
https://doi.org/10.1007/s10489-022-04427-x

Classification framework for faulty-software using enhanced
exploratory whale optimizer-based feature selection scheme
and random forest ensemble learning

Majdi Mafarja1 · Thaer Thaher2,3 ·Mohammed Azmi Al-Betar4 · Jingwei Too5 ·Mohammed A. Awadallah6,7 ·
Iyad Abu Doush8,9 ·Hamza Turabieh10

Accepted: 23 December 2022
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023

Abstract
Software Fault Prediction (SFP) is an important process to detect the faulty components of the software to detect faulty
classes or faulty modules early in the software development life cycle. In this paper, a machine learning framework is
proposed for SFP. Initially, pre-processing and re-sampling techniques are applied to make the SFP datasets ready to be
used by ML techniques. Thereafter seven classifiers are compared, namely K-Nearest Neighbors (KNN), Naive Bayes (NB),
Linear Discriminant Analysis (LDA), Linear Regression (LR), Decision Tree (DT), Support Vector Machine (SVM), and
Random Forest (RF). The RF classifier outperforms all other classifiers in terms of eliminating irrelevant/redundant features.
The performance of RF is improved further using a dimensionality reduction method called binary whale optimization
algorithm (BWOA) to eliminate the irrelevant/redundant features. Finally, the performance of BWOA is enhanced by
hybridizing the exploration strategies of the grey wolf optimizer (GWO) and harris hawks optimization (HHO) algorithms.
The proposed method is called SBEWOA. The SFP datasets utilized are selected from the PROMISE repository using sixteen
datasets for software projects with different sizes and complexity. The comparative evaluation against nine well-established
feature selection methods proves that the proposed SBEWOA is able to significantly produce competitively superior results
for several instances of the evaluated dataset. The algorithms’ performance is compared in terms of accuracy, the number of
features, and fitness function. This is also proved by the 2-tailed P-values of the Wilcoxon signed ranks statistical test used.
In conclusion, the proposed method is an efficient alternative ML method for SFP that can be used for similar problems in
the software engineering domain.

Keywords Software fault prediction · Machine learning · SMOTE · Dimension reduction · Meta-heuristics ·
Imbalanced data
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AUC Area under the curve
BBAT Binary bat algorithm
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BJAYA Binary jaya algorithm
BMFO Binary moth flame optimization
BN Bayesian networks
BQSA Binary queuing search algorithm
BWOA Binary whale optimization algorithm
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COA Coyote optimization algorithm
CS Chi-square
CSA Crow search algorithm
DA Dragonfly algorithm
DE Differential evolution
DT Decision tree
EA Evolutionary algorithm
FFA Firefly algorithm
FIS Fuzzy inference system
FN False negative
FP False positive
FS Feature selection
GA genetic algorithm
GBRCR Gradient boosting regression-based

combination rule
GOA Grasshopper optimization algorithm
GP Genetic programming
GWO Grey wolf optimizer
HHO Harris hawks optimization
IG information gain
KNN K-nearest neighbors
LDA Linear discriminant analysis
LR Linear regression
LRCR linear regression-based combination rule
ML Machine learning
MLP Multi-layer perceptron
MLR Multi-nomial logistic regression
MVO multiverse optimizer
NB Naive Bayes
OO Object-Oriented
PCA Principle component analysis
PCC Pearson correlation coefficient
PSO Particle swarm optimization
QMOOD Quality metrics for object-oriented design
RF Random forest
ROC Receiver operating characteristic
SBWOA Binary whale optimization algorithm with

S-shaped transfer function
SBEWOA Enhanced SBWOA
SC Soft computing
SDLC Software sevelopment life cycle
SDP Software defect prediction
SFP Software fault prediction
SMOTE Synthetic minority oversampling technique
SSA Salp swarm algorithm
SVM Support vector machine
TF Transfer function
TN True negative
TNR True negative rate
TP True positive
TPR True positive rate
VBWOA Binary whale optimization algorithm with

V-shaped transfer function
WOA Whale optimization algorithm

1 Introduction

Software Development Life Cycle (SDLC) represents the
phases that software passes through while it is being
developed. Starting with requirements elicitation, then the
analysis and design of the collected requirements. After that,
the programmers start developing the proposed software
based on the analysis and design phases. A vital phase
in SDLC is software testing. This phase follows the
development phase and consists of a set of activities
that assure the team is developing the right software
with high-quality levels [1]. Numerous testing types are
available to test various aspects of a software product.
These tests include but are not limited to unit testing,
component testing, integration testing, regression testing,
and user acceptance testing. Many software development
methodologies are available to be used by the development
team. The most popular SDLC models are waterfall, agile
and spiral models.

The testing stage plays an essential role in the
development process. It is usually performed as a traditional
linear model (e.g., waterfall) or a cyclic model (e.g.,
agile model). Testing process concerns with enhancing
the software quality and reducing the total cost [2, 3].
However, many factors affect the results of the testing
process, such as the limited resources (e.g., time or
software testers). Therefore, early-stage procedures such as
Software Fault Prediction (SFP) are utilized to facilitate
the testing process in an optimal way [4]. In SFP, the
faulty components of the software are detected prior to
system deployment in the early stages of the SDLC. This
is achieved by utilizing software faults datasets collected
from previous projects or predefined software metrics. It
is worth mentioning that the SFP process became more
straightforward since the adoption of the agile software
development (ASD) model in 2001 [5] as a replacement
for the waterfall model which was introduced in 1970 [6].
Adopting the ASD methodology has many benefits since
the software is developed incrementally. Moreover, ASD
opens the door to adopting volatile requirements, optimizing
resources (time and cost), bridging the gap between the
development team and business owners [7], and facilitating
performance software engineering tasks regularly such as
review, maintenance, and testing [2].

The early prediction of faults in software components
such as modules, classes, and so on has a significant
impact in reducing the needed time and effort for the
project outcomes to be delivered to the end-user. SFP
is one of the approaches that help in optimizing the
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development process by reducing the number of potential
faults in the early stages of the SDLC process [4]. Various
SFP approaches were recorded in the literature. The main
approaches include but are not limited to Soft Computing
(SC) and Machine Learning (ML) [8]. These methods need
data to be able to predict software faults. Design features
(metrics) gathered during the design stage or historical fault
datasets accumulated during the implementation of previous
versions of similar projects are two essential resources to be
used with SFP approaches for benchmarking [9].

Various types of metrics such as method-level and
class-level have been proposed for the SFP problem [10].
Method-level metrics can be collected from structured
programming or object-oriented programming-based source
codes. Halstead [11], and McCabe [12] metrics are the
most common method-level measures used by many
researchers. Class-level metrics are only appropriate when
developing SFP models for object-oriented programming-
based projects. Examples of class-level suite of metrics for
object-oriented design are CK (Chidamber–Kemerer) [13],
L&K (Lorenz-Kidd) [14], and quality metrics for object-
oriented design (QMOOD) [15]. However, in comparison
with other suites, CK metric is mostly applied when class-
level metrics are chosen [10].

Automated systems become available for almost all fields
in real life. With the advancement of software development,
and the availability of large-scale projects, analyzing the
collected software metrics becomes complicated and forms
a significant challenge. Thus, ML techniques have been
proposed as SFP solutions and shown a good performance
[16]. The main purpose behind these techniques is to predict
the faulty components in software based on the supplied
datasets. Examples of ML techniques that have been used
as SFP approaches are K-Nearest Neighbors (KNN), Naive
Bayes (NB), Linear Discriminant Analysis (LDA), Linear
Regression (LR), Decision Tree (DT), Support Vector
Machine (SVM), and Random Forest (RF) [4, 17, 18].

Among the various ML models, ensemble learning
has proven excellent performance in dealing with various
complex classification problems [19]. Ensemble learning
combines a number of ML models to create an ensemble
learner to improve the model performance by proving a
more general robust model. The RF is recognized as a well-
regarded ensemble technique that was originally introduced
by Breiman, Leo [20]. In RF, a number of DT classifiers are
fit on various sub-samples of the dataset and combine the
output of all the trees. The RF has several merits that make it
superior when compared to other traditional ML models. It
controls the over-fitting problem of DT, reduces the variance
within the forest, and thus enhances the predictive accuracy
[21, 22].

The performance of the ML-based SFP approaches
depends mainly on a set of factors which is the applied ML

technique and the quality of the utilized dataset (in terms of
noise, irrelevant features, and imbalanced representation of
data) [23]. Therefore, dimensionality reduction (e.g., feature
selection) and data resampling (e.g., Synthetic Minority
Oversampling Technique (SMOTE)) techniques are needed
before applying the ML technique. These features can be
defined in the context of the feature selection problem which
can be tackled by feature selection techniques.

In feature selection (FS) the problems with high-
dimension feature space increase the hardness of the
search process. In common, various search strategies,
including complete, random, and heuristic, are available for
searching the feature space to obtain the optimal subset of
features [24]. The complete search requires generating and
evaluating all possible subsets of features. In this way, for
a set of m features, 2m features subsets will be formed.
For example, if the given problem has four features, sixteen
subsets of features will be produced. In case of random
search, the next candidate solution (subset of features)
is generated randomly while heuristic search strategies
conduct the search in adaptive way, and generate possible
solutions (feature subsets) for the problem [24–27].

Recently, metaheuristics is widely used by the research
community as a successful FS method. The metaheuristics
are conventionally categorized based on the initial solu-
tions into population-based, and trajectory-based [28]. A
trajectory-based metaheuristic is initiated with a single solu-
tion. The search follows a trajectory in the search space
based on the local modification of the current solution
until a local optimum is obtained. These methods like tabu
search [29], β-hill climbing [30], stochastic local search
[31], and variable neighborhood search [31]. In contrast, the
population-based algorithm is initiated with a population
of individuals. Iteratively, the population inherits its strong
elements to come up with an optimal solution. Normally,
population-based algorithms are classified into evolution-
ary algorithms (EAs) and swarm intelligence approaches.
Genetic Algorithm (GA) [32], Genetic Programming (GP)
[33], and Differential Evolution (DE) [34] are the base
EAs for feature selection. A swarm-based algorithm is nor-
mally built based on the idea of a group of solutions where
the group members are divided into leaders and follow-
ers. Particle Swarm Optimization (PSO) algorithm and Ant
Colony Optimization (ACO) are the base swarm intelli-
gence methods. Quite recently, several swarm intelligence
methods have been proposed for FS such as PSO [35], Salp
Swarm Algorithm (SSA) [36, 37], Dragonfly Algorithm
(DA) [38], Rate Swarm Optimizer [39], Ant Lion Opti-
mizer (ALO) [40], Harmony Search [41], Coronavirus herd
immunity optimizer [42], ant colony optimization (ACO)
[43], β-hill climbing optimizer [44], Crow Search Algo-
rithm (CSA) [45], JAYA algorithm [46], Firefly algorithm
(FFA) [47], Artificial Bee Colony (ABC) algorithm [48],
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Coyote Optimization Algorithm (COA) [49], and Grasshop-
per Optimization Algorithm (GOA) [50]. Furthermore, the
hybrid between them such as Genetic-Whale-Ant colony
algorithms [51], Grey Wolf optimizer and Random Forest
[52], hybrid Salp Swarm Algorithm [53], genetic and coral
reefs [54], etc. There are also real opportunities to adapt
newly-established optimization algorithms for FS problems
like starling murmuration optimizer [55], Quantum-based
avian navigation optimizer [56], Farmland fertility algo-
rithm [57], African vultures optimization algorithm [58],
and artificial gorilla troops optimizer [59].

Whale Optimization Algorithm (WOA) is a recent swarm
intelligence imitates the behavior of humpback whales
in hunting fish in the oceans [60]. It has impressive
characteristics over other optimization methods such as
it has few control parameters, easy to implement, simple
structure, and it has maneuver behavior to find a suitable
balance between local exploitation and global exploration.
Due to its successful attributes, WOA has been widely
utilized to deal with feature selection problems [25, 61–65].
The original version of WOA was designed to handle
continuous search space problems. In this paper, to match
the binary search space of the FS problem, WOA was
boosted with eight fuzzy transfer functions from S-
shaped and V-shaped families. Due to the No Free Lunch
[66] argument which points out that there is no superb
optimization algorithm that can excel all others for all
optimization problems, therefore, the opportunity is still
possible to investigate modifying efficient methods to
handle the SFP to improve the algorithm efficiency.

In this paper, a systematic SFP approach that considered
several ML techniques with different pre-processing meth-
ods was proposed. The major contributions are summarized
as follows:

– Several pre-processing and re-sampling techniques are
applied to prepare SFP datasets to be suitable to the ML
techniques.

– Various classification techniques, namely KNN, LDA,
SVM, LR, DT, and NB, RF, are applied. Their
performance is compared in the same environment to
adopt one technique for further experiments. As a result,
the RF classifier is adopted in this stage.

– A dimensionality reduction method based on the Binary
version of WOA was utilized to eliminate the irrele-
vant/redundant features to enhance the performance of
the RF classifier. The newly proposed method is called
BWOA, which utilizes eight transfer functions where a
transfer function that yields good results is chosen.

– An enhanced WOA version (EWOA) is introduced,
where the exploration strategies from the grey wolf
optimizer (GWO) and harris hawks optimization
(HHO) algorithms are used to enhance the diversity of

the WOA. By means of this enhancement mechanism,
the performance of WOA is improved to deal more
efficiently with the search space of the FS problem.
This yields a superior optimization framework for the
faulty-software prediction problem.

The newly proposed EWOA reveals very successful
outcomes in terms of choosing the most informative features
in the area of SFP. The findings prove that the classification
performance can be significantly improved by removing
useless features. The performance is compared with nine
state-of-the-art methods and it shows the viability of the
proposed method in terms of the accuracy, number of
features, and fitness function.

The remainder of the paper is structured as follows: a
review of the related works is presented in Section 2. In
Section 3, a theoretical background of the related aspects
to this paper is introduced. Section 4 presents the proposed
methodology. The experimental design and the obtained
results are discussed in Section 5. Finally, Section 6 includes
a conclusion about the main findings of this paper in
addition to some future work directions.

2 Related works

Recently, different ML approaches were considered to
solve the SFP problem with remarkable success [4].
Accordingly, different datasets (e.g., PROMISE repository,
NASA datasets, and Qualitas corpus) became publicly
available to the researchers [4, 67]. This section presents the
most relevant related work in the field of SFP. A general
overview of the SFP techniques is provided, and the related
ML approaches are investigated, followed by the related
work of the enhanced ML approaches by applying some
preprocessing approaches like feature selection.

2.1 ML based SFP

Different supervised and unsupervised ML techniques were
applied as prediction models in SFP. Examples of the ML
that were used with SFP are: SVM [68], DT [69], Bayesian
Networks (BN) [70], NB [71], KNN [72], Multi-layer
Perceptron (MLP) [73], Artificial Neural Networks (ANN)
[2, 74], LR [75], Multi-nomial Logistic Regression (MLR)
[73], RF [76] and ensemble MLP [77].

Singh and Malhotra [68] conducted an empirical study
to evaluate the performance of an SVM classifier in
determining the relationship between some software Object-
Oriented (OO) design matrices and fault proneness. A
dataset from the NASA repository (KC1) and Receiver
Operating Characteristic (ROC) were used to evaluate the
proposed model. The study shows that the SVM classifier
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was feasible and helpful in predicting faulty classes in
OO-based systems.

