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Abstract
Sepsis is a life-threatening medical condition that is characterized by the dysregulated immune system response to infections,
having both high morbidity and mortality rates. Early prediction of sepsis is critical to the decrease of mortality. This paper
presents a novel early warning model called Double Fusion Sepsis Predictor (DFSP) for sepsis onset. DFSP is a double
fusion framework that combines the benefits of early and late fusion strategies. First, a hybrid deep learning model that
combines both the convolutional and recurrent neural networks to extract deep features is proposed. Second, deep features
and handcrafted features, such as clinical scores, are concatenated to build the joint feature representation (early fusion).
Third, several tree-based models based on joint feature representation are developed to generate the risk scores of sepsis
onset that are combined with an End-to-End neural network for final sepsis detection (late fusion). To evaluate DFSP, a
retrospective study was conducted, which included patients admitted to the ICUs of a hospital in Shanghai China. The results
demonstrate that the DFSP outperforms state-of-the-art approaches in early sepsis prediction.
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1 Introduction

The immune system of the body plays an important role
in preventing and limiting infection caused by bacteria,
viruses, parasites, or fungi. Sepsis is a severe immunological
reaction to infection that can cause tissue damage and organ
dysfunction. This reaction can proceed to septic shock,
which includes organ failure and very low blood pressure
[1]. The Systemic Inflammatory Response Syndrome
(SIRS) was proposed in 1991 as the first definition of sepsis
[2]; while in 2001, the International Sepsis Definitions
Conference revised the definition of sepsis (Sepsis-2) that
has facilitated the physician to diagnose sepsis at the
bedside [3]. The Third International Consensus Definitions
for Sepsis (Sepsis-3) was published in 2016, with a new
definition of sepsis and septic shock [4]. In Sepsis-3,
Sequential Organ Failure Assessment (SOFA) score and
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quick SOFA (qSOFA) score are recommended to represent
a patient’s organ dysfunction.

Sepsis is still a significant global health problem today.
Looking at the United States scenario, clinical indicators
of sepsis are present in 6% of hospitalized patients, and
sepsis is responsible for nearly 35% of all hospital deaths
[5]. From an economical point of view, sepsis is the most
expensive condition treated in the United States, accounting
for $38.2 billion in hospital costs in 2017 [6]. Given that the
treatment process for sepsis is highly time-sensitive, early
detection of sepsis is critical for improving septic patient
survival [7, 8]. Based on international guidelines for sepsis
management [9], the early administration of antibiotics
and intravenous fluids is recommended. With a one-hour
delay in the administration of intravenous antibiotics, sepsis
mortality can rise between 4%–8% [10]. Furthermore,
implementing a standardized sepsis treatment process with
practical operational constraints takes some time [11], and
as a result, it is critical to predict the onset of sepsis early to
schedule and carry out a sepsis treatment plan.

The challenge in an earlier prediction of sepsis is
distinguishing sepsis from other disease states with similar
clinical signs, symptoms, and molecular manifestations,
such as inflammation [12]. Due to the systemic character
of sepsis, some sepsis biomarkers, have been proposed to
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be utilized in sepsis detection [13]. However, this kind of
method is not commonly accepted for sepsis detection due
to a lack of specificity [13].

Over the last decade, a rising number of available elec-
tronic medical records (EMRs) have created several sepsis
prediction algorithms based on machine learning. Machine
learning is a branch of artificial intelligence, and can
overcome the limitations of standard clinical statistical
approaches in interpreting high-dimensional, nonlinear, and
longitudinal EMR data. The InSight algorithm, one of the
earliest developed machine learning models for sepsis early
prediction, was introduced by Calvert et al. [14]. Subse-
quently, Desautels et al. [15] and Mao et al. [16] proposed a
prediction model based on the InSight algorithm. Goh, et al.
[11] proposed the SERA algorithm, which combines both
structured data and unstructured clinical notes to predict
sepsis. More recently, deep learning models and tree-based
models have been the most used solutions to sepsis predic-
tion problem. A deep learning model is concerned with the
representation of learning with neural networks with several
layers, which can extract the knowledge of EMRs via hier-
archical architecture. For example, Kok et al. [17], Zhang,
et al. [18] and Wang and Yao [19] explored deep learning
models to early predict sepsis onset. Scherpf et al. [20], Kam
and Kim [21], and Fagerstrom, et al. [22] developed the pre-
diction model based on the recurrent neural network (RNN)
which presents good results in handling temporal informa-
tion. Shashikumar, et al. [23] stacked the deep learning
model and the modified Weibull Cox Proportional Hazards
model to maintain the predictive performance of the sep-
sis predictor, while improving the interpretability. Unlike a
deep learning model, a tree-based model predicts sepsis ear-
lier, by relying on clinical experts to provide handcrafted
features that contain valuable information. So far, the tree-
based models, such as random forest [24], gradient boosting
decision tree (GBDT) [25] and XGBoost [26], have been
developed using handcrafted features to effectively predict
early sepsis.

