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Abstract
The network, with some or all characteristics of scale-free, self-similarity, self-organization, attractor and small world, is
defined as a complex network. The identification of significant spreaders is an indispensable research direction in complex
networks, which aims to discover nodes that play a crucial role in the structure and function of the network. Since influencers
are essential for studying the security of the network and controlling the propagation process of the network, their assessment
methods are of great significance and practical value to solve many problems. However, how to effectively combine global
information with local information is still an open problem. To solve this problem, the generalized mechanics model is
further improved in this paper. A generalized mechanics model based on information entropy is proposed to discover crucial
spreaders in complex networks. The influence of each neighbor node on local information is quantified by information
entropy, and the interaction between each node on global information is considered by calculating the shortest distance.
Extensive tests on eleven real networks indicate the proposed approach is much faster and more precise than traditional
ways and state-of-the-art benchmarks. At the same time, it is effective to use our approach to identify influencers in complex
networks.

Keywords Complex network · Crucial spreaders identification · Gravity model · Information entropy

1 Introduction

A complex network involves multidisciplinary knowledge
and theoretical foundations, which can effectively model
different components or factors in a complex system [1].
There is no denying that complex networks have been
applied diffusely in dissimilar fields such as natural sciences
[2–4], social sciences [5, 6] and medical sciences [7–9].
With the continuous rise of research on complex networks,
influencers identification, as an indispensable branch of
complex networks, has become increasingly important [10,
11]. Not only does the identification of key nodes have
high guiding value in theory, but also it has comprehensive
applications in diverse fields such as the transmission
of infectious disease [12], cyber security [13], biological
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information [14], and social networking services [15–17].
Therefore, a large number of excellent algorithms have been
gradually proposed. These algorithms are approximately
classified into neighborhood-based centrality [18, 19], path-
based centrality, and eigenvectors. The advantages and
specific steps of each algorithm are described in Section 2.

Recently, some interaction-based gravity model algo-
rithms have been put forward. The gravitational force of one
node on another is proportional to the degree and inversely
proportional to the distance between them in the gravity
model. The algorithm based on the law of universal grav-
itation were put forward by Li et al. [20]. In addition, Liu
et al. [21] further improved it. The high computational com-
plexity is weakened, and the noise that may be generated
by long-distance interactions is reduced. Li et al. [22] put
forth a generalized gravity model (GGC for short), which
takes into account the local clustering coefficient as the
local information. But the parameters are more difficult to
determine.

However, most of the above methods only consider local
information or global information, which has certain lim-
itations. The method that only considers local information
creates the advantage of easy calculation. But it does not
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measure the structural information of the entire network,
which leads to partial and inaccurate results. In addition, in
some applications like the spread of infectious diseases, it is
necessary to consider the global impact of nodes. This pro-
cess needs to calculate how many other nodes are infected
by infectious nodes within a certain period of time, which
takes into account global information. At the same time, it
is not feasible to consider only the global impact, which
leads to high complexity. In some cases, this limitation will
hinder its application. For example, it is not suitable for
large-scale networks. Therefore, there is an open issue that
is how to take advantage of local and global conditions to
evaluate the influencers in complex networks. In order to
settle the problem, a generalized mechanics model based
on information entropy is proposed (named as Information
Entropy-based Gravity Model, INEG for short), which com-
bines local and global information. INEG not only makes
the obtained results more accurate, but also reduces the
computational complexity.

The main contribution of the paper is that information
entropy is used to measure the uncertain information
around the nodes. Uncertain information can be regarded
as the uncertainty of the node spreading information to
its neighbors. In other words, it is the probability that the
neighbor is selected by the node. In the local information,
INEG takes into consideration the influence of neighbor
nodes in detail. The relative score is introduced in the global
information, which is expressed as the weight of each node
in the entire network. All in all, our main innovation is
an effective combination of local and global information.
What’s more, another highlight of this paper is that location
information is introduced. The degree of a node is treated
as mass in the traditional gravity model, which is rough.
In fact, the influence of a node is not only related to its
degree, but also to its position in the network. Nodes at the
core of the network tend to be more important than edge
nodes because of the higher connection density between
core nodes. Further, nodes with higher connection density
are more able to influence other nodes. For example, there
are two nodes of the same degree at different locations in
the network. Obviously, a node at the core of the network
has more influence than a node at the edge of the network.
Therefore, location information needs to be considered in
identifying critical nodes. Through the proposed inheritance
rule, the obtained b-index is used to record the distance
between the node and the peripheral part. The f -index is
used to correct nodes with low b-index but close to the
core of the network. Finally, the node mass with location
information is generated according to the mixed index
composed of b and f .

The rest of this article is organized as follows. First of all,
Section 2 describes some preliminary knowledge and basic
algorithms of complex networks briefly. At the same time,

three state-of-the-art approaches are given. Furthermore, the
improved INEG method is presented in Section 3. Then,
Section 4 demonstrates the rationality of our approach
through several experiments. Some applications of this
method are discussed in Section 5. Finally, the conclusions
and future prospects are analysed in Section 6.

2 Related work

The representative methods based on neighborhood central-
ity include degree centrality (DC for short) [23], K-shell
decomposition [24–28], and H-index [29] methods. DC
holds the view that a node with more neighbors has a greater
influence [23]. Nevertheless, the main disadvantage of DC
is that only local information is considered. The K-shell
decomposition [24] cogitates the location information of the
nodes in the network. It claims that a node with a more cen-
tral position in the network generally has a greater influence.
Notwithstanding, its degree is smaller. But its result is too
rough to discriminate nodes. The H-index deems that nodes
connected to multiple neighbors with high degrees are more
influential. Besides, closeness centrality (CC for short) [30]
and betweenness centrality (BC for short) [31] are two rep-
resentative path-based centralities ways. CC [30], which
takes into account the global information of the network,
evaluates the significance of one node by summarizing all
the distances between it and the other nodes in the network.
While BC [31] cogitates the number of shortest paths pass-
ing through a target node. Two well-studied methods based
on eigenvector are the eigenvector centrality (EC for short)
[32] method and the PageRank algorithm (PC for short) [33,
34]. For EC [32], the influence of a node rests with both the
number of its neighbor nodes and their significances. But
the information of other nodes connected to a node is com-
pletely used to evaluate the importance of the node. PC [33]
ranks web pages on the basis of the link relationships of
web pages. For PC, the importance of a page in the World
Wide Web is determined by the number and quality of the
pages that link to it. Hence, if a page is pointed to by many
high-quality pages, the quality of this page is also high.

In the following subsections, firstly, the specific steps of
the above methods are described. Then the recent algorithms
concerning generalized mechanics model are reviewed.
Lastly, two state-of-the-art algorithms are introduced.

