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Abstract
Geo-sensory time series, such as the air quality and water distribution, are collected from numerous sensors at different geospatial
locations in the same time interval. Each sensor monitors multiple parameters and generates multivariate time series. These time
series change over time and vary geographically; hence, geo-sensory time series contain multi-scale spatial-temporal correlations,
namely inter-sensor spatial-temporal correlations and intra-sensor spatial-temporal correlations. To capture spatial-temporal
correlations, although various deep learning models have been developed, few of the models focus on capturing both correla-
tions. To solve this problem, we propose simultaneously capture the inter- and intra-sensor spatial-temporal correlations by
designing a joint network of non-linear graph attention and temporal attraction force(J-NGT) consisting two graph attention
mechanisms. The non-linear graph attention mechanism can characterize node affinities for adaptively selecting the relevant
exogenous series and relevant sensor series. The temporal attraction force mechanism can weigh the effect of past values on
current values to represent the temporal correlation. To prove the superiority and effectiveness of our model, we evaluate our
model in three real-world datasets from different fields. Experimental results show that our model can achieve better prediction
performance than eight state-of-the-art models, including statistical models, machine learning models, and deep learning models.
Furthermore, we conducted experiments to capture inter- and intra-sensor spatial-temporal correlations. Experimental results
indicate that our model significantly improves performance by capturing both inter- and intra-sensor spatial-temporal correla-
tions. This fully shows that our model has a greater advantage in geo-sensory time series prediction.
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1 Introduction

Multivariate time series data are gathered from a single sensor,
which monitors multiple parameters, including target series
and exogenous series. Target series can be defined as a time
series designated for making predictions. Exogenous series
are other series that influence target series. The monitoring
range of a single sensor is limited and cannot represent the
environmental information of an entire city or country.
Therefore, it is necessary to develop multiple sensors in

different geospatial locations to simultaneously detect the en-
vironment of the entire region. These sensors with geospatial
correlations collect time series called geo-sensory time series.
Geo-sensory time series covers a broad scope of applications,
such as traffic prediction [1], weather prediction [2], air qual-
ity prediction [3], and urban water distribution prediction [4].
Hence, forecasting geo-sensory time series has grown in im-
portance since there is a rising demand for geo-sensory time
series prediction.

One of the most significant challenges to realize accurate
prediction is mining valuable knowledge from geo-sensory
time series. Geo-sensory time series data are collected from
certain geospatial and temporal scenarios; therefore, there are
multi-scale spatial-temporal correlations in both spatial and
temporal dimensions:

(1) Inter-sensor spatial-temporal correlations. Massive sen-
sors with geospatial locations are deployed in different
regions. The series generated by other sensors directly
impact the series generated by the target sensor, as
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depicted in Fig. 1a. To distinguish from the target series
(target sensor series), we define the target series of other
sensors as the relevant sensor series. The environmental
information of neighbouring sensors is usually affected
due to the distance advantage. For instance, wind can
blow air pollutants to neighbouring regions. In addition,
some regions have similar exogenous features, such as
meteorological features and traffic occupancy rates,
which can generate similar environmental information.
Therefore, spatial correlations are highly dynamic,
changing over time. Hence, selecting relevant sensor se-
ries is of great significance to geo-sensory time series
prediction. Additionally, historical information influ-
ences the current value differently, as depicted in Fig. 1b.

(2) Intra-sensor spatial-temporal correlations. For a certain
(target) sensor, the intra-sensor time series contains the
target series and exogenous series [5]. In the spatial di-
mension, the target series is usually affected by exoge-
nous series, as depicted in Fig. 1a. In the temporal di-
mension, the current value is usually affected by histor-
ical information, as depicted in Fig. 1c.

In recent years, many deep learning models have been pro-
posed for geo-sensory time series prediction. For instance, the
hDS-RNN [4] model for water flow and pressure forecasting,
a novel multi-channel attention model (MCAM) [6] for fine-
grained air quality inference, the adaptive spatial-temporal
graph attention network (ASTGAT) [7] for traffic flow fore-
casting, and the causal-based graph Neural network
(CausalGNN) [8] for COVID-19 pandemic forecasting have
focused more on extracting spatial-temporal correlations be-
tween sensors and have achieved state-of-the-art results. The
drawback is that these models only consider sensor time series
and ignore exogenous series. For geo-sensory time series pre-
diction, the target series is affected by various exogenous

series, such as meteorological conditions. Existing works have
focused on blending the information of sensor series and ex-
ogenous series [9–11]. Some researchers have attempted to
employ multilayer perceptron (MLP) [12] and parametric-
matrix-based methods [13] to extract exogenous features and
then fuse them into the sensor features. Although these studies
confirm that prediction performance can be improved by con-
sidering various exogenous series, they cannot explicitly and
dynamically select relevant sensor series and exogenous series
to make predictions. Hence, it is becoming challenging to
distinguish the contribution of exogenous series and relevant
sensor series to the predictive value [14].

Recently, multi-level attention networks (GeoMAN) [15]
have employed local spatial attention to obtain the dynamic
correlations between target series and each exogenous series
and have used global spatial attention to capture the dynamic
correlations between different sensors. GeoMAN employs a
temporal attention mechanism in the temporal dimension to
model the dynamic temporal correlations in a time series. The
model is a typical geo-sensory time series prediction model
for capturing inter- and intra-sensor spatial correlations.
However, existing works first incorporate all time series,
which consist of target series, exogenous series, and relevant
series, and capture temporal correlations between different
time intervals, and GeoMAN is no exception. Sensor series
change over time and vary geographically; hence, blindly
blending the information of relevant sensor series and exoge-
nous series makes it impossible to explore deep-seated tem-
poral correlation. Although works for geo-sensory time series
prediction tasks have been significant, the aforementioned
challenges are still not addressed well.

To overcome the aforementioned challenges, our focus is
on capturing inter- and intra-sensor spatial-temporal correla-
tions. Inspired by graph attention networks that capture spatial
dependencies by assigning different weights to different
neighbourhood nodes, we propose a joint network of non-
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Fig. 1 a Spatial correlation. The
graph structure inside the
rectangle indicates the intra-
sensor spatial correlations. The
graph structure outside the rect-
angle represents the inter-sensor
spatial correlations.
b Temporal correlation. The con-
tributions of the exogenous series
and relevant sensor series to the
predictive value are different
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linear graph attention and temporal attraction force (J-NGT) to
achieve geo-sensory time series prediction. Our model can
simultaneously capture inter-sensor and intra-sensor spatial-
temporal correlations by two graph attention mechanisms.

The main contributions of our study are summarized as
follows:

(1) We propose a joint network containing two graph atten-
tion mechanisms, i.e., a non-linear graph attention mech-
anism and a temporal attraction force mechanism.

(2) We design a non-linear graph attention mechanism to
obtain the inter- and intra-sensor spatial correlations. In
the non-linear graph attention mechanism, first, we spe-
cifically employ IMV-LSTM, which is a tensor LSTM,
to transform the input features into higher-level features
to gain sufficient expressive power and then calculate the
weights between nodes.

(3) Inspired by the Law of universal gravitation, we propose
a temporal attraction force mechanism to sufficiently
capture inter- and intra-sensor temporal correlations.

(4) We conduct extensive experiments on three real-world
datasets to evaluate our model. The results show that our
model outperforms comparison models in previous
works. The geo-sensory time series data are split into
multivariate time series and sensor series, and we per-
form our model over the sub-datasets. The results show
that considering both inter- and intra-sensor spatial-tem-
poral correlations can enhance prediction accuracy. We
replace each component with state-of-the-art methods in
our model framework to demonstrate the effectiveness of
different components. The result suggests that our pro-
posed components play a role in improving prediction
accuracy.

The remainder of this paper is organized as follows. We
provide a literature review on time series prediction methods
and graph neural networks for geo-sensory time series predic-
tion in Section 2. We define the notations and problem formu-
lation in Section 3. We describe the non-linear graph attention
mechanism and temporal attraction force mechanism to cap-
ture spatial-temporal correlations in Section 4. We design ex-
periments to test the validity of our model in different fields
and analyse the experimental results in Section 5. We summa-
rize our work and future work in Section 6.

2 Related work

2.1 Geo-sensory time series prediction

The existing time series prediction methods can be divided
into statistical models, machine learning models, and deep
learning models. Statistical models are the classical model,

employed to predict stable and autocorrelated time series data.
Although autoregressive (AR) [16], moving average (MA)
[17], the autoregressive moving average (ARMA) [18], and
the autoregressive integrated moving average (ARIMA) [19]
have advantages in dealing with the univariate time series,
they cannot model the dynamic spatial-temporal correlations
of multivariate time series. The vector autoregressive (VAR)
[20] model considers the relationships between stable and
autocorrelated time series, and the information is limited.