As already mentioned, various machine learning models
have been used as tools for the early prediction of sepsis,
but this task is still challenging. Existing models usually
predict sepsis using a feature representation based on
either temporal information derived from EMRs or clinical
prior knowledge of sepsis. However, temporal information
and clinical knowledge render different functions: the
former can reflect an immediate trend of output signals
at the current time, while the latter is used to depict
the physiological state of the patient. That is, the useful
information contained in the feature representation derived
from the previous sepsis prediction models is insufficient,
limiting the predictive performance of these models.

Fusion technology is an effective process of fusing
complementary information that can be used for the

overall comprehension of a phenomenon. There are two
typical fusion strategies: early fusion and late fusion.
Early fusion, as the name implies, is performed at the
feature level, i.e., several features are concatenated into
a single representation; whereas late fusion is performed
at the scores level, i.e., multiple classification results are
combined [27]. Fusion technology has recently been used
in the healthcare field, due to its higher predictability. Sun,
et al. [28] proposed a multimodal deep neural network for
breast cancer prognosis prediction, which used late fusion
to integrate multi-dimensional data. To handle the time
series classification problem such as early diagnosis, Lv,
et al. [29] proposed a dynamic late fusion strategy that
fuses the predicted results of multiple-based classifiers,
having also developed an adaptive learning method to
output final prediction results based on dynamic late fusion.
Hagerty, et al. [30] employed the fusion of handcrafted
features and deep features to achieve a higher accuracy
for melanoma diagnosis. Zhang and Chen [31] proposed
a view fusion module for human pose estimation, which
combines decision-level information from different stages
so a more comprehensive estimation could be generated.
Ilhan, et al. [32] developed a computer-aided diagnosis
system for early diagnosis of COVID-19, which fuses deep
features from seven convolutional neural networks (CNN)
architectures, feeding them to multiple classifiers using a
late fusion strategy. Zuo, et al. [33] proposed a deep multi-
fusion framework with classifier-based feature synthesis,
which can automatically fuse multi-modal medical pictures,
to aid in precision diagnosis and surgery planning in
clinical practice. To predict COVID-19 patient health for
early monitoring and effective treatment, Gumaei, et al.
[34] proposed a fusion technique that combines three
well-calibrated ensemble classifiers. Wang, et al. [35]
proposed a neural network framework based on multi-
view fusion to automatically segment the gross tumor
volume in brain glioma. As stated in the previous studies,
fusion techniques are efficient at extracting meaningful
patterns from multiple complementary information sources.
This means that fusion techniques have great potential
to combine temporal information and clinical knowledge
to further improve the performance of sepsis prediction.
However, there is a scarcity of studies on sepsis prediction
by using fusion technology. The goal of this paper is to
bridge the gap and establish an effective fusion technology
to improve the predictive performance and robustness of the
sepsis prediction model.

To achieve this goal, it is proposed a novel early sepsis
prediction model called Double Fusion Sepsis Predictor
(DFSP), which is a double fusion framework that combines
the benefits of early and late fusion. First, the temporal
information of the EMRs is efficiently extracted, by using
a hybrid deep learning model. Second, the handcrafted
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features with clinical knowledge are collected, and third,
the early fusion strategy is used to combine deep features
and handcrafted features for generating joint feature
representation. Afterwards, multiple tree-based models
based on the joint feature representations are constructed.
Finally, a late fusion strategy is used to integrate these
tree-based models to output the final prediction. The main
contributions of this paper are as follows:

(1) A novel double fusion framework for sepsis prediction
is proposed. To thoroughly and accurately assess
the patient’s condition, DFSP uses early fusion
to establish an informative feature representation
that comprises temporal information and clinical
knowledge. Regarding late fusion, it is used to
eliminate the randomness of the informative feature
representation to improve the robustness of the DFSP.
To the best of the authors’ knowledge, this is the first
study that combines early and late fusions to explore
the sepsis prediction problem.

(2) To extract rich and important temporal information, a
hybrid deep learning model that combines CNN and
RNN is proposed. Unlike standard sepsis prediction
models, which usually utilize a single deep learning
module to capture temporal information, the hybrid
deep learning module first uses CNN and later the
RNN. The first is used to identify the features that
effectively describe the state of sepsis patients, and
the second, the RNN module is utilized to capture key
long-term temporal dependencies in EMRs data based
on the CNN modality.

(3) The DFSP model was applied to a retrospective
study of infection patients admitted to the ICU of a
hospital in Shanghai China. The effectivenessofDFSP is
assessed by comparing it with state-of-the-art methods
and traditional sepsis detection tools. The experiment
results show that DFSP has a significantly higher area
under curve (AUC) score than the existing sepsis models.

The remainder of this paper is organized as follows. In
Section 2, the dataset and DFSP are provided. In Section 3,
the experimental results are listed and analyzed. Finally,
Section 4 concludes this study.

