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Abstract
In recent years, great achievements have been made in graph convolutional network (GCN) for non-Euclidean spatial
data feature extraction, especially the skeleton-based feature extraction. However, the fixed graph structure determined
by the fixed adjacency matrix usually causes the problems such as the weak spatial modeling ability, the unsatisfactory
generalization performance, the excessively large number of model parameters, and so on. In this paper, a spatially adaptive
residual graph convolutional network (SARGCN) is proposed for action recognition based on skeleton feature extraction.
Firstly, the uniform and fixed topology is not required in our graph. Secondly, a learnable parameter matrix is added to
the GCN operation, which can enhance the model’s capabilities of feature extraction and generalization, while reducing
the number of parameters. Therefore, compared with the several existing models mentioned in this paper, the least number
of parameters are used in our model while ensuring the comparable recognition accuracy. Finally, inspired by the ResNet
architecture, a residual connection is introduced in GCN to obtain higher accuracy at lower computational costs and learning
difficulties. Extensive experimental on two large-scale datasets results validate the effectiveness of our proposed approach,
namely NTU RGB+D 60 and NTU RGB+D 120.
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1 Introduction

With the development of deep learning and its great
potential applications in the field of computer vision,
skeleton-based action recognition by using deep learning
has drawn widespread attention. For example, skeleton-
based action recognition technology has been widely
used in the fields of video surveillance, human-computer
interaction, and video understanding. Compared with the
traditional methods based on two-dimensional RGB data
[1, 2], the skeleton-based methods are more adaptable to
complex dynamic environments, and can fully depict the
spatial and temporal dynamics of human behavior with high
robustness and computational efficiency [3–5]. In addition,
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a natural topological structure in non-Euclidean space can
be constructed based on the skeleton data, with vertices
obtained from the joints and edges from the connections
between the joints, which can show the posture of the human
body more concisely and avoid the interference of complex
environmental factors [6].

Here we shall first give a brief introduction to some
deep learning methods including RNN-based methods and
CNN-based methods.

RNN-based methods: In some previous studies, some
researchers applied RNN to the feature extraction of
human skeleton sequences. In the RNN-based methods,
the skeleton data are usually modeled as a sequence of
coordinate vectors in the spatial and temporal dimensions,
where each vector represents a human joint [3, 5, 7–
10]. Song et al. [3] proposed a framework for learning
the spatiotemporal features of skeleton data using an
attention mechanism. In those attention subnets of spatial
and temporal dimensions, the authors used the LSTM
networks to learn the relationship of the nodes between
the current frame and the previous frame. In [5], Du et
al. proposed an end-to-end hierarchical RNN for skeleton-
based action recognition, dividing the human skeleton data
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into five parts, and then feeding them into five Bi-RNN
sub-networks for the feature extraction. Zhang et al. [8]
introduced a view self-adjusting scheme based on the
LSTM mechanism to dynamically recognize the actions
from skeleton data. In [10], An end-to-end fully connected
(FC) deep LSTM network was proposed for skeleton-based
action recognition, and a new dropout algorithm and new
regularization method were introduced to train the network
and extract co-occurrence features of skeleton data.

CNN-based methods: Some previous researchers have
made good achievements in applying CNN to feature
extraction for skeleton-based action recognition [11–15].
Kim and Reiter [11] used the spatiotemporal information
of the skeleton sequence and proposed a new model
called temporal convolutional neural network (TCN) for
3D human action recognition, which provided interpretable
spatiotemporal representation for learning and training
explicitly. Li et al. [12] constructed three views in the
spatial domain and made full use of the temporal and
spatial information to extract features, where the recognition
scores from all views can be combined by a multiple
fusion method. Ke et al. [13] proposed a multi-task learning
network (MTLN), where the skeleton sequences with
arbitrary length were first transformed into three clips, then
these clips were fed into a deep CNN model for feature
extraction and action recognition.

However, the above-mentioned RNN-based methods and
CNN-based methods are not very effective in the action
recognition of skeleton data because it is difficult for RNN
and CNN to represent the topology of skeleton data.