Machine learning models have advantages in dealing with
nonlinear and non-stationary data. Among them, artificial
neural networks (ANN) [21], Gaussian process regression
[22], support vector regression [23], and ensemble learning
[24] have achieved respectable results in small numbers of
multivariate time series prediction tasks. For example,
Zhang et al. [25] presented the least squares support vector
regression to achieve stock index and bond index prediction.
Wang et al. [26] introduced sparse Gaussian conditional ran-
dom fields for multivariate time series prediction. Although
statistical models and machine learning models are widely
used in time series forecasting, they do not scale well to geo-
sensory time series because of multi-scale spatial-temporal
correlations. [27]

Deep learning models have proven to be reliable for time
series prediction. The recurrent neural network (RNN) with
the capacity to gain short-term dependencies can perform time
series prediction tasks. Due to the vanishing gradient, it is
becoming difficult for standard RNN to gain long-term depen-
dencies. To overcome the vanishing gradient, LSTM [28] and
GRU [29], which are successful variants of RNN, were con-
structed to learn long-term dependencies. Recently, some ad-
vanced RNN variants were proposed. For instance, Feng et al.
[30] introduced the clockwork RNN, which runs the hidden
layer at different clock speeds to solve the long-term depen-
dency problem. Zhang et al. [31] modified the GRU architec-
tures, in which gates explicitly regulate two distinct types of
memories to predict medical records and multi-frequency
phonetic time series. Ma et al. [32] designed a temporal pyr-
amid RNN to gain long-term and multi-scale temporal depen-
dencies. The above RNN methods focus on capturing long-
term dependencies; hence, they cannot fully exploit spatial
relationships between variables. Therefore, the above existing
works were far from satisfactory in geo-sensory time series
prediction.

Modelling spatial-temporal correlation is the key to achiev-
ing a better prediction performance for geo-sensory time se-
ries. Ge et al. [10] calculated the sensor’s similarity matrix and
selected k similar sensors, which were combined with exoge-
nous series, to extract spatial features. Liang et al. [15] intro-
duced a multi-level attention mechanism to gain local and
global spatial-temporal correlations. Although the above stud-
ies consider the inter- and intra-sensor spatial correlations,
which were most relevant to ours, they ignored the unique

17348



A joint network of non-linear graph attention and temporal attraction force for geo-sensory time series...

temporal characteristics of geo-sensory time series, e.g., sen-
sors with geospatial correlation vary over time. In contrast, our
model simultaneously models both inter- and intra-sensor spa-
tial-temporal correlations to distinguish the contribution of the
relevant sensor series and exogenous series in the spatial and
temporal dimensions.

2.2 Graph neural network

Recently, graph neural networks (GNNs) have become popu-
lar due to their success in graph structure data. Many studies
formulate geo-sensory time series on graphs to utilize spatial
information fully. In particular, graph convolutional networks
(GCNs) and graph attention mechanisms have become wide-
spread in practice. The idea of existing studies that designed
graph convolutional networks is to select the neighboruhood
of sensors to capture the spatial correlations. Yu et al. [33]
introduced a spatial-temporal GCN to gain bidirectional
spatial-temporal dependencies from the neighbourhood of
central nodes for traffic forecasting. Wang et al. [34] designed
a GCN to learn the topological structure of sensor networks to
capture spatial correlations for traffic safety prediction. Song
et al. [35] developed a spatial-temporal synchronous mecha-
nism to obtain localized spatial-temporal correlations for traf-
fic flow prediction. These dynamic spatial-temporal correla-
tions are localized due to the restriction of the range of
neighbourhoods. To address these issues, Wang et al. [36]
introduced a geographical spatial convolution to obtain com-
plex spatial relationships among regions for traffic accident
risk forecasting.

The graph attention mechanism is a novel graph neural
network architecture for node classification of graph data
[37]. The goal of the graph attention mechanism is to judge
the relationships between nodes. Kong et al. [7] designed the
graph talking-heads attention layer to capture the highly dy-
namic relationships between nodes in the traffic network. Lu
et al. [12] explored multi-layer graph spatial attention net-
works to capture the dependencies between inbound and out-
bound flows in metro passenger flow. Shi et al. [38] intro-
duced graph attention evolving networks that preserve simi-
larities between nodes to evolve graph attention network
weights across all temporal graphs. Han et al. [39] employed
a graph attention mechanism to calculate the weight between
nodes for representing the temporal dependence. In our work,
we extend the graph attention network with IMV-LSTM to
capture inter- and intra-sensor spatial correlations. IMV-
LSTM transforms the individual variables into higher-level
features, which can obtain sufficient expressive power.

2.3 Law of universal gravitation

Chi et al. [40] introduced the Law of universal gravitation to
calculate the attraction force between nodes, representing the

similarity between links for link prediction and improved pre-
diction accuracy. Motivated by the above study, considering
that the temporal correlations between different time intervals
can be expressed as the gravitational force between nodes, we
propose a temporal attraction force mechanism to calculate
inter- and intra-sensor temporal correlations.

3 Preliminaries

Assume there areM sensors, each of which generates N kinds
of time series. We specify one sensor as the target sensor for
making predictions, while other sensors are used as relevant
sensors. The target sensor generates N-1 kinds of exogenous
series and one target series. We first construct two types of
directed graphs to describe the spatial relationships of the time
series. Both take the target series as the central node and the
other series as neighbouring nodes. One graph structure indi-
cates the spatial correlations of the target (sensor) series and
relevant sensors, and the numbers of nodes areM, as depicted
in Fig. 2a. We employY = (y1, y2, …, yM−1) = (y1, y2, …,
yT) ∈ ℝ(M−1) × T to denote relevant sensor series, yt ¼
y1t ; y

2
t ;…; yM−1

t

� �
∈ℝ M−1ð Þ to denote the M-1 relevant sen-

sor time series at time t, and yit∈ℝ to represent the node

feature. Let yp ¼ yp1;…; ypT
� �

with ypt ∈ℝ represent the tar-
get series of target sensors during the past T time points.

Another graph indicates the spatial correlations of the target
series and exogenous series, as depicted in Fig. 2b. Among N
kinds of time series of the target sensor, one time series is the
target series, and the other time series, i .e., xt ¼
x1t ; x

2
t ;…; xN−1

t

� �
∈ℝN−1, is the (N-1) exogenous series at time

t, and x jt∈ℝ represents the feature of a node. We employ X =
(x1, …, xT) = (x1, x2, …, xN−1) ∈ ℝ(N−1)×T as the exogenous
series of window sizes T.

Given the previous readings of all sensors and the exoge-
nous series, the model aims to predict the current value of the
target sensor, denoted as

bypTþ1 ¼ F X;Y; ypð Þ ð1Þ

4 Model

Two-stage attention-based encoder-decoder networks are cur-
rently the most popular method for time series prediction. The
encoder with spatial attention selects the relevant features,
while the decoder with temporal attention captures the long-
term dependencies. We propose a joint network of non-linear
graph attention and temporal attraction force for geo-sensory
time series prediction. First, we propose a non-linear graph
attention mechanism to capture the inter-sensor spatial
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correlations for multiple sensors and the intra-sensor spatial
correlations for a single sensor, as depicted in Fig. 3a. Then,
we design a temporal attraction force to capture the inter- and
intra-sensor temporal correlations between the current value
and the previous values, as depicted in Fig. 3b.

4.1 IMV-LSTM

IMV-LSTM, which is a standard LSTM, uses hidden state
tensors to update gate control units and memory cells. Hence
IMV-LSTM can directly encode the individual variables into
hidden states to reduce the time complexity. For example,
given a two-variable input sequence, IMV-LSTM can encode
the input feature into the hidden matrix of size 4 × 2, i.e., 4-
dimensional hidden state per variable. IMV-LSTM, which is a

standard LSTM neural network, contains an input gate ėit,
forget gate ef t, output gates eot, and memory cells st. For mul-
tiple variables, the iterative update process of an MV-LSTM
unit is as follows:

ėitef teot
9>=>; ¼ σ W⊛Dt−1 þ U⊛ytð � þ b

�
ð2Þ

jt ¼ tanh W j ⊛Dt−1 þ U j ⊛ yt þ b j
� � ð3Þ

st ¼ ef t ⊙ect−1 þeit ⊙ jt ð4Þ
Dt ¼ eot ⊙ tanh stð Þ ð5Þ
where Dt − 1 ∈ ℝ(M−1) ∗ m and yt ∈ ℝM−1 are the previous
hidden state and the current input, respectively. The cell up-
date matrix jt ∈ ℝ(M−1) ∗ m is used to update the memory cell
st. The transition tensorW ∈ ℝ(M−1) ∗ m ∗ m,Wj ∈ ℝ(M−1) ∗

m ∗ m,U ∈ ℝ(M − 1) ∗ m andUj ∈ ℝ(M − 1) ∗ m are parameters
to learn. ⊛ is a tensor-dot operation, which is the product of
two tensors. σ and ⊙ are a logistic sigmoid function and an
element-wise multi-plication.

