside the
virtual testbed showing different
views on the near approach
process simultaneously

advance. Let us first take a closer look at the scenarios in
which the approach could not be started at all. It appears to
be some coupling between the vertical distance between the
chaser and target and the orientation of the target satellite
(representing the orientation of the approach corridor). A
more detailed examination of these scenarios reveals that the
cause of the failure lies in the environment perception by the

sensor system. The specific target satellite is characterized
by a very large solar panel mounted inclined on the tail.
The reflectivity of the laser light used by the lidar is much
lower on the solar panel than on the gold coating that
makes up most of the main body. In addition, the lidar
has only a limited resolution concerning the point density
of the generated point cloud. Therefore, the following

Fig. 14 Explored parameter
space within the RvD use case.
Each point is assigned to a
specific simulation run. A circle
indicates a successful RvD
approach, a square indicates a
scenario where the target was
not detected, a triangle indicates
a scenario where the target was
not reached within the given
time frame and finally, a cross
indicates a collision between the
chaser and target
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problem arises in the above scenarios: The target satellite
is (coincidentally) aligned in such a way that the easily
recognizable main body is completely or to a large extent
hidden by its solar panel so that the satellite is not properly
recognized by the sensor due to the limited point density.
Thus, the controller lacks the target and the chaser remains
in its initial position and waits for the target to become
visible. This example illustrates the need for physics-based
overall system simulations since an idealized sensor that did
not take into account the reflection characteristics of the
materials would not have encountered this problem.

Much more critical, however, are the failures that resulted
in a collision with the target satellite. This must be avoided
under all circumstances, which is why the causes of the
collision must be investigated in more detail (i.e. we need
to perform scenario forensics). Again, the location of the
corresponding scenarios in the parameter space does not
allow for a quick interpretation. They all have in common
that the collision occurs with the solar panel. In detail,
however, two slightly different types can be identified,
which have different causes. In the first type, the collision
occurs frontally, in the other type at the side of the chaser.
In the case of head-on collisions, the cause again lies in
the way the lidar detects surrounding objects. The target
satellite is again oriented with the solar panel facing the
chaser. Nevertheless, the sensor also has enough hit points
on the main body, which is why the approach is initially
on schedule. However, the lack of detection of the solar

panel over a long time leads to an overly optimistic distance
estimation. Just shortly before the collision, the sensor also
detects the solar panel, which leads to a sudden change
in the distance estimation. Although the control system
immediately initiates countermeasures, the collision can no
longer be prevented due to the inertia of the system and the
physical limitation of the control actuators, which is also
reflected by the dynamic simulation model.

In the case of lateral collisions, on the other hand, the
cause lies in the approach planning. The chaser approaches
the target as planned, but does not take into account the side-
mounted solar panel when aligning itself with the target. As
a result, the targeted point for the approach may be below or
too close to the solar panel, which leads to a lateral collision.
A major problem here is that the lateral approach shortly
before the collision is not visible in the sensor data and
therefore no countermeasures are initiated up to this point. A
course correction should have been made at a much earlier
point in time.

Figure 15 shows the time series of the distance estimation
for a successful approach (green, dot) and a failure with
frontal collision (red, cross). In the case of the failure, one
can see the already mentioned drop in the estimated distance
after 58 seconds. The previous gaps in the plot also result
from the solar panel. Due to the large coverage of the main
body by the solar panel, it can temporarily lead to a loss
of detection. The green curve on the other hand shows an
example of the intended behavior. In the beginning, the

Fig. 15 Comparison of the
estimated distance of the sensor
for a successful RvD maneuver
and an erroneous RvD maneuver
with collision
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measured distance decreases fairly fast, but the closer the
chaser gets to the target, the slower the approach is until the
safety distance is reached and maintained.

5 Conclusion

The validation of specific functionality is an important part
of the development process for technical systems. This
paper demonstrates the application of a structured process
for validating technical systems based on simulated test
series of the overall system in virtual operational scenarios.
This scenario-based testing is particularly suitable for cases
where the transferability of the validity of the individual
system components to the validity of the overall system
is very limited, and in cases where the internal structure
of the system itself cannot be suitably validated. The
latter is usually the case when parts of the system are
realized with AI methods. The first case, on the other
hand, occurs especially in complex and highly variable
deployment environments, since they facilitate emergent
behavior. However, a major problem that arises in black
box testing is the usually vast parameter space. The
presented process methodically addresses this problem
with a monitored iterative approach for the successive
exploration of the parameter space. This makes it possible
to create structured trust in a developed functionality, which
can hardly or only with difficulty be evaluated with classical
analytical verification methods. Another advantage is the
modularity of the individual process steps, which, thanks
to the use of standardized formats, can in principle be
flexibly exchanged and extended in their implementation.
The basic applicability of the process was demonstrated by
two feasibility studies from completely different application
areas. However, these should be extended in the future
by more extensive investigations taking into account the
efficiency in terms of memory requirements and computing
capacity. Furthermore, the current reference implementation
of the process is semi-automated and currently requires
expert knowledge at various points. Consequently, another
goal for the ongoing development of the approach lies in the
further automation of the process.
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