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Abstract
Domain adaptation (DA) is a popular strategy for pattern recognition and classification tasks. It leverages a large amount
of data from the source domain to help train the model applied in the target domain. Supervised domain adaptation (SDA)
approaches are desirable when only few labeled samples from the target domain are available. They can be easily adopted
in many real-world applications where data collection is expensive. In this study, we propose a new supervision signal,
namely center transfer loss (CTL), to efficiently align features under the SDA setting in the deep learning (DL) field.
Unlike most previous SDA methods that rely on pairing up training samples, the proposed loss is trainable only using
one-stream input based on the mini-batch strategy. The CTL exhibits two main functionalities in training to increase the
performance of DL models, i.e., domain alignment and increasing the feature’s discriminative power. The hyper-parameter
to balance these two functionalities is waived in CTL, which is the second improvement from the previous approaches.
Extensive experiments completed on well-known public datasets show that the proposed method performs better than recent
state-of-the-art approaches.
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1 Introduction

Deep learning (DL) methods have been successfully applied
to various areas, such as computer vision [1], brain-
computer interface [2], and medical diagnosis [3]. The
outstanding performance of DL approaches benefits from
numerous training data. However, it is sometimes tough to
acquire sufficient data to train a DLmodel for a specific task
at hand, since data recording and label annotation are costly
and labor-intensive. One of the popular choices to address
such an issue is domain adaptation (DA) [4]. Its main idea
is to use available large-scale datasets in the source domain
(Ds) to assist the model training in the target domain (Dt ),
where the training data is scarce.
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According to [5, 6], DA can be either unsupervised, semi-
supervised, or supervised, determined by the availability
of the labeled data in Dt . Unsupervised domain adaptation
(UDA) [7] only carries unlabeled target data. In a semi-
supervised DA (SSDA) scheme [8], both a small amount
of labeled and a considerable amount of unlabelled data
are accessible. Alternatively, supervised domain adaptation
(SDA) [9, 10] supposes that all available target samples are
annotated, although the number is small. Sophisticated SDA
approaches can usually outperform UDA and SSDA ones
when the amount of available data inDt is small [6]. Making
annotations on a small dataset is likely to be practical and
does not require too much effort. Therefore, SDA methods
are more appealing if only very few samples from Dt are
accessible. They have been performed in many applications
such as cross-subject EEG emotion classification [11],
CT scan-based Covid-19 diagnosis [12], emotion detection
from the speech [13], and radar-based human activity
recognition [14]. These applications only allow recording
a small set of data from the target domain, as a massive
data collection is either extremely expensive or impossible.
Therefore, they require a suitable method to make use of
such a small number of samples in Dt to generate a reliable
model applied to the target domain. SDA also has another
name, i.e., few-shot domain adaptation [15], which more
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directly expresses the scenario of using few samples from
Dt in DA problems.

The typical way to implement an SDA approach in
the DL community for a classification task is to learn a
deep transformation that draws same-class samples close
together, regardless from Ds or Dt . A popular strategy to
perform such a mapping is to operate a two-stream network,
i.e., siamese network [16] or correlated network [17]. The
training process of these networks typically starts with
either a sample-based [6, 10, 15, 18, 19] or a batch-based
[9, 17] pair-wise input. However, such a pairing mechanism
leads to a quadratic increase of the sample size from the
original dataset and unavoidably results in redundancy, slow
convergence, and unstable performance [20]. For example,
one standard protocol [19, 21] of MNIST → USPS domain
adaptation task is to use 2000 labeled and 70 labeled
samples from MNIST and USPS datasets, respectively, to
train a model that applies to the classification task in USPS.
Several recent state-of-the-arts (SOTA) methods [6, 10, 19]
utilize a siamese network that trains the model with 56000
(2000*70*σ ; σ is the ratio to control the redundancy and
is equal to 0.4 in these studies.) pairs of samples. It is
impractical to train a network when the sample size of either
source or target dataset further enlarges.

This study proposes a simple but efficient loss function,
namely center transfer loss (CTL), to address the above-
mentioned issues and increase the discriminative power of
deep learning features. Specifically, we learn a center (a
vector with the same dimensionality as that of the feature)
for features of each class in each domain and update these
centers in training. In addition, we minimize the distance
between the features and their corresponding class centers
in the opposite domain rather than the same domain. In other
words, we minimize the distance between features ofDs and
class centers of Dt , as well as the distance between features
of Dt and class centers of Ds . For example, the features of

class 1 in Ds are pushed to the feature center of class 1 in
Dt , and the features of class 1 in Dt are pushed to the fea-
ture center of class 1 in Ds . Deep neural networks (DNNs)
are trained by the joint supervision of softmax loss and
CTL. Intuitively, the softmax loss ensures that features of
the different classes stay apart. CTL pushes samples to the
class center of the opposite domain. The same-class samples
between different domains will eventually align by constant
center update and distance minimization. More interest-
ingly, CTL achieves a feature alignment at the beginning of
training, see Fig. 1(b). In the later stage, when the distri-
bution of features between domains is sufficiently aligned,
CTL alternatively acts as another function to decrease the
intra-class variation of the features and increases their dis-
criminative power, Fig. 1(c). We do not require to set
hyper-parameters for controlling the shift between early and
latter training stages.

In sum, the proposed method has two major contribu-
tions in comparison with previous approaches.

1. It is very convenient to employ CTL in DNNs.
Our DL models are trainable by the mini-batch
strategy in a single-stream setting without running
two-stream architectures. The issue of redundancy,
slow convergence, and unstable performance can be
significantly avoided.