4.2 Non-linear graph attention

Geo-sensory time series contains two spatial correlations,
namely, the inter-sensor spatial correlations for multiple sen-
sors and the intra-sensor spatial correlations for a single sen-
sor. A non-linear graph attention mechanism is developed to
capture the two kinds of spatial correlations. Different from
the graph attention network (GAT), the non-linear graph at-
tention mechanism depends on knowing the graph structure
up front. We formulate the Geo-sensory time series as two
types of graph structures, as depicted in Fig. 2, where nodes
represent the relevant sensor series (orange circles), exoge-
nous series (green circles), and target series (pink circles).
We take the target series as the central node and the other
series as neighbourhood nodes.

4.2.1 Inter-sensor spatial correlation

Relevant sensors have decisive impacts on a target sensor.
Hence, the non-linear graph attention mechanism aims to cal-
culate the impacting weights between the target sensor and
relevant sensors, namely, the inter-sensor spatial correlation,
as depicted in Fig. 3a. The input of NGAT is a set of node
features, y = {y1t ; y

2
t ;…; yM−1

t ; ypt }, where

yt ¼ y1t ; y
2
t ;…; yM−1

t

� �
, where yit∈ℝ represents the target se-

ries of relevant sensors, ypt ∈ℝ represents the target series of
target sensors ypt , and M is the number of nodes.

(a) (b)

yt1

yt5

yt2

yt3

yt4

ytM-1ytp

...

xt2xt1 xt3

ytp

xtN-1...

Fig. 2 Graph structure. Nodes represent the target series of sensors(orange circles), exogenous series(green circles), and target series(pink circles). a
Graph structure between sensors, b Graph structure between target series and exogenous series
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The node feature is an individual variable, which does not
have sufficient expressive power. In the original GAT, a learn-
able linear transformation is applied to transform the input
features into higher-level features [37]. Each node is parame-
trized by a weight matrix, Wyit, W ∈ ℝm. However, the ex-
pressive power of linear transformation is limited. Therefore,
we employ IMV-LSTM as transformation. We obtain specific
transformation representations by IMV-LSTM:

Dt ¼ f senimv Dt−1; ytð Þ ð6Þ
ht ¼ f preimv ht−1; y

p
tð Þ ð7Þ

where Dt ∈ ℝ(M − 1) ∗ m and ht ∈ ℝm are the hidden state
tensors of the relevant sensor series and target series, respec-
tively. f senimv and f preimv are IMV-LSTM units that can be com-
puted according to Eq. (2)–(5). IMV-LSTM uses tensor to
represent higher-level features of sensor series at time t, such
that each row vector of the hidden state tensor represents the
higher-level feature of an individual variable:

Dt ¼ d1t ; d
2
t ;…; dM−1

t

� � ð8Þ

where the element dit∈ℝ
m of Dt is the hidden state vector

specific to relevant sensor i.
We exploit GAT to calculate the spatial correlations be-

tween the target series and relevant sensors. In other words,
assigning different weights to different relevant sensors. Here,
we calculate the weight coefficients between the target series
and relevant sensor i. First, a weight vector is employed to
parametrize, and then the LeakyReLU nonlinearity(with neg-
ative input slope α= 0.2) is applied. The calculated correlation
coefficient is expressed as:

eit ¼ LeakyReLU a⊤ dit; ht
� �� � ð9Þ

αi
t ¼ softmax eit

� �
¼

exp
�
LeakyReLU a⊤ dit; ht

� �� �
∑dit∈Dt

exp LeakyReLU a⊤ dit; ht
� �� �� � ð10Þ

where dit; ht
� �

is a concatenation operation, and ∗⊤represents
transpose. The attention weight αi

t represents the importance
of the relevant sensor i to the target series, namely, the inter-
sensor spatial correlations. A softmax function is applied to
normalize them across all relevant sensors. Once obtained, the

attention weights are assigned to different relevant sensors:

eDt ¼ α1
t d

1
t ;α

2
t d

2
t ;…;αM−1

t dM−1
t

� �
¼ ed1t ; ed2t ;…; edM−1

t

� 	 ð11Þ

where edit is the new higher-level feature of relevant sensor i.

4.2.2 Intra-sensor spatial correlation

Inside the target sensor, there are complex correlations be-
tween the target series and exogenous series. For instance,
an air quality sensor reports different time series, such as
PM2.5, PM10, and CO. In the real world, PM2.5 concentra-
tion is affected by the concentration of PM10 and CO. To
address this issue, we also apply the non-linear graph attention
mechanism to calculate correlations between the target series
and the exogenous series, namely, intra-sensor spatial corre-
lation. Given the target series, ypt ∈ℝ represents the feature of
the central node, as well as the exogenous series, xt ¼
x1t ; x

2
t ;…; xN−1

t

� �
∈ℝN−1, where x jt∈ℝ represents the feature

of neighbourhood node j. We can construct a non-linear graph
attention mechanism to calculate intra-sensor spatial correla-
tions, as depicted in Fig. 3a. First, transforming the input fea-
tures into higher-level features via IMV-LSTM,

Ht ¼ f exoimv Ht−1; xtð Þ ð12Þ
Ht ¼ h1t ; h

2
t ;…; hNþ1

t

� � ð13Þ

whereHt ∈ ℝ(N − 1) ∗ n represents the hidden state tensors of
the exogenous series and h j

t∈ℝn is the higher-level features of
the j-th node. f exoimv is an IMV-LSTMunit that can be computed
according to Eq. (2)–(5) with the newly input Ht − 1 and xt.
The correlation coefficients between the target series and ex-
ogenous series are calculated as follows:

l jt ¼ LeakyReLU a⊤ h j
t ; ht

� �� � ð14Þ
β j
t ¼ softmax l jt

� �
¼

exp
�
LeakyReLU a⊤ h j

t ; ht
� �� �

∑h j
t ∈Dt

exp LeakyReLU a⊤ h j
t ; ht

� �� �� � ð15Þ

where the attention weight β j
t is used to measure the impor-

tance of the j-th exogenous series at time t. ht has been com-
puted according to Eq. (7). With these attention weights, the
new features are produced as follows:

eHt ¼ β1
t h

1
t ;β

2
t h

2
t ;…;βN−1

t hN−1
t

� �
¼ eh1t ; eh2t ;…; ehN−1

t


 � ð16Þ

�Fig. 3 Graphical illustration of the joint network of non-linear GAT and
temporal attraction force. a Non-linear graph attention mechanism. The
non-linear GAT employs IMV-LSTM to transform the input features into
higher-level features. Green, pink and orange circles, such as input data
x1t , y

p, and y1t , which are used as the input, represent a one-dimensional
input feature. Blocks containing rectangles with circles inside represent
higher-level features. b Temporal attraction force mechanism. The output

of the non-linear graph attention mechanism, i.e., eDt , ht, and eHt , are used
as the input to the temporal attraction force mechanism
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4.3 Temporal attraction force mechanism

Most research on the temporal dependence of geo-sensory
time series has focused on blindly blending the information
of relevant sensors and exogenous series and then calculating
the temporal dependence by a temporal attention mechanism.
Hence, these studies rarely distinguish the contribution of the
historical target series, exogenous series, and relevant sensor
series into the predictive value.

In the temporal dimension, there may be temporal correla-
tions between pairs of time points, which can be regarded as
the diverse attractive factors between time points. Therefore,
we assume that a dynamic attraction force always exists be-
tween any pair of time points. To facilitate the understanding
of attraction force, we analyse it as follows: In the universe,
planets revolve around a star in a galaxy. The universal grav-
itation between the planet and the star prevents the planet from
flying away from the star. Similar to the universe, the current
time point gains information from the historical time points,
which can be taken as the historical time points revolving
around the current time point. Hence, the gravitational force
between the current time point and the historical time points is
named the temporal correlation. The temporal correlations are
used to measure the importance of historical time points to the
current time point.

Given the mass of the planet and the star, i.e., m1 and m2,
universal gravitation is presented as follows:

F ¼ G
m1m2

r2
ð17Þ

where r denotes the distance between the planet and the star,
and G is the gravitational constant.