It was the first paper that presented the graph convo-
lutional neural network to solve the problem of action
recognition based on the human skeleton [16]. Since then,
more and more researchers have been devoting themselves
to the field of human action recognition by using GCNs, and
many kinds of GCNs have been proposed such as 2s-AGCN,
AS-GCN, ResGCN, MS-AAGCN, and so on.

Compared with the typical deep neural networks, sig-
nificant performance improvements in recognition accuracy
have been achieved by using GCNs. However, some large
challenges for the GCN methods are as follows: 1) Existing
GCN models are not enough to adaptively extract the gen-
eral skeletal spatial features; 2) The existing GCN models,
with relatively large architectures and more parameters, are
difficult to be trained quickly and accurately.

In response to the above problems, in this article we
are aimed at improving the spatial feature extraction on the
skeleton sequence while taking into account the varying
degrees of the significance of various skeleton joints
and their connections in various actions, so a learnable
parameter matrix is added to enhance the model’s extraction
of spatial features when training. We introduce a six-layer
GCN structure for spatial feature extraction by reducing

the scale and complexity of the model and adding residual
connections [17] to avoid the performance degradation of
the model. Experiments on the NTU RGB+D 60 [18] and
NTU RGB+D 120 [19] datasets show the good performance
of our proposed model.

The highlights of this paper are mainly reflected in the
following two aspects:

1. A novel six-layer spatially adaptive residual graph
convolutional network (SARGCN) is proposed while
enhancing the model’s capability of spatial feature
extraction from the skeleton data.

2. Comparable performance in recognition accuracy has
been achieved at the minimum number of parameters
and much lower computation costs through a lot of
comparison experiments, in contrast to the several
existing models mentioned in this paper.

2 Related work

Recently, the graph convolutional neural network, which
extends the convolution neural network from image
recognition to graph recognition, has been widely applied
in many fields [20–23]. Related work is reviewed briefly in
this section, including the GCN-based attention mechanism
and human action recognition.

2.1 Skeleton-based action recognition for GCN
methods

As mentioned in Section 1, in the inspiration of Yan and his
group’s founding work, many researchers started to study
action recognition based on skeleton sequences [6, 24–27].
Shi et al. [6] proposed an adaptive graph convolutional
network (AGCN) structure with a better topology learning
ability for different graph convolutional layers and end-to-
end skeleton samples, and it could also be better suited for
recognition tasks and its hierarchical structure. At the same
time, the second-order information was combined with the
first-order information through the dual-stream structure,
which played a good role in improving the performance
of the model. They further improved the 2s-AGCN to be
a multi-stream structure called MS-AAGCN, and added
attention mechanism into this new model [26]. However,
this multi-stream structure showed well-performance at
the cost of high computational complexity and a large
number of model parameters. Li et al. [24] proposed an
A-link inference model (AIM) to infer actional links that
could capture the potential relationships of specific actions,
and also proposed an action-structure graph convolutional
network (AS-GCN) based on multiple graphs to extract
useful space and time information. Song et al. [25] proposed
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an effective but robust baseline model based on GCN,
which integrated the multiple input branches module and
partial attention block into the residual graph convolutional
network with bottleneck structure.

2.2 Attentionmechanism

Attention module has become an important concept in
neural networks and has been fully studied in different
application fields, e.g. action recognition, target detection,
natural language processing, and so on. Baradel et al. [28]
proposed a new human action recognition mechanism based
on spatiotemporal attention of human pose. Song et al.
[3] proposed a spatiotemporal attention model based on
LSTM, which could automatically learn the importance
levels of different nodes and different frames, and give
different attention weights to each frame and node. Si et al.
[29] introduced an attention mechanism based on LSTM to
enhance the features of key nodes, which helped to improve
spatiotemporal representation. In the above three models,
the attention mechanism was separately employed to each
frame of the skeleton sequence. In addition, the traditional
attention module was usually realized through multi-layer
perception, without considering the overall relevance of
spatiotemporal attention.