Moreover, Cahill et al. [78] introduced an approach
named Rank Sum for data representation to improve the
performance of fault porousness prediction modules. The
proposed approach is evaluated by applying the well-known
ML classifiers SVM and NB over various datasets from the
NASA repository. It was found that NB is better compared
to the SVM classifier. Erturk and Sezer [79] introduced an
SFP model that combines Fuzzy Inference System (FIS)
and Artificial Neural Network (ANN) classifiers. FIS was
applied at the beginning of the project to make predictions
depending on expert opinion because it does not need
historical data for prediction, and then ANN was employed
in the later iterations when some data about the software
project are obtainable. The proposed iterative system was
tested using a set of datasets including various versions of
many projects from the PROMISE repository. The selected
datasets consist of common OO metrics such as coupling
between objects, response for a class, and weighted methods
per class. The evaluation of the results according to the
receiver operating characteristics (ROC) with the area under
the curve (AUC) method shows that the iterative module is
capable of locating fault-prone modules in the software.

An approach named multi-strategy classifier (RB2CBL)
was introduced by Khoshgoftaar et al. [80] for the SFP
problem, where Rule-Based (RB) classifier was hybridized
with two variants of the Case-Based Learning (CBL) model.
Moreover, an embedded GA was utilized to optimize the
parameters of CBL models. The experimental results reveal
that the proposed RB2CBL classifier is superior compared
to the RB model alone. Carrozza et al. [81] proposed a
new set of software matrices for detecting mandelbugs
in complex software systems. In addition, considering the
newly proposed matrices and the conventional software
matrices, several algorithms, including DT, SVM, BN, NB,
and MLR, were applied to various datasets from the NASA
repository. The authors reported that MLR and SVM are the
best among all examined algorithms in finding Mandelbug-
prone modules.

A model based on the principle of ensemble learn-
ing methods was employed by Rathore and Kumar [82]
to predict software faults in which linear regression-based
combination rule (LRCR) and gradient boosting regression-
based combination rule (GBRCR) approaches were used to
ensemble the output of Genetic Programming (GP), MLP,
LR algorithms. Moreover, eleven datasets belonging to six
software projects were accumulated from the PROMISE
data repository to assess the performance of the proposed
ensemble models. Results of different performance evalu-
ation measures, including Average Absolute Error (AAE)
and Average Relative Error (ARE), provided evidence that

ensemble techniques can produce better results for predict-
ing software faults compared to individual fault prediction
techniques. Choudhary et al. [83] defined a set of change
matrices in addition to the existing ones to enhance the
performance of SFP modules.

Various ML classifiers were applied along with code
matrices and change matrices. Experimental results on
different releases of Eclipse projects demonstrate that
the newly introduced change matrices can improve the
performance of fault prediction modules. In [84], Shatnawi
used the ROC analysis to examine the relationship between
software matrices (features) and faults where threshold
values of matrices were identified accordingly. A threshold
value is defined for each metric to be used for deciding
whether a software module is faulty or not. Moreover, the
results of ROC were also considered for selecting the most
correlated matrices with faults. Only selected matrices were
applied to train and test a set of ML classifiers (LR, NB,
KNN, and decision trees C4.5).

From the previously investigated related work, resear-
chers confirmed that having a considerable number of
features in a dataset affects the performance of the ML
technique. Therefore, many researchers considered dimen-
sionality reduction methods to eliminate the irrelevant/
redundant features from the datasets. The most popular
dimensionality reduction technique is FS.

2.2 PreprocessingMLmethods

FS is a well-known preprocessing step in the data mining
process that aims to eliminate noisy, irrelevant, and
redundant features to reduce data dimensionality, and hence,
improve the performance of the employed ML technique
[24, 85]. In many works in the field of SFP, different filter,
and wrapper FS approaches were investigated. Catal, C. and
Diri, B. [86] employed a correlation-based feature selection
approach to select the highly relevant matrices with varying
techniques of ML (i.e., RF, DT, NB, and AIRS). They found
that FS positively affected the performance of the employed
ML approaches and that the RF classifier outperformed
other classification techniques. In [87], eighteen filter
FS methods were employed on five datasets from the
NASA repository with various classification techniques.
The obtained results revealed that using FS enhanced the
performance of the prediction models.

As presented in [88], a set of filter FS methods, including
Chi-square (CS), information gain (IG), and Pearson
Correlation Coefficient (PCC), was used to develop a hybrid
feature selection method to improve the performance of
Software Defect Prediction (SDP). In the hybrid FS method,
the features were ranked and selected according to their
values using these filter ranking methods. In addition, for
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comparison purposes, each of the three filter methods was
applied separately. Using five NASA datasets for validating
the FS method and a RF classifier for building the prediction
model, the results of AUC show that the hybrid FS approach
is superior compared to other filter FS methods.

Moreover, many wrapper FS methods were applied in
the SFP field. A GA-based FS approach with a bagging
technique was proposed in [89]. In this approach, two
preprocessing techniques were used; FS (i.e., GA) and
resampling (i.e., bagging). A similar approach was proposed
in [90]. In this approach, two metaheuristics algorithms (i.e.,
GA and PSO) were applied as selection mechanisms in the
FS process, in addition to considering a bagging technique
to rebalance the used nine datasets.

Another wrapper FS was recently proposed by Turabieh,
H., Mafarja, M. and Li, X. [2]. In this approach,
the authors used several FS approaches to improve the
efficiency of a Layered Recurrent Neural Network (L-
RNN) classifier in predicting faulty software components.
Three metaheuristics algorithms (i.e., GA, PSO, and ACO)
were considered in this paper as FS approaches. A set of
extensive experiments were conducted in this paper, and
the performance of the proposed approach was compared
with several ML classifiers (i.e., NB, LR, ANN, C4.5
DT, and KNN), and the area under the curve (AUC) was
considered as an evaluation measurement. AUC confirmed
that the proposed wrapper approach is better compared
to other approaches. In this approach, a Binary Queuing
Search Algorithm (BQSA) was proposed for the first time in
literature in the SFP field. Moreover, the SMOTE technique
was applied to rebalance the datasets that were obtained
from the PROMISE repository. The presented results in
the paper revealed the positive effects of dimensionality
reduction and resampling techniques on the obtained
datasets.

In 2020, Tumar, Iyad, et al. [3] proposed a modified ver-
sion of binary Moth Flame Optimization named Enhanced
MFO (EBMFO) as a wrapper FS approach in SFP, along
with the Adaptive synthetic sampling method (ADASYN)
as a resampling technique. Three ML classifiers were used
in this paper (i.e., LDA, KNN, and DT), and the results
confirmed that the performance of these classifiers was
improved with the use of the preprocessing techniques.
Recently, a Harris Hawk Optimization algorithm (called
EBHHO) based FS approach in the SFP field was proposed
in [91]. Again, the obtained results proved the positive influ-
ence of the employed preprocessing techniques on the used
ML classifiers.

From the previously mentioned approaches, it is clear
that preparing the datasets by employing preprocessing
techniques (e.g., FS and resampling) greatly influences the
performance of the prediction model in the SFP problem. It
can be concluded that SFP becomes possible for large-scale

projects when proper preprocessing techniques are used.
These observations, besides the Non-Free-Lunch (NFL)
theorem for optimization [66] which states that no best
classifier to handle all possible classification problems
[92], motivated our attempts to propose an advanced
SFP approach that considers the RF classifier as an ML
technique, improved by SMOTE as a resampling technique,
along with an advanced wrapper FS approach with a novel
WOA algorithm as a searching strategy.

3 Preliminaries

This section briefly describes the main theoretical concepts
utilized in this research which are: the RF classifier,
the oversampling technique (i.e., SMOTE), feature subset
selection, and WOA to tackle the FS problem. In the SFP
problem, the aim is to predict fault-prone software modules
in the early stages of the SDLC based on the designed
metrics of the software project. SFP is considered a binary
classification problem since each software component has
two options in the target class: faulty or non-faulty. Several
supervised classification paradigms can be used to tackle
this problem. After conducting deep experimental studies,
we considered the RF classifier to be adopted in this
research.

3.1 Random Forest classification paradigm

Random Forest (RF) is a classification algorithm that was
initially proposed in [20]. RF considers a combination
of decision trees in a model called ensemble learning,
where each tree in the forest depends on an independently
sampled vector of random values. The main advantages
of the RF classifier are the few parameters to be tuned,
its capability of high generalization, and it requires less
training time than other classifiers regardless of the size
of the dataset [93]. Ensemble learners combine different
classification algorithms to get a generalized model that
enhances the prediction performance where the number
of wrongly classified instances comes at a very low rate.
Ensemble methods can be distinguished into three families,
namely, bagging, boosting, and stacking methods.

RF classifiers use the bagging method. As demonstrated
in Fig. 1, a random sample of the original training dataset is
provided by applying a bootstrap re-sampling technique for
each model. After applying the bagging process, x features
are selected randomly from the full feature set. Then, one
feature is selected as a split node. The splitting process is
repeated, with a fresh selection of features, until reaching a
specified depth d where a decision tree is completed [94].
After the multiple splits, a random forest of decision trees
is constituted. Every new instance is passed to all trees in
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Fig. 1 Ensemble learning (bagging method)

the forest, and a class label is predicted (termed as a vote),
Then the majority voting strategy is applied to select the
class label for this instance.

3.2 Data sampling for imbalanced classification

The quality of data is considered a significant factor
that has a profound impact on the performance of ML
techniques. Imbalanced datasets are distinguished as a
challenging aspect that may degrade the prediction quality
of classification methods. This issue emerges in most
real-world problems in which the target classes are not
represented equally. In other words, in binary class datasets,
most of the instances are labeled with the first class (called
majority class), while few of them are labeled with the other
one (called minority class). In such a case, the classifier is
trained on highly imbalanced data and thus tends to pick
up the patterns in the dominant classes, which leads to
inaccurate prediction of the minority class [95].

The class imbalance problem poses a significant chal-
lenge in the field of software defect prediction since the
available datasets are highly imbalanced. That is to say,
the occurrences of defective cases are very low compared
to normal cases (see Fig. 3). Various strategies can be
employed to handle this problem, such as cost-sensitive,
kernel-based, and sampling methods [95]. Sampling meth-
ods are categorized into two types: oversampling, which
increases the rate of the minority class, and under-sampling,
which reduces the frequency of the minority class. The
latter causes information to be lost, which leads to poor
prediction quality. In this research, we utilized an oversam-
pling technique called SMOTE to rebalance the used SFP
datasets.

The SMOTE is a promising oversampling method that
proves its superiority in dealing with imbalanced data. It
is originally introduced by Chawla, Nitesh V., et al. [96].
This technique preserves the original data without losing
information, and it increases the rate of the minority class
without duplication. New synthetic samples (x̂ij ) labeled
with the minority class are generated using the k-nearest
neighbors’ method for each minority sample (xi) using the
Euclidean distance, where j = 1, 2, ..., k. The new synthetic
samples are generated along the lines joining the minority
sample and its j selected neighbors as in (1).

xnew = xi + (x̂i − xi) ∗ r (1)

where r is a random vector between 0 and 1, x̂i denotes one
of the k neighbors. The value of k depends on the desired
amount of oversampling.

3.3 Feature Selection (FS)

One of the most common questions when applying ML
algorithms is whether all features (factors) are relevant to
the classification rule. As a response to this question, a
problem called FS emerged. FS is defined as the process
of reducing the dimension of data by eliminating irrelevant,
noisy, and redundant features. In other words, it is the task
of searching for the most informative subset of features. It is
an essential pre-processing technique that aims to enhance
the performance of ML tasks [25, 26, 97].

FS approaches are classified into wrapper and filter
based on the evaluation function used to measure the
selected subset of features [98]. In wrapper-based methods,
a search algorithm (deterministic or heuristic) is employed
to generate subsets of features for examination. Then
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the effectiveness of each suggested subset of features is
evaluated by a given classifier (learning algorithm). The
evaluation is conducted in terms of several measures such
as accuracy, the area under the ROC, etc. FS is treated as a
binary optimization problem in which the search algorithm
is guided using the reported error by a classifier [99].

In the filter-based approach, the learning algorithm is
not involved in the evaluation function. The effectiveness
of a subset of features can be evaluated based on the
intrinsic properties of the data. Statistical measures are
used to measure the dependency or correlation between
features, which can be filtered to select the most informative
features. Several ranking techniques have been introduced
for feature evaluations, such as gain ratio and information
gain [100]. The filter-based approach is more effective
compared to a wrapper-based approach in terms of the
required computational time.

In this paper, we propose a wrapper FS approach that
considers WOA as a selection mechanism and RF classifier
as an evaluation method. In the following subsection, the
WOA is introduced, followed by the description of the
enhanced approach of the original WOA.

3.4 An overview of theWOA

WOA is a recent Swarm Intelligence (SI) algorithm that
mimics the behavior of humpback whales in hunting fish
in the oceans. The hunting process starts by constructing
bubble nets to constrict the prey, and then the whale swims
towards them in a spiral shape to attack them. According
to [60], WOA can balance its stochastic exploratory and
exploitative tendencies effectively. In the exploration phase,
WOA simulates the encircling mechanism of the whales in
nature. Where the prey represents the best solution, found
so far, and the other solutions in the population represent
the candidate whales. The whales change their positions by
moving spirally toward the prey’s location as modeled in (2)
and (3):

D =| C. �X ∗(t) − �X (t) | (2)

�X (t + 1) = �X ∗(t) − �A .D (3)

where t represents the current iteration, X∗ represents the
prey’s location, X represents the locations of the candidate
solution (whale). Vectors A and C are defined in (4) and (5).

�A = 2�a .�r − �a (4)

�C = 2.�r (5)

where −→
r is generated randomly in the interval [0,1], and−→

a simulates the shrinking encircling behavior of the whales
and decreases linearly in the interval [2, 0] as in (6)).

a = 2

(
1 − t

T

)
(6)

According to (7) which represents the bubble-net
attacking process (exploitation phase), a solution’s position
is changed based on two different approaches; shrinking
encircling (when p < 0.5) and spiral updating mechanism
(when p ≥ 0.5), where a probability of 50% is used to select
between these two approaches.

�X (t + 1) =
{ �X ∗(t) − �A .D p < 0.5

D′.ebl . cos(2πl) + �X ∗(t) p ≥ 0.5
(7)

where D′ represents the distance between the ith solution
and the prey’s location, b is a constant, and l is a random
number in the interval [-1,1].

Based on the variation of �A, which takes a value in the
interval [-1, 1], a solution is forced to move towards or far
away from the best solution. If �A < 1, then a solution
is moved towards the prey’s location (exploitation), while
it is moved towards a randomly selected solution from the
population (represented as �Xrand in (8) and (9)) when �A >

1 (exploration).

D =| C. �Xrand (t) − �X (t) | (8)

�X (t + 1) = �Xrand (t) − �A .D (9)

As for all population-based metaheuristic algorithms
(MAs), WOA starts the optimization process by generating
N random solution, each of which represents a whale in
nature. Then, each solution is evaluated using the adopted
fitness function. The solution with the lowest fitness value
is denoted as the best solution since this type of this
problem is a minimization problem, and the coefficients
of the algorithm are calculated. The algorithm then moves
according to the parameter a which is decreased from 2 to
0. Each solution is updated based on the value of �A, where
it moved towards a randomly selected solution from the
current population when �A > 1. Also, it is moved towards
the best solution when �A < 1. The WOA switches between
a spiral or circular movement based on the value of p. The
pseudo-code of WOA is shown in Algorithm 1.

4 The proposedmethodology

The main objective of this paper is to build a well-
performing classification model that is able to predict
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Algorithm 1 Pseudo-code of WOA.

faulty software components. The datasets were selected
from the PROMISE repository and normalized to set a
proper scale for all data. Moreover, some techniques were
applied to balance the data to get more accurate results.
Then, more experiments were conducted to select the most
appropriate classifier for this problem. After that, extensive
experiments were conducted to tune the parameters of the
selected classifier. In the last phase, a set of wrapper feature
selection methods were applied to enhance the performance
of the adopted classier. Figure 2 represents the proposed
methodology.