The gravitation formula was demonstrated by [40] to mea-
sure the correlations between nodes for link prediction in the
social network. The social network is a typical graph-
structured data. People have a real link if the attraction force
reaches a specified threshold. We can map time series to a
graph structure in the temporal dimension, where a time point
is regarded as a node, and the edge weight is the temporal
correlation (attraction force). Inspired by the Law of universal
gravitation, we propose a modified gravitation formula, name-
ly the temporal attraction force mechanism, for measuring the
temporal correlation. In our work, the feature of time point is
defined as its mass, which is matrix rather than constant, e.g.,eDt and eHt. The distance is the difference between two time
points, e.g., r = t – i, t is the current time point, and i is the
historical time point. In addition, the gravitational constant G
is replaced by a learnable weight matrix.

From another point of view, we score the temporal corre-
lation between the current and historical time points by per-
forming a learnable linear transformation (i.e., G) on the fused
features, which is further scaled by the squared distance of the
two-time points. Here, the features of two time points are

fused by element-wise multiplication. The purpose of scaling
is to improve sensitivity to time intervals. Moreover, the
softmax function is employed to gain the weights.

The temporal attraction force mechanism takes the output
of the non-linear graph attention mechanism as input, as
depicted in Fig. 3b. The inter-sensor temporal correlation for
relevant sensors is given by

pti ¼ Gp

eDt*eDi

t−ið Þ2 ð18Þ

αti ¼ exp ptið Þ
∑t−1

k¼1exp ptkð Þ ð19Þ

where eDt is the feature of relevant sensors at time point t, eDi is
the feature of relevant sensors at time point i (t > i), andGp is
a parameter to learn. (t − i) is the temporal distance, which is
the difference between time point t and time point i. * is
element-wise multiplication. Then, a softmax function is ap-
plied to pti to make correlations easily comparable across all
time points. The correlation coefficient αti represents the im-
portance of the relevant sensor features at time point i for the
relevant sensor features at time t. Once obtained, the correla-
tion coefficients are utilized to compute a weighted sum of the
features corresponding to them as the new temporal features at
time t:

eDt

0

¼ ∑t−1
i¼1αtieDi ð20Þ

Similarly, the intra-sensor temporal correlation for two
time points is given by

qti ¼ Gq

eHt*eHi

t−ið Þ2 ð21Þ

βti ¼
exp qtið Þ

∑t−1
k¼1exp qtkð Þ ð22Þ

where eHt is the feature of exogenous series at time point t, eHi

is the feature of relevant sensors at time point i (t > i), andGq

is a parameter to learn. (t − i) is the distance, which is the
difference between time point t and time point i. * is element-
wise multiplication. We normalize these weight coefficients
by a softmax function.With these weight coefficients, the new
temporal feature of the exogenous series is computed as

eHt

0

¼ 1

t−1
∑t−1

i¼1βti
eHi ð23Þ

The univariate time series prediction models analyse the
temporal dependence between the previous values and the
current values of the prediction series. However, multivariate
time series prediction models generally ignore the long-term
dependencies of the target series. To ensure that the model no
longer suffers from the loss of historical information, we
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consider the temporal correlations of the target series. The
temporal correlations can be obtained by the temporal attrac-
tion force mechanism as follows:

oti ¼ Go
ht*hi
t−ið Þ2 ð24Þ

γti ¼
exp otið Þ

∑t−1
k¼1exp otkð Þ ð25Þ

Then, the new temporal feature of the target series is de-
fined as follows:

eh0

t ¼
1

t−1
∑t−1

i¼1γtihi ð26Þ

Considering all the temporal correlations, we briefly inte-
grate the new temporal features of the inter-sensor, intra-sen-
sor, and target series as follows:

Ct ¼ eDt

0

; eHt

0

; eh0

t


 �
ð27Þ

The temporal attraction force mechanism sufficiently se-
lects the historical information of the target series, exogenous
series, and relevant sensor series. It takes advantage of inter-
and intra-sensor features to strengthen the temporal correla-
tion. Finally, we use a linear transformation to make the final
output as follows:

bypTþ1 ¼ F X;Y; ypð Þ ¼ v⊤y WyCt þ bw
� �þ bv ð28Þ

4.4 Complexity analyses

In this section, we analyse the complexity of our model. Our
model has five parts: two non-linear graph attention mecha-
nisms and three temporal attraction force mechanisms. For
IMV-LSTM, the time complexity is O(D2/N + N*D), where
D is the number of IMV-LSTM neurons and N is the input
variable. The time complexity of a non-linear graph attention
mechanism computing N nodes may be expressed as O(D2 +
N*D). The time complexity for the temporal attraction force
mechanism is O(N*D2). Therefore, the total time complexity
is O((N + M + 3)*D2 + (N + M)*D). In the actual training
process, we use a GPU to improve the training speed.

5 Experiment

5.1 Dataset description

We utilize three real-world geo-sensory time series datasets to
evaluate our model, including Beijing air quality datasets,

traffic flow (PEMS08) datasets, and Ireland Weather datasets,
as shown in Table 1.

1. Air quality dataset1

This dataset collected hourly the concentration of many
different pollutants (i.e., PM2.5, PM10, SO2 NO2, CO, O3)
as well as some meteorological readings (i.e., temperature,
pressure, dew point temperature, precipitation, wind direction,
wind speed) from 12 nationally controlled air quality moni-
toring sites. The time period is from March 1st, 2013, to
February 28th, 2017. Among them, we employ the
Aotizhongxin station as the target sensor and the others as
relevant sensors. Generally, PM2.5 is the primary pollutant
of air quality; thus, we take it as the target series and the
concentration of other pollutants as the exogenous series.

2. PEMS08 dataset2

This dataset consists of the data of 170 sensors collected
from the Caltrans Performance Measurement System, which
is aggregated into 5-minute windows from the raw data [41].
The dataset ranges from July 1, 2016, to August 31, 2016. We
choose a station as the target sensor and the others as relevant
sensors. We set the traffic flow as the target series and other
key attributes of traffic observations (i.e., occupy and speed)
as exogenous series. Constrained by our experimental envi-
ronment, we decided to simplify and select 20 sensors to ver-
ify our model.

3. Weather dataset3

The dataset records hourly weather data from 23 Met
Éireann weather stations in Ireland. The time period is from
January 1, 2018, to February 1, 2022.We take the temperature
as the target series and choose 8 relevant features as exoge-
nous series. The Cork station is set as the target sensor, and the
other 22 stations are set as relevant sensors.

In fact, there are missing values in all datasets due to sensor
power outages or communication errors. We employ linear
interpolation to fill the missing values. We partition the
datasets into the training, validation, and test sets by a ratio
of 6:2:2.

5.2 Methods for comparison

We select statistical models, machine learning models, and
state-of-the-art deep learning models as comparison models.
The modes are introduced as follows:

1 https://archive.ics.uci.edu/ml/datasets/Beijing+Multi-Site+Air-Quality+
Data
2 http://pems.dot.ca.gov
3 http://www.met.ie
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ARIMA [42]ARIMA is a typical statistical model for univariate
time series prediction. The ARIMA model converts nonsta-
tionary time series to stationary data by utilizing difference
processing.

SVR [43] SVR is an application of support vector machines to
time series prediction problems. A significant advantage of
SVR is that it can deal with small numbers of high-
dimensional datasets.

DA-RNN [5] The attention-based encoder-decoder network for
time series prediction employs an input attention mechanism
to obtain spatial correlations and temporal attention to capture
temporal dependencies.

DSTP [44] The model employs a two-phase attention mecha-
nism to strengthen the spatial correlations and temporal atten-
tion mechanism to capture temporal dependencies for long-
term and multivariate time series prediction.

hDS-RNN [4] The model develops a hybrid spatial-temporal
attention mechanism, which can enhance spatial-temporal
correlation learning.

DAQFF [45] DAQFF is a hybrid deep learning model that
employs one-dimensional CNNs and bidirectional LSTM to
extract trend features and possible spatial correlation features
of multiple stations.

GeoMAN [15]GeoMAN is a multi-level attention-based recur-
rent neural network for geo-sensory time series prediction.
The model considers local spatial correlations between target
series and exogenous series as well as global spatial correla-
tions between sensors.

IMV-LSTM [14] IMV-LSTM is an extension of LSTM. The
model utilizes tensorized hidden states and an associated

updating scheme to update gate control units and memory
cells.

5.3 Experimental settings

We execute a grid search strategy and choose the best values
for three types of key hyperparameters in J-NGT. For the
number of time windows T, we set T∈{5, 10, 15, 20, 25}.
To determine the dimensions of higher-level features for the
relevant sensor series and the exogenous series, we set m =
n∈{16, 32, 64, 128}. For all RNN-based models (i.e., DA-
RNN, DSTP, hDS-RNN, DAQFF, GeoMAN, and IMV-
LSTM), we similarly adopt a grid search strategy to determine
the best performance of these models for a fair comparison.
We take T as the window andm as the size of the hidden states
for RNN. For DAQFF, three convolution layers have different
filter sizes, and we set them to 64, 32, and 16. The models are
trained for 10 epochs with a batch size of 128. The initial
learning rate is set as 0.001 and decays by 10% every 3
epochs.