2. The learning features can achieve both domain align-
ment and intra-class variation minimization by using
the proposed CTL in the model training. Although sev-
eral previous SDA approaches (e.g., [6, 10, 19]) can
also provide a similar outcome, a trade-off value must
be manually set in these methods to balance the domain
alignment and intra-class variation minimization. The
optimal choice for the trade-off value varies in differ-
ent datasets and tasks, resulting in a labour-intensive
exhaustive search each time but no guarantee of finding

Fig. 1 The distribution of features generated by the model trained
using the combination of softmax and CTL in a two-class toy prob-
lem with 200 source (MNIST) and 7 target (USPS) samples in each
class. Training settings, expect for data and loss function, are the same
as the toy example in [20]. The features are the output of the second

last layer and dimensionally reduced 2 for visualization. (a) Features
generated by the network without training. (b) Features generated by
the network trained with only 5 epochs. (c) Features generated by the
network trained with 20 epochs
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the best value. Alternatively, our CTL can achieve both
these two functionalities in different stages of train-
ing without the need to set a trade-off value to balance
them.

To verify the effectiveness of our approach, we conduct
extensive experiments on common DA benchmarks. The
results show that our method achieves a better performance
than current SOTAs. The remainder of this article is
organized as follows. Section 2 introduces the related
works. Section 3 explains the proposed method in detail.
Section 4 presents the experiment protocols and results. The
conclusion is drawn in Section 5.

2 Related works

SDA approaches focus on the specific scenario that the
labeled target data are available in training, albeit very few
samples per class. There are diverse SDA strategies targeted
to different types of tasks, e.g., regression [22, 23], object
detection [24, 25], and classification. Our study focuses on
SDA methods in the classification problem.

Early SDA approaches for the classification task depend
on the matrix-based mapping between domains and linear
classifiers. Zhou et al. [26] proposed an SDA method
called SHFR-ECOC by constructing a sparse feature
transformation matrix to get invariant features between
domains as inputs to a linear SVM classifier. Sukhija et al.
[27] explored another SDA strategy that also learns a sparse
feature transformation for the feature generation. This study
used a random forest classifier instead. DL models have
been rapidly developing in recent years. It offers an end-
to-end way for the classification task and naturally arouses
more researchers’ interests.

In [18], source and sparely labeled target data are
used to train a siamese network. The network learns
domain invariant features using a soft label distribution
matching loss. Similarly, Motiian et al. [6] raised a method
called CCSA, also based on the siamese architecture. The
model was trained by the joint supervision of categorical
entropy (i.e., softmax loss) and point-wise contrastive loss
introduced in [28]. The authors found that their method
provided a fast convergence and a better performance in
terms of classification accuracy. The same research group
of CCSA proposed another SDA method (i.e., FADA
[15]) using the adversarial training to attain the feature
alignment. They carefully designed four kinds of paired
data that the discriminator in the network is augmented to
distinguish. In the same year, Piotr et al. [17] also presented
a strategy, namely SoHoT, using the mixture of second
or/and third scatter alignment measures between source and
target domains. They aim to align within-class scatters of a

two-stream network to a certain degree using bespoke loss
and to keep a good separation of the between-class scatters.

More recently, another SDA method, called Domain
Adaptation using Stochastic Neighborhood Embedding (d-
SNE), was proposed by Xu et al. [19]. Interestingly, this
approach only focused on minimizing the distance of
the same-class pairs between source and target domains
with the largest distance and maximizing the distance
of the most nearby different-class pair. Alternatively,
Hedegaard et al. [10, 29] utilized the graph embedding
technique to learn a domain-invariant and semantically
meaningful feature space. Similar to CCSA, a siamese
network was also used in this study as a feature
generator. Generated features are finally put into a
linear discriminative analysis (LDA) classifier to perform
the prediction. In addition, Tong et al. [9] presented a
mathematical framework (MF) that considered DA as
a convex optimization problem. This MF quantifies the
transferability in the transfer learning problems based on
the number of samples, model complexity, and Chi-square
distance between source and target tasks. The authors
also designed an SDA approach using this framework and
achieved encouraging performance in the DA benchmarks.
Nevertheless, the training of SDA methods above requires
pair-up samples between Ds and Dt . Our method is rather
trainable by single-stream data based on the mini-batch
strategy.

In addition, another study similar to ours is the center
loss [20], which calculates the class centers using the data
from both source and target domains. Given that the number
of source samples is much larger than that of the target
subject, the computation of the class centers is dominated
by the source samples. Thus, the model trained by the
center loss [20] only directly pulls the scarce samples of
Dt to the centers of Ds without accounting for the feature
distribution of Dt . Generally, the center loss has a different
insight from ours and can not address SDA classification
tasks effectively.

3Methodology

In this work, we are only concerned with the specific SDA
problem in which a large-scale dataset in Ds and very few
annotated samples in Dt are available. In other words, we
have all dataDall = {xi , yi}m+n

i=1 combined by the ones from
source domain Ds = {xs

i , y
s
i }mi=1 and from target domain

Dt = {xt
i , y

t
i }ni=1, respectively. xi ∈ R

d denotes the ith

feature in d dimensional space (vector size), and yi is the
corresponding label of xi having a classes. The features xs

i

and xt
i can be regarded as realization of random variables

Xs and Xt , respectively. Note that m >> n in the SDA
scenario. Let’s say that Xs represents the source domain and
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Xt represents the target domain. In the absence of domain
shift, we can simply train a DNN model using all the data
directly from Dall with the softmax loss defined as

LS = −
k∑

i=1

log
e
W�

yi
xi+byi

∑a
j=1e

W�
j xi+bj

(1)

where Wj ∈ R
d represents the j th column of the weights

W ∈ R
d×a in the last dense layer (features as input) and

b ∈ R
a denotes the bias term. k is the size of a mini-batch.