4.1 Preprocessing techniques

Data preprocessing is a vital step in the mining process. It
aims to prepare the dataset to be suitable for the mining
techniques to achieve high performance. The datasets
are investigated using a 2D visualization using Principle
Component Analysis (PCA) as shown in Fig. 3. The figure
demonstrates that the datasets are highly imbalanced and
not linearly separable. Therefore, all datasets should be
balanced before applying proper results and adopting a
learning algorithm. Moreover, a complex learning algorithm
is required to provide better performance because the data
in datasets is not linearly separable.

– Data Normalization: The collected datasets are com-
plete, and no missing data are there. Their structures are
well to be mined, and all attributes are numeric. How-
ever, the numeric data are of different scales. Therefore,
to avoid bias towards some dominant features, the Min-
max normalization method (as can be seen in (10)) was
applied to standardize the data in the interval of [0, 1].

xn = x − min

max − min
(10)

where xn is the normalized value of x within the interval
[min, max].

– Data Balancing After investigating the adopted datasets,
we noticed that they are highly imbalanced as the rate
of faulty instances is very low compared to normal
ones (see Fig. 3). Thus, the datasets should be balanced
before using them with the classification technique to
avoid any decrease in their performance. In this paper,
we applied three variants of the SMOTE oversampling
technique (i.e., SMOTE, Borderline SMOTE, and SVM

Collect  OO metrics and 
historical data So�ware fault data

Normalization

Feature 
selection

Data preprocssing

oversampling Build Random 
Forest model

Evaluate classifier

Predic�on 
results

cleaning

Knowledge presentation

Training data

Tes�ng data

Performance 
evalua�on measures

Fig. 2 Software fault prediction process
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Fig. 3 Visualization of target class distribution based on the first 2 principal components of the dataset features

SMOTE) to select the best one that positively affects the
performance of the learning algorithm.

4.2 Classifier selection

Investigating data visualization in Fig. 3, it can be seen
that data in most datasets are not linearly separable. Thus,
simple classifiers may not be suitable to handle this kind
of problem. Therefore, we did extensive experiments to
compare the performance of different classifiers on the same
datasets and under the same computational system.

4.3 Binary variant of WOA (BWOA)

As mentioned earlier, FS is a binary optimization problem,
while the WOA was originally designed to deal with
continuous optimization problems. This requires using a
conversion function that converts the continuous solutions
to binary to make them suitable for binary problems. We
used the Transfer Functions (TFs) that were widely used to

convert the continuous metaheuristics population to binary
[101, 102]. TFs can be categorised based on their shapes
[103] into S-shaped and V-shaped functions (see Fig. 4).
The proposed Binary WOA for FS is called BWOA.

The S-shape TF [104] is used to convert the continuous
PSO algorithm into binary. The TF is usually used to
produce a probability of flipping a future value from 0 to 1
or from 1 to 0 as in (11). It takes the elements of the step
vector (solution x) that was generated by the algorithm.

S(x
j
i (t)) = 1

1 + exp−x
j
i (t)

(11)

where x
j
i represents the jth element in the ith solution x, and

t indicates the current iteration. An element of a solution in
the next iteration is updated by (12).

X
j
i (t + 1) =

{
0 If rand < S(x

j
i (t + 1))

1 If rand ≥ S(x
j
i (t + 1))

(12)

Fig. 4 Transfer functions
families (a) S-shaped and (b)
V-shaped
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Table 1 S-shaped and
V-shaped transfer functions S-shaped family V-shaped family

Name Transfer function Name Transfer function

S1 T (x) = 1
1+e−2x V1 T (x) = |erf

(√
�

2 x
)

| = |
√

2
�

∫ (
√

�/2)x

0 e−t2
dt |

S2 [104] T (x) = 1
1+e−x V2 [105] T (x) = | tanh(x)|

S3 T (x) = 1
1+e(−x/2) V3 T (x) = |(x)/

√
1 + x2|

S4 T (x) = 1
1+e(−x/3) V4 T (x) = | 2

�
arc tan

(
�
2 x

) |

where X
j
i (t + 1) is the binary value of the real x

j
i , S(x

j
i (t))

is the probability value, which can be obtained via (11).
Another TF that belongs to the V-shaped family [105] is

used to convert the continuous version of the GSA algorithm
into binary. Equation (13) represents the V-shape TF and
(14) represents the rule to convert to binary.

V (x
j
i (t)) = | tanh(x

j
i (t))| (13)

X
j
i (t + 1) =

{
¬X

j
i (t) r < V (�x

j
i (t + 1))

X
j
i (t) r ≥ V (�x

j
i (t + 1))

(14)

In this paper, eight TFs were adopted to convert the
original WOA into binary. The original TFs that were
proposed in [104], which are S2 TF and V2 TF [105].
In addition, the six TFs that were proposed in [103] are
evaluated. The mathematical formulation of all TFs is
shown in Table 1.

4.4 Formulation of FS problem

One of the critical aspects that should be considered when
designing an optimization algorithm is the fitness function.
Since FS is a multi-objective optimization problem,
both objectives should be considered when evaluating a
solution. The suitability of a feature subset is determined
by the number of selected features (minimize) and the
classification accuracy (maximize). Aggregation is one of
the most popular techniques for multi-objective formulation
[106]. In this technique, the objectives are integrated into a
single objective formula such that a preset weight identifies
each objective importance. In this work, we adopt a fitness
function that combines both objectives of FS as shown in
(15).

Fitness(X) = α · E(X) + β ∗
(

1 − |R|
|N |

)
(15)

where Fitness(X) represents the fitness value of a subset
X, E(X) represents the classification error rate by using the
selected features in the X subset, |R| and |N | are the number
of selected features and the number of original features in
the dataset respectively, α and β are the weights of the
classification error and the reduction ratio, α ∈ [0, 1] and
β = (1 − α) adopted from [36, 97, 107].

Another aspect that should be considered when designing
an optimization approach to tackle an FS problem is the
solution representation. In this research, the feature subset
is represented as a binary vector of N elements where N

is the total number of features in the original dataset. Each
dimension in that vector contains a binary value (0 or 1).
The 0 value indicates that the corresponding feature is not
selected in that feature subset, while the 1 value indicates the
corresponding feature is selected. Figure 5 shows a sample
solution for a dataset of N features.

4.4.1 Enhanced BWOA (BEWOA)

The performance of the binary version of WOA (BWOA)
can be improved to deal with the complex nature of the SFP
problem more efficiently. This is because the SFP search
space is highly dimensions and rigid. Therefore, the enhanced
version of BWOA (BEWOA) extracts efficient exploration
strategies from GWO [108] and HHO [109]. The flowchart
of the proposed BEWOA is illustrated in Fig. 6.

We propose a new approach that employs multi-exploration
strategies instead of having one strategy as follows:

– The exploration strategy that was used in GWO, where
the best three solutions are selected and updated based
on the values of A and C parameters as shown in
(16–19).

�X1 = �Xα − �A1.| �C1. �Xα − �X(t)| (16)

�X2 = �Xβ − �A2.| �C2. �Xβ − �X(t)| (17)

�X3 = �Xδ − �A3.| �C3. �Xδ − �X(t)| (18)

�X(t + 1) = �X1 + �X2 + �X3

3
(19)

0 001 1 ………. 1

f1 f2 f3 f3 f4 fn

selected removed

Fig. 5 Binary solution representation
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Fig. 6 The flowchart of the proposed BEWOA

Note that the �Xα , �Xβ and �Xδ are the best, second-
best, third-best solutions in the population. The vectors
�C1, �C2, �C2 are calculated based on the (5) while vectors
�A1, �A2, �A2 are calculated based on the (4).

– The average of all positions was used in HHO to guide
the solution being updated. This strategy is used as
shown in (20, 21).

�X (t + 1) = r . �X ∗(t) − �Xavg(t) (20)

Xavg(t) = 1

N

N∑
i=1

Xi(t) (21)

Algorithm 2 shows the new modifications. Now, instead
of updating the position of the current solution based on the
WOA ((3) in Algorithm 1), the positions in BEWOA of the
current solution are updated based on either GWO updating
(19) or HHO updating (20).

The main rationale of this enhancement is to improve the
exploration stage of the original WOA by employing the
survival-of-the-fittest principle rather than random search.

Since the search space of SFP is very deep, the search
requires a more guided exploration to reach the best possible
solution. Therefore, concentrating on the best solutions in
the search space regions can converge the search to the
optimal solution quickly.

In order to provide more insight about the proposed
BEWOA, the time complexity is analyzed. As can be
noticed from Algorithm 2, it has several statements with
loops. The statement in Line 1 needs a O( N × n) where
N is the population size while n is the solution dimension .
In line 3, the complexity depends on the evaluation function
complexity as calculated in (15). In the main loop starting
from Line 5 to Line 18, the time complexity is O(L×N×n).
Therefore, the time complexity of the proposed method is
O(LNn) which is similar to the original WOA.

5 Experimental results and discussion

A set of experiments are conducted in this research to
prove the efficiency of the proposed approach. This section
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Algorithm 2 Pseudo-code of the proposed BEWOA.

presents these results in detail. The experiments are carried
out in four phases as follows:

– First, different SMOTE techniques are adopted to solve
the imbalance dataset issues.

– Second, the hyper-parameter settings of the RF
classifier are investigated, and those parameters that
provided the optimal results are selected.

– Third, the performance is tested using 7 popular
machine learning methods (RF, KNN, NB, LDA, DT,
LR, and SVM).

– Fourth, a novel BEWOA approach is introduced
as a feature selection method to tackle the data
dimensionality problem. In addition, the proposed
approach is compared with the other 9 state-of-the-art
methods.

In the experiments, the train/test model is adopted. The
datasets are split randomly into two parts; 66% are used for
training purposes, while the remaining 34% of the dataset

Table 2 The system properties

Name Setting

Hardware

CPU Intel Core(TM) i7-8550U

Frequency 2.2 GHz

RAM 8 GB

Hard drive 1 TB

Software

Operating system Windows 10 64bit

Language Python 3.8.3

is used for blind testing. Due to the availability of random
factors in the classification algorithm (i.e., RF) and the
optimization technique (i.e., WOA), we only report the
average values of 30 runs for each employed method. Please
note that we use the boldface to represent the best results.
All the experiments are conducted on a computer under
the same environment and conditions to guarantee a fair
comparison. The details of the utilized system are presented
in Table 2. It is worth mentioning that Python programming
language is used to implement the proposed classification
framework, together with the open-source libraries (e.g.,
Panda, Numpy, Matplotlib, and SKlearn (Scikit-learn)).

5.1 Datasets: investigated software projects

In this work, we adopt 16 well-known datasets related to
the SFP problem to assess the performance of the proposed
approach. The datasets are collected from the PROMISE
repository [110, 111] and have been recommended by
many researchers in the field. The adopted datasets consist
of several software metrics (e.g., object-oriented metrics)
that are usually employed to investigate the quality of a
software project (see Table 4 for more information about
these metrics) [112]. The details of the adopted datasets are
presented in Table 3. It can be seen that these datasets have
various sizes (from 109 to 909 instances), and all of them
have 20 object-oriented metrics.

From Table 3 it can be noticed that most of the datasets
are imbalanced, where the rate of the defected instances is
much lower than the rate of the normal instances. In some of
the datasets, the rate of the defective instances is only 2.2%
from all instances. This observation motivates us to use an
oversampling technique to re-balance the datasets before
applying them to the ML approaches. Table 4 illustrates the
main features provided in the dataset given in Table 3.
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Table 3 Details of the 16 software projects (datasets) from PROMISE repository

Dataset version No. metrics No. instances No. normal instances No. defective instances Rate of defective instances

Ant 1.7 20 745 579 166 0.223

Camel 1.0 20 339 326 13 0.038

1.2 20 608 392 216 0.355

1.4 20 872 727 145 0.166

1.6 20 965 777 188 0.195

Jedit 3.2 20 272 182 90 0.331

4.0 20 306 231 75 0.245

4.1 20 312 233 79 0.253

4.2 20 367 319 48 0.131

4.3 20 492 481 11 0.022

Log4j 1.0 20 135 101 34 0.252

1.1 20 109 72 37 0.339

Lucene 2.0 20 195 104 91 0.467

Xalan 2.4 20 723 613 110 0.152

2.5 20 803 416 387 0.482

2.6 20 885 474 411 0.464

5.2 Evaluationmeasures

Since SFP is a binary classification problem, we use the
confusion matrix to calculate the evaluation measures.

Table 5 represents the confusion matrix, followed by the
equations for calculating the evaluation metrics. The True
Positive Rate (TPR) is calculated according to (22), True
Negative Rate (TNR) is calculated as in (23), while the Area

Table 4 Description of
object-oriented metrics Metrics Descriotion

WMC Number of methods defined in a class.

DIT provides a measure of the inheritance levels from the object hierarchy top for each class .

NOC Number of immediate descendants of a class.

CBO Count the number of classes coupled to a given class.

RFC Count the number of distinct methods invoked by a class in response to a received message.

LCOM Count the number of methods that do not share a field to the method pairs that do.

CA Count the number of dependent classes for a given class.

CE Count the number of classes on which a class depends.

NPM Number of public methods defined in a class.

LCOM3 Count the number of connected components in a method graph.

LOC Count the total number of lines of code of a class.

DAM Computes the ratio of private attributes in a class.

MOA Count the number of data members declared as class type.

MFA Shows the fraction of the methods inherited by a class to the methods accessible by the
functions defined in the class.

CAM Computes the cohesion among methods of a class based on the parameters list.

IC Count the number of coupled ancestor classes of a class.

CBM Count the number of new or redefined methods that are coupled with the inherited methods.

AMC Measures the average method size for each class.

MAX CC Maximum counts of the number of logically independent paths in a method.

AVG CC Average counts of the number of logically independent paths in a method.
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Table 5 Confusion matrix for binary classification

Predicted positive Predicted negative

Actual positive True Positive (TP) False Negative (FN)

Actual negative False Positive (FP) True Negative (TN)

Under the Curve (AUC) is calculated based on (24). Since
the available datasets are imbalanced, and thus we do not
consider the accuracy as the evaluation measure because it
can be profoundly misleading of judging a model.

• TPR: The percentage of the positive cases that are
correctly classified as positive.

T PR = T P/(T P + FN) (22)

– TNR: The percentage of negative cases that are
correctly classified as negative.

T NR = T N/(T N + FP) (23)

– AUC: a measure of how well a model can distinguish
between defected and normal groups.

AUC = (T PR + T NR)/2 (24)

5.3 Handling imbalanced data using different
SMOTE variants

In this section, we are interested in assessing the effect
of rebalancing the datasets on the RF classifier. Three
SMOTE variants (namely: SMOTE, BorderlineSMOTE,
and SVMSMOTE) are applied, and the AUC, TPR, and
TNR results are reported in Table 6. Observing the results
in Table 6, one can conclude that SMOTE recorded the best
performance. Moreover, the prediction quality of the RF
classifier has been enhanced after rebalancing the datasets.
Without applying the SMOTE technique, the TPR was very
high compared with the TNR. However, after applying the
SMOTE techniques, the results became more reasonable,
and the TNR became more realistic.

Table 7 displays the AUC rates obtained by the RF
classifier using different SMOTE variants. Inspecting the
result in Table 7, it is clear that the AUC rate with SMOTE
techniques was much better than the original one. Among
the SMOTE variants, the BorderlineSMOTE was the best
(rank of 1.88), followed by SMOTE (rank of 2.06). Our
findings indicate that the BorderlineSMOTE was the most
suitable technique for re-balancing the datasets. In sum, we
can say that applying a resampling technique is important
to the imbalanced datasets since it can significantly improve
the performance of the classifier. On the whole, we
apply BorderlineSMOTE technique on all datasets in the
subsequent experiments.