2.1 The classic measures

2.1.1 Degree centrality

DC, which describes the direct influence of nodes, is the
simplest and most intuitive way to evaluate the importance
of nodes in the network. It claims that a node with a higher

1 3

18451



S. Li and F. Xiao

degree can directly affect more neighbors, which means it is
more crucial. In order to compare nodes that have the same
degree in networks of different scales, a normalized DC [23]
is given, which is defined as follows:

DCi = ki

n − 1
(1)

where ki = ∑
i aij is the degree of node i, aij stands for the

connection between node i and node j , and the denominator
n − 1 is the maximum degree value possible for the node.

2.1.2 K-shell algorithm

The K-shell algorithm emphasizes the location information
of nodes and quantifies the importance of nodes by
assigning them to different shells. The method considers
that the nodes in the center of the network are more
important, while the nodes closer to the edge are less
important. Nodes with larger shells are closer to the network
core. The specific steps of the K-shell algorithm are as
follows. In the first step, nodes with degree k = 1 and
their connected edges are sequentially removed from the
network. Since the first step in the removal process may
reduce the degree of the node, it is necessary to continue to
remove the node with degree k ≤ 1 and its connected edges.
In the second step, when there are no nodes with degree
k ≤ 1 in the network, create 1−shell for the nodes removed
in the first step and let their shell = 1. In the third step, the
degree value is incremented by 1, and the above process is
repeated until each node has a unique corresponding shell.
After the execution of the above process, 2−shell, 3−shell

and so on can be obtained. Finally, all nodes in the network
are divided into different shells, and the nodes in each shell
have the same shell value. Obviously, nodes in the same
shell are considered to have the same importance, while
nodes in the inner shell have higher influence.

2.1.3 Closeness centrality

CC determines the significance of a node by summarizing
the distance between the target node and all other nodes.
If the average distance between a node and other nodes is
smaller, the influence on the network is greater. Given a
connected network with n nodes, the CC [30] of node i is
defined as:

CCi = n − 1
∑

j �=i dij

(2)

where di stands for the average shortest distance from node
i to other nodes in the network, and dij is the shortest path
distance between node i and node j .

2.1.4 Betweenness centrality

BC describes the flow transmitted through the shortest path
between pairs of nodes in the network. It evaluates the
importance of nodes by calculating the concentration of
paths. BC clings to the perspective that a node would have
a greater influence if there are more shortest paths pass
through it. The BC [31] of node i is defined as:

BCi =
∑

i �=s,i �=t,s �=t

gst

Gst

(3)

where Gst stands for paths between node s and node t , and
gst is the shortest paths between s and t via node i.

2.1.5 Eigenvector centrality

The EC focuses on the surrounding environment where the
node is located, such as the quantity and quality of neighbor
nodes. And its score value is related to the sum of the scores
of its neighbors. Given the adjacency matrixA of a network,
the EC [32] of node i is defined as follows:

ECi = xi = 1

λ

n∑

j=1

aij xj (4)

where xi is recorded as the importance metric value of node
i, which is the value of the ith term in the normalized
eigenvector of the largest eigenvalue of A. λ is a non-zero
constant, which meets the following requirements when it
reaches a steady state after multiple iterations:

Ax = λx (5)

where x is the eigenvector corresponding to the eigenvalue
λ of matrix A.

2.1.6 PageRank algorithm

PC is the most famous algorithm in the field of web page
ranking. At the initial moment, each node is given the same
PR, and then iterated. At each step, the current PR of each
node is equally assigned to all the nodes it points to. The
process will end until the PR of each node is stable. The
new PR of each node is the sum of its obtained PR, so the
definition of the PR of node i at time t is as follows [33]:

PRi(t) =
n∑

j=1

aji

PRj (t − 1)

kout
j

(6)

where kj stands for the out degree of node j .
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2.2 Themeasures based on gravity model

2.2.1 Gravity centrality algorithm

Inspired by the law of universal gravitation, gravity
centrality (GC for short) regards the node’s degree as mass,
and the shortest path distance in the network as the distance
between two nodes. In order to solve the time-consuming
and noise problem, a truncation radius is introduced here.
The GC of node i is defined as [20]:

GCi =
∑

i �=j,dij ≤R

ki × kj

d2
ij

(7)

where ki and kj denote the degree of node i and node
j respectively, dij represents the shortest path distance
between node i and node j , and R stands for the affected
radius. Li et al. [20] found an empirical relationship between
the truncation radius R and the average path length 〈d〉
through a large number of experiments. Therefore, the best
results are obtained when R is set to 0.5 〈d〉.

2.2.2 Weighted gravity centrality algorithm

The weighted gravity centrality (WGC for short) assigns a
certain weight to each node through the eigenvector, which
is an improvement to GC, and it can be defined as follows
[21]:

WGCi =
∑

i �=j,dij ≤0.5〈d〉
ei × ki × kj

d2
ij

(8)

where ei is the ith value of the normalized eigenvector
corresponding to the largest eigenvalue of matrix A.

2.2.3 Generalized gravity centrality algorithm

GGC [22] regards the propagation ability of the node as the
mass. A network is given, and it is defined as:

GGCi =
∑

i �=j,dij ≤0.5〈d〉

e−αCi × ki × e−αCj × kj

d2
ij

(9)

where dij indicates the distance between node i and node j ,
and R is the influenced radius. α (α ≥ 0) is a parameter,
which can be flexibly modified in practical applications. Ci

and Cj are the clustering coefficients, where Ci = 2ni

ki (ki−1) ,

Cj = 2nj

kj (kj −1) , ki and kj denote the degree of node i and
node j respectively.

2.3 Two state-of-the-art measures

2.3.1 Local information dimensionality

The local information dimensionality (LID for short) [35]
uses Shannon entropy [36, 37] to consider the number of
nodes in each box. The information [38–42] of the nodes is
adequately measured [43]. The LID of node i is defined as:

LIDi = − d

dlnl
(−ni(l)

N
ln

ni(l)

N
) (10)

where d represents the derivative, l stands for the size of the
box, ni(l) denotes the number of nodes in the box, and N

shows the total amount of nodes in the network.

2.3.2 Fuzzy local dimension

Because the distance from each node to the central node is
diverse, the contribution of each node is also different. As a
result, fuzzy sets [44–46] are used for assigning nodes that
contribute to the local dimensionality [47] in the fuzzy local
dimension (FLD for short) [48]. The definition of FLD is as
follows:

FLDi = d

dlogrt
log

∑N
j=1 Aij (ε)

Ni r

(11)

where rt stands for the radius from the center node i, ε

shows the size of the box, and Ni r represents the number
of real nodes when the shortest distance between i and j is
less than the ε. Aij (ε) represents the membership function
when the distance from j to i is less than ε, where Aij (ε) =
exp(− d2ij

ε2
).