3 The proposed approach

In this section, firstly, the existing works on how to
apply spatiotemporal graph convolutional network to human
action recognition based on skeleton data are reviewed.
Then the implementation of our proposed SARGCN model
is elaborated.

3.1 The principles of ST-GCN

The skeleton data in the video can be captured by depth
camera equipment or algorithms. Generally, this data is
a sequence of video frames, with each frame having a
combination of 2D/3D joint coordinates. The skeleton
sequence is actually composed of a 3D tensor whose shape
is C × T × N , which means that there are C channels,
T frames, and N nodes. Simultaneously, an undirected
spatiotemporal graph G = (V , E) is constructed on a
skeleton sequence with N joints and T frames, where
V = {

vt
i | i = 1, 2, ..., N; t = 1, 2, ..., T

}
represents the

set of all joints, and E represents the set of connecting
edges. The edge set E consists of two parts: The first part
is the connection between adjacent nodes in each frame,

denoted as ET =
{
vt
i v

t
j | (i, j) ∈ Q; t = 1, 2, ..., T

}
,

where Q is the set of naturally connected joint pairs in the

human body. The second part is the connection between
the corresponding nodes of adjacent frames as EF ={
vt
i v

t+1
i | i = 1, 2, ..., N; t = 1, 2, ..., T − 1

}
. It should be

noted here that the nodes are numbered to facilitate the
construction of links between nodes, form the skeleton
graph structure of the human body, and also build the
connections between the corresponding nodes between
adjacent frames. It is worth mentioning that the constructed
skeleton graph structure is undirected and unordered.

In terms of the above-mentioned definition of the
skeleton-based graph structure, a multi-layer GCN is
constructed for extracting the spatial features of the skeleton
structure. The adaptive global average pooling layer and
Softmax classifier are then used to predict the action
category based on the extracted features in this paper.

Based on [16], the spatial GCN calculation formula of
the skeleton sequence at the t th frame can be expressed as
in (1):

fout

(
vt
i

) =
∑

vj ∈B(vi )

1

Zt
i

(
vt
j

)fin

(
vt
j

)
· w

(
lti

(
vt
j

))
(1)

where fin (·) and fout (·) denote the mapping rules of input
and output, respectively. And v denotes the vertex of the
graph. B (vi) is the sampling range, which is defined as the
set of adjacent vertices of the target vertex vi . w (·) denotes
the weight function, which provides an initial weight vector
for the input data, and there is a fixed number of the weight
vectors. Zi denotes the normalization term, which is equal
to the cardinality of the corresponding subset. This item
is added to balance the contribution of each subset to the
output. li (·) is the mapping rule, which assigns a different
weight vector to each different node.

The temporal domain convolution method can be directly
utilized for extracting the temporal features of the skeleton
data. However, it is complicated to implement graph
convolution in the spatial dimension. To implement ST-
GCN, (1) can be transformed into:

fout (vi) =
N∑

j=1

Wfin

(
vj

) (
�− 1

2 Aij�
− 1

2 ◦ M
)

(2)

where N represents the total number of joint vertices in
one frame. The definitions of fout and fin are similar to
those in formula (1). A means an N-order adjacency matrix,
where Aij = 1 when vertexes vi and vj are adjacent in
physical location; otherwiseAij = 0.� is used to normalize
A. Specifically, its elements can be expressed as �ii =∑N

j=1 Aij + ε. In order to avoid invalid calculations, we
refer to [6] and set ε to 0.001. Both W and M are learnable
parameter matrices. And W is the weight vector of the 1×1
convolution operation with a size of Cin ×Cout ×1×1. Cin

and Cout represent the numbers of channels of the input and
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output feature maps, respectively. M is used to adjust the
importance level of each edge. And the operator ◦ denotes
hadamard product.

The entire process of completing spatiotemporal graph
convolution can be summarized as in formula (3):

fout (vi) = Tt

⎡

⎣α

⎛

⎝
N∑

j=1

Wfin

(
vj

) (
�− 1

2 Aij�
− 1

2 ◦ M
)
⎞

⎠

⎤

⎦

(3)

where Tt [·] is the temporal convolution layer, α (·) denotes
activation function.