However, the distributions of the two domains are mostly
different. Directly using xs

i for the training of classifier inDt

is naturally problematic. An alignment of features between
different domains is therefore necessary. In UDA setting [7],
it is assumed that labels are unavailable in Dt . A common
strategy for domain alignment is to introduce a distance loss
of the marginal distribution between Ds and Dt (i.e. p(Xs)

and p(Xt )) as follows.

LDIS = D(p(Xs), p(Xt )) (2)

where D(·, ·) is a certain metric between two distribution
inputs which once aligned, a feature can no longer be
recognized from the source or target domain. The UDA
methods have a natural limitation that even the marginal
distribution is perfectly aligned: there is no promise that
the features belonging to the same class but in different
domains are transformed into the same space. Such an
alignment may not offer significant benefits on the DNN
model with respect to a classification task. Alternatively,
we have labeled data from the target domain in hand,
albeit a small amount. It is practical to achieve a better
alignment, where features from different domains but with
the same class label are mapped in the nearby distribution
by amending (2) as:

LCDIS =
a∑

i=1

D(p(Xs
i ), p(Xt

i )) (3)

Now, the core challenge is to find an appropriate metric
D(·, ·). To this end, we minimize the Euclidean distance
between features and the corresponding class centers of
the opposite domain. Mathematically, the (3) can be
reformulated as:

LF−CT L = 1

2

m∑

i=1

‖xs
i − ct

yi
‖22 + 1

2

n∑

j=1

‖xt
j − cs

yj
‖22 (4)

where ct
yi

∈ R
d denotes the yi th class center of features

in Dt , and cs
yj

∈ R
d represents the yj th class center of

features in Ds . An intuitive example of (4) can be referred
to the “Early stage in training” in Fig. 2. It is noted that m is
usually much larger than n in SDA setting. In this case, the
first half of (4) usually dominates the loss function without
considering the contribution of the samples in Dt to the
aligned latent space. To address this issue, we take the mean

of distances instead of summing them up in each domain as
follows

LF−CT L = 1

2m

m∑

i=1

‖xs
i − ct

yi
‖22 + 1

2n

n∑

j=1

‖xt
j − cs

yj
‖22. (5)

Ideally, calculations of LF−CT L and feature centers c
should take all features of the whole training set into
account. However, due to the large sample size of the source
training set and a limited RAM storage, it is impractical to
perform such an implementation. We implement the update
for centers and features based on mini-batch. The LF−CT L

can be changed as (6).

LCT L = 1

2ks

ks∑

i=1

‖xs
i − ct

yi
‖22 + 1

2kt

kt∑

j=1

‖xt
j − cs

yj
‖22 (6)

where ks and kt are number of samples from Ds and
Dt in the mini-batch, respectively. Equation (6) (LCT L)
is the ultimate form of the proposed center transfer loss
(CTL) based on the mini-batch update strategy. From the
equation, it is noticed that CTL can be optimized with
one-stream input without relying on a two-stream network
used in previous methods [6, 10, 15, 18, 19] for the loss
optimization. The training of a two-stream network requires
pairing up samples, leading to a quadratic increase in the
sample size from the original dataset. Our loss is based
on one-stream training and is able to avoid this problem.
In addition, CTL contributes to a domain alignment at
the initial training stage and increases the discriminative
power of features afterwards by minimizing the intra-class
variation (Fig. 2). Although previous methods introduce
similar losses that also achieve a domain alignment and the
increase of discriminative power. They require to manually
set a trade-off value to balance these two functionalities in
training to produce a good outcome. Alternatively, it is clear
that the proposed loss, as shown in the equation, does not
require such a manual trade-off value to balance them.

Some centers may not be updated in each iteration of
training, as the training is conducted by the mini-batch
strategy. The updating equations of class centers ct and cs

are formulated as:

�ct
h =

∑kt

j=1δ(yj = h)(ct
h − xt

j )

ρ + ∑kt

j=1δ(yj = h)
; h = 1, . . . , a (7)

�cs
h =

∑ks

i=1δ(yi = h)(cs
h − xs

i )

ρ + ∑ks

i=1δ(yi = h)
; h = 1, . . . , a (8)

ct
h = ct

h − α�ct
h. (9)

cs
h = cs

h − α�cs
h. (10)

where δ(·) is the indicator function, and it is equal to 1 if the
condition is satisfied and equal to 0 otherwise. ρ is a small
constant (i.e., 10−5) to avoid the equation being divided
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Fig. 2 An illustration of the proposed loss to achieve both a feature alignment and a decrease of the intra-class variation

by zero. A scalar α ∈ (0, 1] controls the learning rate of
the centers, eliminating the noisy samples’ negative impact.
We adopt the joint supervision of softmax loss and CTL to
train the DNN models for DA in the classification task. The
objective function is given as follows.

L = LS + λLCT L (11)

where λ is a trade-off scalar to balance these two losses and
is ranging from 0 to 5 in our experiments. We summarize the
training strategy based on the mini-batch in Algorithm 1.

Algorithm 1 Training of Center Transfer Loss.

4 Experimental protocols and results

We evaluate the proposed loss function on different com-
mon SDA benchmarks, including Office31 [30], Office-
Caltech-10 [31], Office-Home [32], and digit transfer

(MNIST [33], USPS [34], SVHN [35], andMNIST-M [36]).
The visualization of features and sensitivity analyses on λ

and α are also presented. The impact of the batch size on
the effectiveness of CTL is introduced in the last part of this
section. The source code for experiments is publicly avail-
able1. All data generated or analysed during this study are
included.