To assess the performances of J-NGT and comparison
models, we adopt three evaluation metrics: mean absolute
error (MAE), root mean square error (RMSE), and R squared
(R2). MAE and RMSE are employed to measure the error
between the predicted and observed values. R Squared (R2)
is chosen as the indicator to measure the fitting effect of the
model. The range of R2 is determined as [0,1]. If R2 is close to
1, it means that the prediction accuracy of our model is high.
MAE, RMSE, and R2 are defined as follows:

MAE ¼ 1

N
∑N

i¼1jyit−byitj ð29Þ

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N
∑N

i¼1 yit−byit� 	2
s

ð30Þ

R2 ¼ 1−
∑N

i¼1jyit−byitj
∑N

i¼1jyit−yj
ð31Þ

where byt and yt are the predicted value and observed value at
time t, y is the average value of the observed values, and N
represents the number of samples.

Table 1 Details of the datasets
Dataset Air Quality PEMS08 Weather

Target series PM2.5 flow temperature

Sensors 12 20 23

Exogenous series 11 2 8

Time intervals 1 hour 5 minutes 1 hour

Time spans 3/1/2013–2/28/2017 7/1/2016–8/31/2016 1/1/2018–2/1/2022

Number of instances 35,065 17,857 35,810
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5.4 Comparison and result analysis

In this section, we give the experimental results on three real-
world datasets, as shown in Tables 2, 3 and 4. The best results
of each dataset are marked. In addition, we show the fitting
results with bar charts in Fig. 4 to clearly observe their
differences.

Table 2 displays the performances of each model on three
datasets with sensor series and exogenous series. As seen in
the table, J-NGT significantly outperforms all the comparison
models on three evaluation metrics. In this paper, we discuss
MAE. J-NGT has a relatively lower MAE from 3.7% to
90.1% than other models on the three datasets. In the table,
it can be seen that the performance of ARIMA is the worst.
The MAE value of J-NGT is 8.5449 on the air quality dataset,
which is approximately 86.0% less than that of
ARIMA(61.0411) since the ARIMA only model target series
ignores the sensor series and exogenous series of geo-sensory
time series. SVR takes into account all information of geo-
sensory time series, so the MAE of SVR is significantly lower
than that of ARIMA. Although SVR improves prediction ac-
curacy to a certain extent, it requires considerable computa-
tional cost for large numbers of multivariate time series

prediction tasks. Because geo-sensory time series have long-
term dependencies, J-NGT achieves better performance than
SVR by considering a much longer dependency.

The attention-based RNNs, such as DA-RNN, DSTP, and
hDS-RNN, employ various attention mechanisms to obtain
spatial correlations and use temporal attention mechanisms
to capture temporal correlations. Although these models out-
perform SVR and ARIMA, they mixed sensor and exogenous
series to capture spatial correlations resulting in the MAE
values of J-NGT being smaller than that of the attention-
based RNNs. For example, J-NGT shows 39.0%, 47.7%,
and 39.6% improvements in MAE compared to the above
attention-based RNN models on the air quality dataset. The
above methods focus on blending the information of relevant
sensor series and exogenous series and hardly distinguish the
contribution of the exogenous series and relevant sensor series
into predictive value.

DAQFF employs one-dimensional convolutional neural
networks to extract the local trend features and spatial corre-
lation features of multiple stations, but implicit features do not
contain geospatial spatial correlations. The results reveal that
it and DA-RNN achieve comparable performance. GeoMAN
outperforms the above models since it is capable of capturing

Table 2 Prediction results on geo-sensory time series datasets with sensor series and exogenous series

Datasets Air Quality PEMS08 Weather

RMSE MAE R2 RMSE MAE R2 RMSE MAE R2

ARIMA 83.5743 61.0411 0.0006 88.2807 69.7207 −0.0003 5.3406 4.3357 −0.1163
SVR 32.8259 25.8426 0.8378 41.3123 26.2529 0.9202 1.1951 0.9135 0.9458

DA-RNN 24.3446 14.0042 0.9152 30.3231 21.8391 0.9524 0.8455 0.6069 0.972

DSTP 29.4257 16.3356 0.8761 31.1639 22.6251 0.9497 1.0972 0.7921 0.9528

hDS-RNN 24.505 14.1457 0.914 30.0176 21.6926 0.9533 0.9717 0.6117 0.9768

DAQFF 24.3589 14.0216 0.9151 30.2502 22.0139 0.9526 0.8356 0.613 0.9726

Geo-MAN 16.0528 9.4563 0.9621 28.5449 21.1778 0.9572 0.6299 0.4596 0.9844

IMV-LSTM 16.9356 10.1891 0.9589 29.1881 21.2693 0.9559 0.567 0.4273 0.9874

J-NGT 15.1621 8.5449 0.9671 27.9916 20.3754 0.9594 0.5492 0.3909 0.9881

Table 3 Prediction results on geo-sensory time series datasets with sensor series

Datasets SVR LSTM DA-RNN DSTP hDS-RNN IMV-LSTM J-NGT-sen

Air Quality RMSE 27.0609 27.2278 25.0326 29.2611 24.5605 19.2578 16.4409

MAE 21.4397 16.9189 14.6028 16.3656 13.8782 10.8971 9.1654

R2 0.8898 0.8939 0.9103 0.8770 0.9136 0.9661 0.9613

PEMS08 RMSE 41.5968 32.7752 29.9048 31.7543 30.0894 28.8341 29.1482

MAE 26.6663 24.4684 21.4637 23.2507 21.7637 20.9297 21.2057

R2 0.9191 0.9432 0.9537 0.9478 0.9531 0.9569 0.9560

Weather RMSE 1.1208 1.1667 0.8449 1.1424 0.8477 0.7160 0.5845

MAE 0.8458 0.8336 0.6106 0.8115 0.6153 0.5292 0.4229

R2 0.9523 0.9467 0.9720 0.9489 0.9718 0.9724 0.9866
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spatial correlations of intra-sensor and spatial correlations of
inter-sensor. Since J-NGT not only considers both spatial cor-
relations but also captures the temporal correlations of inter-
and intra-sensor, it achieves better performance than
GeoMAN. For instance, J-NGT shows a 9.6% improvement
in MAE compared to GeoMAN on the air quality dataset. The
IMV-LSTM network outperforms the attention-based RNN
model (i.e., DA-RNN, DSTP, and hDS-RNN) by 46.1% at
most since the IMV-LSTM network models individual vari-
ables can capture different dynamics to make accurate
predictions.

In summary, the J-NGT can outperform the comparison
models. This illustrates that capturing the inter- and intra-
sensor spatial-temporal correlations can provide more reliable
input features for accurate prediction. The non-linear graph
attention mechanism can calculate the correlation weights be-
tween the target series and other series(relevant sensor series
and exogenous series). The temporal attraction force mecha-
nism can sufficiently select the historical information of the
target series, exogenous series, and relevant sensor series. For
visual comparison, Fig. 4 provides the R2 of all models. J-
NGT achieves the best fitting effect across the three datasets.

5.5 Evaluation of the sub-dataset

To verify the importance of both the inter- and intra-sensor
spatial-temporal correlations, we compare J-NGT with com-
parison models on the sub-datasets.We divide our dataset into
two sub-datasets, one containing sensor series and target series
and the other containing exogenous series and target series. J-
NGT can be separated into two parts: J-NGT-sen, which cap-
tures inter-sensor spatial-temporal correlations for the sensor
series dataset, and J-NGT-exo, which captures intra-sensor
spatial-temporal correlations for the exogenous series dataset.
Tables 3 and 4 compare the performances of the submodule
and comparison models on the six sub-datasets. We do not
compare the experimental results of ARIMA, DAQFF, and
GeoMAN on sub-datasets since ARIMA only considers the
target series, and DAQFF, as well as GeoMAN, are intro-
duced to predict geo-sensory time series.