2Materials andmethods

2.1 Data

2.1.1 Data description

The dataset used in this work is from a hospital in
Shanghai. Between 2016 and 2021, the records of 282 ICU
patients were collected from the Infection department of

the Shanghai hospital. All the considered patients were
admitted to the ICU with a diagnosis of infection, and 145
of them were diagnosed with lung infection. The features
in the dataset included vital signs, laboratory test results
and demographics. The details of the used features are
given as follows: (1) Vital signs: heart rate, respiratory
rate, the state of ventilator usage, systolic blood pressure
(SBP), diastolic blood pressure (DBP), mean arterial
pressure (MAP), temperature, pulse oximetry (O2Sat), fluid
intake, and fluid output; (2) Laboratory test results: partial
thromboplastin time, the time of penicillin usage, aspartate
transaminase, calcium, bicarbonate, creatinine, C-reactive
protein, interleukin-6 (IL-6), potassium, sodium, partial
pressure of carbon dioxide from arterial blood (PaCO2),
fraction of inspired oxygen (FiO2), blood pH, platelets
counts, procalcitonin, white cell count, and total bilirubin;
(3) Demographics: age, gender, the ICU length of stay
(ICULOS). In this dataset, the diagnosis of sepsis is based
on Sepsis-2, which is diagnosed as the presence of at least
two SIRS criteria and a confirmed or suspected infection.
SIRS criteria are defined as:

– Temperature >38◦C or <36◦C
– Heart rate >90/min
– Respiratory rate >20/min or PaCO2 <32mmHg
– White cell count >12 cells/uL or <4 cells/uL

2.1.2 Data preprocessing

Before each instance is fed into the DFSP, irregularity of
time series and missing values were addressed. These issues
are addressed in the preprocessing step.

In the first step of data preprocessing, the time bucket
technique is employed to address the irregularity of time
series, which can aggregate data by time interval. The raw
data is grouped into a series of consecutive 1 h buckets.
After that, the measurement values are averaged within each
bucket. As a result, each time series is at 1 h intervals.

Then, the missing values in the data are imputed. In the
data imputation phase, the time series with missing values
are imputed one by one. Linear interpolation is used first,
which is a useful method for curve fitting using linear
polynomials. The forward-fill and backward-fill are then
used to fill the last or first available data value. Following
that step, there are still some missing values because not
all clinical features are collected for each patient and
interpolation cannot be used for missing features. Thus, the
remained missing values are subsequently set to zero. The
steps of data preprocessing are summarized in Table 1.

2.2 Design and implementation of DFSP

DFSP is divided into two phases: early fusion and late
fusion. In the early fusion phase, the multivariate time series
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Table 1 The summary of data preprocessing steps

Issue Method

Irregularity of time series: The
different vital signs and labo-
ratory test results are recorded
at irregular intervals and varying
frequencies.

Time bucket technique

Missing values: Due to distur-
bances in the medical systems,
there are missing values in the
dataset.

Linear interpolation, forward-fill,
and backward-fill

are fed into several deep learning models, each being a
hybrid of a CNN and an RNN. Then, the deep features
are extracted for each deep learning model, and finally, the
joint feature representation of deep features and handcrafted
features are built. In the following phase, several GBDTs
are constructed based on the joint feature representation,
and the risk of sepsis onset is calculated with a late fusion
strategy integrating the output of tree-based models. The
main framework of DFSP is shown in Fig. 1.

2.2.1 Convolutional neural network

CNN is a popular deep feed-forward neural network that
is good at processing high-dimensional data. The main
block of CNN is the convolutional layer, which is used
to subsample and extract features. The convolutional layer
computes a dot product between the input data and the filter
matrix, and the result of the dot product is loaded into an
output matrix. The activation function is then applied to the
value in the output matrix. In this paper, the rectified linear
units (ReLU) activation function is used and is calculated
by (1):

ReLU(x) =
{

x, x ≥ 0
0, x < 0

(1)

2.2.2 Gated recurrent unit

Gated recurrent unit (GRU) is a powerful and simplified
version of LSTM (Long short-term memory), which can
improve network performance with less training time [36].
The structure of a GRU cell is similar to the structure of
an LSTM. A GRU merges the input and forget gates of an
LSTM into the update gate, and a GRU cell combines the
cell state and hidden state into one state. The hidden state is
described by (2):

ht = (1 − zt ) ∗ ht−1 + zt ∗ h̄t (2)

where ht−1 and h̄t are the previous and current candidate
memory contents, respectively. zt is the update gate that
is calculated by using (3), and that decides how much of

the previous memory contents should be passed along to
the future timestep, and how much of the current candidate
memory contents to be added:

zt = σ
(
Wz

[
ht−1, xt

])
(3)

where σ is the sigmoid function and Wz is a weight vector
which can be learned during the training. The calculations
of the reset gate rt and candidate memory contents h̄t are
described by the following equations:

rt = σ
(
Wr

[
ht−1, xt

])
(4)

h̄t = tanh
(
Wc

[
rt ∗ ht−1, xt

])
(5)

where Wr and Wc are weight vectors.

2.2.3 Gradient boosting decision tree

GBDT is an ensemble machine learning algorithm for
both classification and regression problems, which can
generate a prediction model by combining a series of
classification and regression trees (CARTs). In the GDBT
algorithm, the CARTs are constructed iteratively, and a new
CART is trained from the prediction error of the previous
iteration. Finally, the output is calculated by accumulating
the predictive results of all CARTs.