3.2 Spatial adaptive residual graph convolution
network

In this section, we will elaborate on each component of
the spatial adaptive residual graph convolution network
(SARGCN) in detail, and briefly explain the framework of
the entire model.

The proposed basic network is mainly composed of
two parts: spatial adaptive residual GCN and temporal
convolutional network (TCN). The input skeleton sequence
is composed of multiple frames, and the skeleton sequence
of each frame is traditionally calculated based on a
predefined graph when the graph convolution operation
is performed. Perhaps this was not a good choice. The
basic network framework we propose is shown in Fig. 1:
Firstly, the skeleton data is preprocessed, and then the
preprocessed skeleton data is input into K cascaded feature
extraction modules to extract spatial and temporal features.
Finally, the action category is output by a classifier. The
specific structure of each feature extraction module is
shown in Fig. 2. In the feature extraction module, there
are two important blocks: SARGCN and TCN blocks,
where the features in the spatial dimension of skeleton
data are extracted through the SARGCN block, while
the temporal features are obtained from the TCN block.
First, the preprocessed skeleton data in the previous stage

are fed to the SARGCN block for extracting the spatial
features after downsampling. Next, through up-sampling,
input to the TCN block to extract the temporal dimensional
features. Finally, an attention block is used to improve the
feature extraction ability of the model. The downsampling,
through which the preprocessed data is entered into the
SARGCN block, can reduce the number of model learning
parameters, prevent over-fitting during training, and also
expand the receptive field. In the temporal dimension, with
the fixed number of neighbors of each node, the traditional
three Conv2d-BN layers can be used to extract features,
that is the same as ST-GCN. To stabilize the training, a
residual connection is added to each SARGCN block. In
the experiment, multiple feature extraction modules can
be superimposed to achieve the best experimental results.
Based on experience, K is set to 5, 6, and 7 in this paper,
where the value of K also equals the number of GCN.

According to formula (2), the topological structure
of the skeleton graph is actually determined by the
adjacency matrix A and the mask matrix M , respectively.
The adjacency matrix A indicates the connection relation
between the nodes, and M indicates the strength of the
connection between the nodes. In order to describe the
adaptive graph structure, formula (2) can be rewritten as:

fout =
N∑

j=1

Wfin

(
�ij + �ij

)
(4)

where �ij represents the hadamard product of the
normalized adjacency matrix A and the mask matrix M . �ij

is added for the adaptive generation of the adjacency matrix,
which will be described in detail next.

For graph structure data, Euclidean distance is no longer
a good indicator of vertex similarity. And the distance metric
needs to be adjusted adaptively along with the task and the
features during training. In the article, Mahalanobis distance
is introduced as an indicator of distance measurement. The

Fig. 1 Basic network framework
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Fig. 2 Feature extraction module

Mahalanobis distance between nodes vi and vj can be
calculated from the formula (5):

D
(
vi, vj

) =
√(

vi − vj

)T
�

(
vi − vj

)
(5)

where � = WT W , W is a trainable weight matrix in
the SARGCN block, which is equivalent to the weighting
function in formula (3), When � = I , D

(
vi, vj

)
represents

Euclidean distance. In order to determine whether there is
a connection and evaluate the connection strength between
two nodes, a Gaussian kernel is introduced :

Gvi,vj
= e

(
− D2(vi ,vj )

2σ2

)

(6)

where σ is a constant.

The Gaussian kernel represented by formula (6) is
normalized to obtain (7):

Ḡvi ,vj
= Gvi,vj

∑N
j=1 Gvi,vj

(7)

The normalized value range of the matrix elements is
between [0, 1] , and the normalized Gaussian function has a
Softmax operation. Therefore, based on the above inference,
�ij can be expressed as in formula (8):

�ij = Ḡvi ,vj
= Sof tmax

(
f T

inWT Wfin

)
(8)

The overall structure of the SARGCN is shown in
Fig. 3. Inspired by the good performance of Residual and
AGCN models in the human action recognition based on
skeleton data. Firstly, extract the skeleton features after
downsampling in the spatial dimension. That is referred to
as the �ij operation and the �ij operation in this article.