4.1 Office31

Office31 is a classical benchmark collected for the
evaluation of DA methods. It comprises 31 visual objectives
from three separate domains, namely Amazon (A), Webcam
(W), and DSLR (D). Amazon is the largest dataset and
contains 2,817 images. Webcam and DSLR are relatively
compact and have 795 and 498 images, respectively.
Examples of images in this dataset are shown in Fig. 3.

Our experiments follow the setting used in [9]. Six
domain shifts, including A → D, A → W , W → A,
W → D, D → A, and D → W are examined in this
dataset. All classes of the dataset and five-train-test-split
validation scheme are used in the experiments. With respect
to the source domain, 20 samples per class fromA, whereas
8 samples per class from W or D are randomly chosen
to train the model for each split. For the target domain, 3
samples per class are randomly selected for training in each
split. The remaining target samples are used for testing.

The convolutional layers of VGG16 [37] followed by two
dense layers with output sizes of 1024 and 128, respectively,
are used as the base network in the experiment. We use
this architecture for a fair comparison to most published
SDA approaches. The weights of convolutional layers were
pre-trained by ImageNet [38]. The ones of dense layers
are randomly initialized. All images are resized to 224
× 224, followed by normalization. The learning rates for
convolutional and dense layers are set as 0.001 and 0.01,

1https://github.com/XiuyuHuangsmarthealth/
Center-Transfer-for-Supervised-Domain-Adaptation
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Fig. 3 Examples of Office31 dataset

respectively. The size of the mini-batch is 32. λ and α are
fixed as 0.1 and 0.5, respectively. We compare our method
with recent supervised domain adaptation SOTAs, including
SDADT [18], CCSA [6], FADA [15], d-SNE [19], DAGE-
LDA [10], andMF [9]. Three baselines, including (1) Model
1 trained by only source data using softmax loss, (2) Model
2 trained by source data and target samples using softmax
loss, and (3) Model 3 trained by source data and target
samples using a joint supervision of softmax loss and center
loss, are also involved in the comparison. It is noted that
all baselines use the same backbone (i.e., VGG16) as that
used in the proposed method. We also compare our strategy
with another SOTA approach, So-HoT [17]. Although the
original paper of SoHoT reports the model performance
using VGG16 on Office31, it only contains two cross-
domain schemes (i.e.,A → D andA → W). Alternatively,
the paper shows the performance of AlexNet [39] on all six
schemes. Therefore, the proposed method based on AlexNet
is also implemented for a fair comparison to So-HoT.

Table 1 shows the performance of different models on
the Office31 dataset. Our experiments show that most SDA
methods outperform Models 1 and 2, the baselines trained
using the softmax loss without DA. It is worth knowing that
several previous studies, such as [6, 15, 19], only compare

their methods with a weak baseline (i.e., Model 1 trained
by only source data using softmax loss). They claim that
SDA methods have significant improvements (over 15%)
in the classification task of Office31 dataset compared
to this baseline. This may overstate the effectiveness of
SDA methods. A stronger and fairer baseline, i.e., Model
2 trained by source and target data using softmax loss,
should also be involved in the comparison. In Table 1,
we can observe that SDA approaches only have less than
7% increments in the classification performance from the
stronger baseline (Model 2), consistent with the findings
in [10, 17]. Nevertheless, it is encouraging to see that our
model has a higher performance than other recent SOTAs
and baselines on the Offce31 dataset.

4.2 Office-caltech-10

Office-Caltech-10 dataset contains ten sharing categories
(i.e., backpack, bike, calculator, headphones, keyboard,
laptop-computer, monitor, mouse, mug, and projector) in
Office31 and Caltech-256 [40]. The dataset contains 4
domains including, Amazon (958 images;A), Webcam (295
images; W), Dslr (157 images; D), and Caltech (1123
images; C). Therefore, we have 12 cross-domain tasks

Table 1 Average classification accuracy (%) of different methods on 31 classes of Office31 dataset

Method Cross-domain scheme

A → D A → W W → A W → D D → A D → W Average

Model 1 67.6±0.7 61.3±0.9 60.1±0.6 95.7±1.1 61.00.9 95.8±0.3 73.6

Model 2 84.81.6 80.7±0.7 65.70.6 97.5±0.5 65.30.2 96.3±0.2 81.7

Model 3 86.2 1.6 82.4±2.9 68.01.4 97.8±0.7 68.21.2 95.7±1.0 83.0

SDADT [18] 86.11.2 82.7±0.8 65.00.5 97.6±0.2 66.2±0.3 95.70.5 82.2

CCSA [6] 89.0±1.2 88.2±1.0 72.1 1.0 97.6±0.4 71.8 0.5 96.4±0.8 85.8

FADA [15] 88.2±1.0 88.1±1.2 71.1±0.9 97.5±0.6 68.1±0.6 96.4±0.8 84.9

d-SNE [19] 91.4±0.2 90.1±0.1 71.1±0.2 97.1±0.1 71.7±0.4 97.5±0.2 86.5

DAG-LDA [10] 85.9±2.8 87.8±2.3 64.2±1.2 99.5±0.5 66.5±1.4 97.9±0.6 83.6

MF [9] 90.0±n.a. 87.3±n.a. 72.4±n.a. 96.5±n.a. 72.1±n.a. 97.2±n.a. 85.9

Ours 92.1±1.5 89.4±1.3 74.2±1.0 99.4±0.3 74.4±1.0 98.3±0.7 88.0

So-HoT* [17] 86.3±0.8 84.5±1.7 65.7±1.7 97.5±0.7 66.5±1.0 95.5±0.6 82.7

Ours* 87.6±0.9 86.2±1.3 66.6±0.8 98.5±0.6 66.3±1.3 97.9±1.3 83.9

Results marked with a star are based on AlexNet [39]. The others are based on VGG16 [37]. “n.a.” represents that the original publication does
not show standard deviations across the repetitive experiments