Suppose that the training set is S = {(x1, y1) . . .

(xn, yn)}, f (x) is a linear combination of CARTs, and the
L(y, f (x)) is the loss function. The maximum number of
CARTs is considered as M . Equation (6) represents the
GBDT:

f (x) =
M∑

m=1

D (x; θm) (6)

where D (x; θm) is the mth CART, and the θm is the optimal
parameter of mth CART. The negative gradient of the loss
function fm(x) is calculated by (7):

Rmi = −
[
∂L (yi, f (xi))

∂f (xi)

]
f (x)=fm−1(x)

, ∀i ∈ n (7)

The mth CART is trained by using {(x1, Rm1) . . .

(xn, Rmn)}, thus θm is calculated by (8):

θ̂m = argmin
θm

n∑
i=1

L (yi, fm−1(x) + D (x; θm)) (8)

Then, the function fm(x) is updated by adding a new
CART and it is described by (9):

fm(x) = fm−1(x) + D (x; θm) (9)

Finally, the GBDT model is obtained and the output of
GBDT, which is calculated by (6).
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Fig. 1 The main framework of DFSP

2.2.4 Hybrid deep learning model

In this subsection, the structure of the hybrid deep learning
model is presented. The hybrid model is composed of two

components: a CNN module for feature extraction, and
two GRU layers for prediction based on extracted features.
In the first component, three 2D-convolutional layers are
employed to extract local features from the time series.
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Fig. 2 The 2D-convolutional layers of the hybrid deep learning model

The first 2D-convolutional layer receives the input data and
converts it to a feature map. The second layer intensifies
the salient feature on the feature maps generated by the first
layer, being followed by a third layer that repeats the second
layer’s operation on the feature maps, that are generated by
the second layer. In the 2D-convolutional layers, a specific
kernel size is employed to learn the dynamics of each
feature. As shown in Fig. 2, the kernel size is set to 2×1

and thus the convolutional layers are forced to learn the
important information from individual time series features.

The architecture of a CNN module also includes batch
normalization and rectified linear units (ReLU) activation
function. The batch normalization is used to speed up the
training process, with the standardization of the feature map.
The ReLU activation function is used to compute the output
of the normalized feature map. It is important to note that the

Fig. 3 The architecture of the
proposed hybrid deep learning
model
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GRU layer can only read one- or two-dimensional data, but
the output of a two-dimensional convolutional layer is three-
dimensional data, which is made up of multiple feature
maps. In this paper, the extracted features are compressed
by using a 1×1 convolutional layer before being fed to the
GRU layers.

In the second component, the compacted feature map is
fed into the GRU layers, and prediction is performed only
based on it. The GRU layers are used to capture the temporal
information from the CNN module. Finally, the network
computes the probability of sepsis onset by using a single
output unit:

probability (x) = sigmoid(wx + b) (10)

where w and b are trained parameters, and x is the output of
the last GRU layer. Figure 3 presents the architecture of the
proposed hybrid deep learning model.

As shown in Fig. 3, three 2D-convolutional layers have
64, 32, and 32 filters with kernel size 2×1, respectively.
The 1×1 convolutional layer has 1 filter with kernel size
1×1. The neuron size of each GRU layer in the hybrid
deep learning model was set to 40. L1-L2 regularization
was employed to reduce overfitting and to enhance model
generalizability, with the L2 regularization value set to 1e-
5 and the L1 regularization parameter set to 1e-6. Due
to the class imbalance issue in the dataset, oversampling
technology, and noise injection were used in the training
procedure of the hybrid deep learning model. A training
instance for the deep learning model is made up of the
multiple medical time series as input features and the sepsis
event indicator as a classification label. The sepsis event
indicator is a binary variable. When sepsis occurs within the
prediction windows, the sepsis event indicator is set to 1;
otherwise, it is set to 0. To optimize the network weights
of the hybrid deep learning model, the Adam optimizer
[37] is used with a learning rate at 1e-3. The hybrid deep
learning model was trained over a total of 50 epochs with
the mini-batch size fixed at 512 in each epoch. The hybrid
deep learning model employs the binary cross entropy loss
as a loss function. A grid search is used to fine-tune the
hyper-parameters of the hybrid deep learning model.

2.2.5 Handcrafted feature

In the subsection, handcrafted features used in DFSP are
given, which are made up of three parts: Original feature,
statistical feature, and clinical score.

– The value of each feature collected from its most recent
record makes up the original features.

– Statistical features are broadly adopted in the machine
learning field to improve the predictive performance
of models. Statistical features can be used to capture

temporal characteristics while avoiding the data missing
problem. Many statistical features are computed by
compressing information over time series intervals,
e.g., “the standard deviation of the heart rate between
10 and 16 hours.” In this paper, selected statistical
features were chosen, such as measurement frequency,
mean value, standard deviation, minimum value, and
maximum value, and calculated in advance at 6-, 12-,
and 24-hour intervals.