Table 6 Evaluation results of RF classifier using different SMOTE variants in terms of testing TPR and TNR

Dataset True Positive Rate True negative Rate

without SMOTE BorderlineSMOTE SVMSMOTE without SMOTE BorderlineSMOTE SVMSMOTE

Ant-1.7 0.933 0.866 0.840 0.892 0.418 0.811 0.872 0.833

Camel-1.0 1.000 0.975 0.975 0.965 0.000 0.957 0.968 0.981

Camel-1.2 0.880 0.809 0.718 0.840 0.300 0.669 0.661 0.613

Camel-1.4 0.972 0.893 0.901 0.942 0.156 0.839 0.865 0.813

Camel-1.6 0.937 0.876 0.832 0.876 0.176 0.895 0.844 0.793

Jedit-3.2 0.927 0.885 0.869 0.885 0.722 0.793 0.828 0.897

Jedit-4.0 0.915 0.895 0.908 0.882 0.333 0.773 0.747 0.733

Jedit-4.1 0.933 0.963 0.901 0.864 0.433 0.845 0.746 0.746

Jedit-4.2 0.982 0.902 0.919 0.919 0.143 0.953 0.953 0.894

Jedit-4.3 1.000 0.976 0.988 0.982 0.000 0.979 0.979 0.960

Log4j-1.0 0.882 0.882 0.882 0.882 0.333 0.688 0.813 0.594

Log4j-1.1 0.917 0.870 0.652 0.783 0.462 0.792 0.708 0.792

Lucene-2.0 0.619 0.694 0.750 0.861 0.542 0.563 0.531 0.563

Xalan-2.4 0.937 0.862 0.867 0.862 0.250 0.818 0.862 0.829

Xalan-2.5 0.746 0.734 0.811 0.741 0.563 0.688 0.586 0.680

Xalan-2.6 0.852 0.815 0.828 0.803 0.634 0.671 0.691 0.684

Overall Rank (F-Test) 1.41 2.97 2.78 2.84 3.94 1.88 1.91 2.28
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Table 7 AUC rates obtained by RF classifier using different SMOTE variants

Dataset without SMOTE BorderlineSMOTE SVMSMOTE

Ant-1.7 0.676 0.839 0.856 0.863

Camel-1.0 0.500 0.966 0.971 0.973

Camel-1.2 0.590 0.739 0.689 0.726

Camel-1.4 0.564 0.866 0.883 0.878

Camel-1.6 0.557 0.885 0.838 0.834

Jedit-3.2 0.825 0.839 0.848 0.891

Jedit-4.0 0.624 0.834 0.827 0.807

Jedit-4.1 0.683 0.904 0.824 0.805

Jedit-4.2 0.562 0.928 0.936 0.906

Jedit-4.3 0.500 0.978 0.984 0.971

Log4j-1.0 0.608 0.785 0.847 0.738

Log4j-1.1 0.689 0.831 0.680 0.787

Lucene-2.0 0.580 0.628 0.641 0.712

Xalan-2.4 0.593 0.840 0.864 0.846

Xalan-2.5 0.655 0.711 0.699 0.710

Xalan-2.6 0.743 0.743 0.759 0.743

Rank (F-Test) 3.88 2.06 1.88 2.19

5.4 Random forest hyperparameter tuning

This section investigates the hyperparameter settings of the
RF classifier. As well-known, the performance of the RF
classifier is highly affected by the used parameter values.
Therefore, we consider a set of comprehensive experiments
to find out the most appropriate parameters that can best
reveal the performance of the classifier.

The following hyperparameters of the RF classifier were
examined:

– n estimators: number of trees in the forest
– max depth: max number of levels in each decision tree

– min samples split: min number of data points placed in
a node before the node is split

– min samples leaf: min number of data points allowed
in a leaf node

– bootstrap: a method for sampling data points (with or
without replacement)

– max samples: If bootstrap is True, the number of
samples to draw from X to train each base estimator

Table 8 presents the hyperparameter settings of the RF
classifier. As can be observed, we test the RF classifier
using multiple combinations of parameters Initially, we
tune the n estimators and fixed the other parameters. The

Table 8 Hyperparameter tuning of the RF classifier

n estimators max depth min samples split min samples leaf bootstrap max samples

5,10,20,30,40,50,70 None 2 1 TRUE 1

100,15,200,300,400

10 1,2,5,7,10,15 2 1 TRUE 1

20,25,30,35 40,50

10 7 2,3,4,5,7,10,12 1 TRUE 1

15,20,25,50,70,100

10 7 2 1,2,3,4,5,6,7 TRUE 1

8,9,10,12,14

10 7 2 1 TRUE, FALSE 1

10 7 2 1 TRUE 0.2,0.4,0.5,0.6

0.7,0.8,0.9,1

10* 7* 2* 1* TRUE* 1*
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process of hyperparameter tuning is repeated by replac-
ing the n estimators with max depth, min samples split,
min samples leaf, bootstrap, and max samples, respec-
tively.

Figure 7 illustrates the training and testing curves
of the AUC score for different hyperparameter settings.
With proper tuning of these parameters, one can see
that the training AUC score has been substantially
increased. However, in some cases, an optimal training
AUC performance may lead to the over-fitting issue, which
provided a very low AUC score on the testing set. In this
regard, we evaluate the hyperparameter using the testing
AUC score rather than the training AUC in the present
work. Based on the result obtained, the optimal performance

of the RF classifier can be achieved with n estimators=10,
max depth=7, min samples split=2, min samples leaf=1,
bootstrap=TRUE, and max samples=1.

5.5 Comparison with other classification techniques

After performing the hyperparameters tuning of the
RF classifier, we compare it to a set of well-known
classification algorithms (i.e., KNN, NB, LDA, DT, LR, and
SVM) in solving the SFP problems. We adopt this set of
classifiers because they are from different categories of the
supervised ML techniques, and each one differs from the
others in its structure. For example, the KNN classifier does
not build the model, and it predicts the output based on the

Fig. 7 The performance of RF model after adjusting the considered set of hyperparameters in terms of training and testing curves of AUC score
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Table 9 Comparison of RF against traditional classifiers in terms of testing AUC rates

Dataset RF KNN NB LDA LR SVM DT

Ant-1.7 0.8465 0.7926 0.6461 0.7554 0.7449 0.7653 0.8158

Camel-1.0 0.9671 0.9190 0.8526 0.9047 0.8479 0.8772 0.9503

Camel-1.2 0.6392 0.6312 0.5641 0.6073 0.5284 0.5212 0.6509

Camel-1.4 0.8572 0.7897 0.5773 0.7239 0.7399 0.7160 0.7939

Camel-1.6 0.8136 0.8031 0.5866 0.6549 0.6014 0.6330 0.7724

Jedit-3.2 0.7982 0.8512 0.7089 0.7896 0.7831 0.7679 0.7646

Jedit-4.0 0.8077 0.8015 0.6480 0.7486 0.7555 0.7426 0.8076

Jedit-4.1 0.8194 0.8845 0.6997 0.7992 0.7410 0.7269 0.7595

Jedit-4.2 0.9313 0.8866 0.8247 0.9019 0.8355 0.8676 0.9047

Jedit-4.3 0.9778 0.9732 0.6721 0.8737 0.8511 0.8501 0.9475

Log4j-1.0 0.8474 0.8235 0.7390 0.8024 0.7417 0.7868 0.7426

Log4j-1.1 0.6803 0.7663 0.6178 0.7228 0.6812 0.7029 0.7237

Lucene-2.0 0.5833 0.5660 0.6181 0.6424 0.6563 0.6840 0.4965

Xalan-2.4 0.8392 0.8503 0.6347 0.7477 0.7417 0.7353 0.8108

Xalan-2.5 0.6697 0.5920 0.5688 0.5892 0.6011 0.5892 0.6484

Xalan-2.6 0.7307 0.6890 0.6754 0.6871 0.6818 0.6967 0.7043

Rank (F-Test) 1.81 2.69 6.63 3.97 5.00 4.91 3.00

distance between training and testing samples. Also, the LR,
NB, and LDA are easy-to-implement algorithms since they
do not contain extra parameters.

In this study, the min-max normalization technique is
applied to all datasets, in addition to the oversampling
technique. After investigating the performance of each
classifier, a deep comparison in terms of AUC rates among
the classifiers is presented in Table 9. In order to obtain the
overall rank, the average ranking values of the Friedman test
(F-Test) are calculated.

From Table 9, it is observed that the RF classifier
performed better than other classifiers in most cases.
Among rivals, RF obtained the highest AUC scores in 63%
of the datasets while the KNN, which came in second
place, obtained the best results in 25% of the datasets.
Besides, the results of the F-Test reveal that the RF classifier
outperformed other classifiers with the rank of 1.81, and
it was ranked as the best classifier in terms of the AUC
measurement. Ultimately, it can be inferred that the RF
classifier is a useful and powerful learning algorithm for
SFP problems.

5.6 Feature selection based on proposed BWOA
approaches

In the previous sections, the impact of the re-sampling
technique on this work is presented. Accordingly, the RF

classifier perceived the best AUC value in most of the
SFP problems. Nevertheless, the appearance of irrelevant
and redundant features might be degrading the performance
of the classifier, which limits the learning ability of the
algorithm in the SFP prediction. As such, feature selection
can be an excellent way to resolve the above-mentioned
issue. In this work, we propose the new variant of the
BWOA algorithm as a feature selection method to select the
significant features.

5.6.1 Performance of BWOA using different TFs

In the first sub-section, we study the performance of the
BWOA algorithm with different TFs. According to [61], we
adopt four S-shaped TFs (S1 to S4) and four V-shaped TFs
(V1 to V4). In total, eight binary versions of WOA, namely:
SBWOA1, SBWOA2, SBWOA3, SBWOA4, VBWOA1,
VBWOA2, VBWOA3, and VBWOA4 are introduced.
Table 10 reports the AUC results of the BWOA using
different TFs. From Table 10, it is seen that the SBWOA1
achieved the optimal AUC score in at least 11 datasets. Our
findings reveal that the SBWOA1 overtook other variants in
selecting the most informative feature subset. This argument
is supported by the results of the F-Test in Table 10. By
observing the results in Table 11, one can see that the
SBWOA1 was not very good at reducing the feature size.
However, the SBWOA1 can often retain the significant
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Table 10 Evaluation results of BWOA using 8 transfer functions in terms of AUC rates

Dataset Measure SBWOA1 SBWOA2 SBWOA3 SBWOA4 VBWOA1 VBWOA2 VBWOA3 VBWOA4

Ant-1.7 AVG 0.8790 0.8768 0.8754 0.8764 0.8722 0.8705 0.8718 0.8729

STD 0.0042 0.0039 0.0040 0.0035 0.0059 0.0059 0.0054 0.0043

Camel-1.0 AVG 0.9888 0.9877 0.9879 0.9876 0.9870 0.9870 0.9858 0.9847

STD 0.0021 0.0019 0.0023 0.0019 0.0031 0.0026 0.0015 0.0022

Camel-1.2 AVG 0.7391 0.7345 0.7354 0.7379 0.7254 0.7271 0.7273 0.7288

STD 0.0080 0.0075 0.0055 0.0093 0.0095 0.0118 0.0128 0.0103

Camel-1.4 AVG 0.8941 0.8918 0.8907 0.8918 0.8857 0.8857 0.8856 0.8822

STD 0.0032 0.0037 0.0046 0.0052 0.0074 0.0046 0.0066 0.0050

Camel-1.6 AVG 0.8398 0.8376 0.8339 0.8342 0.8349 0.8320 0.8304 0.8299

STD 0.0041 0.0042 0.0065 0.0051 0.0062 0.0070 0.0076 0.0073

Jedit-3.2 AVG 0.9060 0.9044 0.9029 0.9049 0.8977 0.8936 0.8922 0.8956

STD 0.0046 0.0056 0.0082 0.0091 0.0080 0.0083 0.0098 0.0098

Jedit-4.0 AVG 0.8983 0.8940 0.8924 0.8914 0.8864 0.8845 0.8857 0.8844

STD 0.0044 0.0080 0.0057 0.0045 0.0092 0.0098 0.0071 0.0120

Jedit-4.1 AVG 0.8879 0.8803 0.8809 0.8819 0.8761 0.8734 0.8736 0.8728

STD 0.0060 0.0067 0.0052 0.0069 0.0071 0.0096 0.0104 0.0087

Jedit-4.2 AVG 0.9492 0.9491 0.9482 0.9501 0.9456 0.9463 0.9454 0.9469

STD 0.0033 0.0027 0.0047 0.0037 0.0047 0.0047 0.0037 0.0046

Jedit-4.3 AVG 0.9922 0.9917 0.9912 0.9909 0.9891 0.9898 0.9893 0.9888

STD 0.0020 0.0017 0.0026 0.0019 0.0021 0.0029 0.0028 0.0029

Log4j-1.0 AVG 0.9402 0.9404 0.9408 0.9358 0.9364 0.9297 0.9336 0.9347

STD 0.0097 0.0094 0.0112 0.0070 0.0134 0.0099 0.0088 0.0112

Log4j-1.1 AVG 0.8195 0.8240 0.8303 0.8355 0.8406 0.8411 0.8450 0.8440

STD 0.0130 0.0169 0.0170 0.0175 0.0210 0.0185 0.0103 0.0123

Lucene-2.0 AVG 0.7625 0.7477 0.7559 0.7560 0.7510 0.7467 0.7700 0.7585

STD 0.0136 0.0144 0.0157 0.0248 0.0262 0.0143 0.0375 0.0318

Xalan-2.4 AVG 0.8889 0.8873 0.8867 0.8853 0.8820 0.8818 0.8808 0.8795

STD 0.0043 0.0033 0.0050 0.0033 0.0063 0.0066 0.0050 0.0052

Xalan-2.5 AVG 0.7278 0.7265 0.7241 0.7284 0.7194 0.7180 0.7179 0.7161

STD 0.0051 0.0061 0.0053 0.0076 0.0102 0.0071 0.0085 0.0058

Xalan-2.6 AVG 0.8070 0.8031 0.8011 0.8028 0.7978 0.7972 0.7973 0.7983

STD 0.0069 0.0071 0.0070 0.0065 0.0072 0.0074 0.0095 0.0089

Rank (F-Test) 1.75 3.16 3.63 3.16 5.44 6.44 6.13 6.31

feature that can best describe the target classes, which
benefits the learning process. In Table 12, the SBWOA1
again ranked first (rank of 2.41) in terms of the fitness
value. All in all, we can conclude that the BWOA with an s-
shaped transfer function S1 is the most appropriate for SFP
problems.