The best performance is highlighted in boldface
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Table 2 Average classification accuracy (%) of different methods on the Office-Caltech-101 using DeCaF-fc6 features

Method Within-Office31

A → D A → W W → A W → D D → A D → W Average

Model 1 73.7±2.8 79.7±3.5 62.7±3.7 95.1±2.2 71.0±2.0 91.8±0.8 79.0
Model 2 83.1±1.7 91.0±3.2 87.0±4.2 96.5±1.0 85.3±1.6 94.0±1.6 89.5

Model 3 85.6±1.8 91.6±3.5 84.4±3.4 95.3±1.1 84.2±0.2 95.4±1.9 89.4
CCSA [6] 91.0±0.9 90.6±2.8 87.0±1.9 99.1±0.9 89.2±0.9 97.5±1.6 92.4
d-SNE [19] 89.3±2.3 94.9±3.5 81.4±4.0 96.3±2.7 84.2±1.6 94.2±2.4 90.0
DAG-LDA [10] 89.4±2.6 91.6±1.2 85.5±2.8 98.6±1.2 87.4±0.8 96.8±1.2 91.6
MF [9] 92.0±1.4 92.5±5.8 83.5±0.9 95.6±2.9 85.6±4.1 93.1±1.5 90.4
Ours 92.8±0.8 94.7±1.0 88.8±1.3 98.6±0.6 88.4±1.4 98.0±1.3 93.6

Office-Caltech
A → C W → C D → C C → A C → W C → D Average

Model 1 68.1±6.9 51.0±7.1 56.4±6.1 72.8±7.1 51.6±4.9 70.6±8.3 61.7

Model 2 82.7±0.7 78.4±2.4 78.3±0.9 87.3±0.7 87.1±1.7 87.2±3.5 83.5

Model 3 80.3±1.0 76.7±0.8 77.9±1.4 89.1±0.6 87.6±2.3 89.4±3.7 83.5
CCSA [6] 81.3±1.3 80.2±1.5 82.0±3.2 90.0±0.8 92.3±1.9 95.3±2.6 86.8
d-SNE [19] 78.0±1.8 70.2±6.3 63.3±8.4 86.5±2.7 89.8±2.3 94.8±1.4 80.4
DAG-LDA [10] 81.1±1.0 80.3±2.3 80.9±1.4 88.7±1.9 92.4±1.9 94.6±1.7 86.3
MF [9] 80.3±n.a. 72.9±n.a. 72.2±n.a. 88.4±n.a. 85.9±n.a. 83.5±n.a. 80.5
Ours 84.3±0.3 82.8±0.8 82.8±1.4 91.5±0.9 95.2±1.1 97.5±1.0 89.0

“n.a.” represents that the original publication does not show standard deviations across repetitive experiments

The best performance is highlighted in boldface

formulated in this data collection. The same split-generation
protocol in Office31 experiments is used but only applied
to the ten classes above. Following the settings in [9], we
implement our experiments using DeCAF-fc6 features [41]
as model inputs.

Referring to the base architecture in [6, 9], we utilize
two dense layers with output sizes of 1024 and 128 with
PReLU activation as the feature embeddings and one fully-
connected layer as a classifier. The learning rate is 0.001.
The size of the mini-batch is 32. λ and α are fixed as 0.1
and 0.5, respectively. We compare the proposed method
with CCSA, d-SNE, DAG-LDA, MF, and three baselines
(Model 1, 2 and 3 mentioned in the Office31 experiment).
We either report the results in the original publications
or implement these recent SOTA methods based on their
open-source codes.

Table 2 shows the performance of models using the
DeCaF-fc6 features on the ten categories of the Office-
Caltech-10 database. Again, our method gains a higher
accuracy than other SDA approaches and baseline models
on both Within-Office31 and Office-Caltech DA tasks. This
result shows the advantage of the proposed strategy in DA
classification tasks.

4.3 Office-home

Office-Home [32] is a relatively large-scale dataset for DA
experiments. It contains 15500 images with 65 classes. The

dataset has four different domains, i.e., Art (Ar), Clip Art
(Ca), Product (Pr), and Real World (Rw). Thus, it contains
12 (4 × 3) different DA tasks.

The “S+T” evaluation protocol in [42] is implemented
in our experiments. Specifically, labeled source images and
three labeled target images per class are used to train the
model in each DA task. The exact data splits can be found
in the link below2. According to [42], AlexNet [39] pre-
trained on ImageNet is used in our experiments. All images
are resized to 227 × 227, followed by normalization. The
size of the mini-batch is 32. λ and α are fixed as 0.001 and
0.5, respectively. We compare the proposed method with
three recent SDA methods, i.e., CCSA [6], d-SNE [19], and
DAGE-LDA [29]. The experiments of these three methods
are conducted based on their open source codes. Three
baselines, Model 1, 2 and 3, mentioned in Section 4.1 are
also included in the comparison.

Table 3 presents the classification performance on
twelve DA tasks of the 65-class Office-Home dataset. The
proposed method achieves the highest accuracy in most
DA tasks. It also obtains the best average accuracy across
different DA tasks.