3 Proposedmethod

3.1 Algorithmic procedure

In this paper, a generalized mechanics model (named
as Information Entropy-based Gravity Model) based on
information entropy is proposed. The highlight of our
approach is that the influence of each neighbor node is
considered in the local information. INEG uses entropy
to score each neighbor node, and finally each node is
assigned to an objective score. The global information is
quantified as the distance between each pair of nodes, and
the objective score of each node is converted into a relative
score to modify the relative interaction between nodes.
What’s more, location information is introduced to form the
mass. The major contribution of this model is to combine
local information and global information effectively, and
form the relative score of each node objectively. It consists
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of the following five steps, and the flowchart is shown in
Fig. 1.

Step 1: Construct the network.
Input a real connected undirected network, and output

the adjacency matrix of this network.
Step 2: Calculate the degree distribution and the shortest

distance.
The adjacency matrix is input, the degree of each node

and the shortest distance between different nodes are
output.

Step 3: Calculate the information entropy and get the
weight.

The adjacency matrix and the degree distribution
matrix as input, then the information entropy of each
node is calculated. Finally, the weight of each node is
output.

Step 4: Calculate the mass of the nodes.
Input the degree distribution matrix from the second

step and output the mass of nodes with position
information.

Step 5: Calculate the interaction force and get the
influence node.

Input the mass, shortest distance, and weight of each
node. Then the interaction force between the nodes is
calculated. Output the ranking of the node influence in
the complex networks.

We will introduce each step in detail in Section 3.2 to
Section 3.6.

3.2 Step 1: construct the network

Given a real connected undirected network represented by
G(V, E), where V and E are the set of nodes and edges
respectively. And the adjacency matrix A is used to store
G, where the element aij in the matrix A represents the
connection relationship between the node i and the node j .
aij = 0 means there is no connection between i and j . On
the contrary, aij = 1 means there is a connection between i

and j .

Fig. 1 The flow of the INEG
algorithm. INEG has five steps,
and the final result is composed
of three factors
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3.3 Step 2: calculate the degree distribution
and the shortest distance

The adjacency matrix A of the network is given, then the
degree of node i can be defined as follows:

ki =
∑

j

aij (12)

where ki denotes the degree of node i, and aij represents
the connection between i and j . At the same time, the
shortest distance between disparate pairs of nodes is defined
as the number of edges on the shortest path connecting
these two nodes. The shortest path is an ordered list
(PAT Hij = {(i0, i1), (i1, i2), . . . , (in−1, in)}) containing
the fewest connections, the number of which is L. The
shortest distance dij is the length L of the shortest path. In
this paper, Floyd’s algorithm [49] is used to calculate the
shortest path in the network.

3.4 Step 3: Calculate the information entropy
and get the weight

Each node in the network is affected by the global network
and the local network. The local network of any node i

in a complex network is denoted by L(N, D), where N

represents the set of nodes in the local network, D denotes
the degree set of each node in N . As shown in Fig. 2, the
local network of node 1 is composed of blue nodes. N =
{1, 2, 3, 4, 5}, D = {4, 2, 3, 3, 4}. We use P(i) to represent
the probability set of i, which is defined as follows:

P(i) = [p(i, 1), p(i, 2), . . . , p(i, s), . . . , p(i, m)] (13)

The local area network of each node includes its neighbor
nodes and itself, so the scale m of the probability set is the

Fig. 2 An instance. The local network about node 1

number of node sets N . The local probability set p(i, s) of
node i is defined as follows:

p(i, s) = ks
∑m

u=1 ku

(14)

For node 1, m = 5, and the probability set of node 1 is
P(1) = [ 4

16 ,
2
16 ,

3
16 ,

3
16 ,

4
16 ].

In the traditional gravity model, only the influence
caused by the degree and distance of the node is considered,
but the neighborhood information of the node is not
considered. A node’s neighbor degree distribution is used to
represent its neighborhood information. If a node’s neighbor
degree distribution is more uniform, it will have less
influence on the deviation of information propagation. For
example, there are two nodes in the network with the same
degree. If the neighbor degree distribution of a node is more
uniform, the uncertainty in the direction of information
diffusion will be greater. This means that it can spread the
information better, and obviously its influence is greater.
For another node whose neighbor degree distribution is
not uniform, it has a higher probability of propagating
information to nodes with a smaller degree. Therefore, it
is less important. To quantify the degree distribution in
the local network of nodes, the information entropy is
introduced. It is well known that information entropy is
used to measure the chaotic degree of distribution. The
more uniform the distribution is, the greater the information
entropy is. Information entropy, the expectation concerning
the total amount of information, is defined as follows:

Ei = − 1

log(n)

∑

p(i,s)∈P (i)

p(i, s) log(p(i, s)) (15)

The function of the coefficient 1
log(n)

is to make the data
distributed between 0 and 1. In Fig. 2, the entropy E1

representing node 1 is the relative score of node 1 in the
local network. E1 = − 1

log(5) × ( 4
16 log

4
16 + 2

16 log
2
16 +

3
16 log

3
16 + 3

16 log
3
16 + 4

16 log
4
16 ).

3.5 Step 4: calculate themass of the nodes

Traditionally, a node’s K-shell value equal to x indicates
that it forms a complete subgraph with x other nodes in
the network (this complete subgraph contains x + 1 nodes).
A larger x denotes that the complete subgraph formed by
it is larger, which means that it has a higher connection
density. That is to say, a node with a larger K-shell value
is more important. However, the hierarchical results of the
traditional K-shell algorithm are rough, and nodes in the
same shell cannot be distinguished. Therefore, a mixed
location index km, which is the sum of the b index and the
f index (km = b+f ), is proposed. Figure 3 visually shows
the b and f values of the nodes in the network. The specific
calculation process is as follows.
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Fig. 3 The b and f of nodes in
a network. The red nodes
indicate that they are in shell 3,
the blue nodes indicate that they
are in shell 2, and the white
nodes indicate that they are in
shell 1. The red part is called the
network core

1. The calculation process of the b index
The b-index is used to measure the distance of a node

from the periphery of the system. A global iteration
counter is introduced based on the traditional K-shell.
In order to highlight the importance of the core part
compared to the periphery and to distinguish the nodes
as much as possible, inheritance rules are proposed.
Whenever the algorithm runs to a new shell (ie shell +
1), the b value of the node in the new shell will first
inherit the b value from the neighbor nodes in the
previous shell. Then, the number of global iterations to
delete itself is counted. That is to say, a node’s b value is
equal to the b of its neighbors in the previous shell plus
its own global iteration b. The global iteration b index
actually refers to the number of iterations to delete node
i. The allocation steps for the b-index are described
below. Initialize shell = 1 and b = 1. In the first
step, the node with degree equal to shell (shell = 1)
is removed from the graph and assigned b = 1. When
there are nodes in the graph with degree equal to shell,
repeat this step, but increase b by 1. The second step,
first increment the shell by 1. Next, the initial b-values
of all nodes in the new shell are equal to the sum of
their neighbors’ b-values in the previous shell. Nodes
with degree equal to shell are then again removed from
the graph, and the global b value for a given counter is
added to the b of the node. Each time a round of node
deletion is performed, the b index is incremented by 1.
When there are nodes in the graph with degree less than
or equal to shell, this process is repeated until all nodes
are removed. In this approach, nodes with larger b are
closer to the core of the graph. A node whose b-value is

not less than any of its neighbors’ b-values is considered
a system core, and a system can have multiple cores.