Fig. 3 SARGCN module with residual link
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The two operations can be formulated as in (9) and (10),
respectively.

f� =
N∑

j=1

Wfin · �ij (9)

f� =
N∑

j=1

Wfin · Sof tmax
(
f T

inWT Wfin

)
(10)

Then, the features of f� and f� are concatenated and
sequentially transmitted through a FC layer, a BatchNorm
layer, a Softmax function, and a ReLu function. Finally, to
improve the stability of the graph structure learned by the
network, a residual connection is added to the entire module.
Our proposed SARGCN can be formulated as:

fc = Concat (f�, f�) (11)

fout = Res (ReLU (Sof tmax (BN (fc))) , fin) (12)

According to formulas (11) and (12), it can be known that
there is a key BatchNorm layer in the SARGCN module,
through which the data are normalized after the feature
concatenation. In this way, the traditional AGCN method is
optimized so as to reduce the size of its model.

The cross-entropy loss is introduced to be the metric of
the cost evaluation during training, and can be described as
in formula (13):

Lloss = −
C∑

c=1

pclog
(
p̂c

)
(13)

where C is the number of behavior categories, pc and p̂c

denote the one-hot vector of the ground truth, the prediction
vector, respectively.

3.3 Attentionmodule

Considering that human usually gives different attention
perceptrons according to the important levels of things, an
attention mechanism is also integrated into our network.
Human perception usually selectively focuses on certain
parts of the scene in order to obtain specific pieces
of information. Skeleton data are a series of temporal
sequences composed of a series of 3D coordinates that
form an action. Different frames play different roles in
importance levels in the process of action recognition. For
instance, in the action of brushing teeth, the action is similar
in most frames but changes greatly in only a few frames,
which are also the key to identifying the action. Inspired
by this, we introduce an attention mechanism to enhance
the weights of frames carrying key information, thereby
improving the recognition accuracy of the model.

In this paper, an attention mechanism is introduced
following the feature extraction module. On the basis of

the attention mechanism [3, 28, 29], as shown in Fig. 4,
we design a different and adaptive weight matrix to each
frame according to the different importance levels of each
frame in the entire action sequence from both spatial and
temporal domains. In the attention module, The feature
information is first fed into the fully connected network
with an adaptive average pooling layer. Next, the attention
matrix is calculated by a fully connected layer with the
BatchNorm layer and the ReLU function. Finally, a Softmax
layer is used to determine the key actions in the key
action frames. More specifically, the implementation of the
attention module can be expressed as an equation (14):

fatt out = Sof tmax (ReLU (X ◦ FCN (fatt in))) (14)

where fatt in and fatt out denote the input and output of the
attention module, respectively. X represents the attention
parameter matrix which is adjustable during learning, and
has the same size as the output in formula (3). And ◦ denotes
hadamard product.

4 Experiments

In this section, two public large-scale action recognition
datasets are used to evaluate our model and a comparison is
made between our method and the state-of-the-art methods.
Moreover, multiple sets of experiments are conducted for
evaluating the impact of the number K of layers in the
network on the performance of the model.

4.1 Datasets

NTU RGB+D 60 [18] is a large-scale dataset that is
captured indoors and widely used in the recognition of
skeleton-based actions. The dataset is composed of more
than 56000 human action videos recorded by three Kinect
cameras, including 60 actions. Some interactions between
two subjects are depicted in the last 10 classes of the actions.
These human actions are performed by 40 volunteers.
There exist at most two volunteers in each frame of
videos, and each skeleton consists of 25 joints denoted
by three-dimensional coordinates. We evaluate the model
based on two benchmark sub-datasets: cross-subject (X-
Sub) and cross-view (X-View). 1)X-Sub: this sub-dataset
is performed by two groups of 20 volunteers each. These
two groups of volunteers complete a total of 56880 videos,
where 40320 samples are used for training and 16560
samples for testing. 2)X-View: this sub-dataset is taken by
three cameras, where 37920 videos from cameras 2 and 3
are used as training samples, and 18960 videos from camera
1 are used as testing samples.