2https://github.com/VisionLearningGroup/SSDA MME/tree/master/
data/txt/office home
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Table 3 Average classification accuracy (%) of different methods on the Office-Home dataset

Method

DA tasks Model 1 Model 2 Model 3 CCSA [6] d-SNE [19] DAG-LDA [10] Ours

Ar → Ca 28.2 38.8 40.0 41.3 40.3 40.8 42.9

Ar → Pr 39.5 57.6 58.4 57.3 58.2 55.3 61.7

Ar → Rw 51.4 57.0 58.3 59.2 57.1 57.4 62.5

Ca → Ar 32.0 37.5 40.3 42.5 41.5 41.3 43.8

Ca → Pr 44.9 57.9 59.7 59.1 56.3 57.2 57.6

Ca → Rw 47.1 54.3 55.1 59.1 58.2 58.4 59.0

Pr → Ar 30.2 36.1 38.8 40.0 40.2 42.2 41.5

Pr → Ca 28.7 44.4 40.7 44.1 43.9 44.0 45.1

Pr → Rw 53.6 57.8 59.0 58.9 58.4 59.2 60.4

Rw → Ar 43.4 47.7 47.3 46.4 46.2 48.2 50.6

Rw → Ca 33.9 44.6 45.4 45.2 46.6 46.7 48.0

Rw → Pr 60.6 66.7 67.1 66.9 68.2 67.4 71.3

Average 41.1 50.0 50.8 51.7 51.3 51.5 53.7

The best performance is highlighted in boldface

4.4 Digit transfer

The digit transfer dataset collection has also been popularly
used to study the effectiveness of SDA approaches. We
use four datasets, all containing hand-written digits from
0 to 9. These datasets include MNIST (M), USPS (U ),
SVHN (S), and MNIST-M (MM). MNIST consists of
70, 000 28 × 28 grayscale images; USPS contains 11,000
grayscale images with a 16×16 resolution; SVHN is a real-
world image dataset having 99,280 RGB images extracted
from street view house numbers; MNIST-M has 68,002
RGB images generated from MNIST by adding different
backgrounds.

4.4.1 First experiment

The evaluation protocol in [10, 19] is performed in this
experiment. We investigate the transfers from M to MM,
between M and U , and between M and S. Original train-
test splits of the datasets are used in our experiments. With
respect to the target domain, we randomly select 10 samples
per class from the training split. The evaluation is repeated
five times.

We use the same architecture as LetNets++ [20] according
to [19]. Pre-processing techniques, including resize, nor-
malization, and RGB-Greyscale transformation, are applied
if necessary. The learning rate for the parameters of the net-
work is 0.001. The size of the mini-batch is 64. λ and α

are fixed as 0.75 and 0.5, respectively. We compared the
proposed method with CCSA [6], d-SNE [19], DAGE-LDA
[29] , and three baselines (Model 1, 2 and 3 mentioned in
the Office31 experiment). The details of the architecture are
given in Fig. 4.

As shown in Table 4, our method outperforms than other
SOTAs and baselines. We notice that the proposed model
has a similar performance with d-SNE when the domain
shift is small, i.e. the cross-domain tasks M → MM,
M → U , U → M, and S → M. When it comes to the
M → S condition that has a relatively-large domain shift,
our method demonstrates an evident advantage.

4.4.2 Second experiment

It is also interesting to see how the performance of models
varies with even a smaller size of samples per class from
the target domain. Therefore, we conduct another evaluation
protocol in [6, 19, 29] applied toMNIST and USPS datasets.
This protocol examines both M → U and U → M cross-
domain tasks, where 2000 and 1800 images are randomly
selected from MNIST and USPS, respectively. In addition,
a small number (N) of labeled samples per category are
randomly picked up from the target domain and used in the
model training. The evaluation is repeated ten times for each
N form 0 to 7. We use the same data splits generated in [6]3.

The implementation details are the same as those in
the first experiment of digit transfer above. We compare
the proposed method with CCSA [6], FADA [15] , d-
SNE [19], and DAGE-LDA [29]. As reported in [10],
there are discrepancies in the network architecture between
the description in publications and public source codes
of CCSA and d-SNE. Furthermore, differences in the
model performance between the results reported in original
articles and those reproduced by [10, 43] are also relatively

3https://github.com/samotiian/CCSA
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Fig. 4 CNN architecture used in
MNIST-USPS experiments

large regarding CCSA and d-SNE. Therefore, for a fair
comparison, we amend network architectures of CCSA,
d-SNE, and DAGE-LDA as LetNets++ and rerun the
experiments based on their publicly available codes. To
our best knowledge, the authors of FADA may not release
the source code, so we directly report the result in the
original publication. Two baselines, Model 2 and Model 3
mentioned in the Office31 experiment, are also included in
the comparison. Models 2 and 3 are trained by only source
data when N = 0.

Table 5 shows the average classification accuracies for
different approaches on the MNIST-USPS collection. The
standard deviations of ten splits are minor for all methods,
so we do not report them in the table. Clearly, SDA-based
approaches (expect DAG-LDA) achieve better performance
than baselines (Model 2 and 3) which do not incorporate
the distribution alignment in training in our experiments.
We also plot the performance of the proposed model against
Models 2 and 3 on the M → U task with different N

samples per class from Dt in Fig. 5(a). We observe that the
proposed strategy significantly improves the classification
performance over baselines when N is small. With an
increase of N , the accuracy and the improvement gradually
converge.

More importantly, Table 5 shows that our model
outperforms other SDA methods in most scenarios, except
that it has a slightly lower classification accuracy than
FADA when N = 5. The proposed approach improves
accuracy by at least 1% and 1.5% against other SOTA
methods when N = 7. When N = 1, the proposed

method loses its computational advantage against other
SDA methods, as the number of pair-up samples is equal to
the number of original samples. However, we still recognize
an accuracy-wise superiority of our strategy. The superiority
may come from the improvement of the discriminative
power of the features by decreasing the intra-class variation
in addition to the feature alignment between domains during
the training.