In Tables 3 and 4, we discover that J-NGT-sen and J-NGT-
exo exceed almost all comparison models on both the sub-
datasets of the Air Quality dataset and Weather dataset. For
the sub-datasets of the PEMS08 dataset, J-NGT consistently
achieves the best performance compared with SVR, LSTM,

Table 4 Prediction results on geo-sensory time series datasets with exogenous series

Datasets SVR LSTM DA-RNN DSTP hDS-RNN IMV-LSTM J-NGT-exo

Air Quality RMSE 45.8400 31.6367 28.5680 29.2838 28.2590 21.7608 17.2126

MAE 37.5141 18.3932 15.9200 16.1676 15.8076 11.8384 9.6426

R2 0.6838 0.8567 0.8832 0.8773 0.8857 0.9568 0.9576

PEMS08 RMSE 78.9279 32.7621 31.4969 31.7785 31.9767 28.7016 29.4861

MAE 52.6300 24.3410 23.0749 23.3721 23.6615 21.0869 21.6857

R2 0.7087 0.9433 0.9486 0.9477 0.9470 0.9573 0.9550

Weather RMSE 1.7166 1.0439 1.0673 1.1384 1.0452 0.6336 0.6315

MAE 1.3755 0.7531 0.7757 0.8161 0.7613 0.4615 0.4486

R2 0.8882 0.9573 0.9554 0.9492 0.9572 0.9784 0.9843

Fig. 4 Fitting results on three datasets
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DA-RNN, DSTP, and hDS-RNN. The IMV-LSTM model
achieves competitive results on the sub-datasets of the
PEMS08 dataset, outperforming J-NGT-sen and J-NGT-exo.
However, J-NGTwill not suffer from this issue since we focus
on capturing both inter-sensor and intra-sensor spatial-tempo-
ral correlations.

To show the necessity of capturing both inter-sensor and
intra-sensor spatial-temporal correlations, we compare J-NGT
with comparison models on the sub-datasets and the full
datasets. J-NGT has a relatively lower MAE from 3.9% to
12.8% than J-NGT-sen and J-NGT-exo on the three datasets.
For visual comparison, we provide the experimental results on
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Fig. 5 Prediction results on the Air Quality dataset
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Fig. 6 Prediction results on the PEMS08 dataset
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MAE and R2, as depicted in Figs. 5, 6 and 7. From the data in
the figures, it is apparent that J-NGT obtains the highest per-
formance on three geo-sensory time series datasets with sen-
sor series and exogenous series.

5.6 Effects of different components

We conduct a detailed experiment to demonstrate the effec-
tiveness of different components. Specifically, we replace
each component with state-of-the-art models in our model
framework. First, the J-NGT with replaced components is
named as follows.

J-NGT/linear transformation We employ the learnable linear
transformation, i.e., a weight matrix, W∈ℝF, instead of the
IMV-LSTM of J-NGT.

J-NGT/temporal attention We replace the temporal attraction
force mechanism with the temporal attention mechanism. The
temporal attentionmechanism is commonly utilized to capture
the long-term dependencies and has demonstrated outstanding
performance.

Table 5 presents the prediction result of J-NGT and its
variants. We highlight several observations from these results:

(1) The best results on all datasets are obtained with a non-
linear graph attention mechanism and temporal attraction
force mechanism.

(2) Replacing the non-linear graph attention mechanism
from the full model leads to a degradation of model
performance on all datasets. The result suggests that
non-linear graph attention mechanism components play
a role in improving prediction accuracy.

(3) The temporal attraction force mechanism has not been
used to obtain temporal correlations. To verify its

validity, we replace it with a temporal attention mecha-
nism. As Table 5 shows, the performance of J-NGT/tem-
poral attention drops on all datasets. The result shows
that the temporal attraction force mechanism is effective
in capturing temporal correlations.

Taken together, these results suggest that J-NGT fully cap-
tures both inter- and intra-sensor spatial-temporal correlations
and still achieves the best prediction performance.

5.7 Statistical test

To accurately evaluate the performance of J-NGT, we perform
the statistical test in the MAE of three datasets. Based on the
previous work that uses a Two-tailed T-test [46], we mainly
discuss it. We set the significance degree α as 0.05. When the
value of the two-tailed T-test is larger than the critical value of
the table lookup, i.e., p ≤ 0.05, the assumption that mi < m0

cannot be rejected suggests that there is a significant
difference.

On the Air Quality dataset, the average MAE value of J-

NGT is computed as μ ¼ ∑k
i¼1mi=k ¼ 8:5449, where mi is

the i-th MAE value, and the value of k is 5. The variance is

computed as δ2 ¼ ∑k
i¼1 mi−μð Þ 2= k−1ð Þ ¼ 2:1� 10−4. The

critical value is computed as t ¼ ffiffiffi
k

p jμ−m0j=δ ¼ 3:608,
where m0 = 8.5683 is the assumed maximum MAE value.
In the same way, on PEMS08 andWeather, the critical value t
is 4.124 (m0 = 20.4772)and 3.350 (m0 = 0.4001), respective-
ly. We can observe that the critical value t of three datasets is
all greater than that given 2.776 (that are marked in black in
Table 6) from the two-tailed T-test table, which indicates that
the MAE of J-NGT is smaller than the assumed maximum
MAE value with a confidence degree (1-α=0.95).

From the above statistical tests, it can be seen that the
performance of J-NGT on the three datasets is significantly
better than that of the comparison models.

Table 5 Prediction results of J-NGT and its variants

Datasets J-NGT/linear
transformation

J-NGT/
temporal
attention

J-NGT

Air Quality RMSE 16.7553 16.1929 15.1621

MAE 9.2265 9.2141 8.5449

R2 0.9598 0.9624 0.9671

PEMS08 RMSE 30.5208 29.4253 27.9916

MAE 22.7668 21.5116 20.3754

R2 0.9518 0.9552 0.9594

Weather RMSE 0.6312 0.6030 0.5492

MAE 0.4544 0.4356 0.3909

R2 0.9844 0.9857 0.9881

Table 6 Two-tailed T-test table

degree 0.5 0.2 0.1 0.05 0.02

1 1 3.078 6.314 12.706 31.821

2 0.816 1.886 2.92 4.303 6.965

3 0.765 1.638 2.353 3.182 4.541

4 0.741 1.533 2.132 2.776 3.747

5 0.727 1.476 2.015 2.571 3.365

6 0.718 1.44 1.943 2.447 3.143

7 0.711 1.415 1.895 2.365 2.998

8 0.706 1.397 1.860 2.306 2.896
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6 Conclusion

We propose a joint network of non-linear graph attention and
temporal attraction force (J-NGT) for geo-sensory time series
prediction. Specifically, we propose two graph attention
mechanisms to strengthen both inter- and intra-sensor spa-
tial-temporal correlations, which can improve prediction ac-
curacy. To investigate the effectiveness of J-NGT, we con-
struct three-part experiments:

(1) Compared with statistical models, machine learning
models, and deep learning models on three real-world
datasets, the experimental results show that J-NGT can
outperform them. In particular, the comparison with the
GeoMAN and DQAFF models suggests that J-NGT en-
hances the ability to obtain inter- and intra-sensor spa-
tial-temporal correlations.

(2) The geo-sensory time series data are split into multivar-
iate time series and sensor series, and we perform our
model over the sub-datasets. The results show that it is
necessary to simultaneously model both spatial-temporal
correlations.

(3) The experiments replacing our proposed component
from the full model validate the necessity of each com-
ponent in J-NGT.

The advantages of J-NGT are summarized as follows:

(1) Considering the exogenous series and sensor series, it is
beneficial to overcome the limitation of lacking spatial-
temporal information.

(2) We propose the non-linear graph attention mechanism to
learn the spatial correlations of inter- and intra- sensors.
To capture the temporal correlations, we design the tem-
poral attraction force mechanism to sufficiently select the
historical information of the target series, exogenous se-
ries, and relevant sensor series. A joint network of non-
linear graph attention and temporal attraction force can
distinguish the contribution of exogenous series and rel-
evant sensor series into predictive value.

There are several promising directions for future work. First,
we will design a similarity measure algorithm to calculate the
temporal distance between temporal points to replace the dis-
tance of the temporal attraction force mechanism. The temporal
distance is a crucial hyper-parameter. As the temporal distance
increases, the easier it is for the gradient explosion. How to
calculate the temporal distance will be a significant problem.
Second, we will employ a novel graph attention mechanism to
recover consecutive missing values of the geo-sensory time se-
ries. Currently, we linearly fill the missing values. How to fill the
consecutive missing values with contextual information is an
important problem for geo-sensory time series prediction.

Acknowledgements We would like to acknowledge the support from
National Natural Science Foundation of China (Nos. 61472095),
Natural Science Foundation of Heilongjiang Province (Nos.
LH2020F023), Basic Scientific Research Operating Expenses Project of
Provincial Universities in Heilongjiang Province (No.2020-KYYWF-
358, No.2021-KYYWF-181), and Doctor Initiation Fund Project of
Harbin Normal University (No. XKB202113).

Data availability The datasets used or analyzed during the current study
are available from the corresponding author on reasonable request.

Declarations

Conflict of interests The authors declare that they have no conflict of
interest.