2. The calculation process of the f index
The f -index measures how close a node is to the

system core, and is primarily used to try to improve
those nodes that are close to the system core but have
lower b. The f -index depends on the b-index assigned
in the previous step, and the specific process is as
follows. In the first step, the nodes located in the core
of the graph are identified. Then, the geometric mean
of the b-index of these nodes is obtained, which is the
f -index value of these nodes. In the second step, the
traversal starts from the core of the graph. All nodes
with the highest f value in the graph assign values
(f −1) to the f -index of their undeleted neighbor nodes.
After the assignment, remove from the graph those
nodes with the largest f . In the third step, this process
is repeated until all nodes in the graph are deleted.

Finally, the mass of node i introducing location
information is expressed as follows:

Mi = e
kmi−km(min)

km(max)−km(min) × ki (16)

where kmi represents the mixed position index of node i.
km(max) and km(min) represent the maximum and mini-
mum values of the mixed location indicators in the graph,
respectively. kmi−km(min)

km(max)−km(min) stands for normalization of
mixed location metrics. Obviously, when kmi = km(min),
the location information will have no effect on the mass of
the node. This means that when the mixed location metric is
minimal, the main factor affecting node mass is degree.
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3.6 Step 5: calculate the interaction force

In the mechanical model, the gravity is proportional to the
product of their masses and inversely proportional to the
square of their distance. By analogy with the mechanical
model and combining the above steps, the interaction force
at node i is defined as:

INEGi =
∑

dij ≤0.5〈d〉
Ei × Mi × Mj

d2
ij

(17)

where dij indicates the shortest distance between i and
j . R = 0.5 〈d〉, which follows the setting principle of
(7). In general, the generalized mechanics model based on
information entropy consists of three parts: the mass, the
shortest distance, and the information entropy weight of the
node itself.

4 Experiments

In this section, we conduct three different experiments on
eleven real networks and compare them with ten different
methods in order to test the effectiveness of INEG.

4.1 Description of the data set

Eleven networks in the real world are selected, including
collaboration networks (Jazz [50], NS [51], and GrQc
[52]), communication networks (Email [53] and EEC
[54]), social networks (PB [55], Facebook [56], and WV
[57]), transportation networks (USAir [58]), infrastructure
networks (Power [59]) and technical network (Router [60]).

Jazz [50] describes the different collaborative relation-
ships between jazz musicians. NS [51] shows a collabora-
tive network of scientists. In Jazz and NS, a node denotes a
musician and a scientist respectively, and an edge represents
the cooperation between any two musicians or scientists.
GrQc [52] covers collaborative scientific papers on gen-
eral relativity and the quantum universe from the arXiv
preprint site. Email network [53] reveals the email exchange
among members. EEC [54] depicts a network of European
research members exchanging mail. For Email and EEC, a
node indicates a user. If two users communicate with each
other, there will be an edge between a pair of nodes. PB
[55] represents the blogs’ connection relationship in the
USA. The Facebook social circle is described in Facebook
[56]. The dataset includes node features (profiles), circles,
and ego-networks. WV [57] summarizes the network of
Wikipedia voting issues. In Wikipedia, in order for a user
to become an administrator, an administrative request needs
to be issued. Then, the Wikipedia community decides who
is promoted to be an administrator through public voting.
USAir [58] is the American transportation aviation network,
which describes the major airports and corresponding air-
lines in the United States. A node indicates an airport, and
an edge denotes airlines between different airports. Power
[59] represents the power grid in the western United States.
For Power, the node represents a generator, converter, or
substation. And an edge indicates a power line. Router [60]
denotes a symmetrical snapshot of the Internet structure at
the autonomous system level. These data sets can be down-
loaded from http://snap.stanford.edu/data/ and http://vlado.
fmf.uni-lj.si/pub/networks/data/.

The specific information of these networks is shown in
Table 1, where N represents the node, E denotes the edge.

Table 1 Some basic topological characteristics of eleven selected real-world networks

Type Network |N | |E| <d> <k> C

Small-scale Jazz 198 2742 2.2350 27.6970 0.6175

USAir 332 2126 2.7381 12.8072 0.6252

NS 379 914 6.0419 4.8232 0.7412

EEC 986 16064 2.5869 32.5842 0.4505

Email 1133 10903 3.6060 9.6240 0.2202

PB 1222 16714 2.7375 27.3552 0.3600

Large-scale Facebook 4039 88234 3.6925 43.6910 0.6170

GrQc 4158 13422 6.0494 6.4560 0.6648

Power 4941 6594 18.9892 2.6691 0.1065

Router 5022 6258 2.4922 6.4488 0.0329

WV 7066 100736 3.2475 28.5129 0.2090
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〈d〉 shows the average value of the shortest distance in the
network, 〈k〉 represents the average value of the network. C
is the clustering coefficient of the network.

4.2 Simulation

4.2.1 Top-ten nodes

The SI model is the simplest infectious disease model,
which can be used to evaluate the spreading ability of
each node and reveal the influence of nodes. In the SI
model [61], the nodes of the network are segmented into
two states: susceptible state (Class S) and infectious state
(Class I ). The susceptible nodes refer to the nodes that
don’t have the disease, but lack immunological competence,
and are prone to be infected after contact with the infected
nodes. Infected nodes refer to nodes infected with infectious
diseases, which have a probability to affect their neighbor’s
susceptible nodes and turn them into infected state. Initially,
one selected node (called the seed) is in the I state while the
other nodes are in the S state. When the process begins, the
initially infected node has an ability to infect its surrounding
nodes in S state with the probability β. Castellano and
Pastor-Satorras [62] suggest that the infectious rate β is
slightly above the epidemic threshold probability βc(βc =

〈k〉
〈k2〉−〈k〉 ). The standard SI model sequence for each network

is obtained according to the epidemic threshold probability.
The top-ten nodes of the twelve measures on eleven

different networks are demonstrated in Table 2. Because
different methods evaluate importance from different
aspects of the network structure, the ranking lists they
obtained would be different. The ranking list of the SI
model, which represents the standard sequence of the
network, shows the top-ten key nodes in each network. For
a clearer display, the same nodes in the ranking list for each
measure and the standard sequence are shown in red, and
different nodes are shown in black. For example, if node 1
is identified by the standard SI model and also identified by
the DC, node 1 in the DC is marked in red. The effectiveness
of each method is demonstrated by comparing each measure
with the standard sequence. Compare each measure to the
standard sequence to demonstrate their effectiveness. A
method is more efficient if it has more nodes in common
with the standard sequence.