4.5 Visualization of deep learning features

We visualize the deep features of models trained via multiple
N (N = 0, 1, 4, or 7) on U → M to understand the proposed
CTL better. We train themodel only using softmax loss when
N = 0, but using the joint supervision of softmax loss and
CTL, otherwise. The models are trained by a random draw
of 1800 samples from USPS and N samples per class from
MNIST. Other settings are the same as those in the digit
transfer experiments. The visualization is performed on
another random draw of 1800 and 2000 samples from USPS
and MNIST, respectively, to avoid visualization on training
data. We apply the t-SNE technique [44] to transfer the high-
dimension features into 2-D vectors for an easy illustration
(Fig. 6).

Figure 6(a) shows that the features are not well aligned
if no adaptation mechanism is involved. In addition, we
notice that the features with the same label but in different
domains stay close to each other even when N = 1, as
shown in subfigure (b). The alignment gets even better
with an increase of N using the proposed CTL loss by

Table 4 Average classification accuracy (%) of different methods on digit transfer tasks

Method Cross-domain scheme

M → MM M → U U → M M → S S → M Average

Model 1 62.3±1.0 81.1±1.9 59.1±3.7 43.9±2.1 65.0±2.4 62.3

Model 2 72.1±1.9 93.1±0.8 89.3±2.5 57.6±1.2 82.3±1.2 78.9

Model 3 73.9±2.7 92.7±0.6 93.3±0.4 57.1±2.5 82.7±1.2 79.9

CCSA [6] 78.3±2.0 97.3±0.2 95.7±0.4 37.6±3.6 94.6±0.4 80.7

d-SNE [19] 87.8±0.2 99.0±0.1 98.5±0.4 61.7±0.5 96.5±0.2 88.7

DAG-LDA* [29] 72.5±1.5 96.5±0.3 93.7±0.7 57.4±0.9 89.5±0.4 81.9

Ours 85.2±1.1 97.7±0.4 99.2±0.1 68.8±1.8 96.5±0.2 89.5

aThe experiments in DAG-LDA [29] are implemented in a rectified experimental setup. This setup is based on train-validation-test split. It is
slightly different from the experimental protocol of other methods, which follow the traditional train-test split

The best performance is highlighted in boldface
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Table 5 Average classification accuracy (%) of different methods on the MNIST-USPS collection

Method Number of training samples from Dt

0 1 2 3 4 5 6 7

MINST->USPS Model 2 70.6 77.5 79.5 81.8 85.4 86.8 88.3 89.4

Model 3 72.8 82.3 80.1 84.9 89.9 90.2 90.9 92.7

CCSA [6] n.a. 78.3 87.1 89.5 90.1 91.4 91.1 92.9

FADA [15] n.a. 89.1 91.3 91.9 93.3 93.4 94.0 94.4

d-SNE [19] n.a. 85.2 89.7 90.9 91.1 92.4 92.3 93.0

DAG-LDA [29] n.a. 80.8 85.7 86.5 88.8 89.2 89.2 89.5

Ours n.a. 89.6 91.9 93.1 93.6 93.3 94.7 95.4

USPS->MINST Model 2 62.2 63.3 69.6 76.7 83.1 78.5 78.6 81.9

Model 3 63.7 72.3 77.4 81.9 83.9 86.4 88.0 88.7

CCSA [6] n.a. 66.7 74.1 80.9 81.9 84.9 85.7 87.5

FADA [15] n.a. 81.1 84.2 87.5 89.9 91.1 91.2 91.5

d-SNE [19] n.a. 79.2 84.1 86.0 86.1 88.6 88.0 89.8

DAG-LDA [29] n.a. 64.7 66.2 70.8 73.2 74.7 74.5 77.2

Ours n.a. 81.8 85.1 90.7 91.2 92.1 92.5 93.0

“n.a.” refers to the training of the method requires samples fromDt and thus can not be implemented in the “0” condition

The best performance is highlighted in boldface

comparing the subfigures (b), (c), and (d). We can still
observe discrepancies of features between Ds and Dt in
several classes, e.g., classes 0 and 6 when N is equal to 1 or
4. However, the distributions of features betweenDs andDt

nearly overlap with each other in the case when N = 7, as
demonstrated in subfigure (d).

4.6 Sensitivity analysis on λ and α

The hyper-parameters λ and α control the adaptation rate
between domains and the negative impact of noisy samples,
respectively. They both are significant to the training of

the DNN model. Therefore, we carry out analyses to
demonstrate their sensitiveness.

The analyses consider four cross-domain tasks, i.e.,
W → A (Office-31), C → A (Office-Caltech-10),
Ar → Ca (Office-Home), and U → M (Digit transfer).
The experimental protocols of W → A, C → A, and
Ar → Ca are the same as those described in previous
sections, except that the values of λ and α are not fixed
but vary in this sensitivity analysis. For U → M task,
we sample 1800 images from USPS and 3 images per
class from MNIST to form a training set. The evaluation
is performed on 2000 samples randomly drawn from

Fig. 5 Average classification accuracy for (a)M → U and (b) U → M tasks for different number (N) of labeled tagert samples per class from
Dt
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Fig. 6 Visualization of deep learning feature distributions varying N labeled samples per class from Dt on U → M task. (a) N = 0; without
DA. (b) N = 1. (c) N = 4. (d) N = 7. Circles and triangles are fromDs andDt , respectively

MNIST, excluding the samples that have been selected for
training. The implementation details are the same as those
in Section 4.4.2, except that the values of λ and α vary in
this analysis.