NTU RGB+D 60 dataset is further extended to be NTU
RGB+D 120 dataset [19] which is so far the largest action
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Fig. 4 Attention module

recognition dataset captured indoors. This extended dataset
includes 114480 videos performed by 106 volunteers from
155 viewpoints and 32 setup IDs, generating 120 actions.
532 bad samples of this dataset should be ignored in
all experiments. Similarly, cross-subject (X-Sub120) and
cross-setup (X-Set120) are recommended to be the two
benchmark evaluations. 1) X-Sub120: In the total of
114480 videos performed by 106 subjects, one group of 53
subjects completed 63026 videos for training, and the other
group of 53 subjects completed 50922 videos for testing,
respectively. 2) X-Set120: the 32 IDs are divided into two
groups with 16 IDs each, of which 16 ID sequences form
the training set, and the two groups of ID sequences form
the 54471 samples for training and the 59477 samples for
testing, respectively.

4.2 Experiment settings

All our experiments are conducted in the Pytorch framework
[30] and on NVIDIA GTX 1080Ti GPU. The stochastic
gradient descent (SGD) rule with the Nesterov momentum
of 0.9 and the weight decay of 0.0002 is adopted to optimize
the network. In the spatial dimension, the size of the
convolution kernel is 9 × 1. In the temporal dimension, the

size of the convolution kernel is 1×1. The number of frames
of each skeleton sequence is set to be 300, and all 0s are
filled at the end frames for video samples with less than 300
frames. The batch size and the maximum iterating epoch are
set to be 16 and 70, respectively. The learning rate is initially
set to 0.01, which is increased by 0.01 each epoch during
the first 10 epochs, and remains 0.1 during the second 10
epochs. Then by referring to [25], the learning rate decays
by a factor of 10 from the 21st epoch to the 50th epoch.
From the 51st epoch to the 70th epoch, the learning rate
decays again by a factor of 10.

4.3 Comparison

To evaluate the performance of SARGCN, we make a com-
parison between our proposed SARGCN and other state-
of-the-art approaches of skeleton-based action recognition
on the NTU RGB+D dataset. The methods for compari-
son can be divided into two categories: traditional methods
(such as RNN-based methods and CNN-based methods) and
GCN-based methods.

The results are shown in Tables 1 and 2. Our SARGCN
benefits from the robustness of AGCN to extract global
spatial information and the optimization of traditional

Table 1 Accuracy comparison between our proposed six-layer SARGCN and the traditional methods on NTU RGB+D 60 and NTU RGB+D 120

Method Param. X-Sub X-View X-Sub120 X-Set120

Hierarchical RNN [5] - 59.10% 64.00% - -

Dynamic skeletons [31] - 60.23% 65.22% - -

ST-LSTM+Trust Gate [32] - 69.20% 77.70% 55.00% 57.90%

Two-stream RNNs [33] - 71.30% 79.50% - -

STA-LSTM [34] - 73.40 % 81.20% - -

Two-Stream3DCNN [35] - 66.80% 72.60% - -

Clips+CNN+MTN [13] - 79.60% 84.80% - -

3scale ResNet152 [15] - 85.00% 92.30% - -

Proposed Method 1.09M 88.91% 94.83% 83.81% 85.11%
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Table 2 Accuracy comparison among our proposed six-layer SARGCN and the other state-of-the-art GCN methods on NTU RGB+D 60 and
NTU RGB+D 120