It can be seen from Table 2 that the effectiveness of INEG
is generally relatively high in all networks. In Jazz, INEG
has six nodes that are the same as the standard sequence. It
is second only to DC, CC, and GGC. For USAir, the ranking
list for each method is almost identical to the standard
sequence. The recognition performance of INEG is only
inferior to GGC and LID in NS. Except for CC, BC, LID,
and FLD, other measures have eight nodes that are the same
as the standard sequence in EEC. For Email, CC and LID

are tied for first place in performance. In PB, DC and PC
are identical to the standard sequence. For Facebook, EC
has the worst performance. For GrQc, the capabilities of
INEG, DC, GC, and WGC are tied for first place. INEG’s
performance ranks third in Router. For WV, LID identifies
two vital nodes, which proves its performance is not good.

4.2.2 Individuation

The Individuation experiment, which is used to count the
frequency of nodes under different rankings, is defined as
follows:

Frequency = nu

n
(18)

where nu represents the number of nodes with unique
scores, and n denotes the total number of nodes in the
network. The frequency metric depicts the proportion of
nodes with unique scores in the network. The experiment
is used to evaluate the ability to distinguish nodes of each
method. An approach with a larger rank and a smaller
frequency means that it scores nodes more spread out.
Therefore, this method can better distinguish the importance
of nodes in the network. For example, if a method assigns
the same score to all nodes in extreme cases, the ability
of this method to distinguish nodes is extremely poor. This
means that all nodes are ranked first and the method cannot
identify crucial nodes. The specific values of the experiment
are shown in Table 3. Red indicates the best performance,
blue represents second, and green denotes third. What’s
more, the macro effects on ten networks are shown in Figs. 4
and 5.

For Jazz, the highest ranking and lowest frequency are
obtained by INEG. INEG’s capability is only inferior to
WGC in USAir. INEG’s performance ranks second in NS.
For EEC and PB, INEG defeats other methods. WGC and
INEG tied for first place in Email. For Facebook, GrQc, and
Router, the performance of INEG is only inferior to WGC.
In WV, the best performance is demonstrated by INEG.

4.2.3 Kendall’s tau coefficient

The Kendall correlation coefficient [63] is named after
Maurice Kendall, and often uses the Greek letter τ to
indicate its value. It is a statistical value used to measure the
correlation between two random sequences. Two random
sequences X and Y with N elements are given, and their
ith (1 ≤ i ≤ N) elements are represented by Xi and Yi

respectively. At the same time, the corresponding elements
form a set XY , which contains elements (Xi, Yi) (1 ≤ i ≤
N). Considered any pair of elements (Xi, Yi) and (Xj , Yj )
in the set, whenXi > Xj and Yi > Yj orXi < Xj and Yi <

Yj occurs, this pair of elements is regarded consistent. When
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Table 2 The similarity analysis of the top-ten nodes ranked by ten diverse approaches in ten distinguishing networks

Standard Classic desoporPtra-eht-fo-etatSralimiS

Rank SI model DC CC BC EC PC GC WGC GGC LID FLD INEG

Jazz

1 8 8 8 8 100 8 8 100 8 8 8 100

2 100 100 100 155 4 100 100 8 100 131 131 4

3 194 4 131 100 8 131 4 4 131 194 194 8

4 131 131 194 186 131 4 131 131 4 32 32 131

5 69 194 69 131 80 186 80 80 194 79 69 80

6 4 80 4 136 129 136 194 129 69 69 53 5

7 59 129 32 127 5 194 129 194 162 150 111 129

8 162 69 53 60 194 69 69 5 53 155 186 32

9 111 162 111 28 69 28 5 69 129 173 79 194

10 67 77 162 69 53 175 53 53 80 4 49 69

USAir

1 118 118 118 118 118 118 118 118 118 118 118 118

2 261 261 261 8 261 261 261 261 261 67 261 261

3 255 255 67 261 255 182 255 255 255 261 67 255

4 182 152 255 201 182 152 182 182 182 201 255 182

5 166 182 201 47 152 255 152 152 152 47 201 166

6 67 230 182 182 230 230 230 230 166 255 182 152

7 152 166 47 255 112 166 166 166 230 166 166 67

8 201 67 166 152 67 201 67 67 67 248 47 112

9 230 112 248 313 166 67 112 112 201 182 248 230

10 248 201 112 13 147 8 147 147 112 112 112 176

NS

1 26 4 26 26 4 26 4 4 4 51 51 5

2 5 5 95 51 5 4 5 5 26 26 95 4

3 4 26 51 169 16 5 26 16 5 52 231 16

4 51 16 231 95 15 95 16 15 16 67 26 26

5 231 67 100 67 45 67 15 45 51 95 52 231

6 1 70 52 5 46 16 51 1 95 5 5 15

7 52 95 5 231 47 32 95 46 231 169 169 95

8 95 15 44 100 176 51 231 47 67 16 100 70

9 16 32 234 44 177 8 67 176 52 23 170 51

10 169 51 297 66 250 70 70 177 169 231 76 67

EEC

1 161 161 161 161 161 161 161 161 161 161 161 161

2 122 122 83 87 122 122 122 122 122 83 83 122

3 83 83 122 6 83 83 83 83 83 122 122 83

4 63 108 108 83 108 108 108 108 108 108 108 108

5 87 87 63 122 63 87 63 63 63 63 63 63

6 108 63 87 108 435 63 87 435 87 87 87 250

7 435 435 435 14 250 6 435 250 435 435 435 184

8 184 14 167 378 184 14 250 87 167 167 167 167

9 6 167 250 63 87 167 167 184 184 250 250 435

10 130 184 65 65 167 435 184 167 250 65 65 87
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Table 2 (continued)