5.6.2 Performance of enhancedWOA

After investigating the best TFs in the BWOA algorithm,
we inspect the performance of the proposed SBEWOA (the

enhanced EWOA with s-shaped TF S1) against SBWOA
(the original WOA with s-shaped TF S1) in all datasets.
Table 13 outlines the performance comparison of the
SBEWOA and SBWOA in terms of the AUC rate, feature
size, and fitness value. From Table 13, the proposed
SBEWOA has achieved the optimal AUC rate and fitness
for most of the datasets (15 datasets). As for the feature
size, the SBEWOA can always select a minimal number of
features during the selection process. In comparison with
SBWOA, the SBEWOA is more capable of finding the
positive features that can contribute to the highest AUC rate.
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Table 11 Evaluation results of BWOA using 8 transfer functions in terms of number of selected features

Dataset Measure SBWOA1 SBWOA2 SBWOA3 SBWOA4 vBWOA1 vBWOA2 vBWOA3 vBWOA4

Ant-1.7 AVG 15.00 11.80 11.50 11.55 9.45 8.90 8.60 9.45

STD 2.3170 2.3530 1.9331 2.1145 2.7810 2.6931 2.4581 3.2521

Camel-1.0 AVG 12.40 11.20 10.60 11.40 8.95 8.15 8.55 8.75

STD 2.4149 1.9894 2.3261 1.9574 2.4165 2.3681 2.9105 2.6132

Camel-1.2 AVG 14.15 12.80 11.55 11.85 8.75 9.05 7.95 7.95

STD 2.0844 2.3974 2.5021 1.7852 2.5105 2.7810 2.4165 2.7043

Camel-1.4 AVG 15.00 12.35 11.90 11.70 10.30 11.70 8.90 8.25

STD 1.8918 1.8715 1.8890 2.1300 2.9576 2.5976 2.6338 1.9967

Camel-1.6 AVG 15.10 13.10 11.80 11.30 8.75 7.80 7.80 8.40

STD 2.7701 2.4039 1.5424 2.2965 2.9890 2.8023 3.1722 3.2671

Jedit-3.2 AVG 13.25 12.15 10.45 10.90 8.15 7.00 6.50 7.55

STD 2.7314 2.5603 2.0384 2.3373 2.7582 2.7145 2.7242 3.8179

Jedit-4.0 AVG 13.75 12.70 10.75 11.70 8.75 10.20 9.20 8.15

STD 2.2213 1.9222 1.4824 2.3864 2.7886 2.3974 2.1176 3.2163

Jedit-4.1 AVG 15.20 12.65 10.65 10.85 8.20 6.25 6.95 6.60

STD 3.4121 3.4224 2.5808 1.9270 3.5924 2.3592 2.3050 2.2572

Jedit-4.2 AVG 13.05 11.10 10.20 11.55 8.20 8.10 8.05 7.40

STD 2.7999 2.7125 1.7351 1.9595 2.5047 2.4900 2.4165 2.1374

Jedit-4.3 AVG 12.85 11.35 10.10 10.95 7.85 7.75 8.40 7.10

STD 2.6011 2.5603 1.6827 2.3278 2.0590 2.0743 2.5423 2.2919

Log4j-1.0 AVG 12.55 11.95 9.60 10.10 7.40 6.45 6.20 5.75

STD 2.1145 1.7313 2.2100 1.8035 2.5423 1.9861 1.4364 1.8317

Log4j-1.1 AVG 10.60 8.00 7.85 7.95 3.10 3.45 3.25 2.40

STD 3.7753 1.7472 2.0072 2.6453 2.5526 1.8489 2.0229 0.8208

Lucene-2.0 AVG 13.55 10.90 10.55 10.50 4.75 3.50 6.25 4.35

STD 2.9820 3.0762 1.7313 1.8778 2.7506 2.2827 4.0246 2.5397

Xalan-2.4 AVG 13.90 12.10 10.60 12.25 8.95 8.85 8.80 8.10

STD 2.4473 2.3373 2.0876 2.7314 2.7429 2.6011 2.5047 2.8451

Xalan-2.5 AVG 13.45 12.40 10.75 11.70 9.15 9.15 8.20 8.25

STD 3.0345 2.3033 1.8883 1.6255 2.5603 2.9607 2.0926 2.4468

Xalan-2.6 AVG 11.35 10.25 11.00 9.95 7.70 7.00 7.90 7.35

STD 2.9429 2.6730 2.0520 2.6651 2.2501 2.6754 2.3147 2.4767

Rank (F-Test) 8.00 6.75 5.31 5.91 3.38 2.53 2.31 1.81

The foremost cause for the improved efficiency of the
SBEWOA is that it employs the multi-exploration strategies
rather than the random operator in the global search phase.
Thus, in case of immature convergence, the search agents
can explore the untried areas and escape the local optimum.
Besides, the SBEWOA enables the search agents to learn
from the best three solutions, thereby increasing the chance
of exploring the promising areas.

5.6.3 Population diversity analysis

In this sub-section, the diversity measurement has been
considered to check the behaviour of the proposed method
during the search. Maintaining the diversity during the

search leads the optimization algorithm to escape the local
optima and enhance the final solution. To measure the
diversity capability, the hamming distance between the
population members in each iteration of the proposed
method (i.e., SBEWOA) as well as the original method (i.e.,
SBWOA) are recorded and plotted as shown in Fig. 8. As
can be seen from the Figure, the enhanced version of BWOA
(i.e., SBEWOA) are able to preserve a good diversity during
the search where the hamming distance keep converging
the search to the optimal results. On the other hand, the
SBWOA has almost stable hamming distance results during
the search and converge slowly. From Fig. 8, one can see
that the SBEWOA has maintained a good diversity for all
datasets with smaller Hamming distance. At the initial stage,
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Table 12 Evaluation results of BWOA using 8 transfer functions in terms of fitness values

Dataset Measure SBWOA1 SBWOA2 SBWOA3 SBWOA4 VBWOA1 VBWOA2 VBWOA3 VBWOA4

Ant-1.7 AVG 0.1273 0.1278 0.1291 0.1281 0.1313 0.1327 0.1312 0.1306

STD 0.0037 0.0038 0.0040 0.0033 0.0056 0.0052 0.0048 0.0037

Camel-1.0 AVG 0.0173 0.0178 0.0173 0.0180 0.0173 0.0170 0.0183 0.0196

STD 0.0017 0.0015 0.0024 0.0018 0.0027 0.0030 0.0022 0.0025

Camel-1.2 AVG 0.2654 0.2693 0.2678 0.2654 0.2762 0.2747 0.2739 0.2725

STD 0.0080 0.0068 0.0051 0.0095 0.0092 0.0119 0.0126 0.0097

Camel-1.4 AVG 0.1123 0.1133 0.1142 0.1129 0.1183 0.1190 0.1177 0.1207

STD 0.0030 0.0033 0.0044 0.0054 0.0065 0.0045 0.0058 0.0048

Camel-1.6 AVG 0.1662 0.1674 0.1703 0.1697 0.1679 0.1702 0.1718 0.1726

STD 0.0045 0.0043 0.0068 0.0052 0.0066 0.0070 0.0074 0.0076

Jedit-3.2 AVG 0.0997 0.1008 0.1014 0.0996 0.1054 0.1089 0.1099 0.1071

STD 0.0048 0.0059 0.0079 0.0086 0.0078 0.0078 0.0086 0.0096

Jedit-4.0 AVG 0.1075 0.1113 0.1119 0.1133 0.1168 0.1195 0.1177 0.1185

STD 0.0044 0.0076 0.0057 0.0045 0.0092 0.0093 0.0071 0.0113

Jedit-4.1 AVG 0.1186 0.1248 0.1232 0.1224 0.1268 0.1285 0.1286 0.1292

STD 0.0050 0.0063 0.0049 0.0068 0.0073 0.0093 0.0104 0.0084

Jedit-4.2 AVG 0.0568 0.0559 0.0564 0.0552 0.0580 0.0573 0.0581 0.0563

STD 0.0036 0.0025 0.0043 0.0036 0.0045 0.0050 0.0036 0.0047

Jedit-4.3 AVG 0.0141 0.0139 0.0138 0.0145 0.0147 0.0140 0.0148 0.0146

STD 0.0021 0.0016 0.0023 0.0018 0.0022 0.0025 0.0028 0.0025

Log4j-1.0 AVG 0.0655 0.0650 0.0634 0.0687 0.0667 0.0728 0.0688 0.0675

STD 0.0093 0.0095 0.0110 0.0068 0.0130 0.0099 0.0088 0.0109

Log4j-1.1 AVG 0.1840 0.1782 0.1720 0.1668 0.1594 0.1591 0.1551 0.1556

STD 0.0129 0.0170 0.0166 0.0171 0.0204 0.0184 0.0104 0.0123

Lucene-2.0 AVG 0.2419 0.2553 0.2469 0.2468 0.2488 0.2525 0.2309 0.2413

STD 0.0138 0.0141 0.0155 0.0246 0.0258 0.0139 0.0378 0.0317

Xalan-2.4 AVG 0.1170 0.1176 0.1175 0.1197 0.1213 0.1215 0.1224 0.1233

STD 0.0041 0.0036 0.0052 0.0038 0.0062 0.0062 0.0046 0.0044

Xalan-2.5 AVG 0.2762 0.2770 0.2785 0.2747 0.2823 0.2838 0.2834 0.2852

STD 0.0049 0.0062 0.0055 0.0074 0.0098 0.0064 0.0082 0.0056

Xalan-2.6 AVG 0.1967 0.2001 0.2024 0.2002 0.2041 0.2043 0.2046 0.2034

STD 0.0072 0.0066 0.0071 0.0067 0.0069 0.0075 0.0091 0.0090

Rank (F-Test) 2.41 3.38 3.56 3.28 5.38 6.00 6.13 5.88

the SBEWOA keeps exploring the search regions to find the
global minimum. Then, the SBEWOA searches locally for
the local optimum. Even though SBEWOA was less robust
compared to SBWOA, but it can offer better solution that
provide high AUC performance.

5.6.4 Deep analysis on the modifications

This sub-section conducts a deep analysis to study the
impacts of the modifications on the proposed method.
Table 14 presents the findings of proposed modifications in

terms of fitness values. In Table 14, the SBWOA-G denotes
the modification using GWO algorithm (19), SBWOA-
H refers to the modification using HHO algorithm (20),
and the SBEWOA is the modification using both GWO
and HHO algorithms. Based on the results obtained, the
SBEWOA has achieved the lowest fitness in most datasets.
The convergence analysis in Figs. 9 and 10 again verify
the convergence power of the SBEWOA in finding the near
optimal feature subset. By observing the AUC performance
in Table 15, it shows that SBEWOA can usually score the
highest AUC values, followed by SBWOA-H.
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Table 13 Comparison of SBEWOA versus the conventional SBWOA in terms of AUC rates, number of selected features, and fitness values

Dataset Measure AUC No. of features Fitness

SBWOA SBEWOA SBWOA SBEWOA SBWOA SBEWOA

Ant-1.7 AVG 0.8790 0.8806 15.00 13.55 0.12728 0.12497

STD 0.0042 0.0036 2.3170 2.5849 0.00370 0.00314

Camel-1.0 AVG 0.9888 0.9892 12.40 12.35 0.01729 0.01682

STD 0.0021 0.0027 2.4149 1.8994 0.00171 0.00268

Camel-1.2 AVG 0.7391 0.7437 14.15 14.40 0.26541 0.26091

STD 0.0080 0.0054 2.0844 1.7889 0.00799 0.00535

Camel-1.4 AVG 0.8941 0.8951 15.00 14.00 0.11234 0.11080

STD 0.0032 0.0050 1.8918 2.7910 0.00299 0.00438

Camel-1.6 AVG 0.8398 0.8418 15.10 14.90 0.16616 0.16407

STD 0.0041 0.0035 2.7701 3.3071 0.00446 0.00426

Jedit-3.2 AVG 0.9060 0.9115 13.25 13.35 0.09970 0.09424

STD 0.0046 0.0061 2.7314 2.9429 0.00477 0.00603

Jedit-4.0 AVG 0.8983 0.9043 13.75 13.65 0.10753 0.10154

STD 0.0044 0.0087 2.2213 2.8335 0.00444 0.00903

Jedit-4.1 AVG 0.8879 0.8914 15.20 16.60 0.11862 0.11583

STD 0.0060 0.0069 3.4121 2.0365 0.00496 0.00652

Jedit-4.2 AVG 0.9492 0.9512 13.05 12.80 0.05680 0.05471

STD 0.0033 0.0036 2.7999 2.9308 0.00365 0.00300

Jedit-4.3 AVG 0.9922 0.9926 12.85 12.45 0.01414 0.01360

STD 0.0020 0.0017 2.6011 2.9105 0.00206 0.00157

Log4j-1.0 AVG 0.9402 0.9493 12.55 12.35 0.06547 0.05640

STD 0.0097 0.0112 2.1145 2.3458 0.00934 0.01093

Log4j-1.1 AVG 0.8195 0.8395 10.60 9.55 0.18398 0.16363

STD 0.0130 0.0145 3.7753 2.9996 0.01290 0.01455

Lucene-2.0 AVG 0.7625 0.7702 13.55 15.05 0.24190 0.23500

STD 0.0136 0.0143 2.9820 2.9643 0.01379 0.01515

Xalan-2.4 AVG 0.8889 0.8886 13.90 14.90 0.11696 0.11773

STD 0.0043 0.0020 2.4473 2.0749 0.00406 0.00261

Xalan-2.5 AVG 0.7278 0.7334 13.45 15.10 0.27616 0.27151

STD 0.0051 0.0069 3.0345 2.3147 0.00494 0.00707

Xalan-2.6 AVG 0.8070 0.8058 11.35 13.05 0.19671 0.19878

STD 0.0069 0.0039 2.9429 2.6253 0.00721 0.00382

On the other side, the proposed SBEWOA did not show
the best results in feature reduction. From Table 16, the
number of features chosen by SBEWOA was slightly higher
than BGWO. However, the feature subsets produced by
SBEWOA were able to maintain high AUC results.

5.6.5 Comparison of SBEWOAwith other optimizors

In this sub-section, we further compare the performance
of the proposed SBEWOA with the other 9 state-
of-the-art feature selection methods. These comparison

methods are binary firefly algorithm (BFFA), binary moth
flame optimization (BMFO), binary multiverse optimizer
(BMVO), binary grey wolf optimization (BGWO), binary
bat algorithm (BBAT), binary cuckoo search (BCS), binary
harris hawk optimization (BHHO), binary Jaya algorithm
(BJAYA), and genetic algorithm (GA). In this study, we
adjusted the optimizers’ parameters in accordance with
the settings recommended in preliminary publications and
related studies on feature selection [99, 113–116]. The
details of parameter configurations used in this paper are
outlined in Table 17.
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Fig. 8 The population diversity
curves of BWOA and BEWOA

Table 18 presents the AUC rates of the SBEWOA and
other methods. As can be seen, the SBEWOA overwhelmed
its competitors by scoring the highest AUC rates in 12
datasets, with the minimum best ranking of 1.47. On the
other side, the second-best algorithm was BHHO (rank
of 2.41), followed by the BMFO method (rank of 3.59).
When observing the result of the Wilcoxon test in Table 19,

one can see that the performance of the SBEWOA was
significantly better than other methods for most of the
datasets.