Method Param. FLOPs X-Sub X-View X-Sub120 X-Set120

ST-GCN [16] 3.10M 16.32G 81.50% 88.30% 70.70% 73.20%

RA-GCN [36] 6.21M 32.80G 85.90% 93.50% 74.60% 75.30%

AS-GCN [24] 6.99M 26.76G 86.80% 95.10% 82.50% 84.20%

2s-AGCN [6] 9.94M 37.32G 88.50% 95.10% 82.50 % 84.20%

PL-GCN [37] 20.70M - 89.20% 90.50% - -

PA-ResGCN-B19 [26] 3.64M 18.52G 90.90% 96.00% 87.30% 88.30%

ST-TR [38] - - 89.90% 96.10% 81.90% 84.10%

SAGN [39] 1.83M - 89.20% 94.20% 82.10% 83.80%

2s-PST-GCN [40] 1.84M - 88.68 % 95.10% - -

FGCN [41] - - 90.20 % 96.30% 85.40% 87.40%

DD-GCN [42] - - 88.90% 95.80% 84.90% 86.00%

4s-HybridNet [43] - - 91.40% 96.90% 87.50% 89.00 %

Proposed Method 1.09M 5.37G 88.91% 94.83% 83.81% 85.11 %

AGCN methods, and its results outperform those of
traditional methods significantly.

According to Tables 1 and 2, the following results can be
clearly found:

(1) On the NTU RGB+D 60 (120) dataset divided
into X-Sub (X-Sub120) and X-View (X-Set120), the
SARGCN recognition accuracies reach up to 88.91%
(83.81%) and 94.83% (85.11%), respectively.

(2) Compared with the ST-GCN [16], the recognition
accuracies of our SARGCN have been improved by
7.41% (13.11%) and 6.53% (11.91%) under X-Sub
(X-Sub120) and X-View (X-Set120), respectively.

(3) To our best knowledge, compared with the high-
est accuracy of the current main-stream methods,
although the accuracy of SARGCN recognition is not
the best, the number of model parameters is currently
the least.

Fig. 5 The accuracy comparison result of each category on the NTU-RGB+D 60 X-Sub datasets. The horizontal and vertical axes denote the
category and the accuracy, respectively
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Fig. 6 Confusion matrix on the NTU-RGB+D 60 X-Sub datasets

(4) Compared with the PA-ResGCN-B19 [26] method,
the parameter amount of the SARGCN model is only
one-third of that.

Tables 1 and 2 list the performance comparison between
the proposed method and other state-of-the-art non-GCN
and GCN methods on the NTU dataset, respectively. It
shows that our proposed model achieves an excellent
performance of 88.91% (83.81%) and 94.83% (85.11%) on
NTU RGB+D 60 (120). There are three experiments in each
group, and the standard error of each group is no more than
0.15. Furthermore, we calculate the recognition accuracy
and confusion matrix of our network on X-Sub dataset, as
shown in Figs. 5 and 6.

In Table 2, compared with [38] and [39], although our
accuracy under the X-Sub setting is slightly lower than
theirs, the accuracy under the more complicated X-Sub120
setting is 1.91% and 1.71% higher than theirs, respectively.
Meanwhile, our method also outperforms theirs by 1.01%
and 1.31% in accuracy for the X-Set. Compared with [40],
the accuracy is improved by 0.23% on the X-Sub setting,
and the number of parameters of the model is reduced by
0.75M. Although the experimental results of PA-ResGCN-
B19 [26], FGCN [41], DD-GCN [42] and HybridNet [43]
performed slightly better than ours, the structure of our
model is simpler than theirs, and our model has fewer
parameters. For example, compared with [26], the number
of parameters in our model is reduced by 2.55M. Besides,
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Table 3 Comparison of different layers of networks (without attention module)

Method Param. FLOPs X-Sub X-View X-Sub120 X-Set120

5 layers network 0.57M 4.69G 88.11% 93.41% 82.56% 83.00%

6 layers network 0.71M 5.34G 88.20% 94.32% 83.16% 83.61%

7 layers network 0.77M 5.91G 88.07% 94.03% 82.81% 84.05%

Table 4 Comparison of different layers of networks (without residual connection)

Method Param. FLOPs X-Sub X-View X-Sub120 X-Set120

5 layers network 0.69M 3.89G 85.78% 91.75% 78.72% 79.91 %

6 layers network 0.96M 4.55G 85.01% 91.13% 76.88% 78.09%

7 layers network 1.04M 5.12G 82.90% 90.44% 75.76% 76.88%

Table 5 Comparison of different layers of networks (with attention module and residual connection)