Standard Classic Similar State-of-the-art Proposed

Rank SI model DC CC BC EC PC GC WGC GGC LID FLD INEG

Email

1 333 105 333 333 105 105 105 105 105 105 333 105

2 105 333 23 105 16 23 42 16 333 333 23 42

3 23 16 105 23 196 333 16 196 42 23 42 333

4 42 23 42 578 204 41 333 42 23 41 105 41

5 52 42 41 76 42 42 23 333 41 42 76 299

6 3 41 76 233 49 233 196 23 16 233 468 23

7 233 196 233 135 56 16 41 204 196 76 41 16

8 332 233 52 41 116 355 76 49 233 52 233 434

9 378 21 135 355 333 21 3 3 76 135 52 196

10 135 76 378 42 3 24 233 116 52 3 378 233

PB

1 127 127 838 672 127 672 127 127 838 127 838 127

2 838 838 127 127 48 127 838 48 127 838 890 48

3 497 672 497 768 497 768 48 497 497 497 673 497

4 672 48 48 838 566 838 497 838 48 48 592 566

5 566 497 890 497 283 497 566 566 672 672 639 283

6 768 768 566 1178 147 48 672 283 566 768 692 838

7 48 1006 768 48 838 1006 1006 147 1006 566 497 147

8 922 566 922 782 84 922 922 498 922 890 566 384

9 1178 922 1178 922 384 1178 890 253 768 922 101 119

10 1006 1178 672 566 498 566 830 384 890 1006 127 498

Facebook

1 108 108 108 108 1913 3438 108 1913 108 108 108 1913

2 1685 1685 59 1685 2267 108 1913 2348 1913 1685 429 108

3 1913 1913 429 3438 2207 1685 1685 2544 1685 1913 564 2348

4 3438 3438 564 1913 2234 1 2348 2267 3438 484 1466 2544

5 1942 1 1685 1086 2465 1913 2544 2234 2544 349 1719 2267

6 2348 2544 172 1 2143 349 2267 1986 2348 415 1578 1986

7 2544 2348 349 699 2219 687 1986 2143 1889 1 607 2234

8 1719 1889 484 568 2079 3981 2234 2207 1801 429 367 2207

9 484 1801 415 59 2124 415 1889 2411 1664 377 518 2143

10 1585 1664 377 429 1994 699 2143 2219 1353 476 527 2219

GrQc

1 3348 3348 2129 2129 3348 2174 3348 3348 3348 3261 2129 1924

2 1924 3388 2205 1525 437 2129 1924 3388 3614 2139 3956 3388

3 1065 1924 1525 2221 1924 2139 3388 1924 1924 3956 3261 1065

4 2754 3614 2754 1232 3419 1525 3614 3614 3388 3534 1525 3348

5 3614 1065 429 2139 1554 433 1065 1554 2129 2036 2036 3614

6 3388 1554 3348 817 2277 3388 2754 1065 2754 1260 429 3075

7 3715 3419 1947 2205 4012 1232 1554 3419 1065 1678 1947 437

8 437 2754 3956 433 1267 1012 437 2754 2139 461 1678 1554

9 3075 437 1924 2174 2251 3614 3419 437 1554 433 2754 2754

10 1554 3075 3614 2754 1995 3348 3075 3075 2978 2892 2139 251

1 3

18460



A mechanics model based on information entropy for identifying influencers in complex networks

Table 2 (continued)

Standard Classic Similar State-of-the-art Proposed

Rank SI model DC CC BC EC PC GC WGC GGC LID FLD INEG

Router

1 3668 3670 3668 3668 3369 3670 3369 3369 3668 3668 3668 3326

2 3373 3639 3373 3373 3373 3639 3326 3338 3670 4 3373 3373

3 3326 3338 3667 1480 3339 3338 3668 3339 3326 228 3667 3369

4 3729 1453 3729 3326 3326 1453 3670 3326 3369 4875 3729 3339

5 3727 3369 3666 3729 3342 2624 3373 3373 3338 4912 3666 3668

6 3369 3339 623 3667 3325 3675 3339 3342 3339 243 3727 3338

7 3670 3326 3326 4059 3352 3369 3338 3334 3639 1123 1480 3670

8 3325 2624 3325 3597 3338 3672 3639 3354 3373 4683 3326 3729

9 3339 3373 3727 1449 3334 3339 3729 3331 3729 3853 3325 3342

10 3338 3675 3324 623 3327 3644 3727 3325 3727 3958 3687 3639

WV

1 2355 2355 2355 2355 2355 2355 2355 2355 2355 2355 2355 2355

2 703 703 703 9 703 9 1428 1428 703 4890 703 1428

3 432 9 432 432 1428 703 703 703 1428 3644 432 1067

4 1428 1428 1428 3644 1067 432 1067 1067 432 677 1067 703

5 1067 432 1067 1428 2470 3644 432 432 1067 13 1428 432

6 9 1067 1262 703 432 1428 9 2470 9 2203 66 9

7 2470 2470 9 1067 3059 1067 2470 9 2470 4522 677 1055

8 1262 1262 1055 13 9 2470 1262 3059 1262 2719 4890 2470

9 1055 1055 2470 1262 1055 13 1055 1262 1055 3872 13 1262

10 677 4890 2282 2057 1262 1262 3059 1055 3059 294 294 4890

Xi > Xj and Yi < Yj or Xi < Xj and Yi > Yj occurs, this
pair of elements is deemed inconsistent. When Xi = Xj

and Yi = Yj , this pair of elements is considered neither
consistent nor inconsistent. Therefore, Kendall correlation
coefficient is defined as follows:

τ = nc − nd

0.5n(n − 1)
(19)

where nc indicates the number of identical pairs. On the
contrary, nd represents the number of discordant pairs. And
n denotes the length of the sequence. Its value lies between
−1 and 1. τ = 1 indicates the two sequences have totally
the same rank, while τ = −1 is the opposite.

The higher the τ is, the more precise the centrality
measure is. We use Kendall’s tau coefficient to measure the
correlation between the ranked list of different methods and

Table 3 Individualized ranking of seven measures

Type Network DC BC CC GC WGC GGC INEG

Small-scale Jazz 0.31313 0.89394 0.64141 0.95455 0.96970 0.96970 0.97475

USAir 0.17470 0.55422 0.58133 0.78614 0.84337 0.82831 0.84036

NS 0.05541 0.28496 0.60158 0.69921 0.84960 0.71504 0.71504

EEC 0.14199 0.84888 0.68560 0.94828 0.97566 0.97465 0.97667

Email 0.04237 0.81818 0.74051 0.68049 0.97617 0.95322 0.97617

PB 0.11784 0.83470 0.67430 0.90671 0.95336 0.95090 0.95581

Large-scale Facebook 0.05620 0.86927 0.30057 0.91681 0.97673 0.95791 0.96014

GrQc 0.01563 0.36989 0.66955 0.78523 0.88793 0.79966 0.84055

Router 0.01055 0.12405 0.29669 0.35743 0.42433 0.37017 0.41876

WV 0.04246 0.64704 0.62780 0.62270 0.81885 0.81475 0.82154
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Fig. 4 For six small-scale
networks, the frequency of
nodes obtained by different
approaches. The X-axis denotes
the ranking of the nodes, and the
Y-axis represents the number of
nodes

(a) Jazz (b) USAir

(c) NS (d) EEC

(e) Email (f) PB

the ranked list of standard SI model. Time t is set to 10. The
quantity of infected nodes in ten steps (F(10)) is used to
represent the infection ability of each node.

The results in the small-scale networks are indicated in
Fig. 6. INEG defeats five methods in Jazz. The trend of
INEG is roughly the same as that of WGC in USAir. In
addition, INEG is superior to similar methods based on
gravity models like GGC. For NS, the trends of GC and

INEG are almost the same. What’s more, INEG ranks first
when 0.1 ≤ β ≤ 0.12. INEG’s performance is similar to
WGC in EEC. In addition, the highest τ value is obtained
by INEG when 0.1 ≤ β ≤ 0.13. For Email, the performance
of INEG is the best when β = 0.19. For PB, INEG and GC
have almost the same trend. In particular, they almost defeat
other approaches. At the same time, Fig. 7 demonstrates the
results in the large-scale networks. The τ value obtained
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Fig. 5 For four large-scale
networks, the frequency of
nodes obtained by different
approaches. The X-axis denotes
the ranking of the nodes, and the
Y-axis represents the number of
nodes

(a) GrQc (b) Power

(c) Router (d) WV

by INEG is almost the same as that obtained by GC in
GrQc. Especially when 0.1 ≤ β ≤ 0.11, INEG ranks first.
For Power, the trend shown by INEG is almost the same
as that shown by GC. And their τ values are higher than
those acquired by other methods. In Router, INEG ranks
first when 0.12 ≤ β ≤ 0.15. For WV, INEG acquires the
highest τ value when 0.16 ≤ β ≤ 0.21.