– Domain-specific features, which are typically devel-
oped by domain specialists and encompass a richness
of domain knowledge, can assist prediction models in
obtaining superior predictive performance. The clini-
cal score is a type of useful domain-specific feature in
the field of disease prediction. In this paper, four sep-
sis scores were used, including the SOFA score, the
qSOFA score, the SIRS criterion, the modified early
warning score, and two clinical indexes including the
shock index and oxygenation index.

In total, a higher number of 411 handcrafted features were
developed.

2.2.6 Double fusion framework

In this subsection, the proposed early and late fusion
strategies are given. Early fusion combines multiple relevant
features into a single feature vector that contains more
information than the initial input feature vectors [38]. In
this paper, early fusion is used to combine deep features
and handcrafted features for building an informative joint

Table 2 The distribution of joint feature representation

Feature name The number of features

Original feature 30

Vital signal 10

Laboratory test result 17

Demographic 3

Statistical feature 375

Measurement frequency 51

Mean value 81

Standard deviation 81

Maximum value 81

Minimum value 81

Clinical score 6

Sepsis score 4

Clinical index 2

Deep feature 40

Total 451
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feature representation. The proposed hybrid deep learning
model is trained first, and then its network parameters are
frozen. Subsequently, the deep features are extracted from
the output sequence of the last GRU layer. The deep features
and handcrafted features are fused into a joint feature
representation by concatenating them. Thus, the length of
joint feature representation is the sum of the number of
handcrafted features and the neuro size of the last GRU
layer. The distribution of joint feature representation is listed
in Table 2. The joint feature representation is fed into GBDT
for prediction. Figure 4 illustrates the detailed process of
early fusion.

The training process of the deep learning model and
that of the GDBT are different, with the former using
gradient-based training algorithms and the latter building
tree models iteratively. As a result, the training process
of the two models needs to be carried out separately. The
hybrid deep learning model is trained first to generate
deep features, and then the GDBT is trained based on
the joint feature representation. Thus, several constructed
joint feature representations may not well suit for GBDT
resulting in a bad performance, as the deep features cannot
be updated with the training loss of GBDT. An intuitive
way to solve this problem is to construct various joint
feature representations to build various GBDTs and then
combine the better GDBTs for final prediction. Due to the
randomness inherent in the deep learning method, we can
train multiple hybrid deep learning models to obtain various
deep features. Then, to get more accurate prediction results,
we integrate the advantages of multiple GBDTs in a process
called late fusion. Late fusion is an ensemble strategy for

Fig. 4 The processing of early fusion

producing more precise and reliable decisions by combining
the decisions of multiple classifiers [39]. For traditional
late fusion strategies, multiple classification scores are
generated, and the scores are merged using a human-created
rule. The designs of these human-created rules, such as the
sum weight rule, need a significant amount of trial and
error. To overcome this disadvantage, an End-to-End neural
network was implemented, using classification scores of
tree-based models as inputs for training and its output as
the final judgment. The End-to-End neural network has only
one hidden layer, which is a fully connected layer with 6
neurons. The training process of DFSP is as follows:

– Step 1: Let D denote the number of hybrid deep
learning models.

– Step 2: Train the D hybrid deep learning models on
patient longitudinal data. All training data will be used
to train each hybrid deep learning model.

– Step 3: Freeze the hybrid deep learning model’s
network weight and feed training data to the hybrid
deep learning model to obtain deep features.

– Step 4: Concatenate D pairs of the deep features
and handcrafted features to create the D joint feature
representations.

– Step 5: Train the D GDBTs with joint feature
representations and compute classification scores of D

GDBTs in each training data for End-to-End neural
network training.

The framework of our double fusion is shown in Fig. 5.

2.3 Evaluationmetrics

The major performance indicator is the AUC score, which
assesses a model’s ability to distinguish between sepsis
and non-sepsis patients. Furthermore, measures such as
accuracy (Acc), sensitivity (Sens), specificity (Spec) and
likelihood ratios (LHR+, LHR-) were also used to analyze
the model further. The ability of a model to correctly
identify patients is measured by its accuracy. Sensitivity
assesses a model’s ability to accurately identify patients
with sepsis, whereas specificity assesses a model’s ability
to correctly identify patients who do not have sepsis. The
likelihood ratio is the ratio of the likelihood of a specific test
result in people with the disease to the likelihood in people
without the disease [40]. Prior to this study, numerous
studies on sepsis prediction employed alternate metrics
such as positive predictive value and negative predictive
value to present the probability of diagnosis. However,
the prevalence of sepsis in the population substantially
influences both positive predictive value and negative
predictive value [41]. To alleviate the difficulties associated
with interpreting predictive values, Fischer, et al. [41]
suggested employing the likelihood ratio to evaluate a test’s
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Fig. 5 The main process of the double fusion framework

predictive qualities. Equations (11) – (15) can be used to
calculate accuracy, sensitivity, and specificity:

accuracy = T P + T N

T P + T N + FP + FN
(11)

sensitivity = T P

T P + FN
(12)

specificity = T N

T N + FP
(13)

LHR+ = sensitivity

1 − specificity
(14)

LHR− = 1 − sensitivity

specificity
(15)

where TP, TN, FP, and FN are the number of true positive
test samples, true negative test samples, false positive
test samples, and false negative test samples, respectively.
The model was implemented using Python programming
language, on a personal computer with Windows 10 64-
bit, and an NVIDIA RTX 3060Ti having a 3.80 GHz AMD
Ryzen 7 5800X CPU with 48 GB of RAM.