Method Param. FLOPs X-Sub X-View X-Sub120 X-Set120

5 layers network 0.82M 4.71G 88.75% 94.59% 83.52% 84.90%

6 layers network 1.09M 5.37G 88.91% 94.83% 83.81% 85.11%

7 layers network 1.17M 5.94G 87.74 % 93.38 % 80.57 % 84.06%

Table 6 Comparison of cross-validation results under X-View benchmark

Method Param. FLOPs without cross-validation cross-validation

5 layers network 0.82M 4.71G 94.59 % 91.57 %

6 layers network 1.09M 5.37G 94.83 % 92.28 %

7 layers network 1.17M 5.94G 93.38 % 92.42 %

Fig. 7 Recognition accuracy under different learning rates
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the addition of some extra modules to their model, increased
the complexity of the model and thus affecting the inference
speed of the model. Our model has a faster inference speed
with 5.37G FLOPs. The main reason why our model is
slightly inferior to [26] in recognition accuracy is that
the processed skeleton graph with 25 nodes and their
connecting edges are input into the network as a whole,
and the adjacency matrix is generated adaptively as a whole
in our method. This will inevitably ignore some subtle
movements, thereby affecting the recognition results. As
shown in Fig. 5, it can be clearly found that both recognition
accuracies of actions in reading and writing are much lower
than those of other categories, because the variation ranges
of these two categories of actions are very slight, and it is not
easy for the general model to find changes in subtle actions.
In view of the accuracy and the number of parameters, the
proposed method achieves the best result.

4.4 Ablation study

In this section, we further investigate the impact of the
model scale on recognition accuracy. In the experiment,
we keep the other parameters unchanged and only change
the number of the network layers K. On the basis of a
large number of our previous experiments, we select three
models with 5, 6, and 7 layers separately for comparison
in the experiment. Lots of experiments demonstrate that the
best accuracy can be achieved when the number of network
layers is 6. The evaluation indicators are shown individually
in Tables 3, 4 and 5.

Tables 3 and 4 show the results without the attention
module and without residual connection for each SARGCN,
respectively. To validate the contribution of the added
attention module and residual connections, repeat the
above experiment after adding the attention module and
residual connections. The experimental results is shown in
Table 5. Comparing the results of the three experiments,
the recognition accuracy has been improved after adding
the attention module and residual connections. Similarly,
the recognition effect is also the best under the six-layer
network structure in each of the three experiments.

In order to further evaluate the validity of our model,
we perform cross-validation on the dataset of X-View
benchmark, and the validation results are shown in Table 6.
To be specific, we try re-partitioning the dataset into 5 parts,
and adopt 5-fold cross validation in our further experiments.
As far as we know, almost all the existing works followed
the original split method of the authors of the dataset.
Therefore, our experimental result with cross-validation is
only compared with that of our own methods rather than
those of other SOTA methods. Meanwhile, we set different
learning rates in the X-View benchmark for verification, as

shown in Fig. 7, where the experimental accuracy reaches
the best when the learning rate is equal to 0.1.

5 Conclusion

A novel adaptive spatial residual graph convolutional
network (SARGCN) is proposed for action recognition
based on the skeleton information. In our model, without
the constraint of fixed topological structure, the feature
extraction performance and generalization ability could
be largely enhanced by a learnable parameter matrix. In
the meantime, the residual connection is introduced into
the model so that model degradation could be eliminated
and the computational complexity of the model could be
reduced. At last, the attention module is added to promote
the model’s extraction of spatial features and achieve a
significant effect. In terms of the number of parameters,
to our best knowledge, our model has achieved the most
effective result so far.

Of course, there is still a certain gap in recognition
accuracy for our model in comparison to the state-of-the-
art action recognition model based on skeleton data. The
reason is that we only take the overall information of the
skeleton structure in the spatial dimension in our approach.
In our future work, we will further investigate the feature
extraction of each part of the skeleton, and consider how
to re-establish a spatiotemporal graph model on the basis
of the comprehensive analysis of the spatiotemporal feature
information in the spatial and temporal dimensions.
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