5 Applications

5.1 Explore the application of immune strategies

Immunization strategy is one of the most basic structural
problems in network science. Its main goal is to effectively
control the spread of diseases by vaccinating some people.
The method proposed in this paper can mine this part of the
key population in a large-scale network, thereby reducing
the consequence caused by the virus and achieving a better
immune effect.

The SI model experiment is used to measure the immune
effect of each method. The top-ten nodes of each method

are selected as their initial infection nodes, and β is set to
the epidemic threshold probability. The ranking of the top
ten nodes has been given in the Top-ten nodes experiment.
We conducted one hundred experiments and the results are
revealed in Figs. 8 and 9. In a certain period of time, a
method that gets more infection nodes indicates that the
nodes it initially chooses are more influential. In other
words, the performance of this approach is better.

The experimental results in the small-scale networks are
revealed in Fig. 8. For Jazz, the most infected nodes are
demonstrated by INEG when t ≥ 31. Meanwhile, INEG
exhibits the best performance when all approaches reach
stability. In USAir, the strongest infectious ability and the
perfect stability are proved by INEG when t ≥ 26. Faster
infection rate is revealed by INEG in the initial stage of
the NS. All methods show almost the same trend in EEC.
In addition, INEG ranks fifth. For Email, CC has the
strongest infection ability which surpasses other methods.
For PB, the most infected nodes are acquired by INEG
when t ≥ 45. Figure 9 shows the experimental results in
the large-scale networks. The largest number of nodes is
obtained by LID in GrQc. In Power, INEG outperforms

1 3

18463



S. Li and F. Xiao

Fig. 6 Kendall’s tau coefficient
τ between the infection ability
acquired by the SI model and
the other methods for six small-
scale networks. The X-axis
represents the infection rate, the
Y-axis indicates the Kendall’s
tau coefficient, and each point
represents the value of τ under
the corresponding infection rate

(a) Jazz (b) USAir

(c) NS (d) EEC

(e) Email (f) PB
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Fig. 7 Kendall’s tau coefficient
τ between the infection ability
acquired by the SI model and
the other methods for four
large-scale networks. The X-axis
represents the infection rate, the
Y-axis indicates the Kendall’s
tau coefficient, and each point
represents the value of τ under
the corresponding infection rate

(a) GrQc (b) Power

(c) Router (d) WV

other methods almost the entire time period. For Router,
INEG’s performance ranks fourth when t = 46. For
WV, INEG defeats other measures almost the entire time
period.

5.2 Other applications

5.2.1 Applications for finding super-spreaders

With the outbreak of COVID-19, the World Health
Organization has increased its emphasis on epidemic
control. During the entire process of the outbreak, the
discovery and isolation of ’super-spreaders’ has become a
key measure to control the epidemic. Super-spreader, which
is defined as the transmission of the virus to more than
ten patients, is the key node in the epidemic transmission
network. The method proposed in this paper is used to find
super-spreaders in epidemic transmission models.

5.2.2 Figure pooling application

Pooling in graph classification tasks is a fundamental
problem to be solved by graph neural networks. Graph

neural network is a deep learning method based on graph
structure, which is used for processing data structure in non-
Euclidean space. Graph classification, which is a typical
task in graph neural networks, is used to learn a graph
classification model from the figure to the corresponding
label. Graph classification focuses on the global information
of graph data, including structure information and attribute
information of each node. In convolutional neural networks,
hierarchical pooling is an important method used to gradually
extract global information. As one of the main pooling
mechanism methods, Top-K is a process of continuously
discarding nodes for graphs with irregular structures.
Important nodes that account for a fixed proportion are
looked for to replace global information, and then the
remaining nodes are ignored. The approach proposed in this
paper can be applied to find crucial nodes with a fixed ratio.

6 Conclusion

The paper proposes a generalized mechanics model based
on information entropy to evaluate the influence of
nodes in the network. The method not only considers
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Fig. 8 The number of infected
nodes for dissimilar initial nodes
(top-10 nodes) acquired by
different approaches in six
small-scale networks. The
X-axis indicates the
experimental simulation time t ,
the Y-axis denotes the number
of infected nodes in the network
at a specific time t , and each
point reveals the number of
infected nodes generated in the
corresponding time

(a) Jazz (b) USAir

(c) NS (d) EEC

(e) Email (f) PB

the global information by calculating the shortest path,
but also considers the degree of the node itself in the
local information. In addition, the influence received
from neighbor nodes is quantified in detail, and the
information entropy of the node is introduced to objectively
assign its own weight to each node. At the same time,
location information is introduced to form the mass. Local
information and global information are better combined.
The proposed method in this paper performs well in

different experiments on several real networks, which offers
a broad prospect for identifying critical nodes.

Some ongoing works are as follows. Our approach only
considers the influence of first-order neighbor nodes, while
the influence of second-order or higher-order neighbor
nodes are supposed to be expected. At the same time, the
method in this paper is suitable for undirected networks. In
the future, we will take into account improvements to the
weighted network.
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Fig. 9 The number of infected
nodes for dissimilar initial nodes
(top-10 nodes) acquired by
different approaches in four
large-scale networks. The
X-axis indicates the
experimental simulation time t ,
the Y-axis denotes the number
of infected nodes in the network
at a specific time t , and each
point reveals the number of
infected nodes generated in the
corresponding time
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D (2021) Covid-19 classification by FGCNet with deep feature
fusion from graph convolutional network and convolutional
neural network. Inf Fusion 67:208–229. https://doi.org/10.1016/j.
inffus.2020.10.004

10. Zhang H, Zhong S, Deng Y, Cheong KH (2021) LFIC:
Identifying influential nodes in complex networks by local
fuzzy information centrality. IEEE Trans Fuzzy Syst:3284–3296.
https://doi.org/10.1109/TFUZZ.2021.3112226

11. Lei M, Cheong KH (2022) Node influence ranking in complex net-
works: A local structure entropy approach. Chaos Solitons Fractals
160:112136. https://doi.org/10.1016/j.chaos.2022.112136

12. Zareie A, Sheikhahmadi A, Jalili M (2020) Identification of influ-
ential users in social network using gray wolf optimization algo-
rithm. Expert Syst Appl 142:112971. https://doi.org/10.1016/j.
eswa.2019.112971