3 Results

3.1 Data analysis

To clarify the details of the used dataset, this subsection first
provides statistics and characteristics of the used dataset,
followed by an illustrative example from the dataset.
The statistical outcome is shown in Table 3. The sepsis
prevalence in the overall cohort is 40%. The males account

Table 3 The statistics and characteristics of the hospital in Shanghai

Total Sepsis No-Sepsis

Total 282(100%) 114(40%) 168(60%)

Gender

Male 147(52%) 68(24%) 79(28%)

Female 135(48%) 46(16%) 89(32%)

Age

21–40 11(4%) 2(1%) 9(3%)

41–60 23(8%) 7(2%) 16(6%)

61–80 105(37%) 47(17%) 58(21%)

81+ 143(51%) 58(21%) 85(30%)
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for 52% of the cohort, while females account for 48%. The
majority of patients in this dataset are over 60 years old, and
their risk of developing sepsis is higher than that of patients
under 40. The hospital in Shanghai dataset contains 38,884
h of recorded ICU data.

Table 4 shows an illustrative example of a patient’s first
8 hours in the ICU. As shown in Table 4, the patient
information including vital signs, laboratory test results,
demographic, and sepsis results are given. In this case, the
patient’s age is 68 and his sepsis result is negative during
the first 8 hours of ICU. Due to the irregular intervals
and varying frequencies, there are some missing values
in the laboratory test result, such as PaCO2 and FiO2.
Furthermore, since not all laboratory test result of the patient
is collected, there are some missing features, such as IL-6.
Each data instance in this experiment consists of multiple
data series. In total, the dataset used in the experiment
contains 38,884 samples and 31 attributions, including input
features with 10 vital signs, 17 laboratory test results, and 3
demographics, and a classification label with sepsis result.

3.2 An illustrative case of DFSP prediction

In this subsection, an illustrative case is used to express
the prediction of DFSP, where a sepsis patient is randomly
selected from the dataset for this. The prediction window
is set at 6 h, and the length of the look back is set at 10
h. Figure 6(a) illustrates the patient’s hourly vital signs,
such as heart rate, temperature, SBP, DBP, MAP, O2Sat, and
respiratory rate. The hourly prediction risk scores of DFSP
are shown in Fig. 6(b). As shown, the patient is diagnosed
with sepsis in the 21st hour, while the risk score of DFSP
exceeds the threshold level at the 15th hour and generates a
sepsis warning, confirming that DFSP correctly predicts the
onset of sepsis for this patient 6 hours in advance.

3.3 Classification result

The proposed model is evaluated by examining its ability
to predict sepsis 6 h, 12 h, and 24 h before it is
developed. A 10-fold cross-validation scheme is performed,
i.e., in each of the ten cross-validation runs, 90% of
the patients are selected as training cohorts, with their
patient records being used to build the model, while the
records of remaining patients are selected for testing.
DFSP’s prediction performance is assessed by comparing
two early-warning scores (SIRS and qSOFA), and three
existing machine-learning approaches, as baselines: 1) Deep
SOFA-Sepsis Prediction Algorithm (DSPA): Asuroglu and
Ogul [42] developed the hybrid deep learning model that
combines the CNN and random forest to predict SOFA
scores of sepsis patients with a significant performance,
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Fig. 6 An illustrative case of a sepsis patient

2) Residual network (ResNet): He, et al. [43] proposed
this effective deep learning framework that addresses the
vanishing/exploding gradient issue and succeeds at a variety
of classification tasks, 3) Time-phAsed: Li, et al. [26]
developed this XGBoost based method, which performs
well in the 2019 PhysioNet/Computing in Cardiology
Challenge dataset. To assess the performance of the above
machine learning models, the accuracy, specificity, and
AUC score at a fixed 0.80 sensitive level were calculated.
The ROC curve comparison of DFSP and baseline models
is given in Fig. 7, where the prediction window is set at 6
h. From Fig. 7, it is clear that DFSP proposed in this paper
performs better than all the baselines.

Table 5 shows the accuracy, specificity, sensitivity, and
AUC score of DFSP of this experiment, for prediction
windows of 6 h, 12 h, and 24 h. The results show that DFSP
has the highest AUC score across all prediction windows.
When the prediction is performed over larger prediction
windows, the AUC score of DFSP decreased from 0.92 at
the 6 h prediction window to 0.89 at the 24 h prediction
window. DFSP achieves a higher specificity of 0.87, with
a sensitivity of 0.80 in a 6 h prediction window, compared
with the Time-phAsed’s 0.81 specificity with a sensitivity of
0.80, the DSPA’s 0.73 specificity with a sensitivity of 0.80

and the ResNet’s 0.73 specificity with a sensitivity of 0.80.
This result is consistent with the calculated AUC scores,
which measure sensitivity and specificity. In addition. DFSP
has much higher accuracy than baselines for 6 h, 12 h, and
24 h prediction windows.