References

1. Huang X, Tang J, Yang X, Xiong L (2022) A time-dependent
attention convolutional LSTM method for traffic flow
prediction. Appl Intell 52:17371–17386. https://doi.org/10.1007/
s10489-022-03324-7

2. Zhu Q, Chen J, Zhu L, Duan X, Liu Y (2018) Wind speed predic-
tion with spatio-temporal correlation: a deep learning approach.
Energies 11(4):1–18. https://doi.org/10.3390/en11040705

3. Han J, Liu H, Zhu H, Xiong H, Dou D (2021) Joint Air Quality and
Weather Predictions Based on Multi-Adversarial Spatiotemporal
Networks. In: 35th AAAI Conf. Artif. Intell. AAAI 2021, vol.
5A, pp. 4081–4089

4. Ma Z, Liu S, Guo G, Yu X (2022) Hybrid attention networks for
flow and pressure forecasting in water distribution systems. IEEE
Geosci Remote Sens Lett 19:1–5. https://doi.org/10.1109/LGRS.
2020.3030839

5. QinY, SongD, ChengH, ChengW, JiangG, Cottrell GW (2017)A
dual-stage attention-based recurrent neural network for time series
prediction. In: IJCAI Int Jt Conf Artif Intell, vol. 0, pp. 2627–2633.
https://doi.org/10.24963/ijcai.2017/366

6. Han Q, Lu D, Chen R (2021) Fine-grained air quality inference via
multi-channel attention model. In: IJCAI Int Jt Conf Artif Intell, pp.
2512–2518. https://doi.org/10.24963/ijcai.2021/346

7. Kong X, Zhang J, Wei X, Xing W, Lu W (2022) Adaptive spatial-
temporal graph attention networks for traffic flow forecasting. Appl
Intell 52(4):4300–4316. https://doi.org/10.1007/s10489-021-02648-0

8. Wang L, Adiga A, Chen J, Sadilek A, Venkatramanan S, Marathe M
(2022) CausalGNN: causal-based graph neural networks for Spatio-
temporal epidemic forecasting. Proc AAAI Conf Artif Intell 36(11):
12191–12199. https://doi.org/10.1609/aaai.v36i11.21479

9. Huang Y, Ying JJC, Tseng VS (2021) Spatio-attention embedded
recurrent neural network for air quality prediction. Knowledge-Based
Syst 233:107416. https://doi.org/10.1016/j.knosys.2021.107416

10. Ge L, Zhou A, Li H, Liu J (2019) Spatially fine-grained air quality
prediction based on DBU-LSTM. In: ACM Int Conf Comput Front
2019, CF 2019 - Proc, pp. 202–205. https://doi.org/10.1145/
3310273.3322829

11. Zheng H, Lin F, Feng X, Chen Y (2020) A hybrid deep learning
model with attention-based conv-LSTM networks for short-term
traffic flow prediction. IEEE Trans Intell Transp Syst 22(11):1–11

12. Lu Y, Ding H, Ji S, Sze NN, He Z (2021) Dual attentive graph
neural network for metro passenger flow prediction. Neural
Comput & Applic 0123456789:13417–13431. https://doi.org/10.
1007/s00521-021-05966-z

17360

https://doi.org/10.1007/s10489-022-03324-7
https://doi.org/10.1007/s10489-022-03324-7
https://doi.org/10.3390/en11040705
https://doi.org/10.1109/LGRS.2020.3030839
https://doi.org/10.1109/LGRS.2020.3030839
https://doi.org/10.24963/ijcai.2017/366
https://doi.org/10.24963/ijcai.2021/346
https://doi.org/10.1007/s10489-021-02648-0
https://doi.org/10.1609/aaai.v36i11.21479
https://doi.org/10.1016/j.knosys.2021.107416
https://doi.org/10.1145/3310273.3322829
https://doi.org/10.1145/3310273.3322829
https://doi.org/10.1007/s00521-021-05966-z
https://doi.org/10.1007/s00521-021-05966-z


A joint network of non-linear graph attention and temporal attraction force for geo-sensory time series...

13. Ali A, Zhu Y, Zakarya M (2021) Exploiting dynamic spatio-
temporal correlations for citywide traffic flow prediction using at-
tention based neural networks. Inf Sci (NY) 577:852–870. https://
doi.org/10.1016/j.ins.2021.08.042

14. T. Guo, T. Lin, and N. Antulov-Fantulin (2019) Exploring inter-
pretable LSTM neural networks over multi-variable data. In: 36th
Int Conf Mach Learn ICML 2019, vol. 2019-June, pp. 4424–4440

15. Liang Y, Ke S, Zhang J, Yi X, Zheng Y (2018) Geoman: Multi-
level attention networks for geo-sensory time series prediction. In:
IJCAI Int Jt Conf Artif Intell, vol. 2018-July, pp. 3428–3434.
https://doi.org/10.24963/ijcai.2018/476

16. XuW, Peng H, ZengX, Zhou F, Tian X, PengX (2019) Deep belief
network-based AR model for nonlinear time series forecasting.
Appl Soft Comput J 77:605–621. https://doi.org/10.1016/j.asoc.
2019.02.006

17. Yang J et al (2022) Crack classification of fiber-reinforced backfill
based on Gaussian mixed moving average filtering method. Cem
Concr Compos 134:104740. https://doi.org/10.1016/j.
cemconcomp.2022.104740

18. Li Y, Lang J, Ji L, Zhong J, Wang Z, Guo Y, He S (2021) Weather
forecasting using Ensemble of Spatial-Temporal AttentionNetwork
and Multi-Layer Perceptron. Asia-Pac J Atmos Sci 57(3):533–546.
https://doi.org/10.1007/s13143-020-00212-3

19. Mahmoudi MR, Baroumand S (2022) Modeling the stochastic
mechanism of sensor using a hybrid method based on seasonal
autoregressive integrated moving average time series and general-
ized estimating equations. ISA Trans 125:300–305. https://doi.org/
10.1016/j.isatra.2021.07.013

20. Guefano S, Tamba JG, Azong TEW,Monkam L (2021) Forecast of
electricity consumption in the Cameroonian residential sector by
Grey and vector autoregressive models. Energy 214:118791.
https://doi.org/10.1016/j.energy.2020.118791

21. Hamzaçebi C (2008) Improving artificial neural networks’ perfor-
mance in seasonal time series forecasting. Inf Sci (NY) 178(23):
4550–4559. https://doi.org/10.1016/j.ins.2008.07.024

22. Rai A, Upadhyay SH (2018) An integrated approach to bearing
prognostics based on EEMD-multi feature extraction, Gaussian
mixture models and Jensen-Rényi divergence. Appl Soft Comput
J 71:36–50. https://doi.org/10.1016/j.asoc.2018.06.038

23. Liu J, Vitelli V, Zio E, Seraoui R (2015) A novel dynamic-weighted
probabilistic support vector regression-based Ensemble for
Prognostics of time series data. IEEE Trans Reliab 64:1203–1213.
https://doi.org/10.1109/TR.2015.2427156

24. Li Z, Wu D, Hu C, Terpenny J (2019) An ensemble learning-based
prognostic approach with degradation-dependent weights for re-
maining useful life prediction. Reliab Eng Syst Saf 184:110–122.
https://doi.org/10.1016/j.ress.2017.12.016

25. Zhang H-C, Wu Q, Li F-Y (2022) Application of online multitask
learning based on least squares support vector regression in the
financial market. Appl Soft Comput 121:108754. https://doi.org/
10.1016/j.asoc.2022.108754

26. Wang X, Zhang M, Ren F (2018) Sparse Gaussian conditional
random fields on top of recurrent neural networks. In: 32nd
AAAI Conf Artif Intell AAAI 2018, pp. 4219–4226

27. Wu Z, Pan S, Long G, Jiang J, Chang X, Zhang C (2020)
Connecting the dots: multivariate time series forecastingwith graph
neural networks. In: Proc ACM SIGKDD Int Conf Knowl Discov
Data Min, pp. 753–763. https://doi.org/10.1145/3394486.3403118

28. Li W, Wang X, Han H, Qiao J (2022) A PLS-based pruning algo-
rithm for simplified long–short term memory neural network in
time series prediction. Knowledge-Based Syst 254:109608.
https://doi.org/10.1016/j.knosys.2022.109608

29. Ozdemir AC, Buluş K, Zor K et al (2022) Res Policy 78:102906.
https://doi.org/10.1016/j.resourpol.2022.102906

30. Feng X, Chen J, Zhang Z, Miao S, Zhu Q (2021) State-of-charge
estimation of lithium-ion battery based on clockwork recurrent

neural network. Energy 236:121360. https://doi.org/10.1016/j.
energy.2021.121360

31. Zhang Y, Peng N, Dai M, Zhang J, Wang H (2021) Memory-gated
recurrent networks. Thirty-Fifth AAAI Conf Artif Intell 35(12):
10956–10963