13. Wang X, Zhou W, Li R, Cao J, Lin X (2018) Improving
robustness of interdependent networks by a new coupling strategy.
Phys A Stat Mech Appl 492:1075–1080. https://doi.org/10.1016/j.
physa.2017.11.037

1 3

18467

https://doi.org/10.1137/S003614450342480
https://doi.org/10.1137/S003614450342480
https://doi.org/10.1016/j.ins.2021.01.069
https://doi.org/10.1016/j.engappai.2021.104438
https://doi.org/10.1016/j.jnca.2021.103094
https://doi.org/10.1016/j.cmpb.2022.107277
https://doi.org/10.1109/JBHI.2021.3083274
https://doi.org/10.1109/JBHI.2021.3083274
https://doi.org/10.1016/j.inffus.2020.10.004
https://doi.org/10.1016/j.inffus.2020.10.004
https://doi.org/10.1109/TFUZZ.2021.3112226
https://doi.org/10.1016/j.chaos.2022.112136
https://doi.org/10.1016/j.eswa.2019.112971
https://doi.org/10.1016/j.eswa.2019.112971
https://doi.org/10.1016/j.physa.2017.11.037
https://doi.org/10.1016/j.physa.2017.11.037


S. Li and F. Xiao

14. Lei X, Yang X, Fujita H (2019) Random walk based method
to identify essential proteins by integrating network topology
and biological characteristics. Knowl-Based Syst 167:53–67.
https://doi.org/10.1016/j.knosys.2019.01.012

15. Sheikhahmadi A, Zareie A (2020) Identifying influential spread-
ers using multi-objective artificial bee colony optimization. Appl Soft
Comput 94:106436. https://doi.org/10.1016/j.asoc.2020.106436

16. He Q, Sun L, Wang X, Wang Z, Huang M, Yi B, Wang Y, Ma L
(2021) Positive opinion maximization in signed social networks.
Inf Sci 558:34–49. https://doi.org/10.1016/j.ins.2020.12.091

17. Lin L-F, Li Y-M (2021) An efficient approach to identify social
disseminators for timely information diffusion. Inf Sci 544:78–96.
https://doi.org/10.1016/j.ins.2020.07.040

18. Zareie A, Sheikhahmadi A, Jalili M, Fasaei MSK (2020) Finding
influential nodes in social networks based on neighborhood cor-
relation coefficient. Knowl-Based Syst 194:105580. https://doi.
org/10.1016/j.knosys.2020.105580

19. Xiao F, Wen J, Pedrycz W (2022) Generalized divergence-
based decision making method with an application to pattern
classification. IEEE Trans Knowl Data Eng :1–1

20. Li Z, Ren T, Ma X, Liu S, Zhang Y, Zhou T (2019) Identifying
influential spreaders by gravity model. Sci Rep 9(1):1–7. https://
doi.org/10.1038/s41598-019-44930-9

21. Liu F, Wang Z, Deng Y (2020) GMM: A generalized mechanics
model for identifying the importance of nodes in complex net-
works. Knowl-Based Syst 193:105464. https://doi.org/10.1016/j.
knosys.2019.105464

22. Li H, Shang Q, Deng Y (2021) A generalized gravity model for
influential spreaders identification in complex networks. Chaos,
Solitons Fractals 143:110456. https://doi.org/10.1016/j.chaos.
2020.110456

23. Bonacich P (1972) Factoring and weighting approaches to status
scores and clique identification. J Math Sociol 2(1):113–120.
https://doi.org/10.1080/0022250X.1972.9989806

24. Kitsak M, Gallos LK, Havlin S, Liljeros F, Muchnik L,
Stanley HE, Makse HA (2010) Identification of influential
spreaders in complex networks. Nature Phys 6(11):888–893.
https://doi.org/10.1038/nphys1746

25. Zareie A, Sheikhahmadi A (2018) A hierarchical approach for
influential node ranking in complex social networks. Expert Syst
Appl 93:200–211. https://doi.org/10.1016/j.eswa.2017.10.018

26. Maji G, Mandal S, Sen S (2020) A systematic survey on
influential spreaders identification in complex networks with a
focus on K-shell based techniques. Expert Syst Appl 161:113681.
https://doi.org/10.1016/j.eswa.2020.113681

27. Maji G, Namtirtha A, Dutta A, Malta MC (2020) Influential
spreaders identification in complex networks with improved k-
shell hybrid method. Expert Syst Appl 144:113092. https://doi.
org/10.1016/j.eswa.2019.113092

28. Maji G (2020) Influential spreaders identification in complex net-
works with potential edge weight based k-shell degree neighbor-
hood method. J Comput Sci 39:101055. https://doi.org/10.1016/j.
jocs.2019.101055

29. Zareie A, Sheikhahmadi A (2019) EHC: Extended H-index
centrality measure for identification of users’ spreading influence
in complex networks. Phys A Stat Mech Appl 514:141–155.
https://doi.org/10.1016/j.physa.2018.09.064

30. Freeman LC (1978) Centrality in social networks conceptual clari-
fication. Soc Netw 1(3):215–239. https://doi.org/10.1016/0378-87
33(78)90021-7

31. Newman ME (2005) A measure of betweenness centrality based
on random walks. Soc Netw 27(1):39–54. https://doi.org/10.1016/
j.socnet.2004.11.009

32. Bonacich P, Lloyd P (2001) Eigenvector-like measures of
centrality for asymmetric relations. Soc Netw 23(3):191–201.
https://doi.org/10.1016/S0378-8733(01)00038-7

33. Brin S, Page L (2012) Reprint of: The anatomy of a large-scale
hypertextual web search engine. Comput Netw 56(18):3825–
3833. https://doi.org/10.1016/j.comnet.2012.10.007

34. Wang Y,WangM, Fujita H (2020)Word Sense Disambiguation: A
comprehensive knowledge exploitation framework. Knowl-Based
Syst 190:105030. https://doi.org/10.1016/j.knosys.2019.105030

35. Wen T, Deng Y (2020) Identification of influencers in complex
networks by local information dimensionality. Inf Sci 512:549–
562. https://doi.org/10.1016/j.ins.2019.10.003

36. Xiao F, Pedrycz W (2022) Negation of the quantum mass function
for multisource quantum information fusion with its application to
pattern classification. IEEE Trans Pattern Anal Mach Intell:1–1.
https://doi.org/10.1109/TPAMI.2022.3167045

37. Fan W, Xiao F (2022) A complex Jensen–Shannon divergence
in complex evidence theory with its application in multi-
source information fusion. Eng Appl Artif Intell 116:105362.
https://doi.org/10.1016/j.engappai.2022.105362

38. Deng Y (2022) Random permutation set. Int J Comput Commun
Control 17(1):4542. https://doi.org/10.15837/ijccc.2022.1.4542

39. Zhu C, Xiao F, Cao Z (2022) A generalized Rényi divergence
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