Table 20 reports the number of selected features for
SBEWOA and other methods. Meanwhile, the results of
the Wilcoxon test based on the number of selected feature
is shown in Table 21. As can be observed, the BBAT
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Table 14 Impact of proposed modifications in terms of fitness results

Dataset Measure BGWO BHHO SBWOA-G SBWOA-H SBEWOA

Ant-1.7 AVG 0.12885 0.12559 0.12414 0.12485 0.12497
STD 0.00349 0.00361 0.00483 0.00351 0.00314

Camel-1.0 AVG 0.01678 0.01624 0.01622 0.01537 0.01682
STD 0.00229 0.00189 0.00219 0.00154 0.00268

Camel-1.2 AVG 0.26320 0.26525 0.26399 0.26005 0.26091
STD 0.01113 0.00866 0.00667 0.00780 0.00535

Camel-1.4 AVG 0.11229 0.11256 0.11193 0.11099 0.11080
STD 0.00630 0.00448 0.00300 0.00321 0.00438

Camel-1.6 AVG 0.16788 0.16628 0.16090 0.15932 0.16407
STD 0.00519 0.00542 0.00515 0.00407 0.00426

Jedit-3.2 AVG 0.09908 0.09738 0.10034 0.09602 0.09424
STD 0.01129 0.00983 0.00421 0.00535 0.00603

Jedit-4.0 AVG 0.10716 0.10360 0.10624 0.10519 0.10154
STD 0.00593 0.00530 0.00526 0.00371 0.00903

Jedit-4.1 AVG 0.11975 0.11831 0.11644 0.11387 0.11583
STD 0.00786 0.00673 0.00686 0.00484 0.00652

Jedit-4.2 AVG 0.05583 0.05392 0.05511 0.05460 0.05471
STD 0.00363 0.00416 0.00314 0.00251 0.00300

Jedit-4.3 AVG 0.01391 0.01324 0.01376 0.01330 0.01360
STD 0.00215 0.00173 0.00134 0.00121 0.00157

Log4j-1.0 AVG 0.06493 0.05980 0.05952 0.05607 0.05640

STD 0.00874 0.01162 0.01248 0.00729 0.01093

Log4j-1.1 AVG 0.17868 0.17123 0.16538 0.16883 0.16363
STD 0.01673 0.01999 0.02794 0.01370 0.01455

Lucene-2.0 AVG 0.24637 0.23872 0.24458 0.24538 0.23500
STD 0.01165 0.01601 0.02020 0.01758 0.01515

Xalan-2.4 AVG 0.11875 0.11562 0.11607 0.11628 0.11773
STD 0.00309 0.00426 0.00367 0.00435 0.00261

Xalan-2.5 AVG 0.27629 0.27433 0.27325 0.27282 0.27151
STD 0.00401 0.00714 0.00639 0.00673 0.00707

Xalan-2.6 AVG 0.20064 0.19731 0.20133 0.20006 0.19878
STD 0.00711 0.00633 0.00704 0.00531 0.00382

Rank (F-Test) 4.63 3.00 3.13 2.06 2.19

outperformed other methods in minimal feature selection,
while the SBEWOA ranked 8th with the F-Test rank of 7.72.
Our findings reveal that the SBEWOA was not very good at
reducing the feature numbers. However, it is worth noting
that an algorithm that worked perfectly in feature reduction
might be degrading the performance of the classifier due
to extensive elimination of the positive features (refer
Tables 18 and 20). Accordingly, the SBEWOA is excellent
at maintaining the positive features while removing the
negative features. Hence, the SBEWOA can often offer
better AUC rates when dealing with SFP problems.

Table 22 shows the fitness values of the SBEWOA
and other methods. Judging the Table 22, the SBEWOA
contributed to the best fitness values in 11 datasets. Besides,
the SBEWOA can often offer consistent results due to a
smaller standard deviation. As compared to other methods,

the SBEWOA has retained the best rank of 1.69, which
exhibited a better search tendency when dealing with FS
problems in SFP analysis. The results of Wilcoxon test in
Table 23 support the arguments. On the one hand, Table 24
shows the results of the computational time among the
proposed SBEWOA and other optimizers. Based on the
results obtained, GA was the fastest algorithm in terms
of running time. Although SBEWOA is not the fastest
algorithm, it can be computed faster than BGWO, BBAT,
BCS, and BJaya in many cases. This argument is further
supported by the statistical results shown in Table 25.

Figures 11 and 12 illustrate the convergence curves of
the SBEWOA for all datasets. It is seen that the SBEWOA
showed an excellent acceleration rate in most cases. Taking
jedit-3.2 and lucene-2.0 datasets as examples, we can
observe that the SBEWOA converged faster and deeper to
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Fig. 9 Convergence analysis of basic and modified versions on camel-10, camel-1.4, camel-1.6, jedit-3.2, jedit-4.0, and jedit-4.1 datasets

explore the global minimum solution. The results imply that
SBEWOA giving good convergence ability in solving the
FS problem, thus leading to satisfactory achievements.

Based on the results obtained, it can be inferred that
the proposed SBEWOA is a powerful and useful FS tool for
SFP analysis. The superior performance of the SBEWOA
can be attributed to the multi-exploration strategies which
take full advantage of the best three leaders in exploring the
feature spaces. Moreover, the utilization of the average of
all positions and the current best position allows the search
agents to explore the untried regions effectively. In case of
premature convergence, the search agents can escape the
local optimum and seek out promising solutions. Hence,
SBEWOA can usually achieve better results than other methods.

5.6.6 Relevant features selected by SBEWOA

In the final sub-section, we are interested to investigate the
top features of SFP analysis. Table 26 depicts the details
of features selected by SBEWOA that scored the best AUC
results. From Table 26, it is noticed that different set of
features has been chosen by SBEWOA on different datasets.
On the one hand, Table 27 outlines the number of times
each feature has been selected by the SBEWOA algorithm.
The importance of features is demonstrated in Fig. 13.
Accordingly, the top five features were ca (80.938%), dit
(77.188%), moa (75.938%), max cc (75.625%), and mfa
(75%). On the contrary, the worst features are found to be
wmc and lcom (54.063%).
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Fig. 10 Convergence analysis of basic and modified versions on log4j1.0, log4j1.1, lucene-2.0, xalan-24, xalan-2.5 , and xalan-2.6 datasets

Table 28 shows the details of the features chosen for each
dataset. In ant-1.7 dataset, the most relevant features was
cbo, followed by cam. As for xalan-2.6 dataset, the mos
feature was frequently selected by the algorithm. Across all
datasets, it is seen that the ca features have been selected
with 259 times, while the second-best feature, dit, has been
selected with 247 times. Our findings suggest that these
features are having high discriminative power when dealing
with the SFP problem.

6 Conclusion and future works

Software Fault Prediction (SFP) helps developers in
identifying the faulty components of the software prior to
system deployment. In this article, we developed a well-
performing classification model that is able to predict faulty
software components. The 16 software project datasets
were selected from the PROMISE repository. The datasets
are then normalized to set a proper scale for all data.
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Table 15 Impact of proposed modifications in terms of AUC results

Dataset Measure BGWO BHHO SBWOA-G SBWOA-H SBEWOA

Ant-1.7 AVG 0.8765 0.8805 0.8816 0.8814 0.8806

STD 0.0036 0.0038 0.0049 0.0034 0.0036

Camel-1.0 AVG 0.9893 0.9899 0.9897 0.9904 0.9892

STD 0.0024 0.0016 0.0025 0.0011 0.0027

Camel-1.2 AVG 0.7410 0.7391 0.7407 0.7444 0.7437

STD 0.0108 0.0089 0.0068 0.0076 0.0054

Camel-1.4 AVG 0.8938 0.8935 0.8944 0.8952 0.8951

STD 0.0065 0.0050 0.0029 0.0029 0.0050

Camel-1.6 AVG 0.8374 0.8396 0.8446 0.8464 0.8418

STD 0.0052 0.0053 0.0049 0.0040 0.0035

Jedit-3.2 AVG 0.9063 0.9085 0.9053 0.9094 0.9115

STD 0.0116 0.0101 0.0048 0.0056 0.0061

Jedit-4.0 AVG 0.8983 0.9027 0.9003 0.9010 0.9043

STD 0.0062 0.0053 0.0054 0.0033 0.0087

Jedit-4.1 AVG 0.8867 0.8880 0.8896 0.8935 0.8914

STD 0.0086 0.0069 0.0074 0.0042 0.0069

Jedit-4.2 AVG 0.9499 0.9520 0.9508 0.9514 0.9512

STD 0.0036 0.0036 0.0033 0.0033 0.0036

Jedit-4.3 AVG 0.9918 0.9923 0.9922 0.9928 0.9926

STD 0.0025 0.0020 0.0017 0.0014 0.0017

Log4j-1.0 AVG 0.9399 0.9455 0.9456 0.9492 0.9493

STD 0.0095 0.0121 0.0131 0.0075 0.0112

Log4j-1.1 AVG 0.8242 0.8312 0.8375 0.8334 0.8395

STD 0.0170 0.0203 0.0281 0.0134 0.0145

Lucene-2.0 AVG 0.7580 0.7657 0.7601 0.7589 0.7702

STD 0.0117 0.0157 0.0204 0.0182 0.0143

Xalan-2.4 AVG 0.8870 0.8903 0.8895 0.8892 0.8886

STD 0.0025 0.0043 0.0042 0.0043 0.0020

Xalan-2.5 AVG 0.7281 0.7297 0.7310 0.7316 0.7334

STD 0.0039 0.0074 0.0066 0.0066 0.0069

Xalan-2.6 AVG 0.8034 0.8068 0.8033 0.8042 0.8058

STD 0.0073 0.0057 0.0069 0.0048 0.0039

Rank (F-Test) 4.63 3.06 3.19 2.00 2.13

Firstly, the imbalance problem in the dataset is resolved
by applying and comparing several SMOTE techniques to
get more accurate results. The results revealed that the
BorderlineSMOTE technique offered the optimal AUC rate
as it can properly re-balance the datasets.

The hyper-parameter settings of the Random Forest
(RF) classifier are investigated, in which the parameters
that provide the optimal results are selected. Additionally,
The RF classifier is compared against other traditional
classifiers. In most cases, it obtains superior outcomes.
Furthermore, eight transfer functions (TFs) were adopted

to convert the original WOA into binary search space.
Based on the result obtained, BWOA with S-shaped transfer
function S1 is the most appropriate for SFP problems.
Moreover, the performance of BWOA is improved by
integrating the exploration strategies from GWO and
HHO algorithms. This newly proposed method is called
SBEWOA. The main rationale of this enhancement is to
improve the exploration stage of the WOA by employing the
survival-of-the-fittest principle rather than random search.
This modification enables the proposed SBEWOA to select
a set of positive features from the complex dataset.
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Table 16 Impact of proposed modifications in terms of number of features

Dataset Measure BGWO BHHO SBWOA-G SBWOA-H SBEWOA

Ant-1.7 AVG 13.20 14.60 13.80 14.80 13.55

STD 2.2148 1.9304 1.9358 2.2148 2.5849

Camel-1.0 AVG 12.45 12.50 12.10 11.70 12.35

STD 2.0384 2.4387 2.1250 2.9037 1.8994

Camel-1.2 AVG 13.55 13.95 14.50 14.00 14.40

STD 2.2118 2.3278 1.6059 2.3396 1.7889

Camel-1.4 AVG 14.30 14.30 14.70 14.40 14.00

STD 2.5567 2.3193 1.6890 2.4366 2.7910

Camel-1.6 AVG 13.75 14.90 14.10 14.55 14.90

STD 2.5314 2.3598 2.5319 1.6694 3.3071

Jedit-3.2 AVG 12.70 13.65 13.25 12.60 13.35

STD 2.3193 2.4979 3.3067 3.1187 2.9429

Jedit-4.0 AVG 13.00 14.50 15.05 14.30 13.65

STD 2.2005 2.0391 2.5438 2.1788 2.8335

Jedit-4.1 AVG 15.20 14.85 14.25 16.80 16.60

STD 3.0366 3.0997 3.4925 2.3974 2.0365

Jedit-4.2 AVG 12.40 12.85 12.90 12.95 12.80

STD 2.7985 2.7582 2.1740 2.3946 2.9308

Jedit-4.3 AVG 11.65 11.20 12.15 12.30 12.45

STD 2.4121 2.4623 3.0483 2.3642 2.9105

Log4j-1.0 AVG 10.85 11.60 11.30 11.60 12.35

STD 2.9069 2.6636 2.7739 2.4149 2.3458

Log4j-1.1 AVG 9.25 8.15 9.00 7.75 9.55

STD 3.0240 2.7004 2.2243 2.2682 2.9996

Lucene-2.0 AVG 13.55 13.55 14.10 13.30 15.05

STD 2.9105 3.0689 3.0245 2.4730 2.9643

Xalan-2.4 AVG 13.70 14.10 13.25 13.10 14.90

STD 2.8303 2.0749 2.0995 2.6931 2.0749

Xalan-2.5 AVG 14.30 13.55 13.80 14.10 15.10

STD 2.2501 2.5021 2.6477 2.1001 2.3147

Xalan-2.6 AVG 12.05 12.10 13.15 12.40 13.05

STD 2.9285 3.3388 2.6011 2.6036 2.6253

Rank (F-Test) 2.13 3.00 3.19 2.91 3.78

Lastly, the proposed SBEWOA is compared against 9
state-of-the-art feature selection methods. The results show
that the proposed SBEWOA is a powerful and useful FS
tool for the SFP problem. The superior performance of
the SBEWOA can be attributed to the multi-exploration
strategies that help in exploring the features space. Among
the rivals, the SBEWOA not only gives the highest AUC
score but also the minimum number of features. The
proposed multi-stage approach helps in producing a fruitful
solution to tackling SFP problems.

There are several limitations in this work. First, the
proposed SBEWOA suffers from low feature reduction
power, but it can often attain high accuracy. Second, the
proposed SBEWOA is highly complex in its structure,
thus resulting in high computation cost. In the future, the
SBEWOA can be applied to other applications such as
parameter estimation photovoltaic solar cells and intrusion
detection system. Furthermore, powerful mechanisms such
as chaotic map and opposite-based learning can be
integrated into SBEWOA for performance enhancement.
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Table 17 Parameter settings
for the optimization algorithms Algorithm parameter value

Common parameters

Population size 10

Maximum No. of iterations 70

No. of runs 20

Dimension #features

Fitness function alpha=0.99 , Beta=0.01

Internal parameters

BHHO Convergence parameter E decreased linearly from 2 to 0

BWOA convergence constant a decreased linearly from 2 to 0

Spiral factor b 1

BBAT Qmin Frequency minimum 0

Qmax Frequency maximum 2

loudness A 0.5

Pulse rate r 0.5

BGWO parameter a decreased linearly from 2 to 0

BFFA Gamma Absorption coefficient 1

Alpha (randomness) 0.5

Beta min (initial attractiveness) 0.2

BMFO Spiral factor b 1

convergence constant decreased linearly from -1 to -2

BMVO wormhole existence probability (WEP) increased linearly from 0.2 to 1

travelling distance rate (TDR) decreased linearly from 0.6 to 0

BCS Discovery rate of alien solutions Pa 0.25

GA crossover Probability 0.8

mutation Probability 0.001

selection operator Roulette Wheel

Table 18 Comparison between the proposed SBEWOA and other optimizers based on AUC rates

Dataset Measure SBEWOA BFFA BMFO BMVO BGWO BBAT BCS BHHO BJAYA GA

Ant-1.7 AVG 0.8806 0.8764 0.8803 0.8770 0.8765 0.8134 0.8773 0.8805 0.8802 0.8668

STD 0.0036 0.0037 0.0041 0.0039 0.0036 0.0204 0.0033 0.0038 0.0029 0.0066

Camel-1.0 AVG 0.9892 0.9878 0.9891 0.9883 0.9893 0.9409 0.9878 0.9899 0.9886 0.9815

STD 0.0027 0.0023 0.0021 0.0023 0.0024 0.0303 0.0021 0.0016 0.0022 0.0046

Camel-1.2 AVG 0.7437 0.7347 0.7427 0.7378 0.7410 0.6429 0.7342 0.7391 0.7411 0.7189

STD 0.0054 0.0052 0.0079 0.0077 0.0108 0.0251 0.0091 0.0089 0.0065 0.0143

Camel-1.4 AVG 0.8951 0.8908 0.8932 0.8903 0.8938 0.8298 0.8880 0.8935 0.8944 0.8771
STD 0.0050 0.0038 0.0024 0.0032 0.0065 0.0225 0.0034 0.0050 0.0044 0.0059