Figure 8 shows the LHR+ and LHR- of DFSP of this
experiment for prediction windows of 6 h, 12 h, and 24 h.
According to Fig. 8, DFSP has the highest LHR+ and the
lowest LHR- across all prediction windows, which clearly
indicates that the DFSP outperforms baselines in terms of
diagnosing performance.

3.4 Ablation study

To measure the superiority of the proposed double fusion
framework, an ablation study was conducted, which
removes the hybrid deep learning model, early fusion, late
fusion, and double fusion in DFSP. Along with the evalu-
ation of DFSP advantages in prediction performance, this
experiment also assesses the improvements in robustness
brought on by late fusion. To assess the robustness of the
model, each model is performed 15 times 10-fold cross-
validation to assess its stability. In addition, the performance
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Fig. 7 ROC curves of DFSP and
baselines using a 6 h prediction
window

Table 5 The classification
results of DFSP and baselines Method AUC Acc Spec Sens

6 h prediction window

SIRS 0.67 0.57 0.57 0.65

qSOFA 0.59 0.55 0.56 0.28

DSPA 0.84 0.74 0.73 0.80

ResNet 0.83 0.73 0.73 0.80

Time-phAsed 0.87 0.81 0.81 0.80

DFSP 0.92 0.87 0.87 0.80

12 h prediction window

SIRS 0.65 0.57 0.58 0.68

qSOFA 0.57 0.55 0.56 0.57

DSPA 0.83 0.71 0.72 0.80

ResNet 0.82 0.71 0.71 0.80

Time-phAsed 0.85 0.75 0.75 0.80

DFSP 0.89 0.80 0.80 0.80

24 h prediction window

SIRS 0.63 0.58 0.58 0.65

qSOFA 0.56 0.36 0.39 0.71

DSPA 0.81 0.65 0.66 0.80

ResNet 0.81 0.65 0.66 0.80

Time-phAsed 0.85 0.78 0.78 0.80

DFSP 0.89 0.78 0.79 0.80

*Significant value is boldfaced
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Fig. 8 LHR+ and LHR- of
DFSP and baselines

of DFSP without the double fusion is presented, by test-
ing the hybrid deep learning model. The results of the
ablation study are shown in Table 6, which includes four
statistical indicators with the best value, worst value, aver-
age value, and standard deviation in AUC, being denoted
as “Best”, “Worst”, “Mean”, and “SD”, respectively. As
Table 6 shows, DFSP performs better when using a hybrid
deep learning model than when using other deep learn-
ing models, proving that the proposed hybrid deep learning
model is highly capable of extracting useful information
from EMRs data. The results also reveal that DFSP with
fusion strategies can achieve a better predictive performance

than the hybrid deep learning model, demonstrating that
the proposed fusion strategies are effective for improving
performance. The results demonstrate that early and late
fusions enhance the DFSP in various ways. The early fusion
strategy is effective at improving predictive performance,
and its incorporation significantly raises the AUC score of
DFSP. The late fusion strategy is successful in enhancing
stability, which can be evidenced by the fact that the stan-
dard deviations of DFSP and other models including late
fusion are less than 0.005 and better than that of models
without late fusion. The DFSP achieves the best perfor-
mance among all variants of the model, which indicated that

Table 6 The results of the
ablation study Method AUC

Best Worst Mean Std

6 h prediction window

Hybrid deep learning model 0.82 0.79 0.8 0.018

DFSP without early fusion 0.83 0.83 0.83 0.000

DFSP without late fusion 0.91 0.87 0.89 0.017

DFSP 0.92 0.91 0.92 0.004

12 h prediction window

Hybrid deep learning model 0.80 0.75 0.78 0.015

DFSP without early fusion 0.81 0.8 0.81 0.004

DFSP without late fusion 0.88 0.85 0.87 0.011

DFSP 0.90 0.89 0.89 0.003

24 h prediction window

Hybrid deep learning model 0.80 0.78 0.79 0.008

DFSP without early fusion 0.79 0.78 0.79 0.004

DFSP without late fusion 0.88 0.85 0.87 0.012

DFSP 0.89 0.88 0.89 0.003

*Significant value is boldfaced
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the double fusion framework is successful in combining the
benefits of early and late fusion.

3.5 Computational complexity analysis

To evaluate the computational complexity of DFSP, the
computational time required to make predictions using
DFSP and other machine learning models was measured.
The prediction window was set at 6 h, and all patient data
are used in this experiment. In Table 7 it is presented the
computational time required for each model to make the
prediction.