First, we fix the center step α as 0.5 and vary λ values to
train different models. As CTL is based on l2 − norm, the
dimensionality of the deep feature is positively related to the
loss value, i.e., a higher dimension leads to a larger CTL.
Dimensionalities of deep features for four cross-domain
tasks are diverse. Therefore, we test different ranges of λ

values for different tasks as follows.

1. W → A: {0, 0.025, 0.05, 0.075, 0.1, 0.25, 0.5, 0.75, 1}
2. C → A: {0, 0.025, 0.05, 0.075, 0.1, 0.25, 0.5, 0.75, 1}
3. Ar → Ca: {0, 0.00025, 0.0005, 0.00075, 0.001, 0.0002

5, 0.005, 0.0075, 0.01}

4. U → M: {0, 0.1, 0.25, 0.5, 0.75, 1, 2.5, 5}

Figure 7 shows the evaluation accuracies of the proposed
method with different values of λ. It is observed that
simply using the softmax loss (when λ = 0) is not a
good option, and DNN models have the lowest average
classification accuracy. We can also observe a “Log” curve
of the model performance in all four tasks when λ varies
in the investigating ranges. This shows that our model is
insensitive to λ values in a relatively large scope.

DNN models achieve the best performance when λ is
equal to 0.1, 0.1, 0.001, and 0.75 for the evaluated four
tasks, respectively. We then fix λ as these values and train
DNN models with different values of α from 0.01 to 1 (the
same range for all tasks). The evaluation accuracies of these
models with different values α are shown in Fig. 8. We also

Fig. 7 Classification accuracies on DA tasks achieved by models with different λ and fixed α = 0.5. (a) W → A; (b) C → A; (c) Ar → Ca,
*values on the x-axis are on a 10−4 basis; and (d) U → M
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Fig. 8 Classification accuracies on DA tasks achieved by models with different α and fixed λ. (a) W → A (λ = 0.1); (b) C → A (λ = 0.1); (c)
Ar → Ca (λ = 0.001); and (d) U → M (λ = 0.75)

observe stable performances among these models across
different values of α, i.e., from 0.2 to 1.

4.7 Size of mini-batch

The proposed CTL can be trained by the mini-batch
strategy. It is also interesting to explore how the size
of mini-batch influences the effectiveness of CTL. We
conduct experiments on a cross-domain task, U → M.
We sample 1800 images from USPS and 3 images per
class from MNIST to form a training set. The evaluation is
performed on 2000 samples randomly drawn from MNIST,
excluding the samples that have been selected for training.
The implementation details are the same as those in the digit
transfer experiments, except that the batch size is not fixed
as 64 at this time. Batch sizes that are multiples of powers
of 2 are common in DL training. Thus, different values,
i.e., {1, 2, 4, 8, 16, 32, 64, 128, 256, 512}, are tested in the
analysis.

The accuracy of the proposed method using different
values of batch size is shown in Fig. 9. It is observed that
the performance is unsatisfactory when the batch size is
small. We further plot the learning curve of CTL using
different batch sizes to identify the minimization process
of CTL (Fig. 10). The figure shows that the training of
CTL is unstable when the batch size is small. The smaller
the batch size is, the more volatile the training process
becomes. Updating the centers based on very few samples

each time naturally leads to great randomness and biases.
When the batch size gets larger, the learning curves of
CTL become stable. In addition, we also identify the
accuracy drops in Fig. 9 when the batch size is relatively
big (i.e., 256 and 512). It is consistent with the finding
in [45]. The study states that a large batch size (over
10% of the full batch) may not be a good choice. A
model trained using a larger batch size is more likely to
converge to sharp minima, e.g., the model is reasonably
good but does not offer the best solution to the classification
task.

In sum, although the choice of batch size has an impact
on the effectiveness of the proposed CTL, our loss is robust
to the common options of batch size in DL training. Unless
the batch size is either too small or too large, the model
performance remains to be satisfactory and stable.

5 Conclusion

Domain adaptation has drawn considerable interest in the
DL community recently. It aims to make use of the
copious amount of accessible data from different domains.
In this work, we propose a new loss function, referred
to as CTL. It is trainable using a single-stream network
based on the mini-batch strategy. By a joint supervision
of the softmax loss and CTL, same-class features between
source and target domains achieve a desirable degree of

Fig. 9 Classification accuracies
of the proposed method on
U → M task using different
batch sizes
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Fig. 10 Learning curves of CTL on U → M task using different val-
ues of batch sizes. *The learning curve in subfigure (a) seems to be flat
before 18th epoch. This is because the loss at 18th epoch reaches over

300, and the losses at other epochs are much smaller than this value.
In fact, the losses in this learning curve are volatile during the training
process

alignment and a compact intra-class variation. At the same
time, different-class features keep sufficiently separated.
The usage of CTL results in both domain alignment
and the minimization of intra-class variation subsequently
in the early and latter training stages without the need
to set trade-off values to balance these two functions.
The “single-stream implementation” and “manual-balance-
waived simultaneous achievement of domain alignment
and intra-class variation minimization” are two main
advantages of our approach compared to previous methods.
Experiments in the present study show that our approach
performs better than baselines and recent SOTAs under
identical settings across standard DA benchmarks.

Although the proposed CTL offers an encouraging
outcome, it is worthwhile to investigate whether its
variants provide more promising performance. For example,
referring to [46], we can try using only the nearest feature
points of each class center instead of relying on all feature
points to update the class centers in each iteration. This
implementation may be able to decrease the negative impact
of the out-of-distribution feature points in the center update.
Moreover, in addition to using the l2 − norm distance,
other metrics, such as the cosine distance and other types of
norms, are also valuable to be explored in future works.
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