32. Ma Q, Lin Z, Chen E, Cottrell GW (2020) Temporal pyramid re-
current neural network. In: AAAI 2020 - 34th AAAI Conf Artif
Intell, pp. 5061–5068. https://doi.org/10.1609/aaai.v34i04.5947

33. Yu B, Yin H, Zhu Z (2018) Spatio-temporal graph convolutional
networks: A deep learning framework for traffic forecasting. In:
IJCAI Int Jt Conf Artif Intell, vol. 2018-July, pp. 3634–3640.
https://doi.org/10.24963/ijcai.2018/505

34. Wang J, Chen Q, Gong H (2020) STMAG: A spatial-temporal
mixed attention graph-based convolution model for multi-data flow
safety prediction. Inf Sci (NY) 525:16–36. https://doi.org/10.1016/
j.ins.2020.03.040

35. Song C, Lin Y, Guo S, Wan H (2020) Spatial-temporal synchronous
graph convolutional networks: A new framework for spatial-temporal
network data forecasting. In: AAAI 2020 - 34th AAAI Conf Artif
Intell, pp. 914–921. https://doi.org/10.1609/aaai.v34i01.5438

36. Wang B, Lin Y, Guo S, Wan H (2021) GSNet: learning spatial-
temporal correlations from geographical and semantic aspects for
traffic accident risk forecasting. In: AAAI 2021

37. Veličković P, Casanova A, Liò P, Cucurull G, RomeroA, Bengio Y
(2018) Graph attention networks. In: 6th Int. Conf. Learn.
Represent. ICLR 2018 - Conf Track Proc, pp. 1–12

38. Shi M, Huang Y, Zhu X, Tang Y, Zhuang Y, Liu J (2021) GAEN:
Graph attention evolving networks. In: IJCAI Int Jt Conf Artif
Intell, pp. 1541–1547. https://doi.org/10.24963/ijcai.2021/213

39. Han S, Dong H, Teng X, Li X, Wang X (2021) Correlational graph
attention-based Long Short-TermMemory network for multivariate
time series prediction. Appl Soft Comput 106:107377. https://doi.
org/10.1016/j.asoc.2021.107377

40. Chi K, Yin G, Dong Y, Dong H (2019) Link prediction in dynamic
networks based on the attraction force between nodes. Knowledge-
Based Syst 181:104792. https://doi.org/10.1016/j.knosys.2019.05.035

41. Li M, Zhu Z (2021) Spatial-temporal fusion graph neural networks
for traffic flow forecasting. In: 35th AAAI Conf Artif Intell AAAI
2021, vol. 5A, pp. 4189–4196

42. Geurts M, Box GEP, Jenkins GM (1977) Time series analysis:
forecasting and control. J Mark Res. https://doi.org/10.2307/
3150485

43. Sun Y et al (2021) Hotspot temperature prediction of dry-type
transformers based on particle filter optimization with support vec-
tor regression. Symmetry (Basel) 13(8):1320. https://doi.org/10.
3390/sym13081320

44. Liu Y, Gong C, Yang L, Chen Y (2020) DSTP-RNN: a dual-stage
two-phase attention-based recurrent neural network for long-term
and multivariate time series prediction. Expert Syst Appl 143:
113082. https://doi.org/10.1016/j.eswa.2019.113082

45. Du S, Li T, Yang Y, Horng SJ (2021) Deep air quality forecasting
using hybrid deep learning framework. IEEE Trans Knowl Data Eng
33(6):2412–2424. https://doi.org/10.1109/TKDE.2019.2954510

46. Hu J, Zheng W (2020) Multistage attention network for multivari-
ate time series prediction. Neurocomputing 383:122–137. https://
doi.org/10.1016/j.neucom.2019.11.060

Publisher’s note Springer Nature remains neutral with regard to jurisdic-
tional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds
exclusive rights to this article under a publishing agreement with the
author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such
publishing agreement and applicable law.

17361

https://doi.org/10.1016/j.ins.2021.08.042
https://doi.org/10.1016/j.ins.2021.08.042
https://doi.org/10.24963/ijcai.2018/476
https://doi.org/10.1016/j.asoc.2019.02.006
https://doi.org/10.1016/j.asoc.2019.02.006
https://doi.org/10.1016/j.cemconcomp.2022.104740
https://doi.org/10.1016/j.cemconcomp.2022.104740
https://doi.org/10.1007/s13143-020-00212-3
https://doi.org/10.1016/j.isatra.2021.07.013
https://doi.org/10.1016/j.isatra.2021.07.013
https://doi.org/10.1016/j.energy.2020.118791
https://doi.org/10.1016/j.ins.2008.07.024
https://doi.org/10.1016/j.asoc.2018.06.038
https://doi.org/10.1109/TR.2015.2427156
https://doi.org/10.1016/j.ress.2017.12.016
https://doi.org/10.1016/j.asoc.2022.108754
https://doi.org/10.1016/j.asoc.2022.108754
https://doi.org/10.1145/3394486.3403118
https://doi.org/10.1016/j.knosys.2022.109608
https://doi.org/10.1016/j.resourpol.2022.102906
https://doi.org/10.1016/j.energy.2021.121360
https://doi.org/10.1016/j.energy.2021.121360
https://doi.org/10.1609/aaai.v34i04.5947
https://doi.org/10.24963/ijcai.2018/505
https://doi.org/10.1016/j.ins.2020.03.040
https://doi.org/10.1016/j.ins.2020.03.040
https://doi.org/10.1609/aaai.v34i01.5438
https://doi.org/10.24963/ijcai.2021/213
https://doi.org/10.1016/j.asoc.2021.107377
https://doi.org/10.1016/j.asoc.2021.107377
https://doi.org/10.1016/j.knosys.2019.05.035
https://doi.org/10.2307/3150485
https://doi.org/10.2307/3150485
https://doi.org/10.3390/sym13081320
https://doi.org/10.3390/sym13081320
https://doi.org/10.1016/j.eswa.2019.113082
https://doi.org/10.1109/TKDE.2019.2954510
https://doi.org/10.1016/j.neucom.2019.11.060
https://doi.org/10.1016/j.neucom.2019.11.060


H. Dong et al.

Hongbin Dong received the B.S.
andM.S. degrees in computer sci-
ence and technology from the
Ha rb i n Sh ip Eng in ee r i ng
College, China, in 1986 and
1995, respectively, and the Ph.D.
degree in computer science and
information technology from
Beijing Jiaotong University,
Beijing, China. Since 2005, he
has been a Professor with the
C o m p u t e r S c i e n c e a n d
Technology Department, Harbin
Engineering University, China.
His research interests include nat-

ural computation, multi-agent systems, machine learning, and data min-
ing. He is a member of the Committee on Artificial Intelligence and
Pattern Recognition of the Chinese Computer Society and the
Committee on Granular Computing and Knowledge Discovery of the
Chinese Academy of Artificial Intelligence, and a Senior Member of
the Computer Society.

Shuang Han received the B.S de-
gree in software engineering from
Harbin Engineering University,
Heilongjiang, in 2014. She is cur-
rently pursuing the Ph.D. degree
in software engineering in Harbin
Engineering University. Her re-
search interests include machine
learning, deep learning, time se-
ries forecasting.

Jinwei Pang received the B.S. de-
gree in computer science and
t e c h n o l o g y f r om C h i n a
University of Petroleum (East
China), Shandong, China and the
M.S. degree and Ph.D. degree in
computer science and technology
f rom Harb in Eng inee r i ng
University, Heilongjiang, China.
Since 2020, she is a lecturer with-
in School of Computer and
Control Engineering, Yantai
University, Shandong, China.
Her research interest includes the
development of optimization al-

gorithm and time series prediction techniques using neural network.

Xiaodong Yu received the B.S.
andM.S. degrees in computer sci-
ence and technology from the
Harbin Normal Universi ty,
China, in 2002 and 2007, respec-
tively, and the Ph.D. degree in
computer science and information
t e c h n o l o g y f r om Ha r b i n
Engineering University, China.
Since 2021, he has been a
Professor with the Computer
S c i e n c e a n d Te c h n o l o gy
Department, Harbin Normal
University, China. His research
interests include natural computa-

tion, machine learning, and data mining.

17362


	A joint network of non-linear graph attention and temporal attraction force for geo-sensory time series prediction
	Abstract
	Introduction
	Related work
	Geo-sensory time series prediction
	Graph neural network
	Law of universal gravitation

	Preliminaries
	Model
	IMV-LSTM
	Non-linear graph attention
	Inter-sensor spatial correlation
	Intra-sensor spatial correlation

	Temporal attraction force mechanism
	Complexity analyses

	Experiment
	Dataset description
	Methods for comparison
	Experimental settings
	Comparison and result analysis
	Evaluation of the sub-dataset
	Effects of different components
	Statistical test

	Conclusion
	References