As shown in Table 7, the computational time of making
predictions using DFSP is 5.35s, which is approximately
the sum of D hybrid deep learning models, D GDBTs,
and the End-to-End network. The results of the comparison
demonstrate that DSPA and ResNet, both using the deep
learning model, take approximately the same amount of
time to compute as DFSP. When compared to Time-
phAsed, DFSP requires more computational time to make
predictions, since DFSP must extract temporal features that
can improve prediction performance. It is reasonable to
conclude that the computational complexity of DFSP is
appropriate, as it can produce a significant prediction result
in acceptable computational times.

4 Discussion

Accurate early prediction of sepsis can enhance septic
patient survival and lower hospital costs. Thus, in this
paper it is proposed an early sepsis predictor called DFSP,
which is a double fusion framework that combines early
fusion and late fusion. The major benefit of DFSP is
the integration of auto-extracted knowledge from deep
learning models and clinical knowledge, based on clinical
experience. Aside from extracting additional information
from several sources, the proposed double fusion framework
is also capable of solving the missing value and high

Table 7 The computational time required for each model to make the
prediction

Model Time (s)

DFSP 5.35

Hybrid deep learning model 1.02

GDBT 0.29

End-to-End network 0.05

DSPA 4.42

ResNet 5.40

Time-phAsed 0.28

sparsity problem, which is inevitable in the clinical area.
First, depending on the patient’s medical condition, doctors
may only need to detect a subset of clinical features of
interest, which means that not all clinical features are
observed in each patient. Second, as some clinical features
have longer data-collection time intervals than others, some
time series features have a high sparsity. Missing value
and high sparsity problem typically lead to consequences
such as loss of algorithmic performance and sample bias
[44]. Several studies have demonstrated that this has
a negative effect on forecasting and classification tasks
[45, 46]. There were usually two approaches to dealing with
missing and sparse data: one is to use a deep learning model
with interpolation strategies, while the other is the tree-
based model with handcrafted features. Nevertheless, the
former generates unexpected noise and performs poorly in
sparse time series. The latter typically compacts information
granules, resulting in significant information loss. Besides,
the previous study has also shown that it suppresses critical
fine-grained information since the granularity of observed
time series might vary from patient to patient depending
on the underlying medical condition [47]. DFSP overcomes
the disadvantages of the deep learning model and tree-based
model, by fusing deep and handcrafted features. On the one
hand, using deep features can help avoid information loss
caused by handcrafted features. Data compacted through
handcrafted features, on the other hand, can remove data
noise and missing problems.

To evaluate the framework, a retrospective study was
conducted, by using patients admitted to the ICUs of a
hospital in Shanghai. For a 6 h prediction window, DFSP
had an AUC score of 0.92 and achieved a specificity of
0.87 and an accuracy of 0.87 with a sensitivity of 0.80.
Likelihood ratios were used as an alternative measure
to predictive value, since it is less influenced by the
prevalence of sepsis in the population. At a 6 h prediction
window, DFSP can provide 6.15 of LHR+ and 0.16 of
LHR-. Additionally, the prediction windows were varied to
test the performance of DFSP. The proposed model was
compared with two existing early-warning scores and three
state-of-the-art methods for sepsis prediction, having been
demonstrated that the DFSP outperforms the baselines.

However, this study has a few limitations. To begin
with, DFSP can fuse information from unstructured data
to improve its performance, but it was not possible to
evaluate it because the used dataset lacks unstructured data
such as radiological images and clinical notes. Secondly,
DFSP needs to be retrained for the other datasets since the
different datasets have different clinical measures and sepsis
definitions. In practice, a well-trained sepsis prediction
model should be fed data from multiple data sources. This
difficulty has also been identified in previous studies of
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sepsis prediction; thus, it can be considered as one of future
research directions, such as using transfer learning to make
the DFSP more practical.

Future research can investigate whether the prediction
performance of the model can be further improved, by
fusing some strong feature representations from different
deep learning modules to extract. Furthermore, since various
medical events may be interconnected, there may be interde-
pendence among features. To enhance the predictive per-
formance of models for sepsis prediction, the proposal of a
more effective feature selectionmethod is needed to improve
the DFSP, which can help to select the best set of discrimi-
natory features from the fused feature representation.

Another potential path for this paper is to improve
the DFSP’s earliness. The earliness of sepsis prediction
is crucial for improving sepsis management. Thus, the
objective of sepsis prediction should be to identify the sepsis
as soon as possible, while maintaining prediction accuracy.
The experiment results revealed that when the prediction
window got larger, the performance of DFSP and most
machine learning models decreases, which is consistent
with the result in Scherpf, et al. [20], Rafiei, et al. [48],
and Shashikumar, et al. [23], where the performance of
sepsis prediction models degraded as prediction window
grew larger. It may be due to the fact that several significant
signs for diagnosing sepsis, such as shortness of breath,
high fever, and abnormal heart rate [2], usually appear near
the onset of sepsis. Furthermore, several recent studies on
time series prediction problems show that the accuracy and
earliness of models are frequently in conflict [49]. As a
result, the sepsis prediction problem should be regarded as
a multi-objective optimization problem, which it is intended
to tackle in the future with the evolutionary algorithm.
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