Camel-1.6 AVG 0.8418 0.8355 0.8397 0.8394 0.8374 0.7500 0.8318 0.8396 0.8399 0.8196
STD 0.0035 0.0061 0.0037 0.0076 0.0052 0.0331 0.0045 0.0053 0.0039 0.0095

Jedit-3.2 AVG 0.9115 0.9002 0.9065 0.9054 0.9063 0.7994 0.9051 0.9085 0.9073 0.8872
STD 0.0061 0.0077 0.0084 0.0084 0.0116 0.0354 0.0089 0.0101 0.0068 0.0124

Jedit-4.0 AVG 0.9043 0.8951 0.8997 0.8970 0.8983 0.7887 0.8967 0.9027 0.8993 0.8723
STD 0.0087 0.0087 0.0106 0.0063 0.0062 0.0509 0.0089 0.0053 0.0060 0.0189

Jedit-4.1 AVG 0.8914 0.8801 0.8880 0.8811 0.8867 0.8032 0.8804 0.8880 0.8876 0.8657
STD 0.0069 0.0093 0.0067 0.0082 0.0086 0.0218 0.0071 0.0069 0.0092 0.0129

Jedit-4.2 AVG 0.9512 0.9475 0.9506 0.9497 0.9499 0.8954 0.9489 0.9520 0.9512 0.9400
STD 0.0036 0.0018 0.0030 0.0038 0.0036 0.0235 0.0030 0.0036 0.0036 0.0052
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Table 18 (continued)

Dataset Measure SBEWOA BFFA BMFO BMVO BGWO BBAT BCS BHHO BJAYA GA

Jedit-4.3 AVG 0.9926 0.9907 0.9925 0.9911 0.9918 0.9608 0.9909 0.9923 0.9918 0.9870

STD 0.0017 0.0022 0.0022 0.0016 0.0025 0.0155 0.0019 0.0020 0.0020 0.0029

Log4j-1.0 AVG 0.9493 0.9349 0.9425 0.9433 0.9399 0.8394 0.9402 0.9455 0.9410 0.9126

STD 0.0112 0.0112 0.0120 0.0132 0.0095 0.0372 0.0107 0.0121 0.0102 0.0130

Log4j-1.1 AVG 0.8395 0.8248 0.8188 0.8228 0.8242 0.6837 0.8324 0.8312 0.8186 0.7922

STD 0.0145 0.0170 0.0174 0.0173 0.0170 0.0506 0.0195 0.0203 0.0160 0.0262

Lucene-2.0 AVG 0.7702 0.7532 0.7583 0.7557 0.7580 0.6144 0.7596 0.7657 0.7565 0.7137

STD 0.0143 0.0128 0.0106 0.0150 0.0117 0.0493 0.0166 0.0157 0.0163 0.0226

Xalan-2.4 AVG 0.8886 0.8877 0.8890 0.8883 0.8870 0.8227 0.8861 0.8903 0.8884 0.8715

STD 0.0020 0.0035 0.0038 0.0043 0.0025 0.0253 0.0037 0.0043 0.0033 0.0059

Xalan-2.5 AVG 0.7334 0.7232 0.7316 0.7282 0.7281 0.6406 0.7282 0.7297 0.7292 0.7098

STD 0.0069 0.0087 0.0063 0.0071 0.0039 0.0224 0.0072 0.0074 0.0046 0.0091

Xalan-2.6 AVG 0.8058 0.8014 0.8027 0.8062 0.8034 0.7284 0.8021 0.8068 0.8034 0.7833

STD 0.0039 0.0082 0.0041 0.0076 0.0073 0.0154 0.0058 0.0057 0.0067 0.0096

Rank (F-Test) 1.47 7.34 3.59 5.53 5.13 10.00 6.44 2.41 4.09 9.00

Table 19 2-tailed P-values of the Wilcoxon signed ranks test based on AUC results reported in Table 18 (P-values ≤ 0.05 are in bold and
significant)

Dataset SBEWOA (as a best performing method) vs

BFFA BMFO BMVO BGWO BBAT BCS BHHO BJAYA GA

Ant-1.7 1.46E-03 6.64E-01 4.27E-03 1.47E-03 6.66E-08 2.65E-03 7.34E-01 5.68E-01 2.89E-07

Camel-1.0 1.09E-01 7.79E-01 2.70E-01 9.18E-01 5.50E-08 7.58E-02 4.48E-01 3.83E-01 1.65E-06

Camel-1.2 3.28E-05 5.25E-01 4.49E-03 5.13E-02 6.78E-08 7.19E-04 5.13E-02 1.55E-01 2.38E-07

Camel-1.4 2.65E-03 1.84E-01 1.77E-04 1.89E-01 6.66E-08 1.15E-05 1.55E-01 3.79E-01 7.77E-08

Camel-1.6 1.63E-04 2.81E-01 1.79E-01 6.34E-03 6.26E-08 2.21E-06 3.00E-01 4.98E-01 6.25E-08

Jedit-3.2 5.26E-05 2.26E-02 1.45E-02 2.25E-02 6.52E-08 1.13E-03 1.25E-01 1.44E-02 2.21E-06

Jedit-4.0 1.83E-03 1.07E-02 2.27E-03 1.24E-02 6.53E-08 6.16E-03 8.69E-01 4.59E-02 2.77E-06

Jedit-4.1 4.27E-04 9.54E-02 2.65E-04 1.00E-01 5.84E-08 1.47E-04 1.57E-01 1.93E-01 5.63E-07

Jedit-4.2 3.82E-04 4.21E-01 8.59E-02 1.55E-01 6.43E-08 3.32E-02 6.43E-01 7.85E-01 1.09E-06

Jedit-4.3 1.41E-03 7.35E-01 2.26E-03 1.73E-01 5.78E-08 1.51E-03 4.83E-01 1.59E-01 1.93E-06

Log4j-1.0 2.21E-04 5.10E-02 1.18E-01 3.68E-04 6.82E-08 1.05E-02 3.01E-01 2.29E-02 2.43E-07

Log4j-1.1 3.89E-03 1.17E-03 4.83E-03 5.98E-03 5.99E-08 2.08E-01 6.75E-02 1.50E-04 3.40E-06

Lucene-2.0 4.83E-05 3.46E-03 4.06E-03 2.97E-02 6.59E-08 5.26E-02 4.46E-01 1.95E-03 6.60E-08

Xalan-2.4 1.76E-01 8.07E-01 9.78E-01 8.51E-02 6.73E-08 3.24E-02 2.23E-01 6.55E-01 6.72E-08

Xalan-2.5 4.95E-04 2.02E-01 5.24E-03 6.25E-04 6.41E-08 5.60E-02 4.34E-02 3.21E-02 1.17E-07

Xalan-2.6 6.27E-03 3.13E-02 9.14E-01 1.40E-01 6.74E-08 1.99E-02 9.24E-01 2.79E-01 6.69E-08
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Table 20 Comparison between the proposed SBEWOA and other optimizers based on the number of selected features

Dataset Measure SBEWOA BFFA BMFO BMVO BGWO BBAT BCS BHHO BJAYA GA

Ant-1.7 AVG 13.55 11.10 14.90 12.60 13.20 8.45 10.45 14.60 15.30 10.20

STD 2.5849 1.8325 1.9974 2.0365 2.2148 2.5438 1.9050 1.9304 1.3416 2.19089

Camel-1.0 AVG 12.35 11.00 13.70 11.25 12.45 8.10 9.40 12.50 12.55 11.00

STD 1.8994 2.0000 1.1743 1.8028 2.0384 3.0591 2.1126 2.4387 2.1879 2.051957

Camel-1.2 AVG 14.40 12.30 14.90 12.25 13.55 8.10 10.90 13.95 15.20 10.10

STD 1.7889 2.6178 1.3727 2.4682 2.2118 2.3598 1.4832 2.3278 1.0563 2.100125

Camel-1.4 AVG 14.00 12.00 15.55 12.60 14.30 8.35 11.10 14.30 15.70 11.40

STD 2.7910 1.8064 1.4681 1.8180 2.5567 1.7554 1.2096 2.3193 0.9234 1.875044

Camel-1.6 AVG 14.90 11.90 15.40 12.40 13.75 7.85 10.70 14.90 15.95 10.90

STD 3.3071 1.7442 2.3930 2.2337 2.5314 2.4339 1.6890 2.3598 2.0641 2.35975

Jedit-3.2 AVG 13.35 10.45 14.95 11.60 12.70 9.05 9.50 13.65 14.50 10.45

STD 2.9429 1.7614 1.3169 1.3139 2.3193 2.8924 2.3731 2.4979 2.1643 1.848897

Jedit-4.0 AVG 13.65 12.45 14.65 11.35 13.00 8.50 10.45 14.50 15.00 10.60

STD 2.8335 2.4597 1.8994 1.4965 2.2005 3.3166 1.8771 2.0391 1.5218 1.231174

Jedit-4.1 AVG 16.60 11.30 16.80 12.45 15.20 8.45 9.55 14.85 16.10 10.90

STD 2.0365 1.8382 1.6416 2.4597 3.0366 2.0641 2.4165 3.0997 2.2455 2.04939

Jedit-4.2 AVG 12.80 10.55 14.20 11.65 12.40 8.55 10.60 12.85 14.55 9.95

STD 2.9308 1.2344 1.9358 2.6413 2.7985 2.1145 1.7290 2.7582 1.9595 2.064104

Jedit-4.3 AVG 12.45 10.15 13.40 10.40 11.65 8.00 9.60 11.20 13.30 10.00

STD 2.9105 1.4609 2.5423 2.2804 2.4121 2.0520 1.3139 2.4623 2.1546 1.685854
Log4j-1.0 AVG 12.35 9.90 12.95 10.65 10.85 9.45 9.20 11.60 12.65 9.60

STD 2.3458 2.1250 1.6694 2.4554 2.9069 2.0125 1.9894 2.6636 1.4965 2.779625
Log4j-1.1 AVG 9.55 8.90 12.65 9.40 9.25 9.45 7.90 8.15 13.70 7.80

STD 2.9996 1.3727 2.7582 2.7796 3.0240 2.5849 1.7442 2.7004 1.8382 2.166734
Lucene-2.0 AVG 15.05 10.95 14.75 11.55 13.55 9.40 10.40 13.55 16.00 10.60

STD 2.9643 2.0125 2.7697 1.7911 2.9105 2.7222 2.1374 3.0689 1.9735 1.729009
Xalan-2.4 AVG 14.90 10.75 14.95 12.00 13.70 7.95 10.65 14.10 14.85 10.70

STD 2.0749 1.9702 1.4681 1.5894 2.8303 2.7810 2.2542 2.0749 1.6944 1.657519
Xalan-2.5 AVG 15.10 11.05 14.60 12.30 14.30 8.70 11.00 13.55 15.70 11.05

STD 2.3147 2.2821 2.1374 1.5252 2.2501 2.0026 2.1764 2.5021 1.4546 1.637553
Xalan-2.6 AVG 13.05 10.65 13.60 11.55 12.05 8.50 8.65 12.10 13.50 9.85

STD 2.6253 1.8432 1.8750 1.8771 2.9285 2.1398 2.0072 3.3388 2.1885 1.814416

Rank (F-Test) 7.72 3.97 9.31 4.94 6.31 1.44 2.19 6.91 9.44 2.78

Table 21 2-tailed P-values of the Wilcoxon signed ranks test based on number of features reported in Table 20 (P-values ≤ 0.05 are in bold and
significant)

Dataset SBEWOA (as a best performing method) vs

BFFA BMFO BMVO BGWO BBAT BCS BHHO BJAYA GA

Ant-1.7 1.61E-03 6.97E-02 1.46E-01 5.36E-01 8.26E-06 4.16E-04 2.51E-01 2.92E-02 3.10E-04

Camel-1.0 2.67E-02 1.10E-02 6.31E-02 8.69E-01 4.08E-05 1.57E-04 4.34E-01 5.73E-01 5.73E-02

Camel-1.2 5.83E-03 4.31E-01 4.02E-03 1.56E-01 2.17E-07 5.98E-06 6.98E-01 1.48E-01 1.90E-06

Camel-1.4 3.17E-03 4.51E-02 1.64E-02 6.48E-01 4.44E-06 2.49E-04 7.94E-01 3.29E-02 1.01E-03

Camel-1.6 4.51E-03 7.90E-01 1.83E-02 1.74E-01 7.64E-07 1.72E-04 6.38E-01 5.10E-01 4.51E-04

Jedit-3.2 1.24E-03 1.15E-01 1.08E-02 3.13E-01 1.78E-04 2.55E-04 8.59E-01 2.29E-01 1.10E-03

Jedit-4.0 1.41E-01 3.86E-01 8.10E-03 3.20E-01 3.13E-05 1.13E-03 4.98E-01 2.52E-01 1.90E-03

Jedit-4.1 1.16E-06 9.54E-01 1.43E-05 3.09E-01 7.32E-08 2.36E-07 6.93E-02 4.31E-01 6.88E-07
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Table 21 (continued)

Dataset SBEWOA (as a best performing method) vs

BFFA BMFO BMVO BGWO BBAT BCS BHHO BJAYA GA

Jedit-4.2 4.45E-03 1.15E-01 1.37E-01 6.23E-01 7.58E-05 5.44E-03 9.89E-01 2.70E-02 1.58E-03

Jedit-4.3 1.36E-02 3.17E-01 3.01E-02 3.81E-01 2.79E-05 2.48E-03 1.81E-01 3.73E-01 8.44E-03

Log4j-1.0 2.34E-03 4.04E-01 4.59E-02 1.48E-01 5.55E-04 2.12E-04 4.05E-01 6.59E-01 3.83E-03

Log4j-1.1 3.98E-01 2.67E-03 6.72E-01 5.01E-01 8.80E-01 1.88E-02 9.73E-02 3.06E-05 3.44E-02

Lucene-2.0 1.55E-04 8.13E-01 9.79E-04 1.50E-01 8.10E-06 3.00E-05 1.61E-01 4.43E-01 2.72E-05

Xalan-2.4 5.93E-06 8.55E-01 9.43E-05 1.63E-01 2.53E-07 6.76E-06 2.21E-01 7.27E-01 3.76E-06

Xalan-2.5 3.11E-05 3.24E-01 3.54E-04 2.06E-01 2.56E-07 1.91E-05 4.03E-02 5.85E-01 1.18E-05

Xalan-2.6 3.89E-03 5.03E-01 4.36E-02 1.91E-01 8.64E-06 1.01E-05 2.58E-01 6.42E-01 1.89E-04

Table 22 Comparison between the proposed SBEWOA and other optimizers based on fitness values

Dataset Measure SBEWOA BFFA BMFO BMVO BGWO BBAT BCS BHHO BJAYA GA

Ant-1.7 AVG 0.12497 0.12793 0.12595 0.12812 0.12885 0.14246 0.12674 0.12559 0.12621 0.13697

STD 0.00314 0.00367 0.00396 0.00353 0.00349 0.00621 0.00373 0.00361 0.00298 0.00601

Camel-1.0 AVG 0.01682 0.01760 0.01767 0.01722 0.01678 0.02339 0.01677 0.01624 0.01757 0.02383

STD 0.00268 0.00192 0.00180 0.00232 0.00229 0.00369 0.00199 0.00189 0.00195 0.00419

Camel-1.2 AVG 0.26091 0.26877 0.26217 0.26572 0.26320 0.29067 0.26858 0.26525 0.26392 0.28338

STD 0.00535 0.00533 0.00787 0.00783 0.01113 0.01690 0.00890 0.00866 0.00643 0.01387

Camel-1.4 AVG 0.11080 0.11415 0.11352 0.11488 0.11229 0.12702 0.11646 0.11256 0.11241 0.12734

STD 0.00438 0.00372 0.00262 0.00306 0.00630 0.00779 0.00337 0.00448 0.00431 0.00555

Camel-1.6 AVG 0.16407 0.16879 0.16636 0.16521 0.16788 0.18458 0.17183 0.16628 0.16646 0.18405

STD 0.00426 0.00584 0.00295 0.00769 0.00519 0.00857 0.00419 0.00542 0.00374 0.00945

Jedit-3.2 AVG 0.09424 0.10398 0.10008 0.09941 0.09908 0.12482 0.09866 0.09738 0.09900 0.11694

STD 0.00603 0.00785 0.00807 0.00842 0.01129 0.01382 0.00864 0.00983 0.00649 0.01214

Jedit-4.0 AVG 0.10154 0.11008 0.10666 0.10762 0.10716 0.13828 0.10751 0.10360 0.10716 0.13175

STD 0.00903 0.00869 0.01079 0.00617 0.00593 0.01218 0.00896 0.00530 0.00609 0.01859

Jedit-4.1 AVG 0.11583 0.12439 0.11924 0.12392 0.11975 0.14811 0.12320 0.11831 0.11932 0.13840

STD 0.00652 0.00924 0.00601 0.00776 0.00786 0.01076 0.00729 0.00673 0.00856 0.01271

Jedit-4.2 AVG 0.05471 0.05729 0.05598 0.05567 0.05583 0.06827 0.05586 0.05392 0.05556 0.06437

STD 0.00300 0.00202 0.00296 0.00362 0.00363 0.00539 0.00290 0.00416 0.00402 0.00494

Jedit-4.3 AVG 0.01360 0.01433 0.01415 0.01403 0.01391 0.02078 0.01378 0.01324 0.01475 0.01790

STD 0.00157 0.00183 0.00198 0.00174 0.00215 0.00286 0.00193 0.00173 0.00174 0.00290

Log4j-1.0 AVG 0.05640 0.06942 0.06339 0.06147 0.06493 0.10045 0.06379 0.05980 0.06470 0.09133

STD 0.01093 0.01076 0.01184 0.01333 0.00874 0.01729 0.01015 0.01162 0.00981 0.01308

Log4j-1.1 AVG 0.16363 0.17788 0.18576 0.18010 0.17868 0.22671 0.16985 0.17123 0.18647 0.20966

STD 0.01455 0.01687 0.01705 0.01727 0.01673 0.02128 0.01934 0.01999 0.01612 0.02601

Lucene-2.0 AVG 0.23500 0.24980 0.24662 0.24760 0.24637 0.28572 0.24316 0.23872 0.24905 0.28872

STD 0.01515 0.01261 0.01015 0.01482 0.01165 0.02018 0.01626 0.01601 0.01653 0.02264

Xalan-2.4 AVG 0.11773 0.11660 0.11741 0.11663 0.11875 0.13122 0.11806 0.11562 0.11791 0.13257

STD 0.00261 0.00379 0.00392 0.00418 0.00309 0.00804 0.00370 0.00426 0.00358 0.00561

Xalan-2.5 AVG 0.27151 0.27954 0.27302 0.27519 0.27629 0.29987 0.27456 0.27433 0.27592 0.29286

STD 0.00707 0.00857 0.00663 0.00691 0.00401 0.01225 0.00693 0.00714 0.00471 0.00876

Xalan-2.6 AVG 0.19878 0.20195 0.20210 0.19766 0.20064 0.22345 0.20021 0.19731 0.20134 0.21950

STD 0.00382 0.00804 0.00390 0.00775 0.00711 0.01007 0.00570 0.00633 0.00696 0.00942

Rank (F-Test) 1.69 6.88 4.88 5.06 5.09 9.75 4.94 2.19 5.28 9.25
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Table 23 2-tailed P-values of the Wilcoxon signed ranks test based on fitness results reported in Table 22 (P-values ≤ 0.05 are in bold and
significant)

Dataset SBEWOA (as a best performing method) vs

BFFA BMFO BMVO BGWO BBAT BCS BHHO BJAYA GA

Ant-1.7 8.35E-03 2.33E-01 3.63E-03 9.19E-04 1.23E-07 2.47E-02 3.64E-01 1.44E-01 5.20E-07

Camel-1.0 5.50E-01 2.40E-01 8.28E-01 8.49E-01 9.97E-06 7.86E-01 3.99E-01 4.47E-01 1.81E-06

Camel-1.2 1.16E-04 3.50E-01 2.22E-02 6.19E-02 1.80E-06 1.48E-03 8.09E-02 1.07E-01 2.95E-07

Camel-1.4 9.03E-03 2.83E-02 1.11E-03 1.13E-01 9.07E-07 1.29E-04 9.88E-02 1.13E-01 6.75E-08

Camel-1.6 4.22E-03 3.10E-02 5.41E-01 1.11E-02 8.47E-08 5.54E-06 1.77E-01 1.25E-01 1.54E-07

Jedit-3.2 1.01E-03 8.29E-03 5.30E-02 3.84E-02 3.92E-07 4.38E-02 1.40E-01 2.06E-02 3.97E-06

Jedit-4.0 2.33E-03 1.43E-02 1.66E-02 6.00E-02 6.75E-08 4.83E-02 7.97E-01 6.77E-02 3.06E-06

Jedit-4.1 1.64E-03 7.02E-02 7.59E-04 9.38E-02 1.11E-07 9.72E-04 3.31E-01 1.81E-01 1.10E-06

Jedit-4.2 2.54E-03 1.98E-01 3.30E-01 2.34E-01 9.11E-08 2.85E-01 7.45E-01 2.39E-01 5.14E-06

Jedit-4.3 3.00E-02 1.36E-01 3.36E-01 1.59E-01 2.90E-07 3.29E-01 5.97E-01 3.11E-02 2.02E-05

Log4j-1.0 4.48E-03 4.22E-02 4.90E-01 1.72E-02 6.76E-08 2.18E-01 4.90E-01 1.85E-02 7.91E-07

Log4j-1.1 7.59E-03 1.48E-05 5.30E-03 8.68E-04 9.05E-08 4.49E-01 3.23E-01 1.37E-05 5.11E-06

Lucene-2.0 3.19E-04 6.37E-03 1.60E-02 4.79E-02 6.71E-08 1.72E-01 5.78E-01 1.98E-03 6.72E-08

Xalan-2.4 3.37E-01 7.05E-01 2.23E-01 3.79E-01 1.79E-06 8.60E-01 1.23E-01 6.36E-01 6.77E-08

Xalan-2.5 3.28E-03 3.08E-01 3.34E-02 2.04E-02 6.61E-07 1.63E-01 1.13E-01 2.36E-02 1.58E-07

Xalan-2.6 1.73E-02 1.33E-02 6.55E-01 1.80E-01 1.65E-07 2.67E-01 5.79E-01 1.76E-01 7.85E-08

Table 24 Comparison between the proposed SBEWOA and other optimizers based on running time

Dataset Measure SBEWOA BFFA BMFO BMVO BGWO BBAT BCS BHHO BJAYA GA

Ant-1.7 AVG 42.37 23.56 24.09 28.16 25.09 25.17 52.95 14.54 31.81 8.56

STD 0.8091 0.6519 0.7328 2.7729 0.3925 1.6021 4.1888 0.4517 0.2031 0.581693

Camel-1.0 AVG 32.37 18.87 18.82 21.53 22.11 22.74 43.96 11.62 26.96 6.68

STD 0.2938 0.4587 0.4384 0.2519 0.2793 1.7507 0.5911 0.6222 0.1231 0.21952

Camel-1.2 AVG 18.19 19.56 19.78 22.11 22.99 22.76 45.48 12.78 28.06 7.14

STD 8.8163 0.4091 0.4876 0.2066 0.1430 0.3365 0.5128 0.5573 0.1162 0.424393

Camel-1.4 AVG 18.21 11.96 13.87 26.11 27.08 26.26 52.57 16.01 33.51 9.27

STD 1.0107 2.6331 4.9142 0.1961 0.2194 0.8363 0.4391 0.4752 0.2471 0.753417

Camel-1.6 AVG 18.31 11.25 11.69 26.28 27.37 26.54 53.45 16.72 33.75 10.25

STD 0.4799 0.1865 0.1926 0.2364 0.1863 0.8872 0.7123 1.0311 0.2548 1.03882

Jedit-3.2 AVG 11.39 7.47 7.36 20.32 21.14 21.07 41.53 10.42 25.40 7.56

STD 0.1531 0.0537 0.0524 0.1327 0.1229 0.2213 0.5285 0.3130 0.0581 0.751342

Jedit-4.0 AVG 12.06 7.87 7.81 20.91 21.72 21.57 42.59 11.29 26.22 7.59

STD 0.1428 0.1947 0.2001 0.1683 0.1280 0.3358 0.2930 0.4059 0.0694 0.82611

Jedit-4.1 AVG 12.25 7.92 7.92 21.04 21.87 21.75 43.07 11.39 26.41 7.21

STD 0.1719 0.2095 0.2108 0.1722 0.1451 0.2789 0.6146 0.4089 0.1001 0.900599

Jedit-4.2 AVG 13.10 8.50 8.54 21.98 22.75 22.57 51.46 12.05 27.55 7.15

STD 0.3220 0.2623 0.2771 0.2030 0.1389 0.4267 2.8950 0.2907 0.1372 0.382593

Jedit-4.3 AVG 13.65 8.79 8.80 22.52 23.37 22.98 53.98 13.08 28.18 7.50

STD 0.1982 0.0556 0.0620 0.4389 0.3382 0.5758 0.0718 0.4732 0.1063 0.335046

Log4j-1.0 AVG 10.35 6.86 6.69 19.45 20.18 20.27 46.62 10.12 24.04 6.02

STD 0.1611 0.0654 0.0600 0.3320 0.1244 0.2542 0.3118 0.6578 0.0408 0.484603

Log4j-1.1 AVG 9.86 6.60 6.40 19.00 19.78 19.81 45.64 9.46 23.60 5.49

STD 0.1363 0.0614 0.0723 0.2388 0.3506 0.3296 0.0749 0.6620 0.0283 0.194603
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Table 24 (continued)

Dataset Measure SBEWOA BFFA BMFO BMVO BGWO BBAT BCS BHHO BJAYA GA

Lucene-2.0 AVG 10.50 6.96 6.77 19.48 20.25 20.32 46.88 23.63 24.24 5.75

STD 0.1240 0.0654 0.0652 0.1119 0.1165 0.1727 0.0687 0.8396 0.0641 0.196377

Xalan-2.4 AVG 17.44 11.09 11.48 25.72 26.80 25.97 60.85 38.72 32.51 9.13

STD 0.3575 1.0491 1.2458 0.2112 0.1837 0.7990 0.3791 1.1876 0.2004 0.256848

Xalan-2.5 AVG 14.14 8.99 9.07 22.62 23.47 23.01 54.15 31.32 28.46 8.05

STD 0.2133 0.0891 0.0725 0.1844 0.1391 0.4627 0.1391 0.6955 0.1061 1.787095

Xalan-2.6 AVG 14.30 9.24 9.32 22.88 24.45 23.65 54.65 31.96 28.84 18.72

STD 0.4048 0.2755 0.2397 0.3487 1.9162 0.5539 1.5794 0.6436 0.1487 0.714985

Rank (F-Test) 5.06 2.53 2.72 5.75 7.25 6.88 10.00 4.81 8.69 1.31

Table 25 2-tailed P-values of the Wilcoxon signed ranks test based on running time results reported in Table 24 (P-values ≤ 0.05 are in bold and
significant)

Dataset SBEWOA vs

BFFA BMFO BMVO BGWO BBAT BCS BHHO BJAYA GA

Ant-1.7 6.80E-08 6.80E-08 6.80E-08 6.80E-08 6.80E-08 6.80E-08 6.80E-08 6.80E-08 6.80E-08

Camel-1.0 6.80E-08 6.80E-08 6.80E-08 6.80E-08 6.80E-08 6.80E-08 6.80E-08 6.80E-08 6.80E-08

Camel-1.2 6.04E-03 6.04E-03 1.23E-03 1.23E-03 1.23E-03 6.80E-08 8.60E-06 1.23E-03 6.80E-08

Camel-1.4 1.20E-06 1.61E-04 6.80E-08 6.80E-08 6.80E-08 6.80E-08 7.90E-08 6.80E-08 6.80E-08

Camel-1.6 6.80E-08 6.80E-08 6.80E-08 6.80E-08 6.80E-08 6.80E-08 1.60E-05 6.80E-08 6.80E-08

Jedit-3.2 6.80E-08 6.80E-08 6.80E-08 6.80E-08 6.80E-08 6.80E-08 7.90E-08 6.80E-08 6.80E-08

Jedit-4.0 6.80E-08 6.79E-08 6.80E-08 6.80E-08 6.80E-08 6.80E-08 4.54E-06 6.80E-08 6.80E-08

Jedit-4.1 6.80E-08 6.79E-08 6.80E-08 6.80E-08 6.80E-08 6.80E-08 1.38E-06 6.80E-08 6.80E-08

Jedit-4.2 6.80E-08 6.80E-08 6.80E-08 6.80E-08 6.80E-08 6.80E-08 9.17E-08 6.80E-08 6.80E-08

Jedit-4.3 6.80E-08 6.80E-08 6.80E-08 6.80E-08 6.80E-08 6.80E-08 7.41E-05 6.80E-08 6.80E-08

Log4j-1.0 6.80E-08 6.80E-08 6.80E-08 6.80E-08 6.80E-08 6.80E-08 4.57E-01 6.80E-08 6.80E-08

Log4j-1.1 6.80E-08 6.80E-08 6.80E-08 6.80E-08 6.80E-08 6.80E-08 2.47E-04 6.80E-08 6.80E-08

Lucene-2.0 6.80E-08 6.80E-08 6.80E-08 6.80E-08 6.80E-08 6.80E-08 6.80E-08 6.80E-08 6.80E-08

Xalan-2.4 6.80E-08 6.80E-08 6.80E-08 6.80E-08 6.80E-08 6.80E-08 6.80E-08 6.80E-08 6.80E-08

Xalan-2.5 6.80E-08 6.80E-08 6.80E-08 6.80E-08 6.80E-08 6.80E-08 6.80E-08 6.80E-08 1.20E-06

Xalan-2.6 6.80E-08 6.80E-08 6.80E-08 6.80E-08 6.80E-08 6.80E-08 6.80E-08 6.80E-08 6.80E-08
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Fig. 11 Convergence curves for compared algorithms on ant-1.7, camel-1.2, camel-1.4, camel-1.6, edit-3.2, edit-4.0 datasets
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Fig. 12 convergence curves for compared algorithms on edit-4.1, og4j-1.0, log4j-1.1, ucene-2.0, xalan-2.5, xalan-2.6 datasets
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Table 27 The number of times
each feature has been selected
by SBEWOA for all datasets
[over 320 runs]

Feature Number of selections Rate

f7 ca 259 80.938%

f2 dit 247 77.188%

f13 moa 243 75.938%

f19 max cc 242 75.625%

f14 mfa 240 75.000%

f4 cbo 235 73.438%

f8 ce 232 72.500%

f3 noc 230 71.875%

f10 lcom3 225 70.313%

f15 cam 219 68.438%

f16 ic 217 67.813%

f9 npm 207 64.688%

f12 dam 207 64.688%

f5 rfc 206 64.375%

f18 amc 206 64.375%

f20 avg cc 206 64.375%

f17 cbm 204 63.750%

f11 loc 190 59.375%

f1 wmc 173 54.063%

f6 lcom 173 54.063%

Fig. 13 Importance of features
in terms of the number of times
the SBEWOA algorithm has
selected them
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